WO2006066722A1 - Detergent ou nettoyant emballe - Google Patents

Detergent ou nettoyant emballe Download PDF

Info

Publication number
WO2006066722A1
WO2006066722A1 PCT/EP2005/012969 EP2005012969W WO2006066722A1 WO 2006066722 A1 WO2006066722 A1 WO 2006066722A1 EP 2005012969 W EP2005012969 W EP 2005012969W WO 2006066722 A1 WO2006066722 A1 WO 2006066722A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
preferred
container
weight
oil
Prior art date
Application number
PCT/EP2005/012969
Other languages
German (de)
English (en)
Inventor
Arnd Kessler
Pavel Gentschev
Arno DÜFFELS
Original Assignee
Henkel Kommanditgesellschaft Auf Aktien
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Kommanditgesellschaft Auf Aktien filed Critical Henkel Kommanditgesellschaft Auf Aktien
Publication of WO2006066722A1 publication Critical patent/WO2006066722A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3942Inorganic per-compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D77/00Packages formed by enclosing articles or materials in preformed containers, e.g. boxes, cartons, sacks or bags
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/395Bleaching agents
    • C11D3/3955Organic bleaching agents

Definitions

  • the present invention is in the field of detergents or cleaners, especially packaged detergents or cleaners.
  • Detergents or cleaners are available to the consumer in a variety of forms. In addition to powders and granules, this offer also includes, for example, detergent concentrates in the form of extruded or tabletted compositions. This solid ,. Concentrated or compressed supply forms are characterized by a reduced volume per dosing unit and thus reduce the costs for packaging and transport. In particular, the washing or cleaning agent tablets additionally meet the consumer's desire for simple dosing. The corresponding means are comprehensively described in the prior art. However, in addition to the advantages listed, compacted detergents also have a number of disadvantages. Especially tableted supply forms are characterized by their high compression often by a delayed disintegration and thus a delayed release of their ingredients.
  • powders or granules are to be preferred to the compacted materials in those cases in which the early release of certain washing or cleaning-active substances may improve the cleaning performance and / or cause inactivation of the washing or cleaning-active substance due to compaction.
  • a washing or cleaning substance which is used for the aforementioned reasons with preference, in particulate or liquid preparations are the bleaching agents, in particular the oxygen bleaching agents such as sodium percarbonate, but also enzymes.
  • the preparation of particulate detergents or cleaners is usually carried out by simple filling of the contents in the appropriate packaging.
  • the dosage of the bulk material can be realized for example by weighing the filled pack or by means of a metering chamber.
  • Such devices may comprise metering chambers, which are formed in so-called metering or metering rollers. While a dosing tube is regularly inserted into a Gregutbett during filling, the distributed on the outer circumference of a metering or individually distributed several metering chambers are successively positioned under the bottom opening of a product container during their respective filling, and it is the powdery product in the respective metering from the Powder bed or sucked out of the reservoir. For emptying, the filling material located in the respective metering chamber is then blown out of the metering chamber by means of overpressure into a respectively prepared container.
  • the present application was therefore based on the object to provide a packaging for detergents or cleaners with high bleach content, which allows the safe packaging and handling of these funds.
  • the bottling of detergents or cleaners with potentially irritating or allergenic components and their storage and use by the consumer should be made simpler and safer.
  • a first subject of the present application is therefore a combination of a rigid container with a maximum container height h max and a present in the rigid container particulate, bleach-containing detergent or cleaning agent, wherein the container a footprint A with a minimum diameter d mi ⁇ and an upper-side container opening having a surface A 'and a maximum diameter d max , characterized in that d min is greater than h max and d min is greater than d max .
  • a first component of the agents according to the invention is a rigid container.
  • a rigid container self-supporting, that is persisting without external influence in their spatial form, Container designated.
  • rigid containers are, for example, cardboard boxes, tin cans or plastic bottles.
  • the containers according to the invention are preferably made of plastics.
  • Plastics particularly polymeric plastics •, are among the most versatile materials for the production of industrial goods.
  • Important properties of plastics are, for example, their high mechanical strength, the favorable ratio of strength and density and the high resistance to chemicals. In the context of the present invention, therefore, preference is given to containers which consist at least partly of water-insoluble polymers and / or water-insoluble polymer mixtures.
  • plastics and "polymers” in the context of the present application, in particular polymers, polyadducts and polycondensates are summarized.
  • polymers in this application are referred to such high molecular weight compounds, the structure of which proceeds according to a chain growth mechanism.
  • preferred polymers are polyethylene, polypropylene, poly-1-butene, poly-4-methyl-1-pentene, polyvinyl chloride, polyvinylidene chloride, polyacrylonitrile and / or polystyrene.
  • Polyadducts are formed by polyaddition, that is to say polyreactions in which polymers are formed by repeatedly repeating and mutually independent linking reactions of bis- or polyfunctional reactants (monomers) via reactive oligomers.
  • Preferred polyadducts are polyurethanes.
  • polycondensates are formed by frequently repeated and mutually independent linking reactions of discrete oligomers and monomers, but in contrast to the polyaddition, there is simultaneously a cleavage of low molecular weight compounds.
  • Preferred polycondensates in the context of the present invention are polyamides, polycarbonates and polyesters.
  • Plastics are characterized by a special versatility also with regard to their processability.
  • Plastics can be processed by extrusion or injection molding as shaping as by drawing process.
  • the so-called cold deformation runs;
  • the plate or film to be deformed is not preheated.
  • a container a deep-drawn or injection-molded or bottle-blown container is used. With particular preference, injection molded containers are used.
  • a preferred container preferably has a wall thickness between 5 ⁇ m and 2000 ⁇ m, preferably between 10 ⁇ m and 1000 ⁇ m and in particular between 50 ⁇ m and 500 ⁇ m, depending on the water-insoluble plastic used.
  • the containers used according to the invention have a maximum container height h max , a base A with a minimum diameter d min and a container opening surface A 'with a maximum diameter d max .
  • the outer container bottom that is the outer surface of the container bottom, is flat and smooth. If such a container is standing upright on a flat and smooth surface, the base A marks the surface enclosing all those points where the base and the container are in direct contact.
  • the container bottom so the outer surface of the container bottom, not flat and smooth but has, for example, convex and / or concave curvatures and / or imprints. If such a container is upright on a flat and smooth surface, then the container has one or more substandard surfaces, which occupy only a part of the outer surface of the container bottom.
  • the footprint A does not result in such a simple sum of the partial footprint but rather corresponds to the surface which is enclosed by a line which encloses both the partial footprints and the surfaces of the container bottom located between the partial footprints.
  • the base is preferably round. However, however, square footprints, for example, footprints with three, four, five, six, seven, eight or more corners are feasible.
  • the ratio between minimum diameter d min of the stand area A and maximum container height h max between 1: 0.95 and 1: 0.2, preferably between 1: 0.95 and 1: 0.4, preferably between 1: 0.95 and 1: 0.6 and in particular between 1 : 0.95 and 1: 0.7.
  • the spatial form of the container is in principle subject to no other than those disclosed in the claim.
  • the base of the container may, for example, be round or oval, three, four, five, six, seven, eight or polygonal.
  • Standing, side or top surfaces can be designed plan or curved, with both concave and convex curvatures can be realized.
  • a container according to the invention may, for example, have a cuboid shape, one of the surfaces of the cuboid forming the standing surface, while a part of the opposite surface corresponds to the container opening.
  • a container in the form of a straight circular cylinder is preferred, in which one of the circular surfaces forms the base surface, that is to say the base, while the second circular surface, that is to say the top surface, comprises the container opening.
  • containers according to the invention can also have a conical shape with the conical base surface as base surface and a conically tapered side wall opening in the container opening.
  • the footprint and container opening are located on opposite sides of the container.
  • the container has rounded corners and edges.
  • the shape of the container opening is in principle subject to no restriction. Due to the better closability, in particular with screw caps, however, circular container openings are preferred within the scope of the present invention.
  • the container opening area A ' is preferably in a certain relationship to the footprint A of the container, such combinations of the invention are preferred in which the ratio between footprint A and container opening area A' between 1: 0.9 and 1: 0.2, preferably between 1 0.9 and 1: 0.4, preferably between 1: 0.9 and 1: 0.5 and in particular between 1: 0.9 and 1: 0.6.
  • the internal or filling volume of the containers is preferably between 100 and 5000 ml, preferably between 100 and 2000 ml, preferably between 200 and 1800 ml.
  • the container according to the invention preferably has a resealable closure. This closure can be connected, for example, by a screw, latch, plug, adhesive or snap closure with the container. With particular preference, the container has a screw closure, wherein this screw closure has a so-called child safety device in a particularly preferred embodiment.
  • Combinations according to the invention characterized in that the container opening has an adhesive, latching, snap-action or screw-type closure, preferably a screw closure, are particularly preferred according to the invention.
  • the closure of the container is made with particular preference of the above-mentioned plastics or polymers.
  • Inventive means in which the container and the closure of the / the same plastic (s) is made, are particularly preferred according to the invention.
  • the closure can also have all technically feasible forms. It is conceivable in addition to closures with a round in the plan profile, for example, four- or polygonal closures. Particularly preferred closures are rotationally symmetrical in the plan view. If a screw cap is used as the closure, this screw cap will preferably have a round profile for easier handling. In this case, the view in a viewing direction orthogonal to the upper side of the closure is referred to as "top view”.
  • the containers of the invention are preferably stackable to facilitate their packaging and transportation.
  • the container bottom as well as the container top which is optionally at least partially formed by a closure plan.
  • the corresponding containers can be easily stacked without tilting. Nevertheless, the resulting container stacks are only partially secured against slippage of the container with lateral force on the container stack.
  • the slip resistance of containers according to the invention can be improved, for example, by processing non-slip materials on the top and / or bottom of the container. In a particularly preferred embodiment
  • a further preferred embodiment of the combination according to the invention is therefore characterized in that the container opening has a convex closure, which corresponds in shape to a concave embossing in the container bottom.
