WO2008061817A1 - Système de bouchage muni d'un dispositif de positionnement tête en bas - Google Patents

Système de bouchage muni d'un dispositif de positionnement tête en bas Download PDF

Info

Publication number
WO2008061817A1
WO2008061817A1 PCT/EP2007/058501 EP2007058501W WO2008061817A1 WO 2008061817 A1 WO2008061817 A1 WO 2008061817A1 EP 2007058501 W EP2007058501 W EP 2007058501W WO 2008061817 A1 WO2008061817 A1 WO 2008061817A1
Authority
WO
WIPO (PCT)
Prior art keywords
closure
container
acid
preferred
group
Prior art date
Application number
PCT/EP2007/058501
Other languages
German (de)
English (en)
Inventor
Markus Nachtsheim
Günter Wissmann
Original Assignee
Henkel Ag & Co. Kgaa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Ag & Co. Kgaa filed Critical Henkel Ag & Co. Kgaa
Publication of WO2008061817A1 publication Critical patent/WO2008061817A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D51/00Closures not otherwise provided for
    • B65D51/24Closures not otherwise provided for combined or co-operating with auxiliary devices for non-closing purposes
    • B65D51/249Closures not otherwise provided for combined or co-operating with auxiliary devices for non-closing purposes the closure being specifically formed for supporting the container

