WO2008065829A1 - Apparatus for production of trichlorosilane - Google Patents

Apparatus for production of trichlorosilane Download PDF

Info

Publication number
WO2008065829A1
WO2008065829A1 PCT/JP2007/070446 JP2007070446W WO2008065829A1 WO 2008065829 A1 WO2008065829 A1 WO 2008065829A1 JP 2007070446 W JP2007070446 W JP 2007070446W WO 2008065829 A1 WO2008065829 A1 WO 2008065829A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
molten silicon
container
trichlorosilane
silicon
Prior art date
Application number
PCT/JP2007/070446
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiyuki Ishii
Original Assignee
Mitsubishi Materials Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corporation filed Critical Mitsubishi Materials Corporation
Publication of WO2008065829A1 publication Critical patent/WO2008065829A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • C01B33/1071Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof
    • C01B33/10742Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof prepared by hydrochlorination of silicon or of a silicon-containing material
    • C01B33/10757Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof prepared by hydrochlorination of silicon or of a silicon-containing material with the preferential formation of trichlorosilane
    • C01B33/10763Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof prepared by hydrochlorination of silicon or of a silicon-containing material with the preferential formation of trichlorosilane from silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • C01B33/1071Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof

Definitions

  • the present invention relates to conversion of tetrachlorosilane to trichlorosilane.
  • SiHCl 3 is converted by reacting tetrachlorosilane (SiCl: silicon tetrachloride) with hydrogen.
  • Patent Document 1 tetrachlorosilane and hydrogen are added to a heating element formed of graphite, silicon, or silicon carbide.
  • a technique for spraying a feed gas containing it into trichlorosilane is disclosed. In this manufacturing technology, the sprayed supply gas comes into contact with the heating element, and is heated to obtain a reaction product gas containing trichlorosilane by a conversion reaction.
  • a reaction product gas is obtained by blowing a supply gas onto a heating element formed of graphite, silicon or silicon carbide.
  • the inner wall of the heating element Since it is heating for a short time when it comes into contact with the substrate, there is a disadvantage that it is difficult to improve the conversion rate to trichlorosilane, which has a very high thermal efficiency.
  • carbon, hydrogen, chlorosilane, and hydrogen chloride in the supply gas and reaction product gas react to produce methane, methylchlorosilane, silicon carbide, etc., and impurities. There was an inconvenience.
  • Patent Document 1 JP-A 53-97996
  • the present invention has been made in view of the above-described problems, and provides a trichlorosilane production apparatus capable of improving the conversion rate with high thermal efficiency and further preventing the generation of impurities. With the goal.
  • the present invention employs the following configuration in order to solve the above-described problems. That is, the trichlorosilane manufacturing apparatus of the present invention blows a supply gas containing a container for storing molten silicon, a heating mechanism for heating the molten silicon in the container, and tetrachlorosilane and hydrogen into the molten silicon. A gas supply unit.
  • This trichlorosilane manufacturing apparatus includes a gas supply unit that blows out a supply gas containing tetrachlorosilane and hydrogen into molten silicon. For this reason, the supply gas is released in the form of bubbles in the heated high-temperature molten silicon, whereby it is efficiently heated and undergoes a conversion reaction, and trichlorosilane is obtained with a high conversion rate. Also, silicon is generated from the trichlorosilane in the generated reaction gas by a reduction reaction and a thermal decomposition reaction, and this silicon dissolves into the molten silicon, so that the molten silicon can be increased.
  • the container is formed of quartz
  • the gas supply unit includes a quartz nozzle that inserts a tip into the molten silicon and blows out the supply gas. May be.
  • this trichlorosilane production apparatus uses quartz
  • the (SiO 2) nozzle is inserted into the molten silicon in the quartz container, and the supply gas is
  • the quartz container a crucible used for pulling and generating single crystal silicon can be suitably used.
  • the gas supply unit may be provided with a preheating mechanism for heating the supply gas before blowing it into the molten silicon.
  • a preheating mechanism for heating the supply gas before blowing it into the molten silicon.
  • a gas recovery mechanism for deriving a reaction product gas containing trichlorosilane and hydrogen chloride generated from the supply gas in the molten silicon to the outside from a gas outlet port disposed in an upper portion of the container is provided. It may be.
  • this trichlorosilane production apparatus is equipped with a gas recovery mechanism that leads to the outside from the gas outlet arranged in the upper part of the container, the reaction product gas released from the molten silicon is supplied to the gas outlet in the upper part of the container. Can be collected efficiently.
  • a support member may be provided to support the outer surface of the container so as to cover it.
  • the support member supports the outer surface of the container so that even if the quartz container is softened at a high temperature, the support member supports the container from the surroundings so that the container is supported from the surroundings. Shape change and the like can be prevented.
  • the trichlorosilane production apparatus includes a gas supply unit that blows out a supply gas containing tetrachlorosilane and hydrogen into the molten silicon! /, So that the supply in a bubble state in the molten silicon is provided.
  • Trichlorosilane can be obtained at a high conversion rate by being heated efficiently by contact between the gas and molten silicon.