  • these containers can be used in a preferred embodiment have a metal coating.
  • a coating can be realized, for example, by vapor deposition or gluing with a metal foil.
  • the Metallevampfung or the metal foil can be both on the inside of the container wall (in the interior of the container in contact with the bleach-containing detergent or cleaner) or on the outside of the container (without contact with the bleach-containing detergent or cleaner) are.
  • this product information may be the product name, product composition, or application or safety information.
  • the product information may be printed directly on the container and / or the closure.
  • the container may for example be provided with a printed band.
  • the combination according to the invention furthermore comprises a dosing auxiliary.
  • the combination product according to the invention in addition to the detergency booster, the main cleaning agent and the instructions for use, further comprises a dosing aid.
  • Combination products characterized in that the combination product further comprises a metering aid for the detergency booster and / or for the main cleaning agent, are inventively preferred.
  • Suitable metering aids are, for example, all devices and objects which are suitable for metering the washing or cleaning agent into the dishwasher or its metering chamber; and / or are suitable for measuring a given volume or weight.
  • the metering aids can be an integral part of the rigid container, for example a pouring device, or a separate means, for example a (measuring) cup, a (measuring) blade or a (measuring) spoon.
  • These metering aids can be made, for example, of polymers, metal, glass, paper or cardboard.
  • the combination according to the invention furthermore comprises a particulate bleach-containing washing or cleaning agent.
  • pillate compositions are solids or detergents having a particle size of up to 10000 ⁇ m
  • those combinations according to the invention are those in which at least 50% by weight, preferably at least 80% by weight, particularly preferably at least 90% by weight of the particles have a size below 6000 m, preferably below 3000. especially preferably below 2000 and in particular between 200 and 2000 has.
  • preferred forms of preparation of these particulate detergents or cleaners are powders or granules or extrudates or compactates.
  • Powder is a general term for a form of division of solids and / or mixtures obtained by comminution, that is, grinding or crushing in the mortar (pulverization), grinding in mills or as a result of atomization or freeze-drying.
  • a particularly fine division is often called atomization or micronization; the corresponding powders are called micro-powders.
  • powders have lower particle sizes below 5000 .mu.m, preferably less than 3000 .mu.m, preferably less than 1000 .mu.m, very particularly preferably between 50 and 1000 .mu.m and in particular between 100 and 800 .mu.m.
  • Powders can be compacted and agglomerated by extrusion, pressing, rolling, briquetting, pelleting and related processes.
  • Each of the methods known in the prior art for the agglomeration of particulate mixtures is in principle suitable for producing the solids contained in the agents according to the invention.
  • agglomerates used as solid (s) are, in addition to the granules, the compacts and extrudates.
  • Granules are aggregates of granules.
  • a granule (grana-he) is an asymmetric aggregate of powder particles.
  • Granulation methods are widely described in the art.
  • Granules can be produced by wet granulation, by dry granulation or compaction and by melt solidification granulation.
  • the most common granulation technique is wet granulation, since this technique is subject to the fewest restrictions and leads most safely to granules with favorable properties.
  • the wet granulation is carried out by moistening the powder mixtures with solvents and / or solvent mixtures and / or solutions of binders and / or solutions of adhesives and is preferably carried out in mixers, fluidized beds or spray towers, said mixer can be equipped, for example, with stirring and kneading tools.
  • combinations of fluidized bed (s) and mixer (s) or combinations of different mixers can also be used for the granulation.
  • the granulation takes place depending on the material and the desired product properties under the action of low to high shear forces.
  • melt solidification melting
  • aqueous, slurries spray drying
  • solid substances which are sprayed at the top of a tower in a defined droplet size, solidify in free fall or dry and on Floor of the tower incurred as granules.
  • Melt solidification is generally particularly suitable for shaping low-melting substances which are stable in the melting temperature range (eg urea, ammonium nitrate and various formulations such as enzyme concentrates, pharmaceuticals etc.), the corresponding granules are also referred to as prills.
  • Spray drying is used especially for the production of detergents or detergent ingredients.
  • extruder or perforated roll granulations in which powder mixtures optionally mixed with granulating liquid are plastically deformed during perforation by perforated disks (extrusion) or on perforated rolls.
  • the products of extruder granulation are also referred to as extrudates.
  • washing or cleaning agents comprised in the combination according to the invention contain bleaching agents.
  • the sodium percarbonate, the sodium perborate tetrahydrate and the sodium perborate monohydrate are of particular importance.
  • Other useful bleaching agents are, for example, peroxypyrophosphates, citrate perhydrates and peracid salts or peracids which yield H 2 O 2 , such as perbenzoates, peroxophthalates, diperazelaic acid, phthaloiminoperacid or diperdodecanedioic acid.
  • bleaching agents from the group of organic bleaching agents can also be used.
  • Typical organic bleaches are the diacyl peroxides such as dibenzoyl peroxide.
  • peroxyacids examples of which include the alkyl peroxyacids and the aryl peroxyacids.
  • Preferred representatives are (a) the peroxybenzoic acid and its ring-substituted derivatives, such as alkylperoxybenzoic acids, but also peroxy- ⁇ -naphthoic acid and magnesium monoperphthalate, (b) the aliphatic or substituted aliphatic peroxyacids, such as peroxylauric acid, peroxystearic acid, ⁇ -phthalimidoperoxycaproic acid [Phthaliminoperoxyhexanoic acid (PAP )], o-
  • Nonenylamidopersuccinates and (c) aliphatic and araliphatic peroxydicarboxylic acids, such as 1, 12-diperoxycarboxylic acid, 1, 9-diperoxyazelaic acid, diperoxysebacic acid, diperoxybrassyl- Acid, the diperoxyphthalic acids, 2-Decyldiperoxybutan-1, 4-diacid, N, N-terephthaloyl-di (6-aminopercapronic) can be used.
  • 1, 12-diperoxycarboxylic acid 1, 9-diperoxyazelaic acid
  • diperoxysebacic acid diperoxybrassyl- Acid
  • diperoxyphthalic acids 2-Decyldiperoxybutan-1, 4-diacid, N, N-terephthaloyl-di (6-aminopercapronic) can be used.
  • Combinations according to the invention characterized in that the washing or cleaning agent contains an oxygen bleaching agent, preferably sodium percarbonate, are particularly preferred.
  • compositions according to the invention contain, as bleaches, with particular preference percarbonate, this percarbonate having a coating in a particularly preferred embodiment.
  • percarbonate this percarbonate having a coating in a particularly preferred embodiment.
  • inorganic salts in particular sulphates, carbonates and / or bicarbonates, preferably water-soluble organic polymers are used as coating materials.
  • chlorine-containing or bromine-releasing substances can be used as an alternative or in addition to the abovementioned oxygen bleaching agents.
  • suitable chlorine or bromine releasing materials are, for example, heterocyclic N-bromo- and N-chloroamides, for example trichloroisocyanuric acid, tribromoisocyanuric acid, dibromoisocyanuric acid and / or dichloroisocyanuric acid (DICA) and / or their salts with cations such as potassium and sodium.
  • DICA dichloroisocyanuric acid
  • Hydantoin compounds such as 1,3-dichloro-5,5-dimethylhydantoin are also suitable.
  • Combinations according to the invention characterized in that the washing or cleaning agent contains a chlorine bleach, are also preferred.
  • the containers included in the combination according to the invention enable the safe filling and handling of bleach-containing detergents or cleaners and are therefore particularly suitable for detergents or cleaners with a high bleach content.
  • the bleach-containing detergents or cleaners therefore have a bleach content significantly above the bleach content of conventional detergents or cleaners.
  • Combinations, characterized in that the bleach content of the washing or cleaning agent more than 10 wt .-%, preferably more than 15 wt .-%, preferably between 20 and 90 wt .-% and in particular between 25 and 80 wt .-%, in each case based on the weight of the washing or cleaning agent, are therefore preferred according to the invention.
  • detergents or cleaners having a bleach content above 30% by weight are particularly preferred, bleach contents ranging from 30 to 90% by weight, preferably from 35 to 90% by weight, particularly preferably from 40 to 90% by weight % and in particular between 50 and 90 wt .-% are preferred.
  • the washing or cleaning agents comprised in the combination according to the invention may contain further washing or cleaning-active substances. Since the combination according to the invention is particularly suitable for the safe filling, storage and use of potentially irritating or allergenic detergent or cleaning agent components, preferably enzyme-containing detergents or cleaners are also packaged by means of this combination. In a further preferred embodiment, therefore, the washing or cleaning agent further contains enzyme (s) in addition to the bleaching agent.
  • Enzymes are added to the washing or cleaning agent to increase the washing or cleaning performance.
  • the enzymes include in particular proteases, amylases, lipases, hemicellulases, cellulases or oxidoreductases, and preferably mixtures thereof. These enzymes are basically of natural origin; Starting from the natural molecules, improved variants are available for use in detergents and cleaners, which are preferably used accordingly.
  • Detergents or cleaners contain enzymes preferably in total amounts of from 1 ⁇ 10 -5 to 5 -0% by weight, based on active protein The protein concentration can be determined by known methods, for example the BCA method or the biuret method.
  • subtilisin type examples thereof are the subtilisin BPN 'and Carlsberg, the protease PB92, the subtilisins 147 and 309, the alkaline protease from Bacillus lentus, subtilisin DY and the enzymes thermitase, proteinase K which can no longer be assigned to the subtilisins in the narrower sense and the proteases TW3 and TW7.
  • subtilisin Carlsberg in a developed form under the trade names Alcalase ® from Novozymes A / S, Bagsvasrd, Denmark.
  • subtilisins 147 and 309 are sold under the trade names Esperase ®, or Savinase ® from Novozymes. From the protease from Bacillus lentus DSM 5483 derived under the name BLAP ® variants are derived.