Definitions

  • the invention relates to a closure with an overhead standing device, as well as a container provided with such a closure.
  • Containers for holding such preparation are variously known in the art.
  • DE102005051337 describes a two-chamber bottle provided for over-the-head dosing for receiving and dispensing liquids, such as textile cleaning and care products, dishwashing detergents, cosmetics, pharmaceuticals, washer additives and the like.
  • liquids such as textile cleaning and care products, dishwashing detergents, cosmetics, pharmaceuticals, washer additives and the like.
  • high-viscosity preparations can be dosed poorly enough to have a low flow rate.
  • the distance between the liquid level in the bottle and the spout on the closure is relatively small, so that the delay between the positioning of the bottle in an over-head position and the beginning of the active ingredient outlet is still relatively short.
  • bottles can not be stored permanently overhead since there is a risk that, in particular, high-surfactant preparations penetrate through the sealing elements provided by the hydrostatic pressure of the liquid column above the closure.
  • the object of the invention is therefore to provide a closure and container which overcomes the disadvantages known from the prior art and realizes, in a structurally simple manner, a good residual emptying of, in particular, highly viscous preparations from bottles.
  • the arrangement of the stabilizing element on the closure has the advantage that no design changes to the container, for which the closure is used, must be made.
  • the stabilizing element may be arranged in a manner on the closure, that it is not apparent in its first position and is visible only in its functional position, in which it allows a stable positioning of the container.
  • closure according to the invention is particularly suitable for closure heads which have a contour which is shaped such that the container is not stable when it is placed over the top of the closure.
  • a stabilizing element in the sense of this application is a component which is movably designed on and opposite a closure and can be moved from a first position, in which the closure can not be stably positioned on a substantially horizontal surface, into a second position in such a way that in this second position of the stabilizing element, the closure can be positioned so as to be stably over head on a substantially horizontal surface such that in the over-head position of the container at least a part of the closure, in particular the closure head, and at least a part of the closure in the second Position stabilizing element form the base of the closure.
  • the stabilizing element is designed as a bracket.
  • the bow shape has the advantage of providing a comparatively elongated, linear support edge, which serves to support the closure in the overhead position.
  • the stabilizing element can be movable relative to the closure by means of a rotary movement, a linear movement or a combination thereof.
  • the stabilizing element may be pivotable, extendable, hinged, extendable, etc.
  • the stabilizing element may be formed as a flap, strap, stamp, cylinder or the like.
  • the stabilizing element biases a traverse, which encloses the footing of the closure on a horizontal flat surface in the overhead position.
  • the support points of the shutter on the horizontal plane in this case form the support points of the polygon, when the support point is substantially punctiform or the sides of the polygon, when the support point is substantially linear.
  • the polygon can be designed in particular as Dreieich, truncated cone, square, rectangle, trapezoid, parallelogram.
  • the projection of the center of gravity of the container arranged on the closure is perpendicular to the horizontal plane within the standing surface of the closure spanned by the traverse. It is particularly preferred that the center of gravity of the container relative to the center of gravity of the support surface is slightly displaced in the direction of the support line formed by the bracket, whereby the stability of the closure with the container can be further increased.
  • the stabilizing element and / or the support region of the closure may be provided with a non-slip material.
  • the stabilizing element can be coupled with spring elements, which automatically transfer the stabilizing element into the second position when releasing the stabilizing element from the first position by means of the spring action.
  • a closure flap in the sense of this application is a closure means arranged on the closure which serves alone or in conjunction with the closure for closing a product discharge opening.
  • closure flap can be designed as an outer flap, inner flap or closing flap, flap lid, cam cover, bayonet closure lid, hinge lid, sliding lid, snap lid, clamping lid, screw cap, slip lid, overcap lid or the like. It is particularly advantageous to form the closure flap fixedly but movably on the closure so that the closure flap does not unintentionally detach from the closure when the closure is opened.
  • closure flap in one piece on the closure wherein it is particularly advantageous that the closure flap in this embodiment can be articulated on the closure.
  • material fatigue can occur in the vicinity of the hinge line, which can lead to crack formation and complete detachment or to a changing coupling behavior, depending on the structural design.
  • the shutter is movably connected to the shutter via a hinge. Due to the storage, the movement of the closure flap does not lead to any wear that is relevant for the life of the closure.
  • the closure flap is fixed in the closed position by the stabilizing element shaped as a pivotable bracket in the closed position.
  • the bracket and the flap are firmly connected. This has the advantage that the When the flap is transferred from the dispensing position to the closing position, the clip is moved into the closed position and, in the closed position of the closing flap, the clip is positioned in its overhead standing position. The shutter is thus automatically prepared with the shutter closed for positioning in the overhead position.
  • a container in the sense of this application is a device which is intended to cover a preparation in such a way that it can be shipped, stored and / or sold.
  • the container usually has a bottom and a lateral surface, through which a volume for receiving a preparation is formed. Furthermore, the container regularly has an opening for dispensing the preparation from the container, wherein the opening can be closed by a closure, in particular by the closure according to the invention.
  • the container may in particular be selected from the group of bottles, containers, cans, boxes, bags, etc.
  • the container is formed in such a way that the projection of the center of gravity of the container perpendicular to the base, regardless of the level, is always within the standing surface of the closure, so that the container is stably positioned on the closure according to the invention in an over-head position at each level can.
  • the container is designed in particular as a multi-chamber container, preferably as a two-chamber bottle.
  • the multi-chamber container can be produced particularly inexpensively by being made in one piece. Particularly suitable for this purpose Extrusion blow molding in which the multi-chamber container is molded from plastic such as PE, PP, polyester, co-polyester, PVC, TPE or the like.
  • the multi-chamber container is advantageously formed substantially dimensionally stable. This ensures that the delivery from the multichamber container is effected essentially solely by the force of gravity acting on the active substance fluids.
  • the chambers are designed as complete containers and only connected to one another via at least one, preferably exactly one connecting web formed between the chambers.
  • the connecting web is preferably integrally formed on the mutually facing inner sides of the chambers, in particular formed, for example, in the blow molding process with the chambers simultaneously. It is particularly expedient if the connecting web is arranged approximately centrally and i.w. - if necessary intermittently - extends over the full length of the chambers.
  • the multi-chamber container made of a material. This has advantages in terms of manufacturing complexity, less expensive manufacturing equipment, dimensional accuracy in manufacturing and the avoidance of additional joining costs.
  • the multi-chamber container is formed from a plastic.
  • Typical Altervolunnina of receptacles in the scope of liquid detergents are between 100 ml and 10,000 ml, preferably between 1,000 ml and 3,000 ml.
  • the usual total volumes of receptacles between 50 ml and 10,000 ml, with a preferred range between 400 ml and 2000 ml.
  • the total volume of the multichamber container is application specific and dependent on the drug fluids and can be scaled accordingly by those skilled in the art.
  • the extrusion blow molding process is a convenient process for producing the multichamber container of the invention.
  • the chambers which are made in one piece with one another, to have a different light permeability and / or a different coloration.
  • the extrusion blown process like other production methods, also permits the separate production of the individual chamber and the subsequent joining of the chamber to a multi-chamber container Composition of the active substance fluids
  • flowable solids such as, for example, powders, granules or microcompactates, are also considered as flowable substances / substance mixtures in the context of the present application.
  • the stated solids may be present in amorphous and / or crystalline and / or partially crystalline form.
  • the particle size of these flowable solids is preferably in the range of 10 to 2000 microns, more preferably in the range of 20 to 1000 microns and in particular in the range of 50 to 500 microns.
  • flowable solids in which at least 70 wt .-% of the particles, preferably at least 90 wt .-% of the particles have a particle size below 1000 microns, preferably below 800 microns, more preferably below 400 microns.
  • further active substances may preferably be selected from the group of bleaching agents, bleach activators, polymers, builders, surfactants, enzymes, electrolytes, pH Adjusting agents, fragrances, perfume carriers, dyes, hydrotropes, foam inhibitors, preservatives, Disintegrationsangesitte, Antiredepositionsstoff, antimicrobial agents, germicides, fungicides, antioxidants, glass corrosion inhibitors, and corrosion inhibitors contained.
  • the preparation is particularly preferably formed by two separate liquid cleaning agents A and B.
  • the builders include, in particular, the zeolites, silicates, carbonates, organic cobuilders and, where there are no ecological prejudices against their use, also the phosphates.
  • crystalline layered silicates of general formula NaMSi x ⁇ 2 X + i ⁇ y H 2 O used, wherein M is sodium or hydrogen, x is a number from 1, 9 to 22, preferably from 1: 9 to 4, wherein particularly preferred values for x are 2, 3 or 4, and y is a number from 0 to 33, preferably from 0 to 20.
  • the crystalline visually oily silicates of the formula NaMSi x O 2x + I ⁇ y H 2 O are sold, for example, by the company Clariant GmbH (Germany) under the trade name Na-SKS.
  • silicates Na-SKS-1 (Na 2 Si 22 O 45 .xH 2 O, kenyaite), Na-SKS-2 (Na 2 Sh 4 O 29 .xH 2 O, magadiite), Na-SKS -3 (Na 2 Si 8 Oi 7 .xH 2 O) or Na-SKS-4 (Na 2 Si 4 O 9 .xH 2 O, makatite).
  • crystalline layer silicates with the formula NaMSi x O 2x + I ⁇ y H 2 O, in which x stands for 2 h.
  • x stands for 2 h.
  • both .beta.- and ⁇ -sodium Na 2 Si 2 O 5 ⁇ y H 2 O and further in particular Na-SKS-5 ((X-Na 2 Si 2 O 5), Na-SKS-7 (.beta.
  • the liquid cleaning agent A and / or B preferably contain a weight proportion of the crystalline sodium silicate see ichtförm the formula NaMSi x ⁇ 2 X + i ⁇ y H 2 O from 0.1 to 20 wt .-% from 0.2 to 15 parts by weight % and in particular from 0.4 to 10 wt .-%, each based on the weight of the respective cleaning agent A or B, are included.
  • amorphous sodium silicates with a Na 2 O: SiO 2 modulus of from 1: 2 to 1: 3.3, preferably from 1: 2 to 1: 2.8 and in particular from 1: 2 to 1: 2.6, which preferably delayed release and have secondary washing properties.
  • the dissolution delay compared with conventional amorphous sodium silicates may have been caused in various ways, for example by surface treatment, compounding, compaction / densification or by overdrying.
  • amorphous is understood to mean that the silicates do not yield sharp X-ray reflections typical of crystalline substances in X-ray diffraction experiments, but at most one or more maxima of the scattered X-rays having a width of several degrees of diffraction angle ,
  • X-ray amorphous silicates are used whose silicate particles produce blurred or even sharp diffraction maxima in electron diffraction experiments. This is to be interpreted as meaning that the products have microcrystalline regions of the size of ten to a few hundred nm, with values of up to max. 50 nm and in particular up to max. 20 nm are preferred.
  • Such X-ray amorphous silicates also have a dissolution delay compared to conventional water glasses.
  • compacted / compacted amorphous silicates, compounded amorphous silicates and overdried X-ray amorphous silicates are especially preferred.
  • the alkali metal phosphates with a particular preference for pentasodium or pentapotassium triphosphate (sodium or potassium tripolyphosphate), have the greatest importance in the washing and cleaning agent industry.
  • Alkalimetallphosphate is the summary term for the alkali metal (especially sodium and potassium) salts of various phosphoric acids, in which one can distinguish metaphosphoric acids (HPOs) n and orthophosphoric H 3 PO 4 in addition to high molecular weight representatives.
  • the phosphates combine several advantages: they act as alkali carriers, prevent lime deposits on machine parts or lime incrustations in fabrics and also contribute to the cleaning performance.