  • the silicon produced by the reduction reaction and thermal decomposition reaction from a part of the trichlorosilane in the reaction gas is dissolved in the molten silicon, so that it is possible to increase the amount of molten silicon.
  • FIG. 1 is a simplified cross-sectional view showing an embodiment of a trichlorosilane production apparatus according to the present invention.
  • the trichlorosilane production apparatus of the present embodiment includes a quartz (SiO 2) container 1 that stores molten silicon S, and a heating mechanism 2 that heats molten silicon S in the container 1. , Te
  • the container 1 uses a quartz crucible used for pulling and generating single crystal silicon, and the inner bottom surface is formed into an arcuate concave surface la and the arcuate concave surface la is used. A continuous cylindrical inner surface lb is formed at the top.
  • the gas supply unit 3 includes a quartz nozzle 6 whose tip is inserted into the molten silicon S and blows out the supply gas, and a pressure pump P1 connected to the quartz nozzle 6 to supply the supply gas under pressure P1 And a supply source (not shown) of a supply gas connected to the pressure pump P1, and a preheating mechanism 11 for heating the supply gas before blowing it into the molten silicon S.
  • the quartz nozzle 6 is inserted vertically upward from the top of the container 1, and a plurality of outlets 6 b are formed in the end plate 6 a that closes the tip of the quartz nozzle 6.
  • the supply gas is blown into the molten silicon S from the port 6b.
  • the supply gas blown out is dispersed as bubbles in the molten silicon S.
  • the quartz nozzle 6 On the outside of the quartz nozzle 6, there is an outer cylinder member 8 arranged coaxially with the quartz nozzle 6. It is fixed to the top of the container 1. A space between the quartz nozzle 6 and the outer cylinder member 8 serves as a reaction product gas outlet channel, and the lower end opening serves as the gas outlet port 4. That is, the quartz nozzle 6 and the outer cylinder member 8 have a double tube structure. In this case, the outer cylinder member 8 is fixed to the upper end portion of the container 1 via the ring-shaped closing member 12.
  • the gas recovery mechanism 5 is provided with an exhaust pump P2 connected to the gas outlet 4 and sucking the reaction product gas! /, When the reaction product gas can be discharged by a pressure difference The exhaust pump can be omitted.
  • the quartz container 1 is supported by a carbon support member 7 so as to cover the outer surface thereof.
  • the carbon support member 7 includes a support portion body 7a having an inner surface that houses the container 1 and contacts the entire outer surface thereof, and a support column portion 7b provided at a lower portion of the support portion body 7a. It is equipped with.
  • the heating mechanism 2 includes a heater part 2a that is a heat generating part disposed around the container 1 so as to surround the container 1, and an electrode that is connected to a lower part of the heater part 2a and allows a current to flow through the heater part 2a.
  • the portion 2b and an annular bottom heater portion 9 disposed below the container 1 are provided.
  • the electrode portion 2b is connected to a power source (not shown).
  • the bottom heater portion 9 is installed below the support portion main body 7a in a state where the support column portion 7b of the carbon support member 7 is passed through. In addition, the bottom heater unit 9 is also not shown in FIG.
  • the heating mechanism 2 performs heating control so that the molten silicon S in the container 1 has a melting temperature of 1420 ° C. Since the feed gas is heated to 1200 ° C or higher, the conversion rate is improved. Further, disilanes may be introduced into the supply gas and the silanes may be taken out.
  • a supply gas containing tetrachlorosilane and hydrogen is melted with silicon. Since the gas supply unit 3 that blows out into the gas S is provided, the supply gas is released in the form of bubbles into the heated high-temperature molten silicon S. Trichlorosilane is obtained at a high rate. In addition, silicon is generated from the trichlorosilane in the generated reaction gas by a reduction reaction and a thermal decomposition reaction, and this silicon dissolves into the molten silicon S. Therefore, the molten silicon S can be increased.
  • the gas recovery mechanism 5 that leads to the outside from the gas outlet 4 disposed in the upper part of the container 1 is provided, the reaction product gas released from the molten silicon S is supplied to the gas outlet in the upper part of the container 1. It can be efficiently recovered from 4.
  • the periphery of the container 1 is supported by the carbon support member 7, even if the quartz container 1 is softened at a high temperature, the container 1 is supported by the carbon support member 7 from the periphery. It is possible to prevent changes in the shape and the like.
  • the molten silicon S is heated by other methods such as a force S for heating the molten silicon S in the container 1 by radiant heat from the heater 2a, high-frequency induction heating, and the like. It doesn't matter.
  • a force S using one quartz nozzle 6 and a plurality of quartz nozzles 6 may be employed.
  • the outlet is formed in the end plate.
  • the supply gas may be directly blown out from the nozzle opening by reducing the diameter of each nozzle.
  • trichlorosilane can be obtained with a high conversion rate.
  • silicon generated by a reduction reaction and thermal decomposition reaction from a part of trichlorosilane in the generated reaction gas dissolves in the molten silicon, it is possible to increase the molten silicon. For this reason, it is used as a raw material for producing high-purity silicon.
  • C which can be suitably used in the production process of trichlorosilane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

Disclosed is an apparatus for the production of trichlorosilane, which comprises a vessel for retaining a molten silicon therein, a heating mechanism for heating the molten silicon retained in the vessel, and a gas supply unit for blowing a supply gas comprising tetrachlorosilane and hydrogen into the molten silicon.