  • proteases are, for example, under the trade names Durazym ®, re lase ®, Everlase® ®, Nafizym, Natalase ®, Kannase® ® and Ovozymes ® from Novozymes, which from under the trade names Purafect ®, Purafect ® OxP and Properase.RTM ® Genencor, that under the trade name Protosol® ® from Advanced Biochemicals Ltd., Thane, India, that of under the trade name Wuxi ® from Wuxi Snyder Bioproducts Ltd., China, under the trade names Proleather® ® and protease P ® Amano Pharmaceuticals Ltd., Nagoya, Japan, and the enzyme available under the name Proteinase K-16 from Kao Corp., Tokyo, Japan.
  • amylases which can be used according to the invention are the ⁇ -amylases from Bacillus licheniformis, from ⁇ . amyloliquefaciens or from ß. stearothermophilus and their improved for use in detergents and cleaners further developments.
  • the enzyme from B. licheniformis is available from Novozymes under the name Termamyl ® and from Genencor under the name Purastar® ® ST. Development products of this ⁇ -amylase are available from Novozymes under the trade names Duramyl ® and Termamyl ® ultra, from Genencor under the name Purastar® ® OxAm and from Daiwa Seiko Inc., Tokyo, Japan, as Keistase ®.
  • the ⁇ -amylase from B. amyloliquefaciens is marketed by Novozymes under the name BAN ®, and variants derived from the ⁇ -amylase from B. stearothermophilus under the names BSG ® and Novamyl ®, likewise from Novozymes.
  • ⁇ -amylase from Bacillus sp. A 7-7 (DSM 12368) and cyclodextrin glucanotransferase (CGTase) from ⁇ . agaradherens (DSM 9948).
  • lipases or cutinases are also usable according to the invention, in particular because of their triglyceride-splitting activities, but also in order to generate in situ peracids from suitable precursors.
  • lipases originally obtainable from Humicola lanuginosa (Thermomyces lanuginosus) or further developed, in particular those with the amino acid exchange D96L. They are for example marketed by Novozymes under the trade names Lipolase ®, Lipolase Ultra ®, LipoPrime® ®, Lipozyme® ® and Lipex ®.
  • the cutinases can be used, which were originally isolated from Fusarium solani pisi and Humicola insolens.
  • lipases are available from Amano under the designations Lipase CE ®, Lipase P ®, Lipase B ®, or lipase CES ®, Lipase AKG ®, Bacillis sp. Lipase® , Lipase AP® , Lipase M- AP® and Lipase AML® are available. Genencor can be used, for example, for the lipases or cutinases whose initial enzymes were originally isolated from Pseudomonas mendocina and Fusarium solanii.
  • Suitable mannanases are available, for example under the name Gamanase ® and Pektinex AR ® from Novozymes, under the name Rohapec ® B1 L from AB Enzymes and under the name Pyrolase® ® from Diversa Corp., San Diego, CA, USA , The .beta.-glucanase obtained from B. subtilis is available under the name Cereflo ® from Novozymes.
  • Oxidoreductases for example oxidases, oxygenases, catalases, peroxidases, such as halo, chloro, bromo, lignin, glucose or manganese peroxidases, dioxygenases or laccases (phenol oxidases, polyphenol oxidases) can be used according to the invention to increase the bleaching effect.
  • peroxidases such as halo, chloro, bromo, lignin, glucose or manganese peroxidases, dioxygenases or laccases
  • Suitable commercial products Denilite® ® 1 and 2 from Novozymes should be mentioned.
  • organic, particularly preferably aromatic, compounds which interact with the enzymes in order to enhance the activity of the relevant oxidoreductases (enhancers) or to ensure the electron flow at greatly varying redox potentials between the oxidizing enzymes and the soiling (mediators).
  • the enzymes originate, for example, either originally from microorganisms, such as the genera Bacillus, Streptomyces, Humicola, or Pseudomonas, and / or are produced by biotechnological methods known per se by suitable microorganisms, such as transgenic expression hosts of the genera Bacillus or filamentous fungi.
  • the purification of the relevant enzymes is preferably carried out by conventional methods, for example by precipitation, sedimentation, concentration, filtration of the liquid phases, microfiltration, ultrafiltration, exposure to chemicals, deodorization or suitable combinations of these steps.
  • the enzymes can be used in any form known in the art. These include, for example, the solid preparations obtained by granulation, extrusion or lyophilization or, especially in the case of liquid or gel-form detergents, solutions of the enzymes, advantageously as concentrated as possible, sparing in water and / or added with stabilizers.
  • the enzymes can be encapsulated for both the solid and liquid dosage forms, for example by spray drying or extrusion of the enzyme solution together with a preferably natural polymer or in the form of capsules, for example those in which the enzymes are entrapped as in a solidified gel or in those of the core-shell type in which an enzyme-containing core is coated with a water, air and / or chemical impermeable protective layer.
  • a preferably natural polymer or in the form of capsules for example those in which the enzymes are entrapped as in a solidified gel or in those of the core-shell type in which an enzyme-containing core is coated with a water, air and / or chemical impermeable protective layer.
  • further active ingredients for example stabilizers, emulsifiers, pigments, bleaches or dyes, may additionally be applied.
  • Such capsules are applied by methods known per se, for example by shaking or rolling granulation or in fluid-bed processes.
  • such granules for example by applying polymeric film-
  • a protein and / or enzyme can be protected, especially during storage, against damage such as inactivation, denaturation or degradation, for example by physical influences, oxidation or proteolytic cleavage.
  • damage such as inactivation, denaturation or degradation, for example by physical influences, oxidation or proteolytic cleavage.
  • inhibition of proteolysis is particularly preferred, especially if the agents also contain proteases.
  • Detergents may contain stabilizers for this purpose; the provision of such means constitutes a preferred embodiment of the present invention.
  • One group of stabilizers are reversible protease inhibitors. Frequently, benzamidine hydrochloride, borax, boric acids, boronic acids or their salts or esters are used, including in particular derivatives with aromatic groups, such as ortho-substituted, meta-substituted and para-substituted phenylboronic acids, or their salts or esters.
  • peptidic protease inhibitors are, inter alia, ovomucoid and leupeptin to mention; An additional option is the formation of fusion proteins from proteases and peptide inhibitors.
  • enzyme stabilizers are amino alcohols such as mono-, di-, triethanol- and -propanolamine and mixtures thereof, aliphatic carboxylic acids up to C 12 , such as succinic acid, other dicarboxylic acids or salts of said acids. End-capped fatty acid amide alkoxylates are also suitable. Certain organic acids used as builders are additionally capable of stabilizing a contained enzyme.
  • Lower aliphatic alcohols but especially polyols such as glycerol, ethylene glycol, propylene glycol or sorbitol are other frequently used enzyme stabilizers.
  • calcium salts such as calcium acetate or calcium formate, and magnesium salts.
  • Polyamide oligomers or polymeric compounds such as lignin, water-soluble vinyl copolymers or cellulose ethers, acrylic polymers and / or polyamides stabilize the enzyme preparation, inter alia, against physical influences or pH fluctuations.
  • Polyamine N-oxide containing polymers act as enzyme stabilizers.
  • Other polymeric stabilizers are the linear C 8 -C 18 polyoxyalkylenes. Alkyl polyglycosides can stabilize the enzymatic components and even increase their performance.
  • Crosslinked N-containing compounds also act as enzyme stabilizers.
  • a sulfur-containing reducing agent is, for example, sodium sulfite.
  • stabilizers for example of polyols, boric acid and / or borax, the combination of boric acid or borate, reducing salts and succinic acid or other dicarboxylic acids or the combination of boric acid or borate with polyols or polyamino compounds and with reducing salts.
  • the effect of peptide-aldehyde stabilizers is increased by the combination with boric acid and / or boric acid derivatives and polyols and further enhanced by the additional use of divalent cations, such as calcium ions.
  • a combination according to the invention characterized in that the washing or cleaning agent contains enzyme (s), wherein the enzyme content preferably between 0.1 and 15% by weight, preferably between 0.2 and 10 wt .-%, particularly preferably between 0.4 and 8 wt .-% and in particular between 0.6 and 6 wt .-%, each based on the total weight of the detergent or cleaning agent, is therefore preferred according to the invention.
  • enzyme s
  • compositions according to the invention or the compositions prepared according to the invention described above may contain further washing and cleaning-active substances, preferably washing and cleaning substances from the group of builders, surfactants, polymers, bleach activators, glass corrosion inhibitors, Corrosion inhibitors, disintegration aids, fragrances and perfume carriers.
  • washing and cleaning substances from the group of builders, surfactants, polymers, bleach activators, glass corrosion inhibitors, Corrosion inhibitors, disintegration aids, fragrances and perfume carriers.
  • the builders include, in particular, the zeolites, silicates, carbonates, organic cobuilders and, where there are no ecological prejudices against their use, also the phosphates.
  • the finely crystalline, synthetic and bound water-containing zeolite used is preferably zeolite A and / or P.
  • zeolite P zeolite MAP® (commercial product from Crosfield) is particularly preferred.
  • zeolite X zeolite X and mixtures of A, X and / or P.
  • the zeolite can be used both as a builder in a granular compound and for a kind of "powdering" of a granular mixture, preferably a mixture to be compressed, whereby usually both ways of incorporating the zeolite into the premix are used an average particle size of less than 10 ⁇ m (volume distribution, measuring method: Coulter Counter) and preferably contain 18 to 22% by weight, in particular 20 to 22% by weight, of bound water.
  • Suitable crystalline layered sodium silicates have the general formula NaMSi x O 2x + 1 • H 2 O, where M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20 and preferred values for x 2, 3 or 4 are.
  • Preferred crystalline layered silicates of the formula given are those in which M is sodium and x assumes the values 2 or 3. In particular, both ⁇ - and ⁇ -sodium disilicates Na 2 Si 2 O 5 .yH 2 O are preferred.
  • crystalline layered silicates of general formula NaMSi x O 2x + 1 • y H 2 O are used, wherein M is sodium or hydrogen, x is a number from 1.9 to 22, preferably from 1 , 9 to 4, and y is a number from 0 to 33.