  • phosphates are the pentasodium triphosphate, Na 5 PsOiO (sodium tripolyphosphate) and the corresponding potassium salt pentapotassium triphosphate, K 5 P 3 OiO (potassium tripolyphosphate).
  • the nathium potassium tripolyphosphates are preferably used according to the invention.
  • phosphates are used as washing or cleaning substances in the liquid detergents A and / or B in the context of the present application
  • preferred combination products contain these phosphate (s), preferably alkali metal phosphate (s), particularly preferably pentasodium or pentapotassium triphosphate (Sodium or potassium tripolyphosphate), in amounts of from 5 to 60% by weight, preferably from 15 to 45% by weight, in particular from 20% to 40 wt .-%, each based on the weight of the respective cleaning agent A or B, are included.
  • organic co-builders are polycarboxylates / polycarboxylic acids, polymeric polycarboxylates, aspartic acid, polyacetals, dextrins, further organic cobuilders and phosphonates. These classes of substances are described below.
  • Useful organic builders are, for example, the polycarboxylic acids which can be used in the form of the free acid and / or their sodium salts, polycarboxylic acids meaning those carboxylic acids which carry more than one acid function. These are, for example, citric acid, adipic acid, succinic acid, glutaric acid, malic acid, tartaric acid, maleic acid, fumaric acid, sugar acids, aminocarboxylic acids, nitro-triacetic acid (NTA), if such use is not objectionable for ecological reasons, and mixtures of these.
  • NTA nitro-triacetic acid
  • the free acids also typically have the property of an acidifying component and thus also serve to set a lower and milder pH of detergents or cleaners.
  • citric acid, succinic acid, glutaric acid, adipic acid, gluconic acid and any desired mixtures of these can be mentioned here.
  • the citric acid or salts of citric acid are used with particular preference as builder substance.
  • Combination products characterized in that the at least one of the cleaning agent A or B contains citric acid or a salt of citric acid and the weight fraction of citric acid or the salt of citric acid, based on the total weight of the cleaning agent, between 0.2 and 12 wt .-% , preferably between 0.2 and 8 wt .-% and in particular between 0.2 and 6 wt .-%, are inventively preferred.
  • Another particularly preferred builder substance is methylglycine diacid (MGDA).
  • the cleaning agent contains methylglycinediacetic acid or a salt of methylglycinediacetic acid and that the proportion by weight of methylglycinediacetic acid or of the salt of methylglycinediacetic acid is preferably between 0.2 and 12% by weight, preferably between 0.2 and 8% by weight and in particular between 0.2 and 6 wt .-%, are preferred according to the invention.
  • polymeric polycarboxylates for example the alkali metal salts of polyacrylic acid or of polymethacrylic acid, for example those having a relative molecular mass of from 500 to 70,000 g / mol.
  • the molecular weights stated for polymeric polycarboxylates are weight-average molar masses M w of the particular acid form, which were determined in principle by means of gel permeation chromatography (GPC), a UV detector being used. The measurement was carried out against an external polyacrylic acid standard, which provides realistic molecular weight values due to its structural relationship with the polymers investigated. These data differ significantly from the molecular weight data, in which polystyrene sulfonic acids are used as standard. The molar masses measured against polystyrenesulfonic acids are generally significantly higher than the molecular weights specified in this document.
  • Suitable polymers are, in particular, polyacrylates which preferably have a molecular weight of 2,000 to 20,000 g / mol. Because of their superior solubility, the short-chain polyacrylates, which have molar masses of from 2000 to 10000 g / mol, and particularly preferably from 3000 to 5000 g / mol, may again be preferred from this group. Also suitable are copolymeric polycarboxylates, in particular those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid. Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable. Their relative molecular weight, based on free acids, is generally from 2000 to 70000 g / mol, preferably from 20,000 to 50,000 g / mol and in particular from 30,000 to 40,000 g / mol.
  • the content of detergents or cleaners to (co) polymeric polycarboxylates is preferably 0.1 to 10 wt .-%, preferably 0.2 to 8 wt .-%, particularly preferably 0.4 to 6 wt .-% and in particular between 0.4 and 4 wt .-%.
  • the polymers may also contain allylsulfonic acids such as allyloxybenzenesulfonic acid and methallylsulfonic acid as a monomer.
  • biodegradable polymers of more than two different monomer units for example those which contain as monomers salts of acrylic acid and maleic acid and vinyl alcohol or vinyl alcohol derivatives or as monomers salts of acrylic acid and 2-alkylallylsulfonic acid and sugar derivatives ,
  • copolymers are those which preferably have as monomers acrolein and acrylic acid / acrylic acid salts or acrolein and vinyl acetate.
  • polymeric aminodicarboxylic acids their salts or their precursors.
  • Further suitable builder substances are polyacetals which can be obtained by reacting dialdehydes with polyolcarboxylic acids which have 5 to 7 C atoms and at least 3 hydroxyl groups.
  • Preferred polyacetals are obtained from dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and mixtures thereof and from polyol carboxylic acids such as gluconic acid and / or glucoheptonic acid.
  • dextrins for example oligomers or polymers of carbohydrates, which can be obtained by partial hydrolysis of starches.
  • the hydrolysis can be carried out by customary, for example acid or enzyme catalyzed processes.
  • it is hydrolysis products having average molecular weights in the range of 400 to 500,000 g / mol.
  • a polysaccharide with a dextrose equivalent (DE) in the range from 0.5 to 40, in particular from 2 to 30 is preferred, DE being a common measure of the reducing action of a polysaccharide compared to dextrose, which has a DE of 100 , is.
  • DE dextrose equivalent
  • oxidized derivatives of such dextrins are their reaction products with oxidizing agents which are capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • Ethylenediamine-N, N'-disuccinate (EDDS) is preferably used in form of its sodium or magnesium salts.
  • glycerol disuccinates and glyceryl trisuccinates are also preferred in this connection.
  • Other useful organic cobuilders are, for example, acetylated hydroxycarboxylic acids or their salts, which may optionally also be present in lactone form and which contain at least 4 carbon atoms and at least one hydroxyl group and a maximum of two acid groups.
  • the composition used as a cleaning agent contains enzymes. These include in particular proteases, amylases, lipases, hemicellulases, cellulases or oxidoreductases, and preferably mixtures thereof. These enzymes are basically of natural origin; Starting from the natural molecules, improved variants are available for use in detergents and cleaners, which are preferably used accordingly.
  • Detergents or cleaning agents contain enzymes preferably in total amounts of 1 ⁇ 10 -6 to 5 wt .-% based on active protein. The protein concentration can be determined by known methods, for example the BCA method or the biuret method.
  • subtilisin type those of the subtilisin type are preferable.
  • these are the subtilisins BPN 'and Carlsberg and their further developed forms, the protease PB92, the subtilisins 147 and 309, the alkaline protease from Bacillus lentus, subtilisin DY and the enzymes thermitase which can no longer be assigned to the subtilisins in the narrower sense, Proteinase K and the proteases TW3 and TW7.
  • amylases which can be used according to the invention are the ⁇ -amylases from Bacillus licheniformis, from B. amyloliquefaciens, from B. stearothermophilus, from Aspergillus niger and A. oryzae as well as the further developments of the abovementioned amylases which are improved for use in detergents and cleaners. Furthermore, for this purpose, the ⁇ -amylase from Bacillus sp. A 7-7 (DSM 12368) and the cyclodextrin glucanotransferase (CGTase) from B. agaradherens (DSM 9948).
  • lipases or cutinases are also usable according to the invention.
  • these include, for example, the lipases originally obtainable from Humicola lanuginosa (Thermomyces lanuginosus) or further developed, in particular those with the amino acid exchange D96L.
  • the cutinases can be used, which were originally isolated from Fusarium solani pisi and Humicola insolens. It is also possible to use lipases, or cutinases, whose initial enzymes were originally isolated from Pseudomonas mendocina and Fusarium solanii.
  • Oxidoreductases for example oxidases, oxygenases, catalases, peroxidases, such as halo, chloro, bromo, lignin, glucose or manganese peroxidases, dioxygenases or laccases (phenol oxidases, polyphenol oxidases) can be used according to the invention to increase the bleaching effect.
  • the enzymes can be used in any form known in the art. These include, for example, by granulation, Extrusion or lyophilization of solid preparations obtained or, in particular in the case of liquid or gel-containing agents, solutions of the enzymes, advantageously as concentrated as possible, low in water and / or added with stabilizers.
  • the enzymes may be encapsulated for both the solid and liquid dosage forms, for example by spray-drying or extruding the enzyme solution together with a preferably natural polymer or in the form of capsules, for example those in which the enzymes are entrapped as in a solidified gel or in those of the core-shell type, in which an enzyme-containing core is coated with a water, air and / or chemical impermeable protective layer.
  • further active ingredients for example stabilizers, emulsifiers, pigments, bleaches or dyes, may additionally be applied.
  • Such capsules are applied by methods known per se, for example by shaking or rolling granulation or in fluid-bed processes.
  • such granules for example by applying polymeric film-forming agent, low in dust and storage stable due to the coating.
  • a protein and / or enzyme may be particularly protected during storage against damage such as inactivation, denaturation or degradation, such as by physical influences, oxidation or proteolytic cleavage.
  • inhibition of proteolysis is particularly preferred, especially if the agents also contain proteases.
  • Detergents may contain stabilizers for this purpose; the provision of such means constitutes a preferred embodiment of the present invention.
  • a protein and / or enzyme contained in an agent according to the invention can be protected against damage, for example inactivation, denaturation or decomposition, for example by physical influences, oxidation or proteolytic cleavage, in particular during storage.
  • inhibition of proteolysis is particularly preferred, especially if the agents also contain proteases.
  • Preferred agents according to the invention contain stabilizers for this purpose.
  • One group of stabilizers are reversible protease inhibitors.
  • Benzamidine hydrochloride, borax, boric acids, boronic acids or their salts or esters are frequently used for this purpose, including, in particular, derivatives with aromatic groups, for example ortho, meta or para-substituted phenylboronic acids, in particular 4-formylphenylboronic acid, or the salts or Esters of the compounds mentioned.
  • peptide aldehydes that is oligopeptides with a reduced C-terminus, especially those of 2 to 50 monomers are used for this purpose.
  • the peptidic reversible protease inhibitors include ovomucoid and leupeptin.
  • specific, reversible peptide inhibitors for the protease subtilisin and fusion proteins from proteases and specific peptide inhibitors are suitable.
  • enzyme stabilizers are amino alcohols such as mono-, di-, triethanol- and -propanolamine and mixtures thereof, aliphatic carboxylic acids up to C12, such as succinic acid, other dicarboxylic acids or salts of said acids. End-capped fatty acid amide alkoxylates are also suitable for this purpose. Certain organic acids used as builders are capable, as disclosed in WO 97/18287, of additionally stabilizing a contained enzyme.
  • Lower aliphatic alcohols but especially polyols such as glycerol, ethylene glycol, propylene glycol or sorbitol are more common used enzyme stabilizers.
  • Di-glycerol phosphate also protects against denaturation due to physical influences.
  • calcium and / or magnesium salts are used, such as calcium acetate or calcium formate.
  • Polyamide oligomers or polymeric compounds such as lignin, water-soluble vinyl copolymers or cellulose ethers, acrylic polymers and / or polyamides stabilize the enzyme preparation, inter alia, against physical influences or pH fluctuations.
  • Polyamine N-oxide containing polymers act simultaneously as enzyme stabilizers and as dye transfer inhibitors.
  • Other polymeric stabilizers are linear Cs-Cis polyoxyalkylenes.
  • alkylpolyglycosides can stabilize the enzymatic components of the agent according to the invention and, preferably, are capable of additionally increasing their performance.
  • Crosslinked N-containing compounds preferably perform a dual function as soil release agents and as enzyme stabilizers. Hydrophobic, nonionic polymer stabilizes in particular an optionally contained cellulase.
  • Reducing agents and antioxidants increase the stability of the enzymes to oxidative degradation;
  • sulfur-containing reducing agents are familiar.
  • Other examples are sodium sulfite and reducing sugars.
  • peptide-aldehyde stabilizers for example of polyols, boric acid and / or borax, the combination of boric acid or borate, reducing salts and succinic acid or other dicarboxylic acids or the combination of boric acid or borate with polyols or polyamino compounds and with reducing salts.