Description

技術分野  Technical field
[0001] 本発明は、テトラクロロシランをトリクロロシランに転換一  [0001] The present invention relates to conversion of tetrachlorosilane to trichlorosilane.
に関する。  About.
本願 (ま、 2006年 11月 30曰 ίこ出願された曰本国特許出願第 2006— 323693号 および 2007年 9月 26曰〖こ出願された曰本国特許出願 2007— 249627号 ίこ対し優  This application (October 2006, November 30, 2006, Japanese Patent Application No. 2006—323693, filed September 26, 2007, Japanese Patent Application, 2007—249627, No.
 Light
先権を主張し、その内容をここに援用する。  Insist on priorities and use the contents here.
背景技術  Background art
 book
[0002] 高純度のシリコン(Si :珪素)を製造するための原料として使用されるトリクロロシラン  [0002] Trichlorosilane used as a raw material for producing high-purity silicon (Si: silicon)
(SiHCl )は、テトラクロロシラン(SiCl :四塩化珪素)を水素と反応させて転換するこ (SiHCl 3) is converted by reacting tetrachlorosilane (SiCl: silicon tetrachloride) with hydrogen.
3 4 3 4
とで製造でさる。  And manufacturing.
[0003] すなわち、シリコンは、以下の反応式(1) , (2)によるトリクロロシランの還元反応と熱 分解反応で生成される。トリクロロシランは、以下の反応式(3)による転換反応で生成 される。  That is, silicon is generated by the reduction reaction and thermal decomposition reaction of trichlorosilane according to the following reaction formulas (1) and (2). Trichlorosilane is produced by a conversion reaction according to the following reaction formula (3).
[0004] SiHCl +H → Si + 3HC1 …ひ)  [0004] SiHCl + H → Si + 3HC1… hi)
3 2  3 2
4SiHCl → Si + 3SiCl + 2H …(2)  4SiHCl → Si + 3SiCl + 2H (2)
3 4 2  3 4 2
SiCl +H → SiHCl +HC1 · · · (3)  SiCl + H → SiHCl + HC1 (3)
4 2 3  4 2 3
[0005] このトリクロロシランの製造方法として、種々の手法が提案されているが、例えば特 許文献 1には、グラフアイト、シリコン又はシリコンカーバイドで形成された発熱体にテ トラクロロシランと水素とを含む供給ガスを吹き付けてトリクロロシランへ転換させる技 術が開示されている。この製造技術では、吹き付けられた供給ガスが発熱体に接触 することで、加熱されて転換反応によりトリクロロシランを含む反応生成ガスを得るもの である。  [0005] Various methods have been proposed as a method for producing this trichlorosilane. For example, in Patent Document 1, tetrachlorosilane and hydrogen are added to a heating element formed of graphite, silicon, or silicon carbide. A technique for spraying a feed gas containing it into trichlorosilane is disclosed. In this manufacturing technology, the sprayed supply gas comes into contact with the heating element, and is heated to obtain a reaction product gas containing trichlorosilane by a conversion reaction.
[0006] 上記従来の技術には、以下の課題が残されている。  [0006] The following problems remain in the above conventional technique.
上記特許文献 1の技術では、供給ガスをグラフアイト、シリコン又はシリコンカーバイ ドで形成された発熱体に吹き付けて反応生成ガスを得て!/、る。しかし発熱体の内壁 に接触した際の短時間の加熱であるため、熱効率があまり高くなぐトリクロロシランへ の転換率の向上が難しいという不都合があった。また、グラフアイトで形成された発熱 体を用いた場合、カーボンと供給ガス及び反応生成ガス中の水素、クロロシラン及び 塩化水素とが反応してメタン、メチルクロロシラン、炭化珪素等が生成されて不純物と なる不都合があった。 In the technique of Patent Document 1, a reaction product gas is obtained by blowing a supply gas onto a heating element formed of graphite, silicon or silicon carbide. But the inner wall of the heating element Since it is heating for a short time when it comes into contact with the substrate, there is a disadvantage that it is difficult to improve the conversion rate to trichlorosilane, which has a very high thermal efficiency. In addition, when a heating element formed of graphite is used, carbon, hydrogen, chlorosilane, and hydrogen chloride in the supply gas and reaction product gas react to produce methane, methylchlorosilane, silicon carbide, etc., and impurities. There was an inconvenience.
特許文献 1 :特開昭 53— 97996号公報  Patent Document 1: JP-A 53-97996
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 本発明は、前述の課題に鑑みてなされたもので、熱効率が高ぐ転換率の向上を 図ることができると共に、さらに不純物の発生を防ぐことができるトリクロロシラン製造 装置を提供することを目的とする。  [0007] The present invention has been made in view of the above-described problems, and provides a trichlorosilane production apparatus capable of improving the conversion rate with high thermal efficiency and further preventing the generation of impurities. With the goal.
課題を解決するための手段  Means for solving the problem
[0008] 本発明は、前記課題を解決するために以下の構成を採用した。すなわち、本発明 のトリクロロシラン製造装置は、溶融シリコンを貯留する容器と、前記容器内の前記溶 融シリコンを加熱する加熱機構と、テトラクロロシランと水素とを含む供給ガスを前記 溶融シリコン中に吹き出すガス供給部とを備えている。  The present invention employs the following configuration in order to solve the above-described problems. That is, the trichlorosilane manufacturing apparatus of the present invention blows a supply gas containing a container for storing molten silicon, a heating mechanism for heating the molten silicon in the container, and tetrachlorosilane and hydrogen into the molten silicon. A gas supply unit.