  • the crystalline layered silicates of the formula NaMSi x O 2x + 1 ⁇ y H 2 O are sold for example by Clariant GmbH (Germany) under the trade name Na-SKS.
  • silicates Na-SKS-1 (Na 2 Si 22 O 45 • x H 2 O, Ken YAIT), Na-SKS-2 (Na 2 Si 14 O 29 • x H 2 O, magadiite), Na -SKS-3 (Na 2 Si 8 O 17 .xH 2 O) or Na-SKS-4 (Na 2 Si 4 O 9 .xH 2 O, Makatite).
  • crystalline layer silicates are particularly suitable of the formula NaMSi x O 2x + 1 • y H 2 O, in which x stands for 2 h.
  • x stands for 2 h.
  • Na-SKS-5 (X-Na 2 Si 2 O 5 )
  • Na-SKS-7 ⁇ -Na 2 Si 2 0 5 , natrosilite
  • Na-SKS-9 NaHSi 2 O 5 • H 2 O
  • Na-SKS-10 NaH-Si 2 O 5 • 3H 2 O, kanemite
  • Na-SKS-11 t-Na 2 Si 2 O 5
  • Na-SKS-13 NaHSi 2 O 5
  • Na-SKS-6 5-Na 2 Si 2 O 5 ).
  • these compositions preferably comprise a proportion by weight of the crystalline layered silicate of the formula NaMSi x O 2x + I ⁇ y H 2 O from 0.1 to 20 wt .-%, from 0.2 to 15 wt .-% and in particular from 0.4 to 10 wt .-%, each based on the total weight of these agents.
  • Such automatic dishwashing agents have a total silicate content of less than 7% by weight, preferably less than 6% by weight, preferably less than 5% by weight, more preferably less than 4% by weight, most preferably less than 3% by weight % and in particular below 2.5 wt .-%, wherein it is in this silicate, based on the total weight of the silicate contained, preferably at least 70 wt .-%, preferably at least 80 wt .-% and in particular to At least 90 wt .-% of silicate of the general formula NaMSi- ⁇ 2x + i ⁇ y H 2 O is.
  • amorphous sodium silicates with a Na 2 O: SiO 2 modulus of from 1: 2 to 1: 3.3, preferably from 1: 2 to 1: 2.8 and in particular from 1: 2 to 1: 2.6, which Delayed and have secondary washing properties.
  • the dissolution delay compared with conventional amorphous sodium silicates may have been caused in various ways, for example by surface treatment, compounding, compaction / densification or by overdrying.
  • the term "amorphous” is also understood to mean "X-ray amorphous”.
  • the silicates do not yield sharp X-ray reflections typical of crystalline substances in X-ray diffraction experiments, but at most one or more maxima of the scattered X-rays which have a width of several degrees of diffraction angle. However, it may well even lead to particularly good builder properties if the silicate particles provide blurred or even sharp diffraction maxima in electron diffraction experiments. This is to be interpreted as meaning that the products have microcrystalline regions of the size of ten to a few hundred nm, with values of up to max. 50 nm and in particular up to max. 20 nm are preferred. Such so-called X-ray amorphous silicates also have a dissolution delay compared with the conventional water glasses. Particularly preferred are compacted / compacted amorphous silicates, compounded amorphous silicates and overdried X-ray amorphous silicates.
  • alkali silicates particularly preferably crystalline or amorphous Alkalidisilikate
  • detergents or cleaners in amounts of 10 to 60 wt .-%, preferably from 15 to 50 Wt .-% and in particular from 20 to 40 wt .-%, each based on the weight of the washing or cleaning agent.
  • phosphates as builders is possible, unless such use should not be avoided for environmental reasons. This applies in particular to the use of compositions according to the invention or agents prepared by the process according to the invention as automatic dishwasher detergents, which is particularly preferred in the context of the present application.
  • alkali metal phosphates with particular preference for pentasodium or pentapotassium triphosphate (sodium or potassium tripolyphosphate), are of greatest importance in the washing and cleaning agent industry.
  • Alkali metal phosphates is the summary term for the alkali metal (especially sodium and potassium) salts of various phosphoric acids, in which one can distinguish metaphosphoric acids (HPO 3 ) n and orthophosphoric H 3 PO 4 in addition to high molecular weight representatives.
  • the phosphates combine several advantages: They act as alkali carriers, prevent limescale deposits on machine parts or lime incrustations in fabrics and, moreover, contribute to the cleaning performance.
  • Suitable phosphates are, for example, the sodium dihydrogen phosphate, NaH 2 PO 4 , in the form of the dihydrate (density 1, 91 like '3 , melting point 60 °) or in the form of monohydrate (density 2.04 like ' 3 ), the disodium hydrogen phosphate (secondary sodium phosphate) , Na 2 HPO 4 , which is anhydrous or with 2 mol (density 2.066 like '3 , water loss at 95 °), 7 mol (density 1, 68 like "3 , melting point 48 ° with loss of 5 H 2 O) and 12 mol Water (density 1, 52 like "3 , melting point 35 ° with loss of 5 H 2 O) can be used, but especially the trisodium phosphate (tertiary sodium phosphate) Na 3 PO 4 , which as dodecahydrate, as decahydrate (corresponding to 19-20% P 2 O 5 ) and in anhydrous form (corresponding to 39-40% P 2 O 5 )
  • Another preferred phosphate is the tripotassium phosphate (tertiary or tribasic potassium phosphate), K 3 PO 4 .
  • the tetrasodium diphosphate sodium pyrophosphate
  • Na 4 P 2 O 7 which is in anhydrous form (density 2.534 like '3 , melting point 988 °, also indicated 880 °) and as decahydrate (density 1, 815-1, 836 preferably '3 , melting point 94 ° with loss of water)
  • potassium salt potassium diphosphate potassium 4 P 2 O 7 .
  • the corresponding potassium salt pentapotassium triphosphate, K 5 P 3 O 10 (potassium tripolyphosphate) for example, in the form of a 50 wt .-% solution (> 23% P 2 O 5 , 25% K 2 O) in the trade ,
  • the potassium polyphosphates are widely used in the washing and cleaning industry.
  • sodium canals liumtripolyphosphate which are also usable in the context of the present invention. These arise, for example, when hydrolyzed sodium trimetaphosphate with KOH:
  • phosphates are used as detergents or cleaning agents in the context of the present application
  • preferred agents comprise these phosphate (s), preferably alkali metal phosphate (s), more preferably pentasodium or pentapotassium triphosphate (sodium or pentasodium) Potassium tripolyphosphate), in amounts of from 5 to 80% by weight, preferably from 15 to 75% by weight, in particular from 20 to 70% by weight, based in each case on the weight of the washing or cleaning agent.
  • potassium tripolyphosphate and sodium tripolyphosphate in a weight ratio of more than 1: 1, preferably more than 2: 1, preferably more than 5: 1, more preferably more than 10: 1 and in particular more than 20: 1. It is particularly preferred to use exclusively potassium tripolyphosphate without admixtures of other phosphates.
  • alkali carriers are, for example, alkali metal hydroxides, alkali metal carbonates, alkali metal hydrogencarbonates, alkali metal sesquicarbonates, the alkali metal silicates mentioned, alkali metal silicates and mixtures of the abovementioned substances, preference being given to using alkali metal carbonates, in particular sodium carbonate, sodium bicarbonate or sodium sesquicarbonate for the purposes of this invention.
  • alkali metal carbonates in particular sodium carbonate, sodium bicarbonate or sodium sesquicarbonate for the purposes of this invention.
  • a builder system comprising a mixture of tripolyphosphate and sodium carbonate.
  • a builder system comprising a mixture of tripolyphosphate and sodium carbonate and sodium disilicate.
  • the alkali metal hydroxides are preferably only in small amounts, preferably in amounts below 10 wt .-%, preferably below 6 wt .-%, more preferably below 4 wt .-% and in particular below 2 wt .-%, each based on the total weight of the detergent or cleaning agent used.
  • Particularly preferred are agents which, based on their total weight, contain less than 0.5% by weight and in particular no alkali metal hydroxides.
  • compositions which, based on the weight of the washing or cleaning agent, contain less than 20% by weight, preferably less than 17% by weight, preferably less than 13% by weight and in particular less than 9% by weight of carbonate ( e) and / or bicarbonate (s), preferably alkali metal carbonate (s), particularly preferably sodium carbonate.
  • organic co-builders are polycarboxylates / polycarboxylic acids, polymeric polycarboxylates, aspartic acid, polyacetals, dextrins, other organic cobuilders (see below) and phosphonates. These classes of substances are described below.
  • Useful organic builder substances are, for example, the polycarboxylic acids which can be used in the form of their sodium salts, polycarboxylic acids meaning those carboxylic acids which carry more than one acid function. These are, for example, citric acid, adipic acid, succinic acid, glutaric acid, malic acid, tartaric acid, maleic acid, fumaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), if such use is not objectionable for ecological reasons, and mixtures of these.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures thereof.
  • the acids themselves can also be used.
  • the acids also typically have the property of an acidifying component and thus also serve to set a lower and milder pH of detergents or cleaners.
  • citric acid, succinic acid, glutaric acid, adipic acid, gluconic acid and any desired mixtures of these can be mentioned here.
  • polymeric polycarboxylates for example the alkali metal salts of polyacrylic acid or of polymethacrylic acid, for example those having a relative molecular mass of from 500 to 70,000 g / mol.
  • the molecular weights stated for polymeric polycarboxylates are weight-average molar masses M w of the particular acid form, which were determined in principle by means of gel permeation chromatography (GPC), a UV detector being used. The measurement was carried out against an external polyacrylic acid standard which, owing to its structural relationship with the polymers investigated, had realistic molecular weights. te supplies. These data differ significantly from the molecular weight data in which polystyrene sulfonic acids are used as standard. The molar masses measured against polystyrenesulfonic acids are generally significantly higher than the molecular weights specified in this document.