  • the effect of peptide-aldehyde stabilizers is favorably enhanced by the combination with boric acid and / or boric acid derivatives and polyols, and still further by the additional action of divalent cations, such as calcium ions.
  • Another agent used with particular preference for stabilizing the enzymatic preparations is potassium sulfate (K 2 SO 4 ).
  • the proportion by weight of the enzymes in the total weight of the liquid cleaning agent A is between 0.1 and 10% by weight.
  • the proportion by weight of the enzyme in the total weight of the cleaning agent A is between 0.2 and 9% by weight and in particular between 0.5 and 8% by weight.
  • liquid detergent B may of course also contain enzymes, it is preferred that the enzyme content of the detergent B be less than 2% by weight, preferably less than 1% by weight, more preferably less than 0.5% by weight. and in particular less than 0.1 wt .-% is. Particularly preferred methods according to the invention are characterized in that the liquid cleaning agent B contains no enzymes.
  • one or more enzymes and / or enzyme preparations preferably solid or liquid protease preparations and / or amylase preparations are used.
  • the liquid cleaning agent A comprises a combination of protease and amylase preparations.
  • the cleaning agents A and / or B contain a solvent.
  • this solvent is exclusively water.
  • organic solvents are derived, for example, from the groups of the monoalcohols, diols, triols or polyols, the ethers, esters and / or amides. Particular preference is given to organic solvents which are water-soluble, "water-soluble" solvents in the sense of the present application Solvents that are completely miscible with water at room temperature, ie without miscibility gap.
  • Organic solvents preferably originate from the group of monohydric or polyhydric alcohols, alkanolamines or glycol ethers, provided that they are miscible with water in the given concentration range.
  • the solvents are preferably selected from ethanol, n- or i-propanol, butanols, glycol, propane- or butanediol, glycehn, diglycol, propyl- or butyldiglycol, hexylene glycol, ethylene glycol methyl ether, ethylene glycol ethyl ether, ethylene glycol propyl ether, etheylene glycol mono-n-butyl ether, diethylene glycol methyl ether, di ethylene glycol ethyl ether, propylene glycol methyl, ethyl or propyl ether, dipropylene glycol methyl or ethyl ether, methoxy, ethoxy or butoxy triglycol, 1-butoxyethoxy-2
  • the organic solvents from the group of the organic amines and / or the alkanolamines have proven to be particularly effective with regard to the cleaning performance and again with regard to the cleaning performance of bleachable soilings, in particular of tea stains.
  • Particularly preferred organic amines are the primary and secondary alkylamines, the alkyleneamines and mixtures of these organic amines.
  • the group of preferred primary alkylamines include monomethylamine, monoethylamine, monopropylamine, monobutylamine, monopentylamine and cyclohexylamine.
  • the group of preferred secondary alkylamines includes in particular dimethylamine.
  • Preferred alkanolamines are in particular the primary, secondary and tertiary alkanolamines and mixtures thereof.
  • Particularly preferred primary alkanolamines are monoethanolamine (2-aminoethanol, MEA), monoisopropanolamine, diethylethanolamine (2- (diethylamino) ethanol).
  • Especially preferred secondary alkanolamines are diethanolamine (2,2'-lminodiethanol, DEA, bis (2-hydroxyethyl) amine), N-methyl-diethanolamine, N-ethyl-diethanolamine. Diisopropanolamine and morpholine.
  • Particularly preferred tertiary alkanolamines are triethanolamine and triisopropanolamine.
  • liquid cleaning agent A and / or the liquid cleaning agent B contains a solvent from the group of organic solvents, wherein the organic solvent is preferably an organic amine and / or an alkanolamine, preferably ethanolamine is.
  • the cleaning agents A and / or B further comprise water in addition to the organic amine
  • Particularly preferred cleaning agents A and / or B contain, based on the total weight of the respective cleaning agent, between 0.1 and 10 wt .-%, preferably between 0.5 and 8 wt .-% and in particular between 1, 5 and 6 wt. % of an organic solvent from the group of organic amines and alkanolamines.
  • the liquid cleaning agent B based on the total weight of the cleaning agent B, has a weight fraction of an organic solvent from the group of the organic amine and the alkanolamines between 0.1 and 10% by weight, preferably between 0, 5 and 8 wt .-% and in particular between 1, 5 and 6 wt.%
  • the weight fraction of organic solvent from the group of organic amines and alkanolamines in the liquid detergent A is less than 5% by weight, preferably less than 3% by weight, more preferably less than 1% by weight and most preferably less than 0.1% by weight, and In particular, no organic solvent from the group of organic amines and alkanolamines in the cleaning agent A is included.
  • those cleaning agents which have a viscosity of more than 10,000 mPas, preferably more than 50,000 mPas and in particular more than 100,000 mPas, have proven advantageous.
  • the viscosity (Brookfield viscometer LVT-II at 20 rpm and 20 ° C., spindle 3) of at least one of the cleaning agents A or B is between 200 and 10,000 mPas, preferably between 500 and 7,000 mPas and are therefore preferred according to the invention especially between 1000 and 4000 mPas.
  • the viscosity (Brookfield viscometer LVT-II at 20 rpm and 20 ° C., spindle 3) of particularly preferred detergents or cleaners is above 500 mPas, preferably above 1000 mPas and in particular above 2000 mPas.
  • these agents are preferably thickening agents, especially thickeners from the group agar-agar, carrageenan, tragacanth, gum arabic, alginates, pectins, polyoses, guar flour, locust bean gum, starch, dextrins, gelatin, casein , Carboxymethylcellulose, core flour ethers, polyacrylic and polymethacrylic compounds, vinyl polymers, polycarboxylic acids, polyethers, polyimines, polyamides, polysilicic acids, clay minerals such as montmorillonites, zeolites and silicic acids added, it has proved to be particularly advantageous if the cleaning agent, the thickener in amounts between 0.1 and 8 wt .-%, preferably between 0.2 and 6 wt .-% and particularly preferably between 0.4 and 4 wt .-% based on the total weight of the cleaning agent.
  • the thickener in amounts between 0.1 and 8 wt .-%, preferably between 0.2 and 6 w
  • Naturally derived polymers used as thickening agents in the present invention are as previously described For example, agar-agar, carrageenan, tragacanth, gum arabic, alginates, pectins, polyoses, guar flour, locust bean gum, starch, dextrins, gelatin and casein.
  • Modified natural products come mainly from the group of modified starches and celluloses, examples which may be mentioned here carboxymethylcellulose and other cellulose ethers, hydroxyethyl and propylcellulose and core flour ethers.
  • a large group of thickeners which find wide use in a variety of applications, are the fully synthetic polymers such as polyacrylic and polymethacrylic compounds, vinyl polymers, polycarboxylic acids, polyethers, polyimines, polyamides and polyurethanes.
  • Thickening agents from these classes of compounds are widely available commercially and are sold for example under the trade name Acusol ® -820 (methacrylic acid (stearyl alcohol 20 EO) ester-acrylic acid copolymer, 30% in water, Rohm & Haas), Dapral ®-GT-282 -S (alkyl polyglycol ethers, Akzo), DEUTEROL ® polymer-11 (dicarboxylic acid copolymer, Schoner GmbH) deuteron ® -xg (anionic heteropolysaccharide based on ß-D-glucose, D-mannose, D-glucuronic acid, Schoner GmbH) , deuteron ® -XN (nonionic polysaccharide Schoner GmbH), DICRYLAN ® -Verdicker-O (ethylene oxide adduct, 50% solution in water / isopropanol, Pfersse Chemie), EMA ® -81 and EMA ® -91 (ethylene
  • the cleaning agent according to the invention may further bleach
  • the bleach content of the detergent A and B can be distinguished between two preferred variants.
  • the bleach content of the liquid detergents A and B is low and is preferably less than 2% by weight.
  • a cleaning performance could be achieved by the process control according to the invention by the use of bleach-poor detergent, which is comparable to the cleaning performance bleach-containing Reinger.
  • the bleach content of the cleaning agents A and B are each less than 2 wt .-%, preferably less than 1 wt .-%, preferably less than 0.5 wt .-% and in particular less than 0.1 wt. -% is. Particular preference is given to processes according to the invention in which the cleaning agents A and B contain no bleaching agents.
  • the cleaning agents A and / or B contain bleaching agents in which the cleaning agent B has a bleaching agent content of between 0.1 and 15% by weight. It is further preferred that the bleach content of the cleaning agent B, in each case based on the total weight of the cleaning agent B, between 0.5 and 15 wt .-%, preferably between 2.0 and 15 wt .-%, particularly preferably between 3 and 12 wt .-% and in particular between 5 and 10 wt .-% is.
  • the bleach content of the cleaning agent A in this embodiment is preferably less than 2% by weight, preferably less than 1% by weight, preferably less than 0.5% by weight and in particular less than 0.1% by weight.
  • the cleaning agent A does not contain any bleaching agents.
  • the group of bleaches includes, for example, the compounds H 2 O 2 which supply water, sodium percarbonate, sodium perborate tetrahydrate and sodium perborate monohydrate.
  • Further bleaching agents are, for example, peroxypyrophosphates, citrate perhydrates and H 2 O 2 -producing peracidic salts or peracids, such as perbenzoates, peroxophthalates, diperazelaic acid, phthaloiminoperacid or diperdodecanedioic acid.
  • Typical organic bleaching agents are the diacyl peroxides, e.g. Dibenzoyl.
  • Other typical organic bleaches are the peroxyacids, examples of which include the alkyl peroxyacids and the aryl peroxyacids.
  • Preferred representatives are (a) the peroxybenzoic acid and its ring-substituted derivatives, such as alkylperoxybenzoic acids, but also peroxy- ⁇ -naphthoic acid and magnesium monoperphthalate, (b) the aliphatic or substituted aliphatic peroxyacids, such as peroxylauric acid, peroxystearic acid, ⁇ -phthalimidoperoxycaproic acid [phthaliminoperoxyhexanoic acid (PAP)], o-carboxybenzamidoperoxycaproic acid, N-nonenylamidoperadipic acid and N-nonenylamidopersuccinates, and (c) aliphatic and araliphatic peroxydicarboxylic acids, such as 1, 12-diperoxycarboxylic acid, 1, 9-diperoxyazelaic acid, diperoxysebacic acid, diperoxybrassic acid, the diperoxyphthalic acids, 2-decyldiper
  • bleach activators are preferably additionally used in order to achieve an improved bleaching action when cleaning at temperatures of 60 ° C. and below.
  • bleach activators it is possible to use compounds which, under perhydrolysis conditions, give aliphatic peroxycarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid.
  • Suitable substances are those which carry O- and / or N-acyl groups of the stated C atom number and / or optionally substituted benzoyl groups.
  • polyacylated alkylenediamines in particular tetraacetylethylenediamine (TAED), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated glycolurils, especially tetraacetyl glycol (TAGU), N-acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates , in particular n-nonanoyl or Isononanloxybenzolsulfonat (n- or iso-NOBS), carboxylic anhydrides, in particular P htha I acid anhydride, acylated polyhydric alcohols, especially triacetin, ethylene glycol diacetate and 2,5-diacetoxy-2,5-dihydrofuran.
  • TAED tetraacetylethylene
  • bleach activators preferably used in the context of the present application are compounds from the group of cationic nitriles, in particular cationic nitriles of the formula
  • R 1 is -H, -CH 3, a C 2 - 24 alkyl or alkenyl group, a substituted C 2- 24 alkyl or alkenyl group having at least one substituent selected from the group - Cl, -Br, - OH, -NH 2 , -CN, an alkyl or alkenylaryl radical having a Ci -24 - alkyl group, or a substituted alkyl or Alkenylarylrest having a Ci- 24 alkyl group and at least one further substituent on the aromatic ring
  • R 2 and R 3 are independently selected from -CH 2 -CN, -CH 3 , -CH 2 -CH 3 , -CH 2 -CH 2 -CH 3 , -CH (CH 3 ) -CH 3 , -CH 2 -OH, -CH 2 -CH 2 -OH, - CH (OH) -CH 3 , -CH 2 -CH 2 -CH 2 -OH, -CH 2
  • bleach activators it is also possible to use compounds which, under perhydrolysis conditions, give aliphatic peroxycarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid.
  • Suitable substances are those which carry O- and / or N-acyl groups of the stated C atom number and / or optionally substituted benzoyl groups.
  • polyacylated alkylenediamines in particular tetraacetylethylenediamine (TAED), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated glycolurils, in particular tetraacetylglycol (TAGU), N- Acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, in particular n-nonanoyl or isononanoyloxybenzenesulfonate (n- or iso-NOBS), carboxylic anhydrides, in particular phthalic anhydride, acylated polyhydric alcohols, in particular thacetin, ethylene glycol diacetate, 2,5-diacetoxy- 2,5-dihydrofuran, n-methyl-morpholin
  • bleach activators preference is given to bleach activators from the group of the polyacylated alkylenediamines, in particular tetraacetylethylenediamine (TAED), N-acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, in particular n-nonanoyl or isononanoyloxybenzenesulfonate (US Pat. n- or iso-NOBS), n-methyl-morpholinium-acetonitrile-methyl sulfate (MMA).
  • TAED tetraacetylethylenediamine
  • N-acylimides in particular N-nonanoylsuccinimide (NOSI)
  • NOSI N-nonanoylsuccinimide
  • acylated phenolsulfonates in particular n-nonanoyl or isononanoyloxybenzenesulfonate (US
  • bleach catalysts can also be used.
  • bleach-enhancing transition metal salts or transition metal complexes such as, for example, Mn, Fe, Co, Ru or Mo salt complexes or carbonyl complexes.
  • Mn, Fe, Co, Ru, Mo, Ti, V and Cu complexes with N-containing tripod ligands and Co, Fe, Cu and Ru ammine complexes can also be used as bleach catalysts.