[0009] このトリクロロシラン製造装置では、テトラクロロシランと水素とを含む供給ガスを溶融 シリコン中に吹き出すガス供給部を備えている。このため、加熱された高温の溶融シ リコン中に供給ガスが気泡状態で放出されることで、効率的に加熱されて転換反応し 、高い転換率でトリクロロシランが得られる。また、生成反応ガス中のトリクロロシランか ら還元反応及び熱分解反応によってシリコンが生成され、このシリコンが溶融シリコン に溶け込むため、溶融シリコンを増加させることができる。  [0009] This trichlorosilane manufacturing apparatus includes a gas supply unit that blows out a supply gas containing tetrachlorosilane and hydrogen into molten silicon. For this reason, the supply gas is released in the form of bubbles in the heated high-temperature molten silicon, whereby it is efficiently heated and undergoes a conversion reaction, and trichlorosilane is obtained with a high conversion rate. Also, silicon is generated from the trichlorosilane in the generated reaction gas by a reduction reaction and a thermal decomposition reaction, and this silicon dissolves into the molten silicon, so that the molten silicon can be increased.
[0010] また、本発明のトリクロロシラン製造装置では、前記容器が、石英で形成され、前記 ガス供給部が、前記溶融シリコン中に先端が差し込まれて前記供給ガスを吹き出す 石英製ノズルを備えていてもよい。この場合、このトリクロロシラン製造装置では、石英 [0010] Further, in the trichlorosilane manufacturing apparatus of the present invention, the container is formed of quartz, and the gas supply unit includes a quartz nozzle that inserts a tip into the molten silicon and blows out the supply gas. May be. In this case, this trichlorosilane production apparatus uses quartz
(SiO )製ノズルが、石英製の容器内の溶融シリコン中に先端が差し込まれて供給ガThe (SiO 2) nozzle is inserted into the molten silicon in the quartz container, and the supply gas is
2 2
スを吹き出すので、容器及びノズルに起因する不純物の生成が無ぐ反応生成ガス 中に不純物が混入することを防ぐことができる。 [0011] 石英製容器としては、単結晶シリコンの引き上げ生成に用いられるルツボが好適に 使用できる。 Since the gas is blown out, impurities can be prevented from being mixed into the reaction product gas that does not generate impurities due to the container and the nozzle. [0011] As the quartz container, a crucible used for pulling and generating single crystal silicon can be suitably used.
[0012] 前記ガス供給部には、供給ガスを前記溶融シリコン中に吹き出す前に加熱する予 熱機構が備えられていてもよい。この場合、供給ガスを予熱した状態で溶融シリコン 中に吹き出させることにより、溶融シリコンの熱負荷を小さくすることができるとともに、 シリコンを溶融状態に維持することも容易であり、装置の小型化を図ることが可能にな  [0012] The gas supply unit may be provided with a preheating mechanism for heating the supply gas before blowing it into the molten silicon. In this case, it is possible to reduce the thermal load of the molten silicon by blowing the gas into the molten silicon in a preheated state, and it is easy to maintain the silicon in a molten state, thereby reducing the size of the apparatus. It becomes possible to plan
[0013] 前記溶融シリコン中で前記供給ガスから生成されたトリクロロシランと塩化水素とを 含む反応生成ガスを、前記容器の上部に配されたガス導出口から外部に導出するガ ス回収機構を備えていてもよい。この場合、このトリクロロシラン製造装置では、容器 の上部に配されたガス導出口から外部に導出するガス回収機構を備えているので、 溶融シリコンから放出された反応生成ガスを容器上部のガス導出口から効率的に回 収できる。 [0013] A gas recovery mechanism for deriving a reaction product gas containing trichlorosilane and hydrogen chloride generated from the supply gas in the molten silicon to the outside from a gas outlet port disposed in an upper portion of the container is provided. It may be. In this case, since this trichlorosilane production apparatus is equipped with a gas recovery mechanism that leads to the outside from the gas outlet arranged in the upper part of the container, the reaction product gas released from the molten silicon is supplied to the gas outlet in the upper part of the container. Can be collected efficiently.
[0014] 前記容器の外側表面を覆うように支持する支持部材を備えていてもよい。この場合 、このトリクロロシラン製造装置では、支持部材で容器の外側表面を覆うように支持し ているので、高温時に石英製容器が軟化しても容器を支持部材が周囲から支持する ことで容器の形状変化等を防ぐことができる。  [0014] A support member may be provided to support the outer surface of the container so as to cover it. In this case, in this trichlorosilane manufacturing apparatus, the support member supports the outer surface of the container so that even if the quartz container is softened at a high temperature, the support member supports the container from the surroundings so that the container is supported from the surroundings. Shape change and the like can be prevented.
発明の効果  The invention's effect
[0015] 本発明によれば、以下の効果を奏する。 [0015] According to the present invention, the following effects can be obtained.