  • Suitable polymers are, in particular, polyacrylates which preferably have a molecular weight of 2,000 to 20,000 g / mol. Because of their superior solubility, the short-chain polyacrylates, which have molar masses of from 2000 to 10000 g / mol, and particularly preferably from 3000 to 5000 g / mol, may again be preferred from this group.
  • copolymeric polycarboxylates in particular those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid.
  • Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable.
  • Their relative molecular weight, based on free acids is generally from 2000 to 70000 g / mol, preferably from 20,000 to 50,000 g / mol and in particular from 30,000 to 40,000 g / mol.
  • the (co) polymeric polycarboxylates can be used either as a powder or as an aqueous solution.
  • the content of detergents or cleaning agents in (co) polymeric polycarboxylates is preferably from 0.5 to 20% by weight, in particular from 3 to 10% by weight.
  • the polymers may also contain allylsulfonic acids such as allyloxybenzenesulfonic acid and methallylsulfonic acid as a monomer.
  • biodegradable polymers of more than two different monomer units for example those which contain as monomers salts of acrylic acid and maleic acid and vinyl alcohol or vinyl alcohol derivatives or as monomers salts of acrylic acid and 2-alkylallylsulfonic acid and sugar derivatives ,
  • copolymers are those which have as monomers preferably acrolein and acrylic acid / acrylic acid salts or acrolein and vinyl acetate.
  • polymeric aminodicarboxylic acids their salts or their precursors. Particular preference is given to polyaspartic acids or their salts.
  • polyacetals which can be obtained by reacting dialdehydes with polyolcarboxylic acids which have 5 to 7 C atoms and at least 3 hydroxyl groups.
  • Preferred polyacetals are prepared from dialdehydes such as glyoxal, glu taraldehyde, terephthalaldehyde and mixtures thereof and from polycarboxylic acids such as gluconic acid and / or glucoheptonic acid.
  • dextrins for example oligomers or polymers of carbohydrates, which can be obtained by partial hydrolysis of starches.
  • the hydrolysis can be carried out by customary, for example acid or enzyme catalyzed processes.
  • it is hydrolysis products having average molecular weights in the range of 400 to 500,000 g / mol.
  • a polysaccharide with a dextrose equivalent (DE) in the range from 0.5 to 40, in particular from 2 to 30 is preferred, DE being a common measure of the reducing action of a polysaccharide compared to dextrose, which has a DE of 100 , is.
  • DE dextrose equivalent
  • oxidized derivatives of such dextrins are their reaction products with oxidizing agents which are capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • Oxydisuccinates and other derivatives of disuccinates are further suitable co-builders.
  • ethylenediamine-N, N'-disuccinate (EDDS) is preferably used in the form of its sodium or magnesium salts.
  • glycerol disuccinates and glycerol trisuccinates are also preferred in this context. Suitable amounts are in zeolithissen and / or silicate-containing formulations at 3 to 15 wt .-%.
  • organic cobuilders are, for example, acetylated hydroxycarboxylic acids or their salts, which may optionally also be present in lactone form and which contain at least 4 carbon atoms and at least one hydroxyl group and a maximum of two acid groups.
  • the group of surfactants includes nonionic, anionic, cationic and amphoteric surfactants.
  • nonionic surfactants it is possible to use all nonionic surfactants known to the person skilled in the art. Low-foaming nonionic surfactants are used as preferred surfactants. puts. With particular preference, washing or cleaning agents, in particular automatic dishwashing detergents, comprise nonionic surfactants, in particular nonionic surfactants from the group of the alkoxylated alcohols.
  • nonionic surfactants are preferably alko- xyltechnische
  • advantageously ethoxylated especially primary alcohols having preferably 8 to 18 carbon atoms and an average of 1 to 12 moles of ethylene oxide (EO) per mole of alcohol used in which the alcohol radical linear or preferably methyl branched in the 2-position may be linear or methyl-branched radicals in the mixture, as they are usually present in oxoalcohol rest.
  • EO ethylene oxide
  • alcohol ethoxylates with linear radicals of alcohols of natural origin having 12 to 18 carbon atoms, for example of coconut, palm, tallow or oleyl alcohol, and on average 2 to 8 moles of EO per mole of alcohol are preferred.
  • the preferred ethoxylated alcohols include, for example, C 12-14 alcohols with 3 EO or 4 EO, C 9-11 alcohols with 7 EO, C 13-15 alcohols with 3 EO, 5 EO, 7 EO or 8 EO, Ci 2-18 alcohols with 3 EO, 5 EO or 7 EO and mixtures of these, such as mixtures of C 12-14 -alcohol with 3 EO and C 12-18 -alcohol with 5 EO.
  • the stated degrees of ethoxylation represent statistical averages, which may correspond to a particular product of an integer or a fractional number.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow rank ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used. Examples of these are tallow fatty alcohol with 14 EO, 25 EO, 30 EO or 40 EO.
  • nonionic surfactants and alkyl glycosides of the general formula RO (G) x can be used in which R is a primary straight-chain or methyl-branched, especially methyl-branched in the 2-position aliphatic radical having 8 to 22, preferably 12 to 18 carbon atoms and G is the symbol which represents a glycose unit having 5 or 6 C atoms, preferably glucose.
  • the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is an arbitrary number between 1 and 10; preferably x is 1.2 to 1.4.
  • nonionic surfactants used either as the sole nonionic surfactant or in combination with other nonionic surfactants are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated fatty acid alkyl esters, preferably having from 1 to 4 carbon atoms in the alkyl chain.
  • Nonionic surfactants of the amine oxide type for example N-cocoalkyl-N, N-dimethylamine oxide and N-tallowalkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides may also be suitable.
  • the amount of these nonionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, especially not more than half thereof.
  • surfactants are polyhydroxy fatty acid amides of the formula
  • R is an aliphatic acyl radical having 6 to 22 carbon atoms
  • R 1 is hydrogen, an alkyl or hydroxyalkyl radical having 1 to 4 carbon atoms
  • [Z] is a linear or branched polyhydroxyalkyl radical having 3 to 10 carbon atoms and 3 to 10 hydroxyl groups.
  • the polyhydroxy fatty acid amides are known substances which can usually be obtained by reductive amination of a reducing sugar with ammonia, an alkylamine or an alkanolamine and subsequent acylation with a fatty acid, a fatty acid alkyl ester or a fatty acid chloride.
  • the group of polyhydroxy fatty acid amides also includes compounds of the formula
  • R is a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms
  • R 1 is a linear, branched or cyclic alkyl radical or an aryl radical having 2 to 8 carbon atoms
  • R 2 is a linear, branched or cyclic alkyl radical or an aryl radical or an oxyalkyl radical having from 1 to 8 carbon atoms
  • 4- alkyl or phenyl are preferred
  • [Z] is a linear polyhydroxyalkyl radical whose alkyl chain is substituted with at least two hydroxyl groups, or alkoxylated, preferably ethoxylated or propoxylated derivatives of this radical.
  • [Z] is preferably obtained by reductive amination of a reduced sugar, for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • a reduced sugar for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • the N-alkoxy- or N-aryloxy-substituted compounds can be converted into the desired polyhydroxy fatty acid amides by reaction with fatty acid methyl esters in the presence of an alkoxide as catalyst.
  • surfactants are further used which contain one or more Taigfettalkohole with 20 to 30 EO in combination with a silicone defoamer.
  • Nonionic surfactants from the group of alkoxylated alcohols are also used with particular preference. Particular preference is given to nonionic surfactants which have a melting point above room temperature.
  • Nonionic surfactant (s) (e) with a melting point above 2O 0 C, preferably above 25 0 C, more preferably between 25 and 60 ° C and particular between 26.6 and 43.3 ° C is / are particularly preferred .
  • Suitable nonionic surfactants which have melting or softening points in the temperature range mentioned are, for example, low-foaming nonionic surfactants which may be solid or highly viscous at room temperature. If nonionic surfactants are used which are highly viscous at room temperature, it is preferred that they have a viscosity above 20 Pa ⁇ s, preferably above 35 Pa ⁇ s and in particular above 40 Pa ⁇ s. Nonionic surfactants which have waxy consistency at room temperature are also preferred.
  • surfactants which are solid at room temperature, are derived from the groups of alkoxylated nonionic surfactants, in particular the ethoxylated primary alcohols and mixtures of these surfactants with structurally complicated surfactants such as polyoxypropylene / polyoxyethylene / poly-oxypropylene ((PO / EO / PO) surfactants).
  • Such (PO / EO / PO) nonionic surfactants are also characterized by good foam control.
  • the nonionic surfactant having a melting point above room temperature is an ethoxylated nonionic surfactant consisting of the reaction of a monohydroxyalkanol or alkylphenol having 6 to 20 carbon atoms, preferably at least 12 mol, more preferably at least 15 mol, especially at least 20 moles of ethylene oxide per mole of alcohol or alkylphenol emerged.
  • a particularly preferred, solid at room temperature nonionic surfactant is selected from a straight chain fatty alcohol having 16 to 20 carbon atoms (C 16-2 alcohol), preferably a C 18 alcohol and at least 12 mole, preferably at least 15 mol and recovered in particular at least 20 moles of ethylene oxide , Of these, the so-called “narrow rank ethoxylates" (see above) are particularly preferred.
  • ethoxylated nonionic surfactants which are from C 6 . 2 o monohydroxyalkanols or C 6-2 o-alkylphenols or C 16-2 o-fatty alcohols and more than 12 moles, preferably more than 15 moles and in particular more than 20 MoI ethylene oxide per mole of alcohol were used.
  • the nonionic surfactant solid at room temperature preferably additionally has propylene oxide units in the molecule.
  • such PO units make up to 25% by weight, more preferably up to 20 wt .-% and in particular up to 15 wt .-% of the total molecular weight of the nonionic surfactant.
  • Particularly preferred nonionic surfactants are ethoxylated monohydroxyalkanols or alkylphenols which additionally have polyoxyethylene-polyoxypropylene block copolymer units.
  • the alcohol or alkylphenol part of such nonionic surfactant molecules preferably constitutes more than 30% by weight, more preferably more than 50% by weight and in particular more than 70% by weight of the total molecular weight of such nonionic surfactants.