  • Bleach-enhancing transition metal complexes in particular having the central atoms Mn, Fe, Co, Cu, Mo, V, Ti and / or Ru, preferably selected from the group of manganese and / or cobalt salts and / or complexes, particularly preferably the cobalt (ammine) Complex, the cobalt (acetate) complexes, the cobalt (carbonyl) complexes, the chlorides of cobalt or manganese, manganese sulfate used.
  • the chlorine bleaches have proved to be particularly effective for use in a process according to the invention.
  • the group of these bleaching agents include, for example, heterocyclic N-bromo and N-chloroamides such as thchlohsocyanuric acid, tribromoisocyanuric acid, dibromoisocyanuric acid and / or dichloroisocyanuric acid (DICA) and / or their salts with cations such as potassium and sodium.
  • Hydantoin compounds such as 1,3-dichloro-5,5-dimethylhydanthoin also belong to the group of these bleaching agents. Preparations in which the cleaning agent B contains 0.1 to 20% by weight of a chlorine bleach are preferred.
  • the group of surfactants includes nonionic, anionic, cationic and amphoteric surfactants.
  • nonionic surfactants it is possible to use all nonionic surfactants known to the person skilled in the art.
  • Suitable nonionic surfactants are, for example, alkyl glycosides of the general formula RO (G) x in which R is a primary straight-chain or methyl-branched, in particular 2-methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18 carbon atoms and G the symbol is that which represents a glycose unit having 5 or 6 C atoms, preferably glucose.
  • the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is any number between 1 and 10; preferably x is 1, 2 to 1, 4.
  • nonionic surfactants used either as the sole nonionic surfactant or in combination with other nonionic surfactants are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated fatty acid alkyl esters, preferably having from 1 to 4 carbon atoms in the alkyl chain.
  • Nonionic surfactants of the amine oxide type for example N-coconut alkyl-N, N-dimethylamine oxide and N-tallowalkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides may also be suitable.
  • the amount of these nonionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, especially not more than half thereof.
  • surfactants are polyhydroxy fatty acid amides of the formula
  • R is an aliphatic acyl radical having 6 to 22 carbon atoms
  • R 1 is hydrogen, an alkyl or hydroxyalkyl radical having 1 to 4 carbon atoms
  • [Z] is a linear or branched polyhydroxyalkyl radical having 3 to 10 carbon atoms and 3 to 10 hydroxyl groups.
  • the polyhydroxy fatty acid amides are known substances which can usually be obtained by reductive amination of a reducing sugar with ammonia, an alkylamine or an alkanolamine and subsequent acylation with a fatty acid, a fatty acid alkyl ester or a fatty acid chloride.
  • the group of polyhydroxy fatty acid amides also includes compounds of the formula
  • R is a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms
  • R 1 is a linear, branched or cyclic alkyl radical or an aryl radical having 2 to 8 carbon atoms
  • R 2 is a linear, branched or cyclic alkyl radical or an aryl radical or an oxyalkyl radical having 1 to 8 carbon atoms
  • Ci -4 alkyl or phenyl radicals are preferred
  • [Z] is a linear polyhydroxyalkyl radical whose alkyl chain is substituted with at least two hydroxyl groups, or alkoxylated, preferably ethoxylated or propoxylated derivatives this rest.
  • [Z] is preferably obtained by reductive amination of a reduced sugar, for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • a reduced sugar for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • the N-alkoxy or N-aryloxy-substituted compounds can be converted into the desired polyhydroxy fatty acid amides by reaction with fatty acid methyl esters in the presence of an alkoxide as a catalyst.
  • washing or cleaning agents in particular automatic dishwashing detergents, contain nonionic surfactants from the group of the alkoxylated alcohols.
  • the nonionic surfactants used are preferably alkoxylated, advantageously ethoxylated, in particular primary, alcohols having preferably 8 to 18 carbon atoms and on average 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol radical can be linear or preferably methyl-branched in the 2-position or linear and methyl-branched radicals in the mixture can contain, as they are usually present in Oxoalkoholresten.
  • EO ethylene oxide
  • alcohol ethoxylates with linear radicals of alcohols of natural origin having 12 to 18 carbon atoms, for example of coconut, palm, tallow or oleyl alcohol, and on average 2 to 8 moles of EO per mole of alcohol are preferred.
  • Preferred ethoxylated alcohols include, for example, Ci 2- i 4 alcohols containing 3 EO or 4 EO, C 9 n-alcohol with 7 EO, Ci3-15 alcohols containing 3 EO, 5 EO, 7 EO or 8 EO, C 2- i8 alcohols containing 3 EO, 5 EO or 7 EO and mixtures thereof, such as mixtures of C 2 - 14 linear alcohol with 3 EO and Ci2-18 alcohol with 5 EO.
  • the stated degrees of ethoxylation represent statistical averages, which may correspond to a particular product of an integer or a fractional number.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow rank ethoxylates, NRE).
  • NRE narrow rank ethoxylates
  • fatty alcohols with more than 12 EO can also be used. Examples of these are tallow fatty alcohol with 14 EO, 25 EO, 30 EO or 40 EO.
  • ethoxylated nonionic surfactant selected from C ⁇ -20-monohydroxy alkanols or C 6 - per 2 o-fatty alcohols and more than 12 mol, preferably more than 15 mol and in particular more than 20 moles of ethylene oxide - 2 o-alkyl phenols or Ci 6 Mol of alcohol were used.
  • a particularly preferred nonionic surfactant is selected from a straight chain fatty alcohol having 16 to 20 Carbon atoms (Ci 6-2 o-alcohol), preferably a cis-alcohol and at least 12 moles, preferably at least 15 moles and especially at least 20 moles of ethylene oxide.
  • the so-called “narrow ranks ethoxylates" are particularly preferred.
  • surfactants are further used which contain one or more Taigfettalkohole with 20 to 30 EO in combination with a silicone defoamer.
  • Nonionic surfactants which have a melting point above room temperature.
  • Suitable nonionic surfactants which have melting or softening points in the temperature range mentioned are, for example, low-foaming nonionic surfactants which may be solid or highly viscous at room temperature. If nonionic surfactants are used which are highly viscous at room temperature, it is preferred that they have a viscosity above 20 Pa ⁇ s, preferably above 35 Pa ⁇ s and in particular above 40 Pa ⁇ s. Nonionic surfactants which have waxy consistency at room temperature are also preferred.
  • Nonionic surfactants from the group of alkoxylated alcohols more preferably from the group of mixed alkoxylated alcohols and in particular from the group of EO-AO-EO-N iosurfactants are also used with particular preference.
  • the nonionic surfactant solid at room temperature preferably has propylene oxide units in the molecule.
  • such PO units make up to 25 wt .-%, particularly preferably up to 20 wt .-% and in particular bis to 15% by weight of the total molecular weight of the nonionic surfactant.
  • Particularly preferred nonionic surfactants are ethoxylated monohydroxyalkanols or alkylphenols which additionally have polyoxyethylene-polyoxypropylene block copolymer units.
  • the alcohol or alkylphenol part of such nonionic surfactant molecules preferably constitutes more than 30% by weight, more preferably more than 50% by weight and in particular more than 70% by weight of the total molecular weight of such nonionic surfactants.
  • Preferred agents are characterized in that they contain ethoxylated and propoxylated nonionic surfactants in which the propylene oxide units in the molecule up to 25 wt .-%, preferably up to 20 wt .-% and in particular up to 15 wt .-% of the total molecular weight of the nonionic Make up surfactants.
  • surfactants come from the groups of alkoxylated nonionic surfactants, in particular the ethoxylated primary alcohols and mixtures of these surfactants with structurally complicated surfactants such as polyoxypropylene / polyoxyethylene / polyoxypropylene ((PO / EO / PO) surfactants).
  • Such (PO / EO / PO) nonionic surfactants are also characterized by good foam control.
  • More particularly preferred nonionic surfactants having melting points above room temperature contain from 40 to 70% of a polyoxypropylene / polyoxyethylene / polyoxypropylene block polymer blend containing 75% by weight of a reverse block copolymer of polyoxyethylene and polyoxypropylene with 17 moles of ethylene oxide and 44 moles of propylene oxide and 25% by weight. % of a block copolymer of polyoxyethylene and polyoxypropylene initiated with trimethylolpropane and containing 24 moles of ethylene oxide and 99 moles of propylene oxide per mole of trimethylolpropane.
  • nonionic surfactants have been low foaming nonionic surfactants which have alternating ethylene oxide and alkylene oxide units.
  • surfactants with EO-AO-EO-AO blocks are again preferred, with one to ten EO-AO blocks in each case. or AO groups are bound together before one block follows from the other groups.
  • R 1 is a straight-chain or branched, saturated or mono- or polyunsaturated C 6 - 24 represents alkyl or alkenyl; each group R 2 or R 3 is independently selected from -CH 3 , -CH 2 CH 3 , -CH 2 CH 2 -CH 3 , CH (CH 3 ) 2 and the indices w, x, y, z independently stand for integers from 1 to 6.
  • the preferred nonionic surfactants of the above formula can be prepared by known methods from the corresponding alcohols R 1 -OH and ethylene or alkylene oxide.
  • the radical R 1 in the above formula may vary depending on the origin of the alcohol. If native sources are used, the radical R 1 has an even number of carbon atoms and is usually unbranched, the linear radicals being selected from alcohols of natural origin having 12 to 18 C atoms, for example from coconut, palm, tallow or Oleyl alcohol, are preferred.
  • Alcohols which are accessible from synthetic sources are, for example, the Guerbet alcohols or methyl-branched or linear and methyl-branched radicals in the 2-position, as they are usually present in oxo alcohol radicals.
  • nonionic surfactants in which R 1 in the above formula is an alkyl radical having 6 to 24, preferably 8 to 20, particularly preferably 9 to 15 and in particular 9 to 11 Carbon atoms.
  • alkylene oxide unit which is contained in the preferred nonionic surfactants in alternation with the ethylene oxide unit, in particular butylene oxide is considered in addition to propylene oxide.
  • R 2 or R 3 are independently selected from -CH 2 CH 2 -CH 3 or CH (CH 3 ) 2 are suitable.
  • nonionic surfactants having a C 1-6 alkyl group having 1 to 4 ethylene oxide units followed by 1 to 4 propylene oxide units followed by 1 to 4 ethylene oxide units followed by 1 to 4 propylene oxide units.
  • These surfactants have the required low viscosity in aqueous solution and can be used according to the invention with particular preference.
  • R 1 is -CH (OH) CH 2 O- (AO) w- (AO) ⁇ - (A "O) y- (A” O) z -R 2 J
  • R 1 and R 2 independently of one another represent a straight-chain or branched, saturated or mono- or polyunsaturated C 2-4 -alkyl or -alkenyl radical;
  • A, A ', A "and A'” independently represent a radical from the group -CH 2 CH 2 , -CH 2 CH 2 -CH 2 , -CH 2 -CH (CH 3 ), -CH 2 -CH 2 -CH 2 -CH 2 , -CH 2 - CH (CH 3 ) -CH 2 -, -CH 2 -CH (CH 2 -CH 3 ); and
  • w, x, y and z are values between 0.5 and 90, where x, y and / or z can also be 0 are preferred according to the invention.
  • radical R 1 which is linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 2 to 30 carbon atoms, preferably having 4 to 22 carbon atoms, furthermore a linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radical R 2 having 1 to 30 carbon atoms, where x stands for values between 1 and 90, preferably for values between 40 and 80 and in particular for values between 40 and 60.
  • R 1 is a linear or branched aliphatic hydrocarbon radical having 4 to 18 carbon atoms or mixtures thereof
  • R 2 denotes a linear or branched hydrocarbon radical having 2 to 26 carbon atoms or mixtures thereof and x for values between 0.5 and 1, 5 and y is a value of at least 15.
  • R 1 and R 2 independently of one another are a linear or branched, saturated or mono- or polyunsaturated hydrocarbon radical having 2 to 26 carbon atoms
  • R 3 is independently selected from --CH 3 , -CH 2 CH 3 , -CH 2 CH 2 -CH 3 , CH (CH 3 ) 2 , but preferably represents -CH 3
  • nonionic surfactants are the end-capped poly (oxyalkylated) nonionic surfactants of the formula
  • R 1 O [CH 2 CH (R 3 ) O] x [CH 2 ] k CH (OH) [CH 2 ] J OR 2 , in which R 1 and R 2 are linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms, R 3 is H or a methyl, ethyl, n-propyl, iso-propyl, n- Butyl, 2-butyl or 2-methyl-2-butyl radical, x are values between 1 and 30, k and j are values between 1 and 12, preferably between 1 and 5.
  • each R 3 in the above formula R 1 O [CH 2 CH (R 3 ) O] ⁇ [CH 2 ] k CH (OH) [CH 2 ] j OR 2 may be different.
  • R 1 and R 2 are preferably linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 6 to 22 carbon atoms, with radicals having 8 to 18 carbon atoms being particularly preferred.
  • R 3 H, -CH 3 or -CH 2 CH 3 are particularly preferred.
  • Particularly preferred values for x are in the range from 1 to 20, in particular from 6 to 15.
  • each R 3 in the above formula may be different if x> 2.
  • the alkylene oxide unit in the square bracket can be varied.
  • the value 3 for x has been selected here by way of example and may well be greater, with the range of variation increasing with increasing x values and including, for example, a large number (EO) groups combined with a small number (PO) groups, or vice versa ,
  • R 1 , R 2 and R 3 are as defined above and x is from 1 to 30, preferably from 1 to 20 and in particular from 6 to 18.
  • Particularly preferred are surfactants in which the radicals R 1 and R 2 has 9 to 14 C atoms, R 3 is H and x assumes values of 6 to 15.