本発明に係るトリクロロシラン製造装置によれば、テトラクロロシランと水素とを含む 供給ガスを溶融シリコン中に吹き出すガス供給部を備えて!/、るので、溶融シリコンの 中で気泡状態となった供給ガスと溶融シリコンとの接触により効率的に加熱されること で、高い転換率でトリクロロシランが得られる。また、生成反応ガス中のトリクロロシラン の一部から還元反応及び熱分解反応によって生成されたシリコンが溶融シリコンに 溶け込むため、溶融シリコンを増カロさせること力 Sできる。さらに、カーボン材を用いず に石英を用いて容器やガス供給部のノズルを構成することで、不純物の発生を防ぐ こと力 Sできる。したがって、高い転換率で純度の高いトリクロロシランが得られると共に 、シリコンも同時に生成できる。 図面の簡単な説明 The trichlorosilane production apparatus according to the present invention includes a gas supply unit that blows out a supply gas containing tetrachlorosilane and hydrogen into the molten silicon! /, So that the supply in a bubble state in the molten silicon is provided. Trichlorosilane can be obtained at a high conversion rate by being heated efficiently by contact between the gas and molten silicon. In addition, the silicon produced by the reduction reaction and thermal decomposition reaction from a part of the trichlorosilane in the reaction gas is dissolved in the molten silicon, so that it is possible to increase the amount of molten silicon. Furthermore, it is possible to prevent the generation of impurities by configuring the container and the nozzle of the gas supply unit using quartz without using a carbon material. Accordingly, trichlorosilane having high conversion and high purity can be obtained, and silicon can be produced at the same time. Brief Description of Drawings
[0016] [図 1]図 1は、本発明に係るトリクロロシラン製造装置の一実施形態を示す簡略的な断 面図である。  FIG. 1 is a simplified cross-sectional view showing an embodiment of a trichlorosilane production apparatus according to the present invention.
符号の説明  Explanation of symbols
[0017] 1 · · ·容器、 2· · ·加熱機構、 3· · ·ガス供給部、 4· · ·ガス導出口、 5· · ·ガス回収機構、 6· · · 石英製ノズル、 6a…吹き出し口、 7· · ·カーボン製支持部材、 8· · ·外筒部材、 11 · · ·予 熱機構、 S…溶融シリコン。  [0017] 1 · · · Container, 2 · · · Heating mechanism, 3 · · Gas supply section, 4 · · Gas outlet, 5 · · Gas recovery mechanism, 6 · · · Quartz nozzle, 6a ... Air outlet, 7 ... carbon support member, 8 ... outer cylinder member, 11 ... preheating mechanism, S ... molten silicon.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下、本発明に係るトリクロロシラン製造装置の一実施形態を、図 1を参照しながら 説明する。 Hereinafter, an embodiment of a trichlorosilane production apparatus according to the present invention will be described with reference to FIG.
[0019] 本実施形態のトリクロロシラン製造装置は、図 1に示すように、溶融シリコン Sを貯留 する石英(SiO )製の容器 1と、容器 1内の溶融シリコン Sを加熱する加熱機構 2と、テ  As shown in FIG. 1, the trichlorosilane production apparatus of the present embodiment includes a quartz (SiO 2) container 1 that stores molten silicon S, and a heating mechanism 2 that heats molten silicon S in the container 1. , Te
2  2
トラクロロシランと水素とを含む供給ガスを溶融シリコン S中に吹き出すガス供給部 3と 、溶融シリコン S中で供給ガスから生成されたトリクロロシランと塩化水素とを含む反応 生成ガスを、容器 1の上部に配されたガス導出口 4から外部に導出するガス回収機 構 5とを備えている。  A gas supply unit 3 for blowing a supply gas containing trachlorosilane and hydrogen into the molten silicon S, and a reaction product gas containing trichlorosilane and hydrogen chloride generated from the supply gas in the molten silicon S And a gas recovery mechanism 5 that leads to the outside from a gas outlet 4 arranged in
[0020] 上記容器 1は、図示例の場合、単結晶シリコンの引き上げ生成に用いられる石英製 ルツボが使用されており、内底面が円弧状凹面 laに形成されるとともに、円弧状凹 面 laから連続する筒状内面 lbが上部に形成されている。  [0020] In the illustrated example, the container 1 uses a quartz crucible used for pulling and generating single crystal silicon, and the inner bottom surface is formed into an arcuate concave surface la and the arcuate concave surface la is used. A continuous cylindrical inner surface lb is formed at the top.
[0021] 上記ガス供給部 3は、溶融シリコン S中に先端が差し込まれて供給ガスを吹き出す 石英製ノズル 6と、この石英製ノズル 6に接続され供給ガスを加圧供給する加圧ボン プ P1と、この加圧ポンプ P1に接続された供給ガスの供給源(図示略)と、供給ガスを 溶融シリコン S中に吹き出す前に加熱する予熱機構 11とを備えている。  [0021] The gas supply unit 3 includes a quartz nozzle 6 whose tip is inserted into the molten silicon S and blows out the supply gas, and a pressure pump P1 connected to the quartz nozzle 6 to supply the supply gas under pressure P1 And a supply source (not shown) of a supply gas connected to the pressure pump P1, and a preheating mechanism 11 for heating the supply gas before blowing it into the molten silicon S.