  • Preferred agents are characterized in that they contain ethoxylated and propoxylated nonionic surfactants in which the propylene oxide units in the molecule up to 25 wt .-%, preferably up to 20 wt .-% and in particular up to 15 wt .-% of the total molecular weight of the nonionic Make up surfactants.
  • nonionic surfactants having melting points above room temperature contain from 40 to 70% of a polyoxypropylene / polyoxyethylene / polyoxypropylene block polymer blend containing 75% by weight of a reverse block copolymer of polyoxyethylene and polyoxypropylene with 17 moles of ethylene oxide and 44 moles of propylene oxide and 25% by weight.
  • Non-ionic surfactants that can be used with particular preference are available, for example, under the name Poly Tergent ® SLF-18 from Olin Chemicals.
  • R 1 is a linear or branched aliphatic hydrocarbon radical having 4 to 18 carbon atoms or mixtures thereof
  • R 2 denotes a linear or branched hydrocarbon radical having 2 to 26 carbon atoms or mixtures thereof and x for values between 0.5 and 1.5 and y is a value of at least 15 are further particularly preferred nonionic surfactants.
  • nonionic surfactants are the end-capped poly (oxyalkylated) nonionic surfactants of the formula
  • R 1 and R 2 are linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms
  • R 3 is H or a methyl, ethyl, n-propyl, iso-propyl, n- Butyl, 2-ButyI- or 2-methyl-2-ButyIrest stands
  • x for Wer- te between 1 and 30, k and j are values between 1 and 12, preferably between 1 and 5.
  • each R 3 in the above formula R 1 O [CH 2 CH (R 3 ) O] x [CH 2 ] k CH (OH) [CH 2 ] j OR 2 may be different.
  • R 1 and R 2 are preferably linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 6 to 22 carbon atoms, with radicals having 8 to 18 carbon atoms being particularly preferred.
  • R 3 H, -CH 3 or -CH 2 CH 3 are particularly preferred.
  • Particularly preferred values for x are in the range from 1 to 20, in particular from 6 to 15.
  • each R 3 in the above formula may be different if x ⁇ 2.
  • the alkylene oxide unit in the square bracket can be varied.
  • the value 3 for x has been selected here by way of example and may well be greater, the range of variation increasing with increasing x values and including, for example, a large number (EO) groups combined with a small number (PO) groups, or vice versa ,
  • R 1 , R 2 and R 3 are as defined above and x is from 1 to 30, preferably from 1 to 20 and in particular from 6 to 18. Particularly preferred are surfactants in which the radicals R 1 and R 2 has 9 to 14 C atoms, R 3 is H and x assumes values of 6 to 15.
  • R 1 and R 2 are linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms
  • R 3 is H or a methyl, ethyl, n-propyl, iso-propyl, n Butyl, 2-butyl or 2-methyl-2-butyl radical
  • x are values between 1 and 30
  • k and j are values between 1 and 12, preferably between 1 and 5, preference being given to surfactants of the type R 1 O [CH 2 CH (R 3 ) O] X CH 2 CH (OH) CH 2 OR 2 ,
  • x is from 1 to 30, preferably from 1 to 20 and in particular from 6 to 18, are particularly preferred.
  • nonionic surfactants have been low-foaming nonionic surfactants which have alternating ethylene oxide and alkylene oxide units.
  • surfactants with EO-AO-EO-AO blocks are preferred, wherein in each case one to ten EO or AO groups are bonded to each other before a block of the other groups follows.
  • R 1 is a straight-chain or branched, saturated or mono- or polyunsaturated C 6-24 alkyl or alkenyl radical; each group R 2 or R 3 is independently selected from -CH 3 , -CH 2 CH 3 , -CH 2 CH 2 -CH 3 , CH (CH 3 ) 2 and the indices w, x, y, z independently stand for integers from 1 to 6.
  • the preferred nonionic surfactants of the above formula can be prepared by known methods from the corresponding alcohols R 1 -OH and ethylene or alkylene oxide.
  • the radical R 1 in the above formula may vary depending on the origin of the alcohol. If native sources are used, the radical R 1 has an even number of carbon atoms and is usually unbranched, the linear radicals being selected from alcohols of natural origin having 12 to 18 C atoms, for example from coconut, palm, tallow or Oleyl alcohol, are preferred. Examples of alcohols which are accessible from synthetic sources are the Guerbet alcohols or methyl-branched or linear and methyl-branched radicals in the 2-position, as usually present in oxo alcohol radicals.
  • nonionic surfactants in which R 1 in the above formula is an alkyl radical having 6 to 24, preferably 8 to 20, particularly preferably 9 to 15 and in particular 9 to 11 Carbon atoms.
  • alkylene oxide unit which is contained in the preferred nonionic surfactants in alternation with the ethylene oxide unit, in particular butylene oxide is considered in addition to propylene oxide.
  • R 2 or R 3 are independently selected from -CH 2 CH 2 - CH 3 or CH (CH 3 ) 2 are suitable.
  • nonionic surfactants having a C 9-15 alkyl group having 1 to 4 ethylene oxide units followed by 1 to 4 propylene oxide units followed by 1 to 4 ethylene oxide units followed by 1 to 4 propylene oxide units.
  • These surfactants have the required low viscosity in aqueous solution and can be used according to the invention with particular preference.
  • nonionic surfactants are the end-capped poly (oxyalkylated) nonionic surfactants of the formula
  • R 1 represents linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms
  • R 2 represents linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms, which preferably between 1 and 5 have hydroxy groups and are preferably further functionalized with an ether group
  • R 3 is H or a methyl, ethyl, n-propyl, iso-propyl, n-butyl, 2-butyl or 2-methyl-2 Butyl radical and x stands for values between 1 and 40.
  • R 3 in the abovementioned general formula is H.
  • R 1 is linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms, preferably having 4 to 20 carbon atoms
  • R 2 is linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms, which preferably have between 1 and 5 hydroxyl groups and x stands for values between 1 and 40.
  • end-capped poly (oxyalkylated) nonionic surfactants are preferred which are in accordance with the formula R 1 O [CH 2 CH 2 O] x CH 2 CH (OH) R 2
  • radical R 1 which is linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms, preferably having 4 to 20 carbon atoms, furthermore a linear or branched, saturated or unsaturated, aliphatic or aromatic Hydrocarbon radical R 2 having 1 to 30 carbon atoms, which is a monohydroxylated intermediate group -CH 2 CH (OH) - adjacent.
  • x in this formula stands for values between 1 and 90.
  • radical R 1 which in addition to a radical R 1 , which is linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms, preferably having 4 to 22 carbon atoms, further a linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radical R 2 having 1 to 30 carbon atoms, preferably 2 to 22 carbon atoms, which is a monohydroxylated intermediate group -CH 2 CH (OH) - adjacent and in which x for values between 40 and 80, preferably for values between 40 and 60 stands.
  • R 1 which is linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms, preferably having 4 to 22 carbon atoms, further a linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radical R 2 having 1 to 30 carbon atoms, preferably 2 to 22 carbon atoms, which is a monohydroxylated intermediate group -CH 2 CH
  • the corresponding end-capped poly (oxyalkylated) nonionic surfactants of the above formula can be prepared, for example, by reacting a terminal epoxide of the formula R 2 CH (O) CH 2 with an ethoxylated alcohol of the formula R 1 O [CH 2 CH 2 O] x-1 CH 2 Obtained CH 2 OH.
  • R 1 and R 2 independently of one another are a linear or branched, saturated or mono- or polyunsaturated hydrocarbon radical having 2 to 26 carbon atoms
  • R 3 is independently selected from -CH 3 -CH 2 CH 3 , -CH 2 CH 2 -CH 3 , CH (CH 3 ) 2 , but preferably -CH 3
  • x and y are independently of one another values between 1 and 32, nonionic surfactants having values for x of 15 to 32 and y of 0, 5 and 1, 5 are very particularly preferred.
  • R 1 and R 2 independently of one another are a linear or branched, saturated or mono- or polyunsaturated hydrocarbon radical having 2 to 26 carbon atoms
  • R 3 is independently selected from -CH 3 -CH 2 CH 3 , -CH 2 CH 2 -CH 3 , CH (CH 3 ) 2 , but preferably represents -CH 3
  • x and y independently of one another are values between 1 and 32 are preferred according to the invention, wherein nonionic surfactants with values of x from 15 to 32 and y of 0.5 and 1.5 are very particularly preferred.
  • the stated C chain lengths and degrees of ethoxylation or degrees of alkoxylation of the abovementioned nonionic surfactants represent statistical mean values which, for a specific product, may be an integer or a fractional number. Due to the manufacturing process, commercial products of the formulas mentioned mostly do not consist of an individual representative but of mixtures, which may result in both the C chain lengths and the degrees of ethoxylation or alkoxylation-averaged mean values and, consequently, fractional numbers.
  • nonionic surfactants can be used not only as individual substances, but also as surfactant mixtures of two, three, four or more surfactants.
  • Mixtures of surfactants are not mixtures of nonionic surfactants which fall in their entirety under one of the abovementioned general formulas, but rather mixtures which contain two, three, four or more nonionic surfactants which can be described by different general formulas ,
  • anionic surfactants for example, those of the sulfonate type and sulfates are used.
  • surfactants of the sulfonate type preferably come here C 9 .i 3 -alkylbenzenesulfonates, olefinsulfonates, ie mixtures of alkene and hydroxyalkanesulfonates and disulfonates, such as those from C 12-18 monoolefins with terminal or internal double bond by sulfonation with gaseous Sulfur trioxide and subsequent alkaline or acid hydrolysis of the sulfonation obtained.
  • alkanesulfonates consisting of C 12 .
  • esters of ⁇ -sulfo fatty acids for example, the ⁇ -sulfonated methyl esters of hydrogenated coconut, palm kernel or Taigfettklaren are suitable.