  • the stated C chain lengths and degrees of ethoxylation or degrees of alkoxylation of the abovementioned nonionic surfactants represent statistical mean values which, for a specific product, may be an integer or a fractional number. Due to the manufacturing process, commercial products of the formulas mentioned are usually not made of an individual representative, but of mixtures, which may result in mean values for the C chain lengths as well as for the degrees of ethoxylation or degrees of alkoxylation and subsequently broken numbers.
  • nonionic surfactants can be used not only as individual substances, but also as surfactant mixtures of two, three, four or more surfactants.
  • Mixtures of surfactants are not mixtures of nonionic surfactants which fall in their entirety under one of the abovementioned general formulas, but rather mixtures which contain two, three, four or more nonionic surfactants which can be described by different general formulas ,
  • the cleaning agent A further contains 0.2 to 10 wt .-%, preferably 0.4 to 7 wt .-% and in particular 0.6 to 4 wt .-% nonionic surfactants, are preferred.
  • cationic active substances it is possible, for example, to use cationic compounds of the following formulas:
  • the group of polymers includes, in particular, the washing or cleaning-active polymers, for example the rinse aid polymers and / or polymers which act as softeners.
  • the washing or cleaning-active polymers for example the rinse aid polymers and / or polymers which act as softeners.
  • cationic, anionic and amphoteric polymers can be used in detergents or cleaners in addition to nonionic polymers.
  • “Cationic polymers” for the purposes of the present invention are polymers which carry a positive charge in the polymer molecule, which can be realized, for example, by (alkyl) ammonium groups or other positively charged groups present in the polymer chain become.
  • Particularly preferred cationic polymers come from the groups of quaternized cellulose derivatives, the polysiloxanes with quaternary groups, the cationic guar derivatives, the polymeric dimethyldiallylammonium salts and their copolymers with esters and amides of acrylic acid and methacrylic acid, the copolymers of vinylpyrrolidone with quaternized derivatives of dialkylamino and methacrylates, the vinylpyrrolidone-methoimidazoliniumchlohd copolymers, the quaternized polyvinyl alcohols or the polymers specified under the INCI names Polyquaternium 2, Polyquaternium 17, Polyquaternium 18 and Polyquaternium 27.
  • amphoteric polymers further comprise, in addition to a positively charged group in the polymer chain, also negatively charged groups or monomer units. These groups may be, for example, carboxylic acids, sulfonic acids or phosphonic acids.
  • particularly preferred cationic or amphoteric polymers contain as monomer unit a compound of the general formula X "
  • R 1 and R 4 are each independently H or a linear or branched hydrocarbon radical having 1 to 6 carbon atoms;
  • R 2 and R 3 are independently an alkyl, hydroxyalkyl, or aminoalkyl group in which the alkyl group is linear or branched and has from 1 to 6 carbon atoms, preferably a methyl group;
  • x and y independently represent integers between 1 and 3.
  • X represents a counterion, preferably a counterion selected from the group consisting of chloride, bromide, iodide, sulfate, hydrogensulfate, methosulfate, laurylsulfate, dodecylbenzenesulfonate, p-toluenesulfonate (tosylate), cumene sulfonate, xylenesulfonate, phosphate, citrate, formate, acetate or mixtures thereof.
  • a counterion selected from the group consisting of chloride, bromide, iodide, sulfate, hydrogensulfate, methosulfate, laurylsulfate, dodecylbenzenesulfonate, p-toluenesulfonate (tosylate), cumene sulfonate, xylenesulfonate, phosphate, citrate, formate, acetate
  • Preferred radicals R 1 and R 4 in the above formula are selected from -CH 3 , -CH 2 -CH 3 , -CH 2 -CH 2 -CH 3 , -CH (CH 3 ) -CH 3 , -CH 2 -OH , -CH 2 -CH 2 -OH, - CH (OH) -CH 3 , -CH 2 -CH 2 -CH 2 -OH, -CH 2 -CH (OH) -CH 3 , -CH (OH) -CH 2 -CH 3 , and - (CH 2 CH 2 -O) n H.
  • cationic or amphoteric polymers contain a monomer unit of the general formula
  • X " in the R 1 , R 2 , R 3 , R 4 and R 5 are independently of one another a linear or branched, saturated or unsaturated alkyl or hydroxyalkyl radical having 1 to 6 carbon atoms, preferably a linear or branched alkyl radical selected from CH 3 , -CH 2 -CH 3 , -CH 2 -CH 2 -CH 3 , -CH (CH 3 ) -CH 3 , -CH 2 -OH, -CH 2 - CH 2 -OH, -CH (OH) -CH 3 , -CH 2 -CH 2 -CH 2 -OH, -CH 2 -CH (OH) -CH 3 , -CH (OH) -CH 3 , and - (CH 2 CH 2 -O) n is H and x is an integer between 1 and 6.
  • H 2 C C (CH 3 ) -C (O) -NH- (CH 2 ) X -N + (CH 3 ) 3
  • X " chloride also referred to as MAPTAC (Methyacrylamidopropyl- trimethylammonium chloride).
  • amphoteric polymers have not only cationic groups but also anionic groups or monomer units.
  • anionic monomer units are derived for example from the group of linear or branched, saturated or unsaturated Carboxylates, linear or branched, saturated or unsaturated phosphonates, linear or branched, saturated or unsaturated sulfates or linear or branched, saturated or unsaturated sulfonates.
  • Preferred monomer units are acrylic acid, (meth) acrylic acid, (dimethyl) acrylic acid, (ethyl) acrylic acid, cyanoacrylic acid, vinylessingic acid, allylacetic acid, crotonic acid, maleic acid, fumaric acid, cinnamic acid and its derivatives, allylsulfonic acids such as allyloxybenzenesulfonic acid and methallylsulfonic acid or the allylphosphonic acids.
  • Preferred employable amphoteric polymers are selected from the group of the alkylacrylamide / acrylic acid copolymers, the alkylacrylamide / methacrylic acid copolymers, the alkylacrylamide / methylmethacrylic acid copolymers, the alkylacrylamide / acrylic acid / alkylaminoalkyl (meth) acrylic acid copolymers, the alkylacrylamide / methacrylic acid / alkylaminoalkyl (meth) acrylic acid copolymers, the alkylacrylamide / methylmethacrylic acid / alkylaminoalkylmethacrylic acid copolymers, the alkylacrylamide / alkymethacrylate / alkylaminoethylmethacrylate / alkylmethacrylate copolymers and the copolymers of unsaturated carboxylic acids, cationically dehvated unsaturated carboxylic acids and optionally further ionic or nonionic monomers
  • Preferably usable zwitterionic polymers are selected from the group of acrylamidoalkyltrialkylammonium chloride / acrylic acid copolymers and their alkali metal and ammonium salts, the
  • amphoteric polymers which in addition to one or more anionic monomers as cationic monomers Methacrylamidoalkyl trialkyl ammonium chloride and
  • amphoteric polymers come from the group of:
  • amphoteric polymers from the group of:
  • the polymers are present in prefabricated form. To prepare the polymers u.a.
  • Coating agents preferably by means of water-soluble or water-dispersible natural or synthetic polymers
  • the co-granulation of the polymers with inert carrier materials preferably with carrier materials from the group of washing- or cleaning-active substances, particularly preferably from the group of builders or cobuilders.
  • Preferred cleaning agents preferably contain the abovementioned cationic and / or amphoteric polymers in amounts of between 0.01 and 8% by weight, based in each case on the total weight of the combination product.
  • the weight fraction of the cationic and / or amphoteric polymers is between 0.01 and 6% by weight, preferably between 0.01 and 4% by weight, more preferably between 0 and 01 and 2 wt .-% and in particular between 0.01 and 1 wt .-%, each based on the total weight of the cleaning agent is.
  • Effective polymers as softeners are, for example, the sulfonic acid-containing polymers which are used with particular preference.
  • sulfonic acid-containing polymers are copolymers of unsaturated carboxylic acids, sulfonic acid-containing monomers and optionally other ionic or nonionic monomers.
  • R 1 to R 3 independently of one another are -H, -CH 3 , a straight-chain or branched saturated alkyl radical having 2 to 12 carbon atoms, a straight-chain or branched, mono- or polyunsaturated alkenyl radical having 2 to 12 carbon atoms, NH 2 , -OH or -COOH substituted alkyl or alkenyl radicals or -COOH or -COOR 4 , wherein R 4 is a saturated or unsaturated, straight-chain or branched hydrocarbon radical having 1 to 12 carbon atoms.
  • Particularly preferred monomers containing sulfonic acid groups are 1-acrylamido-1-propanesulfonic acid, 2-acrylamido-2-propanesulfonic acid, 2- Acrylamido-2-methyl-1-propanesulfonic acid, 2-methacrylamido-2-methyl-1-propanesulfonic acid, 3-methacrylamido-2-hydroxypropanesulfonic acid, allylsulfonic acid, methallylsulfonic acid, allyloxybenzenesulfonic acid, methallyloxybenzenesulfonic acid, 2-hydroxy-3- (2-propenyloxy ) Propanesulfonic acid, 2-methyl-2-propen1-sulfonic acid, styrenesulfonic acid, vinylsulfonic acid, 3-sulfopropyl acrylate, 3-sulfopropyl methacrylate, sulfomethacrylamide, Sulfomethylnnethacrylannid and water-soluble salts of said
  • Particularly suitable other ionic or nonionic monomers are ethylenically unsaturated compounds.
  • the content of the polymers used in these other ionic or nonionic monomers is preferably less than 20% by weight, based on the polymer.
  • R 4 is a saturated or unsaturated, straight-chain or branched one
  • SO 3 H in the R 5 to R 7 independently of one another are -H, -CH 3 , a straight-chain or branched saturated alkyl radical having 2 to 12 carbon atoms, a straight-chain or branched, mono- or polyunsaturated alkenyl radical
  • copolymers consist of i) one or more unsaturated carboxylic acids from the group of acrylic acid, methacrylic acid and / or maleic acid i) one or more sulfonic acid group-containing monomers of the formulas:
  • the copolymers may contain the monomers from groups i) and ii) and, if appropriate, iii) in varying amounts, it being possible for all representatives from group i) to be combined with all representatives from group ii) and all representatives from group iii).
  • Particularly preferred polymers have certain structural units, which are described below.
  • copolymers which are structural units of the formula are preferred - [CH 2 -CHCOOH] m - [CH 2 -CHC (O) -Y-SO 3 H] p -
  • polymers are prepared by copolymerization of acrylic acid with a sulfonic acid group-containing acrylic acid derivative. If the sulfonic acid-containing acrylic acid isocyanate is copolymerized with methacrylic acid, another polymer is obtained whose use is likewise preferred.
  • the corresponding copolymers contain the structural units of the formula
  • Acrylic acid and / or methacrylic acid can also be copolymerized completely analogously with methacrylic acid derivatives containing sulfonic acid groups, as a result of which the structural units in the molecule are changed.
  • maleic acid can also be used as a particularly preferred monomer from group i). This gives way to inventively preferred copolymers, the structural units of the formula
  • copolymers which contain structural units of the formula - [HOOCCH-CHCOOHl m -tCHs-CCCHsJCCOJO-Y-SOsHl p -
  • the sulfonic acid groups may be wholly or partly in neutralized form, ie that the acidic acid of the sulfonic acid group in some or all sulfonic acid groups may be exchanged for metal ions, preferably alkali metal ions and especially sodium ions.
  • metal ions preferably alkali metal ions and especially sodium ions.
  • the monomer distribution of the copolymers preferably used according to the invention in the case of copolymers which contain only monomers from groups i) and ii) is preferably in each case from 5 to 95% by weight i) or ii), particularly preferably from 50 to 90% by weight monomer from group i) and from 10 to 50% by weight of monomer from group ii), in each case based on the polymer.
  • terpolymers particular preference is given to those containing from 20 to 85% by weight of monomer from group i), from 10 to 60% by weight of monomer from group ii) and from 5 to 30% by weight of monomer from group iii) ,
  • the molar mass of the sulfo copolymers preferably used according to the invention can be varied in order to adapt the properties of the polymers to the desired end use.
  • Preferred washing or cleaning agents are characterized in that the copolymers have molar masses of 2000 to 200,000 gmol "1 , preferably from 4000 to 25,000 gmol " 1 and in particular from 5000 to 15,000 gmol "1 .
  • Combination products characterized in that the cleaning agent A and / or the cleaning agent B further based on the total weight of the cleaning agent A or B 0.01 to 15 wt .-%, preferably 0.02 to 12% by weight and in particular 0, 1 to 8 wt .-% of one or more washing or cleaning active polymers, are preferred according to the invention.
  • Glass corrosion inhibitors prevent the occurrence of haze, streaks and scratches, but also iridescence of the glass surface of machine-cleaned glasses.
  • Preferred glass corrosion inhibitors come from the
  • Zinc complexes The spectrum of the invention preferred zinc salts, preferably organic acids, particularly preferably organic carboxylic acids, ranging from salts which are difficult or insoluble in water, ie a solubility below 100 mg / l, preferably below 10 mg / l, in particular below 0.01 have mg / l, to those salts which have a solubility in water above 100 mg / l, preferably above 500 mg / l, more preferably above 1 g / l and in particular above 5 g / l (all solubilities at 20 0 C. water temperature).
  • the first group of zinc salts includes, for example, the zinc nitrate, the zinc oleate and the zinc stearate, and the group of soluble zinc salts includes, for example, zinc formate, zinc acetate, zinc lactate and zinc gluconate.
  • At least one zinc salt of an organic carboxylic acid more preferably a zinc salt from the group zinc stearate, zinc oleate, zinc gluconate, zinc acetate, zinc lactate and / or Zinkeitrat used.
  • Zinc ricinoleate, zinc abietate and zinc oxalate are also preferred.
  • soluble inorganic zinc salts in particular the zinc sulfate, zinc nitrate and zinc chloride.