[0022] 石英製ノズル 6は、容器 1の上方から鉛直下方に向けて差し込まれており、石英製 ノズル 6の先端を閉塞する端板 6aには複数の吹き出し口 6bが形成され、これら吹き 出し口 6bから溶融シリコン S中に供給ガスを吹き出すようになつている。吹き出された 供給ガスは溶融シリコン S中に気泡状となって分散される。  The quartz nozzle 6 is inserted vertically upward from the top of the container 1, and a plurality of outlets 6 b are formed in the end plate 6 a that closes the tip of the quartz nozzle 6. The supply gas is blown into the molten silicon S from the port 6b. The supply gas blown out is dispersed as bubbles in the molten silicon S.
[0023] 石英製ノズル 6の外側には、この石英製ノズル 6と同軸に配された外筒部材 8が上 記容器 1の上部に固定されている。そして、石英製ノズル 6と外筒部材 8との間は、反 応生成ガスの導出流路とされ、下端開口部がガス導出口 4となる。すなわち、石英製 ノズル 6と外筒部材 8とは、 2重管構造となっている。この場合、外筒部材 8は、上記容 器 1の上端部にリング状閉塞部材 12を介して固定されている。 [0023] On the outside of the quartz nozzle 6, there is an outer cylinder member 8 arranged coaxially with the quartz nozzle 6. It is fixed to the top of the container 1. A space between the quartz nozzle 6 and the outer cylinder member 8 serves as a reaction product gas outlet channel, and the lower end opening serves as the gas outlet port 4. That is, the quartz nozzle 6 and the outer cylinder member 8 have a double tube structure. In this case, the outer cylinder member 8 is fixed to the upper end portion of the container 1 via the ring-shaped closing member 12.
[0024] また、上記ガス回収機構 5は、ガス導出口 4に接続され反応生成ガスを吸引する排 気用ポンプ P2を備えて!/、る力 この反応生成ガスを圧力差で排出可能な場合には 排気用ポンプは省略可能である。  [0024] Further, the gas recovery mechanism 5 is provided with an exhaust pump P2 connected to the gas outlet 4 and sucking the reaction product gas! /, When the reaction product gas can be discharged by a pressure difference The exhaust pump can be omitted.
[0025] 上記石英製の容器 1は、その外表面を覆うようにカーボン製支持部材 7によって支 持されている。  [0025] The quartz container 1 is supported by a carbon support member 7 so as to cover the outer surface thereof.
[0026] 上記カーボン製支持部材 7は、容器 1を収納してその外表面全体に接触する内表 面を有する支持部本体 7aと、この支持部本体 7aの下部に設けられた支持柱部 7bを 備えている。  [0026] The carbon support member 7 includes a support portion body 7a having an inner surface that houses the container 1 and contacts the entire outer surface thereof, and a support column portion 7b provided at a lower portion of the support portion body 7a. It is equipped with.
[0027] 上記加熱機構 2は、容器 1の周囲に容器 1を囲うように配され発熱部であるヒータ部 2aと、このヒータ部 2aの下部に接続されヒータ部 2aに電流を流すための電極部 2bと 、容器 1の下方に配された円環状の底部ヒータ部 9とを備えている。この電極部 2bは 、図示しない電源に接続されている。上記底部ヒータ部 9は、カーボン製支持部材 7 の支持柱部 7bが揷通された状態で支持部本体 7aの下方に設置されている。なお、 底部ヒータ部 9にも、図示しな!/、電極部が接続されて!/、る。  [0027] The heating mechanism 2 includes a heater part 2a that is a heat generating part disposed around the container 1 so as to surround the container 1, and an electrode that is connected to a lower part of the heater part 2a and allows a current to flow through the heater part 2a. The portion 2b and an annular bottom heater portion 9 disposed below the container 1 are provided. The electrode portion 2b is connected to a power source (not shown). The bottom heater portion 9 is installed below the support portion main body 7a in a state where the support column portion 7b of the carbon support member 7 is passed through. In addition, the bottom heater unit 9 is also not shown in FIG.
[0028] また、加熱機構 2は、容器 1内の溶融シリコン Sが溶融温度である 1420°Cになるよう に加熱制御を行う。なお、 1200°C以上に供給ガスが加熱されるので、転換率が向上 する。また、供給ガスにジシラン類を導入し、シラン類を取り出してもよい。  [0028] In addition, the heating mechanism 2 performs heating control so that the molten silicon S in the container 1 has a melting temperature of 1420 ° C. Since the feed gas is heated to 1200 ° C or higher, the conversion rate is improved. Further, disilanes may be introduced into the supply gas and the silanes may be taken out.
[0029] このトリクロロシラン製造装置では、石英製ノズル 6から溶融シリコン S内に供給ガス を吹き込むと、高温状態の溶融シリコン Sと気泡状態の供給ガスとが接触して転換反 応し反応生成ガスが生成される。また、この際、反応生成ガスに含まれるトリクロロシラ ンの一部から、さらに還元反応及び熱分解反応によりシリコンが生成され、このシリコ ンが溶融シリコンに溶け込む。残った反応生成ガスは、溶融シリコン Sから上方に放 出され、容器 1上部のガス導出口 4から外部に導出されて回収される。  [0029] In this trichlorosilane production apparatus, when a supply gas is blown into the molten silicon S from the quartz nozzle 6, the molten silicon S in a high temperature state and the supply gas in a bubble state come into contact with each other to react to react and generate a reaction product gas. Is generated. At this time, silicon is further generated from a part of trichlorosilane contained in the reaction product gas by a reduction reaction and a thermal decomposition reaction, and this silicon is dissolved in the molten silicon. The remaining reaction product gas is discharged upward from the molten silicon S, and is led out through the gas outlet 4 at the top of the container 1 to be recovered.