  • suitable anionic surfactants are sulfated fatty acid glycerol esters.
  • Fatty acid glycerines are to be understood as meaning the mono-, di- and triesters and mixtures thereof, such as in the preparation by esterification of a monoglycerol with 1 to 3 mol of fatty acid or in the transesterification of triglycerides with 0.3 to 2 mol Glycerol can be obtained.
  • Preferred sulfated fatty acid glycerol esters are the sulfonation products of saturated fatty acids containing 6 to 22 carbon atoms, for example caproic acid, caprylic acid, capric acid, myristic acid, lauric acid, palmitic acid, stearic acid or behenic acid.
  • Alk (en) yl sulfates are the alkali and especially the sodium salts of Schwefelklareschester the C 12 -C l8 fatty alcohols are, for example, from coconut fatty alcohol, tallow fatty alcohol, lauryl, myristyl, cetyl or stearyl alcohol, or C 0 -C 2 o Oxo alcohols and those half-esters of secondary alcohols of these chain lengths are preferred. Also preferred are alk (en) ylsulfates of said chain length, which contain a synthetic, produced on a petrochemical basis straight-chain alkyl radical, which have an analogous degradation behavior as the adequate compounds based on oleochemical raw materials.
  • the C 12 -C 6 -alkyl sulfates and C 12 -C 15 -alkyl sulfates and also C 14 -C 15 -alkyl sulfates are preferred.
  • 2,3-alkyl sulfates which can be obtained as commercial products from Shell Oil Company under the name DAN ®, are suitable anionic surfactants.
  • sulfuric monoesters of ethoxylated with 1 to 6 moles of ethylene oxide straight-chain or branched C 7-2 i alcohols such as 2-methyl-branched C 9-11 alcohols having an average of 3.5 MoI ethylene oxide (EO) or Ci 2- i 8 fatty alcohols with 1 to 4 EO are suitable. Due to their high foam behavior, they are only used in detergents in relatively small amounts, for example in amounts of from 1 to 5% by weight.
  • Suitable anionic surfactants are also the salts of alkylsulfosuccinic acid, which are also referred to as sulfosuccinates or as sulfosuccinic acid esters and which are monoesters and / or diesters of sulfosuccinic acid with alcohols, preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • alcohols preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • Preferred sulfosuccinates contain C 8 -18 fatty alcohol residues or mixtures of these.
  • Particularly preferred sulfosuccinates contain a fatty alcohol residue derived from ethoxylated fatty alcohols, which by themselves are nonionic surfactants.
  • Sulfosuccinates whose fatty alcohol residues are derived from ethoxylated fatty alcohols with a narrow homolog distribution, are again particularly preferred.
  • alk (en) ylsuccinic acid having preferably 8 to 18 carbon atoms in the alk (en) yl chain or salts thereof.
  • Suitable fatty acids are saturated fatty acids, such as the salts of lauric acid, myristic acid, palmitic acid, stearic acid, hydrogenated erucic acid and behenic acid, and in particular soap mixtures derived from natural fatty acids, for example coconut, palm kernel or tallow fatty acids.
  • the anionic surfactants may be in the form of their sodium, potassium or ammonium salts and as soluble salts of organic bases, such as mono-, di- or triethanolamine.
  • the anionic surfactants are preferably present in the form of their sodium or potassium salts, in particular in the form of the sodium salts.
  • anionic surfactants are part of automatic dishwasher detergents, their content, based on the total weight of the compositions, is preferably less than 4% by weight, preferably less than 2% by weight and very particularly preferably less than 1% by weight. Machine dishwashing detergents which do not contain anionic surfactants are particularly preferred.
  • cationic active substances for example, cationic compounds of the following formulas can be used:
  • the content of cationic and / or amphoteric surfactants is preferably less than 6% by weight, preferably less than 4% by weight, very particularly preferably less than 2% by weight and in particular less than 1% by weight. %. Automatic dishwashing detergents containing no cationic or amphoteric surfactants are particularly preferred.
  • the group of polymers includes, in particular, the washing or cleaning-active polymers, for example the rinse aid polymers and / or polymers which act as softeners.
  • the washing or cleaning-active polymers for example the rinse aid polymers and / or polymers which act as softeners.
  • cationic, anionic and amphoteric polymers can be used in detergents or cleaners in addition to nonionic polymers.
  • “Cationic polymers” for the purposes of the present invention are polymers which carry a positive charge in the polymer molecule, which can be realized, for example, by (alkyl) ammonium groups or other positively charged groups present in the polymer chain quaternized celulose derivatives, the polysiloxanes with quaternary groups, the cationic guar derivatives, the polymeric dimethyldiallylammonium salts and their copolymers with esters and amides of acrylic acid and methacrylic acid, the copolymers of vinylpyrrolidone with quaternized derivatives of dialkylaminoacrylate and methacrylate, the vinylpyrrolidone Methoimidazoliniumchlorid- copolymers, the quaternized polyvinyl alcohols or specified under the INCI names PoIyquatemium 2, Polyquaternium 17, Polyquaternium 18 and Polyquaternium 27 polymers.
  • amphoteric polymers further comprise, in addition to a positively charged group in the polymer chain, also negatively charged groups or monomer units. These groups may be, for example, carboxylic acids, sulfonic acids or phosphonic acids.
  • R 1 and R 4 are each independently H or a linear or branched hydrocarbon radical having 1 to 6 carbon atoms;
  • R 2 and R 3 are independently an alkyl, hydroxyalkyl, or aminoalkyl group in which the alkyl group is linear or branched and has from 1 to 6 carbon atoms, preferably a methyl group;
  • x and y independently represent integers between 1 and 3.
  • X represents a counterion, preferably a counterion from the group consisting of chloride, bromide, iodide, sulfate, hydrogensulfate, methosulfate, lauryl sulfate, dodecylbenzenesulfonate, p-toluenesulfonate (tosylate), cumene sulfonate, xylenesulfonate, phosphate, citrate, formate, acetate or mixtures thereof ,
  • Preferred radicals R 1 and R 4 in the above formula are selected from -CH 3, -CH 2 -CH 3, - CH 2 -CH 2 -CH 3, -CH (CH 3) -CH 3, -CH 2 -OH , -CH 2 -CH 2 -OH, -CH (OH) -CH 3 , -CH 2 -CH 2 -OH, -CH 2 -CH (OH) -CH 3 , -CH (OH) -CH 2 -CH 3 , and - (CH 2 CH 2 -O) n H.
  • cationic or amphoteric polymers contain a monomer unit of the general formula
  • X " in the R 1 , R 2 , R 3 , R 4 and R 5 are independently of one another a linear or branched, saturated or unsaturated alkyl or hydroxyalkyl radical having 1 to 6 carbon atoms, preferably a linear or branched alkyl radical selected from CH 3 , -CH 2 -CH 3 , -CH 2 -CH 2 -CH 3 , -CH (CHs) -CH 3 , -CH 2 -OH, -CH 2 -CH 2 -OH, -CH (OH) - CH 3 , -CH 2 -CH 2 -CH 2 -OH, -CH 2 -CH (OH) -CH 3 , - CH (OH) -CH 2 -CH 3 , and - (CH 2 CH 2 -O) n H stands and x stands for an integer between 1 and 6.
  • H 2 C C (CH 3) -C (O) -NH- (CH 2 ) X -N + (CH 3) 3
  • MAPTAC Metalacrylamidopropyl trimethylammonium chloride
  • amphoteric polymers have not only cationic groups but also anionic groups or monomer units.
  • anionic monomer units are derived, for example, from the group of the linear or branched, saturated or unsaturated carboxylates, the linear or branched, saturated or unsaturated phosphonates, the linear or branched, saturated or unsaturated sulfates or the linear or branched, saturated or unsaturated sulfonates.
  • Preferred monomer units are acrylic acid, (meth) acry-isoic acid, (dimethyl) acrylic acid, (ethyl) acrylic acid, cyanoacylic acid, vinylessingic acid, allylacetic acid, crotonic acid, maleic acid, fumaric acid, cinnamic acid and their derivatives, the allylsulfonic acids, such as, for example, allyloxybenzenesulfonic acid and methallylsulfonic acid or the allylphosphonic acids.
  • Preferred usable amphoteric polymers are from the group of alkylacrylamide / acrylic acid copolymers, the alkylacrylamide / methacrylic acid copolymers, the alkylacrylamide / methyl methacrylic acid copolymers, the alkylacrylamide / acrylic acid / alkylaminoalkyl (meth) acrylic acid copolymers, the alkylacrylamide / methacrylic acid / alkylaminoalkyl (meth) acrylic acid copolymers, the alkylacrylamide / methylmethacrylic acid / alkylaminoalkyl (meth) acrylic acid copolymers, the alkylacrylamide / Alkymethacrylat / Alkylaminoethylmethacrylat / alkyl methacrylate copolymers and the copolymers of unsaturated carboxylic acids, cationically derivatized unsaturated carboxylic acids and optionally other ionic or nonionic monomers.
  • Preferred zwitterionic polymers are from the group of acrylamidoalkyltri alkylammonium chloride / acrylic acid copolymers and their alkali metal and ammonium salts, the acrylamidoalkyltrialkylammonium chloride / methacrylic acid copolymers and their alkali metal and ammonium salts and the Methacroylethylbetain / methacrylate copolymers.
  • amphoteric polymers which comprise, in addition to one or more anionic monomers as cationic monomers, methacrylamidoalkyltrialkylammonium chloride and dimethyl (diallyl) ammonium chloride.
  • amphoteric polymers are selected from the group of the methacrylamidoalkyltrialkylammonium chloride / dimethyl (diallyl) ammonium chloride / acrylic acid copolymers, the methacrylylamidoalkyltrialkylammonium chloride / dimethylcyclodially ammonium chloride / methacrylic acid copolymers and the methacrylamidoalkyltrialkylammonium chloride / dimethyl (diallyl) ammonium chloride / alkyl ( meth) acrylic acid copolymers and their alkali metal and ammonium salts.