  • Corrosion inhibitors serve to protect the items to be washed or the machine, with particular silver protectants being of particular importance in the field of automatic dishwashing. It is possible to use the known substances of the prior art. In general, silver protectants selected from the group of the thazoles, the benzothazoles, the bisbenzothazoles, the aminothiazoles, the alkylaminotriazoles and the transition metal salts or complexes can be used in particular. Particularly preferred to use are benzotriazole and / or alkylaminotriazole.
  • 3-amino-5-alkyl-1, 2,4-triazoles or their physiologically tolerated salts these substances having particular Preferably in a concentration of 0.001 to 10 wt .-%, preferably 0.0025 to 2 wt .-%, particularly preferably 0.01 to 0.04 wt .-% are used.
  • Preferred acids for salt formation are hydrochloric acid, sulfuric acid, phosphoric acid, carbonic acid, sulphurous acid, organic carboxylic acids such as acetic, glycolic, citric, succinic acid.
  • cleaner formulations often contain active chlorine-containing agents which can markedly reduce the corrosion of the silver surface.
  • active chlorine-containing agents which can markedly reduce the corrosion of the silver surface.
  • oxygen- and nitrogen-containing organic redox-active compounds such as di- and trihydric phenols, e.g. Hydroquinone, pyrocatechol, hydroxyhydroquinone, gallic acid, phloroglucin, pyrogallol or derivatives of these classes of compounds used.
  • salt and complex inorganic compounds such as salts of the metals Mn, Ti, Zr, Hf, V, Co and Ce are often used.
  • transition metal salts which are selected from the group of the manganese and / or cobalt salts and / or complexes, particularly preferably the cobalt (ammin) complexes, the cobalt (acetate) complexes, the cobalt (carbonyl) - Complexes, the chlorides of cobalt or manganese and manganese sulfate. Also, zinc compounds can be used to prevent corrosion on the items to be washed.
  • redox-active substances can be used. These substances are preferably inorganic redox-active substances from the group of manganese, titanium, zirconium, hafnium, vanadium, cobalt and cerium salts and / or complexes, wherein the metals preferably in one of the oxidation states II, III, IV, V or VI are present.
  • the metal salts or metal complexes used should be at least partially soluble in water.
  • the counterions suitable for salt formation comprise all customary mono-, di- or tri-positively negatively charged inorganic anions, for example oxide, sulfate, nitrate, fluoride, but also organic anions such as stearate.
  • metal salts and / or metal complexes are selected from the group MnSO 4 , Mn (II) citrate, Mn (II) stearate, Mn (II) acetylacetonate, Mn (II) - [I-hydroxyethane-1, 1- diphosphonate], V 2 O 5 , V 2 O 4 , VO 2 , TiOSO 4 , K 2 TiF 6 , K 2 ZrF 6 , CoSO 4 , Co (NO 3 ) 2 , Ce (NO 3 ) 3 , and mixtures thereof, such that the metal salts and / or metal complexes selected from the group consisting of MnSO 4 , Mn (II) citrate, Mn (II) stearate, Mn (II) acetylacetonate, Mn (II) - [I-hydroxyethane-1, 1 diphosphonate], V 2 O 5 , V 2 O 4 , VO 2 , TiOSO 4 ,
  • the inorganic redox-active substances are preferably coated, i. completely coated with a waterproof, but easily soluble in the cleaning temperatures material to prevent their premature decomposition or oxidation during storage.
  • Preferred coating materials which are applied by known methods, such as Sandwik from the food industry, are paraffins, microwaxes, waxes of natural origin such as carnauba wax, candellila wax, beeswax, higher melting alcohols such as hexadecanol, soaps or fatty acids.
  • perfume oils or fragrances individual fragrance compounds, for example the synthetic products of the ester type, ethers, aldehydes, ketones, alcohols and hydrocarbons, can be used in the context of the present invention. Preferably, however, mixtures of different fragrances are used, which together produce an attractive fragrance.
  • perfume oils may also contain natural perfume mixtures as they come from vegetable sources, such as pine, citrus, jasmine, patchouly, rose or ylang-ylang oil.
  • a fragrance In order to be perceptible, a fragrance must be volatile, whereby besides the nature of the functional groups and the structure of the chemical compound, the molecular weight also plays an important role. For example, most odorants have molecular weights up to about 200 daltons, while molecular weights of 300 daltons and above are more of an exception. Due to the different volatility of fragrances, the smell of a perfume or fragrance composed of several fragrances changes during evaporation, whereby the odor impressions in "top note”, “middle note” or “body note” ) and “base note” (end note or dry out).
  • the top note of a perfume does not consist solely of volatile compounds, while the base note is largely made up of less volatile, i. adherent fragrances.
  • more volatile fragrances can be bound to certain fixatives, preventing them from evaporating too quickly.
  • fixatives preventing them from evaporating too quickly.
  • the fragrances can be processed directly, but it can also be advantageous to apply the fragrances on carriers that provide a slower fragrance release for long-lasting fragrance.
  • carrier materials for example, cyclodextrins have been proven, the cyclodextrin-perfume complexes can be additionally coated with other excipients.
  • dyes Preferred dyes, the selection of which presents no difficulty to the skilled person, have a high storage stability and insensitivity to the other ingredients of the agents and to light and no pronounced substantivity to the substrates to be treated with the dye-containing agents such as textiles, glass, ceramics or plastic dishes do not stain them.
  • the colorants When choosing the colorant, it must be remembered that the colorants have a high storage stability and insensitivity to light as well as not too strong affinity for glass, ceramic or plastic dishes. At the same time, it should also be taken into account when choosing suitable colorants that colorants have different stabilities to the oxidation. In general, water-insoluble colorants are more stable to oxidation than water-soluble colorants. Depending on the solubility and thus also on the sensitivity to oxidation, the concentration of the colorant in the detergents or cleaners varies. In the case of readily water-soluble colorants, colorant concentrations in the range of a few 10 -2 to 10 -3 wt% are typically selected. On the other hand, in the case of the pigment dyes preferred in particular because of their brilliance, but less readily water-soluble, the suitable concentration of the colorant in detergents or cleaners is typically from about 10 -3 to 10 -4 % by weight.
  • Dyeing agents which can be oxidatively destroyed in the washing process and mixtures thereof with suitable blue dyes, so-called blue toners, are preferred. It has proved to be advantageous to use colorants which are soluble in water or at room temperature in liquid organic substances. Suitable are, for example, anionic colorants, e.g. anionic nitrosofarads.
  • the detergents of the invention may further contain preservatives.
  • Preservatives for example, are suitable according to the invention from the groups of alcohols, aldehydes, antimicrobial acids or their salts, carboxylic esters, acid amides, phenols, phenol derivatives, diphenyls, diphenylalkanes, urea derivatives, oxygen, nitrogen acetals and formals, benzamidines, isothiazoles and their derivatives such as isothiazolines and isobutyls.
  • thiazolinones phthalimide derivatives, pyridine derivatives, antimicrobial surface active compounds, guanidines, antimicrobial amphoteric compounds, quinolines, 1, 2-dibromo-2,4-dicyanobutane, iodo-2-propynyl-butyl-carbamate, iodine, iodophores and peroxides.
  • Preferred antimicrobial agents are preferably selected from the group comprising ethanol, n-propanol, i-propanol, 1, 3-butanediol, phenoxyethanol, 1, 2-propylene glycol, glycerol, undecylenic acid, citric acid, lactic acid, benzoic acid, salicylic acid, thymol, 2-Benzyl-4-chlorophenol, 2,2'-methylenebis (6-bromo-4-chlorophenol), 2,4,4'-trichloro-2'-hydroxydiphenyl ether, N- (4-chlorophenyl) -N - (3,4-dichlorophenyl) urea, N, N '- (1, 10-decanediyldi-1 -pyridinyl-4-ylidene) bis (1-octanamine) dihydrochloride, N, N'-bis ( 4-chlorophenyl) -3,12-diimino-2,4,11,13
  • particularly preferred preservatives are selected from the group comprising salicylic acid, quaternary surfactants, in particular benzalkonium chloride and isothiazoles and their derivatives such as isothiazolines and isothiazolinones.
  • the cleaning agents A and B designated by the serial numbers 33 to 64 preferably have a bleaching agent content below 2% by weight, preferably below 1% by weight, more preferably below 0.5% by weight and most preferably do not contain any bleaching agents.
  • the multichamber container according to the invention is particularly suitable for the separation of incompatible ingredients from detergents or cleaning agents.
  • the closure according to the invention can be used in particular for dispensing washing and / or cleaning agents or personal care products such as shower gels, shampoos, body lotions or the like.
  • Fig. 5a triangular standing surface of the closure
  • Fig. 5b trapezoidal base of the closure
  • the container 1 shows the closure 1 according to the invention on a container 2 designed as a two-chamber bottle.
  • the container 2 comprises a first chamber 2a and a second chamber 2b.
  • the container is molded from a plastic, wherein the walls of the container 2 can be compressed by the pressure of a gripping hand.
  • the chambers contain two different, flowable preparations, which is not shown in Fig. 1 for clarity of the drawing.
  • the closure 1 consists of a closure body 3, which is positively and non-positively fixed by bouncing on the head 15 of the container 2 liquid-tight.
  • the shutter 1 is provided with a first product discharge port 4a communicated with the first chamber 2a of the shutter 1 and a second product discharge port 4b communicated with the second chamber of the shutter 1, so that in the product delivery position of the container 2 product from the chambers 2a, 2b is discharged through the product discharge openings 4a, 4b to the environment.
  • the head 11 of the closure 1 has a slope which drops from the stabilizing element 6 to the product discharge openings 4a, 4b.
  • a stabilizing element 6 designed as a bracket is pivotally arranged, which, as shown in Figure 2, is pivotable from a first, applied to the closure 1 position, in a second, unfolded position.
  • the closure 1 with the container 2 is positioned stably above the head on a substantially horizontal surface 7.
  • a part of the closure 1 - the support 10 - and the unfolded bracket 6 form the base of the closure.
  • the stabilizing element 6 is rotatably arranged in the first bearing 8 and the second bearing 9, which is opposite to the first bearing 8 and not shown in Figure 1.
  • the stabilizing element 6 has, at the ends of the strap, in each case circular openings directed towards one another, which can be positioned in alignment with the bearings 8, 9 in an axis.
  • the bearings 8,9 are formed as circular openings, wherein the inner diameter of the bearings 8,9 and the stirrup openings are approximately equal.
  • the stabilizing element 6 is secured in the bearings 8,9 by a respective pin, which is feasible through the openings of the bearings 8,9 and 6 of the bracket.
  • latching elements can still be provided in the bearings 8, 9 in order to generate an acoustic signal.
  • the stabilizing element 6 rests in its closed position on the closure head and is in this position, as shown in Figure 2, detachably fixed by the locking element 17.
  • the stabilizing element may be equipped with a spring mechanism that moves the stabilizing element automatically when released from the closed position in the over-head position.
  • the self-opening closure means 5 can be unlocked by actuation of the pressure zone 16 of the closure base body 3, so that the closure means 5 from its closed position in its product dispensing position, as shown in Fig. 4, unfolds.
  • Figure 5a shows a triangular polygon which encloses the footprint of the closure 1 on a horizontal flat surface in the overhead position.
  • the support points of the shutter 1 on the horizontal plane 7 in this case form the support points of the polygon, when the support point is substantially punctiform or the sides of the polygon, when the support point is substantially linear.
  • the footprint is accordingly formed by the substantially linear support of the stabilizing element 6 formed between brackets A and B.
  • the point C corresponds to a substantially punctiform support of the closure head 1.
  • the center of gravity of the triangular footing is S s .
  • the center of gravity of the bottle 2 fastened in the closure 1 is S F.
  • the projection of the center of gravity S F of the container arranged on the closure is perpendicular to the horizontal plane 7 within the base area of the closure 1 spanned by the polygon.
  • a preferred area in which the center of gravity S F of the container 2 is positioned within the footprint is defined by the triangle ABS s .
  • center of gravity S F of the container 2 relative to the center of gravity of the base surface S s is slightly displaced in the direction of the support line AB formed by the bracket 6, whereby the stability of the closure 1 with the container 2 can be further increased.
  • FIG. 5b shows a trapezoid-shaped base surface of the closure 1.
  • the support line AB is formed by the support line of the bracket 6, while the support line CD is formed by a substantially linear support of the bracket Bottle head 11 is formed.
  • the trapezoidal bearing surface has a center of gravity S s .
  • a preferred range, in which the center of gravity S F of the container 2 is positioned within the base, is defined by the trapezoid ABCD.
  • center of gravity S F of the container 2 relative to the center of gravity of the base surface S s is slightly displaced in the direction of the support line AB formed by the bracket 6, whereby the stability of the closure 1 with the container 2 can be further increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Detergent Compositions (AREA)