[0030] このように本実施形態では、テトラクロロシランと水素とを含む供給ガスを溶融シリコ ン S中に吹き出すガス供給部 3を備えているので、加熱された高温の溶融シリコン S 中に供給ガスが気泡状態で放出されることで、効率的に加熱されて転換反応し、高 い転換率でトリクロロシランが得られる。また、生成反応ガス中のトリクロロシランから還 元反応及び熱分解反応によってシリコンが生成され、このシリコンが溶融シリコン Sに 溶け込むため、溶融シリコン Sを増加させることができる。 [0030] Thus, in the present embodiment, a supply gas containing tetrachlorosilane and hydrogen is melted with silicon. Since the gas supply unit 3 that blows out into the gas S is provided, the supply gas is released in the form of bubbles into the heated high-temperature molten silicon S. Trichlorosilane is obtained at a high rate. In addition, silicon is generated from the trichlorosilane in the generated reaction gas by a reduction reaction and a thermal decomposition reaction, and this silicon dissolves into the molten silicon S. Therefore, the molten silicon S can be increased.
[0031] さらに、石英製ノズル 6が、石英製の容器 1内の溶融シリコン S中に先端が差し込ま れて供給ガスを吹き出すので、容器 1及び石英製ノズル 6に起因する不純物の生成 が無ぐ反応生成ガス中に不純物が混入することを防ぐことができる。 [0031] Further, since the tip of the quartz nozzle 6 is inserted into the molten silicon S in the quartz container 1 and the supply gas is blown out, there is no generation of impurities due to the container 1 and the quartz nozzle 6. It is possible to prevent impurities from being mixed into the reaction product gas.
[0032] また、容器 1の上部に配されたガス導出口 4から外部に導出するガス回収機構 5を 備えているので、溶融シリコン Sから放出された反応生成ガスを容器 1上部のガス導 出口 4から効率的に回収できる。 [0032] In addition, since the gas recovery mechanism 5 that leads to the outside from the gas outlet 4 disposed in the upper part of the container 1 is provided, the reaction product gas released from the molten silicon S is supplied to the gas outlet in the upper part of the container 1. It can be efficiently recovered from 4.
[0033] また、カーボン製支持部材 7で容器 1の周囲を支持しているので、高温時に石英製 容器 1が軟化しても容器 1をカーボン製支持部材 7が周囲から支持することで容器 1 の形状変化等を防ぐことができる。 [0033] Since the periphery of the container 1 is supported by the carbon support member 7, even if the quartz container 1 is softened at a high temperature, the container 1 is supported by the carbon support member 7 from the periphery. It is possible to prevent changes in the shape and the like.
[0034] なお、本発明の技術範囲は上記実施形態に限定されるものではなぐ本発明の趣 旨を逸脱しない範囲において種々の変更を加えることが可能である。 Note that the technical scope of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
[0035] 例えば、上記実施形態では、加熱機構 2としてヒータ部 2aによる輻射熱で容器 1内 の溶融シリコン Sを加熱している力 S、高周波誘導加熱等の他の方法で溶融シリコン S を加熱しても構わない。 [0035] For example, in the above embodiment, as the heating mechanism 2, the molten silicon S is heated by other methods such as a force S for heating the molten silicon S in the container 1 by radiant heat from the heater 2a, high-frequency induction heating, and the like. It doesn't matter.
[0036] また、上記実施形態では、 1本の石英製ノズル 6を用いている力 S、複数本の石英製 ノズル 6を採用しても構わない。この場合、上記実施形態では端板に吹き出し口を形 成したが、各ノズルの径を小さくすることにより、ノズルの開口から供給ガスを直接吹 き出す構成としてもよい。  In the above embodiment, a force S using one quartz nozzle 6 and a plurality of quartz nozzles 6 may be employed. In this case, in the above embodiment, the outlet is formed in the end plate. However, the supply gas may be directly blown out from the nozzle opening by reducing the diameter of each nozzle.
産業上の利用可能性  Industrial applicability
[0037] 本発明に係るトリクロロシラン製造装置によれば、高い転換率でトリクロロシランが得 られる。また、生成反応ガス中のトリクロロシランの一部から還元反応及び熱分解反 応によって生成されたシリコンが溶融シリコンに溶け込むため、溶融シリコンを増加さ せること力 Sできる。このため高純度のシリコンを製造するための原料として使用される トリクロロシランの製造工程に好適に利用できる c [0037] According to the trichlorosilane production apparatus of the present invention, trichlorosilane can be obtained with a high conversion rate. In addition, since silicon generated by a reduction reaction and thermal decomposition reaction from a part of trichlorosilane in the generated reaction gas dissolves in the molten silicon, it is possible to increase the molten silicon. For this reason, it is used as a raw material for producing high-purity silicon. C which can be suitably used in the production process of trichlorosilane