Abstract

L'invention concerne un système de bouchage (1) pour un récipient (2), notamment un récipient rempli avec un produit tensioactif coulant, qui comprend un corps de base de bouchage (3), une tête de bouchage (11), des moyens de fixation (5) pour fixer le corps de base de bouchage (3) sur le récipient (2), de sorte que le système de bouchage (1) soit étanche vis-à-vis du récipient (2), au moins une ouverture de déversement de produit (4, 4a, 4b) qui est reliée de manière communicante avec le récipient rempli de produit, de sorte que le produit puisse être déversé hors du récipient dans l'environnement. Au moins un élément de stabilisation (6) est monté mobile sur le système de bouchage et peut passer d'une première position dans laquelle le système de bouchage (1) peut être positionné verticalement tête en bas de manière non stable, sur une surface (7) sensiblement horizontale, dans une seconde position dans laquelle le système de bouchage (1) peut être positionné verticalement tête en bas de manière stable sur une surface (7) sensiblement horizontale, afin qu'en position tête en bas du récipient (2), au moins une partie du système de bouchage (1), en particulier la tête de bouchage (11) et au moins une partie de l'élément de stabilisation (6) se trouvant dans la seconde position, forment la surface d'appui du système de bouchage (1).
PCT/EP2007/058501 2006-11-22 2007-08-16 Système de bouchage muni d'un dispositif de positionnement tête en bas WO2008061817A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006055435.3 2006-11-22
DE200610055435 DE102006055435A1 (de) 2006-11-22 2006-11-22 Verschluss mit Überkopfstandvorrichtung

Publications (1)

Publication Number Publication Date
WO2008061817A1 true WO2008061817A1 (fr) 2008-05-29

Family

ID=38698874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/058501 WO2008061817A1 (fr) 2006-11-22 2007-08-16 Système de bouchage muni d'un dispositif de positionnement tête en bas

Country Status (2)

Country Link
DE (1) DE102006055435A1 (fr)
WO (1) WO2008061817A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9302813B2 (en) 2012-06-07 2016-04-05 Colgate-Palmolive Company Invertible bottle with an improved closure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022108981B3 (de) 2022-04-12 2023-06-29 Kathrin Bunzel Spender für ein pulverförmiges Pflegeprodukt

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002096848A (ja) * 2000-09-21 2002-04-02 Kitano Seisaku Kk 倒立型ヒンジキャップ付き容器
JP2004331181A (ja) * 2003-05-09 2004-11-25 Toru Kimori キャップ装置
US20050098527A1 (en) * 2003-09-15 2005-05-12 Yates William M.Iii Multiple cavity bottle and method of manufacturing same
GB2422372A (en) * 2005-01-29 2006-07-26 Garry Ritchie Gravity dispenser for fluid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002096848A (ja) * 2000-09-21 2002-04-02 Kitano Seisaku Kk 倒立型ヒンジキャップ付き容器
JP2004331181A (ja) * 2003-05-09 2004-11-25 Toru Kimori キャップ装置
US20050098527A1 (en) * 2003-09-15 2005-05-12 Yates William M.Iii Multiple cavity bottle and method of manufacturing same
GB2422372A (en) * 2005-01-29 2006-07-26 Garry Ritchie Gravity dispenser for fluid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9302813B2 (en) 2012-06-07 2016-04-05 Colgate-Palmolive Company Invertible bottle with an improved closure

Also Published As

Publication number Publication date
DE102006055435A1 (de) 2008-05-29

Similar Documents

Publication Publication Date Title
EP2029719B1 (fr) Procédé de nettoyage
DE102005041708A1 (de) Reinigungsmittel
DE102005041709A1 (de) Reinigungsmittel
WO2007025665A2 (fr) Agents de lavage
WO2007025666A2 (fr) Agents de lavage
DE102009004524A1 (de) Farbschützendes maschinelles Geschirrspülmittel
WO2006032371A1 (fr) Constituants de produits nettoyants
WO2006045449A1 (fr) Agent de lavage ou de nettoyage
DE102005025690B4 (de) Verpackungssystem für Wasch-oder Reinigungsmittel
DE102005025964A1 (de) Wasch- oder Reinigungsmittel
WO2006018107A1 (fr) Agents de lavage et de nettoyage contenant des produits de rinçage et des acides amines soufres
WO2008061817A1 (fr) Système de bouchage muni d'un dispositif de positionnement tête en bas
DE102005034752A1 (de) Reinigungs- und Pflegemittel mit verbesserter Emulgierfähigkeit
WO2006045451A1 (fr) Agents de lavage ou de nettoyage
EP2091833B1 (fr) Système de bouchage à capuchon de bouchage à ouverture automatique
DE102004040330A1 (de) Beschichteter Wasch- oder Reinigungsmittelformkörper
DE102005018925A1 (de) Wasch- oder Reinigungsmittel
WO2006063724A1 (fr) Outil de coupe destine a des bandes de films
DE102005022786B4 (de) Wasch- oder Reinigungsmitteldosiereinheit
DE102011005695A1 (de) Geschirrspülmittel
DE102004020033A1 (de) Verbrauchsanzeiger für maschinelle Geschirrspülmittel
WO2013182510A1 (fr) Détergents pour vaisselle
DE102004062328A1 (de) Dosiereinheit für Wasch- oder Reinigungsmittel
DE102011079260A1 (de) Klarspül- und Reinigungsmittel
WO2006066722A1 (fr) Detergent ou nettoyant emballe

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07802640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07802640

Country of ref document: EP

Kind code of ref document: A1