Claims

請求の範囲 The scope of the claims
[1] 溶融シリコンを貯留する容器と、 [1] a container for storing molten silicon;
前記容器内の前記溶融シリコンを加熱する加熱機構と、  A heating mechanism for heating the molten silicon in the container;
テトラクロロシランと水素とを含む供給ガスを前記溶融シリコン中に吹き出すガス供 給部とを備えていることを特徴とするトリクロロシラン製造装置。  An apparatus for producing trichlorosilane, comprising: a gas supply unit that blows out a supply gas containing tetrachlorosilane and hydrogen into the molten silicon.
[2] 前記容器が、石英で形成され、  [2] The container is formed of quartz,
前記ガス供給部が、前記溶融シリコン中に先端が差し込まれて前記供給ガスを吹 き出す石英製ノズルを備えている請求項 1に記載のトリクロロシラン製造装置。  2. The apparatus for producing trichlorosilane according to claim 1, wherein the gas supply unit includes a quartz nozzle having a tip inserted into the molten silicon and blowing out the supply gas.
[3] 前記ガス供給部には、供給ガスを前記溶融シリコン中に吹き出す前に加熱する予 熱機構が備えられて!/、る請求項 1に記載のトリクロロシラン製造装置。 3. The apparatus for producing trichlorosilane according to claim 1, wherein the gas supply unit is provided with a preheating mechanism that heats the supply gas before blowing it into the molten silicon.
[4] 前記溶融シリコン中で前記供給ガスから生成されたトリクロロシランと塩化水素とを 含む反応生成ガスを、前記容器の上部に配されたガス導出口から外部に導出するガ ス回収機構を備えてレ、る請求項 1に記載のトリクロロシラン製造装置。 [4] A gas recovery mechanism for deriving a reaction product gas containing trichlorosilane and hydrogen chloride generated from the supply gas in the molten silicon to the outside from a gas outlet port disposed at an upper portion of the container. The apparatus for producing trichlorosilane according to claim 1.
[5] 前記容器の外側表面を覆うように支持する支持部材を備えている請求項 1に記載 のトリクロロシラン製造装置。 5. The trichlorosilane production apparatus according to claim 1, further comprising a support member that supports the outer surface of the container so as to cover the outer surface.
PCT/JP2007/070446 2006-11-30 2007-10-19 Apparatus for production of trichlorosilane WO2008065829A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006323693 2006-11-30
JP2006-323693 2006-11-30
JP2007249627 2007-09-26
JP2007-249627 2007-09-26

Publications (1)

Publication Number Publication Date
WO2008065829A1 true WO2008065829A1 (en) 2008-06-05

Family

ID=39467626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070446 WO2008065829A1 (en) 2006-11-30 2007-10-19 Apparatus for production of trichlorosilane

Country Status (2)

Country Link
JP (1) JP2009096678A (en)
WO (1) WO2008065829A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5535679B2 (en) * 2010-02-18 2014-07-02 株式会社トクヤマ Method for producing trichlorosilane
CN102795628B (en) * 2012-08-03 2014-01-15 东华工程科技股份有限公司 Improved method for preparing trichlorosilane by using low-pressure synthetic technology

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07232910A (en) * 1994-01-28 1995-09-05 Hemlock Semiconductor Corp Method for hydrogenation of tetrachloro- silane
JPH1029813A (en) * 1995-12-25 1998-02-03 Tokuyama Corp Production of trichlorosilane
JP2003020217A (en) * 2001-07-03 2003-01-24 Tokuyama Corp Method for manufacturing silicon and trichlorosilane

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07232910A (en) * 1994-01-28 1995-09-05 Hemlock Semiconductor Corp Method for hydrogenation of tetrachloro- silane
JPH1029813A (en) * 1995-12-25 1998-02-03 Tokuyama Corp Production of trichlorosilane
JP2003020217A (en) * 2001-07-03 2003-01-24 Tokuyama Corp Method for manufacturing silicon and trichlorosilane

Also Published As

Publication number Publication date
JP2009096678A (en) 2009-05-07

Similar Documents

Publication Publication Date Title
JP5119856B2 (en) Trichlorosilane production equipment
JP3518869B2 (en) Preparation method of polysilicon using exothermic reaction
JP2012501949A (en) Fluidized bed reactor, use thereof and energy self-supporting hydrogenation method of chlorosilane
JPS62123011A (en) Method for producing trichlorosilane and apparatus therefor
WO2008065829A1 (en) Apparatus for production of trichlorosilane
JP3958092B2 (en) Reactor for silicon production
CN107074561B (en) Use the poly plant and method of high-efficiency hybrid horizontal reactor
JP4805155B2 (en) Silicon production equipment
JP2008037735A (en) Apparatus for manufacturing silicon
WO2008066027A1 (en) Apparatus for producing trichlorosilane
CN106458607B (en) Use the device of horizontal reactor manufacture polysilicon and the manufacturing method of the polysilicon
WO2008062629A1 (en) Apparatus for producing trichlorosilane
CN102060298B (en) Polycrystalline silicon production device and method
JP2008150273A (en) Apparatus for producing trichlorosilane
JP2003002628A (en) Apparatus and method for manufacturing silicon
JP2003020216A (en) Method for manufacturing silicon
JP5160181B2 (en) Trichlorosilane production equipment
JP4099322B2 (en) Method for producing silicon
KR101952731B1 (en) Apparatus and method for producing polycrystalline silicon using horizontal reactor
JPH01100011A (en) Industrial production of trichlorosilane
JP2008037747A (en) Method for manufacturing silicon of solar grade
US9059220B2 (en) Polysilicon manufacturing device
JP5730423B2 (en) Thermal plasma processing equipment
JP5502650B2 (en) Method for manufacturing polysilicon
WO2008062632A1 (en) Trichlorosilane producing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830180

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07830180

Country of ref document: EP

Kind code of ref document: A1