  • amphoteric polymers from the group of the methacrylamidopropyltrimethylammonium chloride / dimethyl (diallyl) ammonium chloride / acrylic acid copolymers, the methacrylamidopropyltrimethylammonium chloride / dimethyl (diallyl) ammonium chloride / acrylic acid copolymers and the methacrylamidopropyltrimethylammonium chloride / dimethyl (diallyl) ammonium chloride / Alkyl (meth) acrylic acid copolymers and their alkali metal and ammonium salts.
  • the polymers are present in prefabricated form.
  • encapsulation of the polymers by means of water-soluble or water-dispersible coating compositions is suitable, preferably by means of water-soluble or water-dispersible natural or synthetic polymers; the encapsulation of the polymers by means of water-insoluble, fusible coating agents, preferably by means of water-insoluble coating agents from the group of waxes or paraffins having a melting point above 30 0 C; the co-granulation of the polymers with inert carrier materials, preferably with carrier materials from the group of washing- or cleaning-active substances, more preferably from the group of builders or cobuilders.
  • Detergents or cleaning agents contain the aforementioned cationic and / or amphoteric polymers preferably in amounts of between 0.01 and 10 wt .-%, each based on the total weight of the detergent or cleaning agent.
  • Effective polymers as softeners are, for example, the sulfonic acid-containing polymers which are used with particular preference.
  • sulfonic acid-containing polymers are copolymers of unsaturated carboxylic acids, sulfonic acid-containing monomers and optionally other ionic or nonionic monomers.
  • R 1 to R 3 independently of one another are -H, -CH 3 , a straight-chain or branched saturated alkyl radical having 2 to 12 carbon atoms, a straight-chain or branched, mono- or polyunsaturated alkenyl radical having 2 to 12 carbon atoms, NH 2 , -OH or -COOH substituted alkyl or alkenyl radicals or -COOH or -COOR 4 , wherein R 4 is a saturated or unsaturated, straight-chain or branched hydrocarbon radical having 1 to 12 carbon atoms.
  • Particularly preferred monomers containing sulfonic acid groups are 1-acrylamido-1-propanesulfonic acid, 2-acrylamido-2-propanesulfonic acid, 2-acrylamido-2-methyl-1-propanesulfonic acid, 2-methacrylamido-2-methyl-1-propanesulfonic acid, 3-Methacrylamido-2-hydroxypropanesulfonic acid, allylsulfonic acid, methallylsulfonic acid, allyloxybenzenesulfonic acid, methallyloxybenzenesulfonic acid, 2-hydroxy-3- (2-propenyloxy) propanesulfonic acid, 2-methyl-2-propene-1-sulfonic acid, styrenesulfonic acid, vinylsulfonic acid, 3-sulfopropyl acrylate , 3-sulfopropyl methacrylate, sulfomethacrylamide, sulfomethylmethacrylamide and water-soluble salts of said acids.
  • Particularly suitable other ionic or nonionic monomers are ethylenically unsaturated compounds.
  • the content of the polymers used in these other ionic or nonionic monomers is preferably less than 20% by weight, based on the polymer.
  • copolymers consist of i) one or more unsaturated carboxylic acids from the group of acrylic acid, methacrylic acid and / or maleic acid ii) one or more sulfonic acid group-containing monomers of the formulas:
  • the copolymers may contain the monomers from groups i) and ii) and, if appropriate, iii) in varying amounts, it being possible for all representatives from group i) to be combined with all representatives from group ii) and all representatives from group iii).
  • Particularly preferred polymers have certain structural units, which are described below. For example, copolymers which are structural units of the formula are preferred
  • polymers are prepared by copolymerization of acrylic acid with a sulfonic acid-containing acrylic acid derivative. If the sulfonic acid-containing acylic acid derivative is copolymerized with methacrylic acid, another polymer is obtained whose use is also preferred.
  • the corresponding copolymers contain the structural units of the formula
  • Acrylic acid and / or methacrylic acid can also be copolymerized completely analogously with methacrylic acid derivatives containing sulfonic acid groups, as a result of which the structural units in the molecule are changed.
  • m and p are each an integer between 1 and 2,000 and Y is a spacer group selected from substituted or unsubstituted aliphatic, aromatic or substituted aromatic hydrocarbon radicals having 1 to 24 carbon atoms, wherein spacer groups in which Y.
  • maleic acid can also be used as a particularly preferred monomer from group i). This gives way to inventively preferred copolymers, the structural units of the formula
  • the sulfonic acid groups may be wholly or partially in neutralized form, i. the acidic acid of the sulfonic acid group in some or all sulfonic acid groups can be exchanged for metal ions, preferably alkali metal ions and in particular for sodium ions.
  • metal ions preferably alkali metal ions and in particular for sodium ions.
  • partially or fully neutralized sulfonic acid group-containing copolymers is preferred according to the invention.
  • the monomer distribution of the copolymers preferably used according to the invention in the case of copolymers which contain only monomers from groups i) and ii) is preferably in each case from 5 to 95% by weight i) or ii), particularly preferably from 50 to 90% by weight monomer from group i) and from 10 to 50% by weight of monomer from group ii), in each case based on the polymer.
  • terpolymers particular preference is given to those containing from 20 to 85% by weight of monomer from group i), from 10 to 60% by weight of monomer from group ii) and from 5 to 30% by weight of monomer from group iii) ,
  • the molar mass of the sulfo copolymers preferably used according to the invention can be varied in order to adapt the properties of the polymers to the desired end use.
  • Preferred washing or cleaning agents are characterized in that the copolymers have molar masses of 2000 to 200,000 gmol "1 , preferably from 4000 to 25,000 gmol '1 and in particular from 5000 to 15,000 gmol " 1 .
  • Bleach activators are used in detergents or cleaners, for example, to achieve an improved bleaching effect when cleaning at temperatures of 60 0 C and below.
  • As bleach activators it is possible to use compounds which, under perhydrolysis conditions, give aliphatic peroxycarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid.
  • Suitable substances are those which carry O- and / or N-acyl groups of the stated C atom number and / or optionally substituted benzoyl groups.
  • polyacylated alkylene-diamines in particular tetraacetylethylenediamine (TAED), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated glycolurils, in particular Tetraacetylglycoluril (TAGU), N-acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, in particular n-nonanoyl or isononanoyloxybenzenesulfonate (n- or iso-NOBS), carboxylic anhydrides, in particular phthalic anhydride, acylated polyhydric alcohols, in particular triacetin, ethylene glycol diacetate and 2,5-diacetoxy-2,5-dihydrofuran.
  • Further bleach activators preferably used in
  • R 1 is -H, -CH 3 , a C 2-24 alkyl or alkenyl radical, a substituted C 2-24 alkyl or alkenyl radical having at least one substituent from the group -Cl, -Br, - OH, -NH 2, -CN, an alkyl or alkenylaryl radical having a Ci -24 -AlkyIuite, or a substituted alkyl- or alkenylaryl radical with a C 1-24 alkyl group and at least one further substituent on the a-romatic ring
  • R 2 and R 3 are independently selected from -CH 2 -CN, -CH 3 , -CH 2 -CH 3 , -CH 2 -CH 2 -CH 3 , -CH (CH 3 ) -CH 3 , -CH 2 -OH, -CH 2 -CH 2 -OH, -CH (OH) -CH 3 , -CH 2 -CH 2 -CH 2 -OH,
  • bleach activators are compounds which, under perhydrolysis conditions, give aliphatic peroxycarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid.
  • Suitable substances are those which carry O- and / or N-acyl groups of the stated C atom number and / or optionally substituted benzoyl groups.
  • polyacylated alkylene-diamines in particular tetraacetylethylenediamine (TAED), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated glycolurils, in particular tetraacetylglycoluril (TAGU), N-acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, in particular n-nonanoyl or isononanoyloxybenzenesulfonate (n- or iso-NOBS), carboxylic anhydrides, in particular phthalic anhydride, acylated polyhydric alcohols, in particular triacetin, ethylene glycol diacetate, 2,5- Diacetoxy-2,5-dihydrofuran, n-methyl-morpholinium
  • bleach activators preference is given to bleach activators from the group of the polyacylated alkylenediamines, in particular tetraacetylethylenediamine (TAED), N-acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, in particular n-nonanoyl or isononanoyloxybenzenesulfonate (US Pat.
  • TAED tetraacetylethylenediamine
  • N-acylimides in particular N-nonanoylsuccinimide (NOSI)
  • acylated phenolsulfonates in particular n-nonanoyl or isononanoyloxybenzenesulfonate
  • N- or iso-NOBS N- or iso-NOBS
  • n-methyl-morpholinium acetonitrile-methyl sulfate (MMA) preferably in amounts of up to 10 wt .-%, in particular 0.1 wt .-% to 8 wt .-%, especially 2 to 8 wt .-% and particularly preferably 2 to 6 wt .-%, each based on the total weight of the bleach activator-containing agents used.
  • bleach catalysts can also be used.
  • These substances are bleach-enhancing transition metal salts or transition metal complexes such as, for example, Mn, Fe, Co, Ru or Mo saline complexes or carbonyl complexes.
  • Mn, Fe, Co, Ru, Mo, Ti, V and Cu complexes with N-containing tripod ligands and Co, Fe, Cu and Ru ammine complexes can also be used as bleach catalysts.
  • Bleach-enhancing transition metal complexes in particular with the central atoms Mn, Fe, Co, Cu, Mo, V, Ti and / or Ru, preferably selected from the group of manganese and / or cobalt salts and / or complexes, more preferably the cobalt (ammin ) Complexes, the co- balt (acetate) complexes, the cobalt (carbonyl) complexes, the chlorides of cobalt or manganese, of the manganese sulfate are used in conventional amounts, preferably in an amount of up to 5% by weight, in particular of 0.0025% by weight.
  • bleach activator-containing agents 1 wt .-% and particularly preferably from 0.01 wt .-% to 0.25 wt .-%, each based on the total weight of the bleach activator-containing agents used. But in special cases, more bleach activator can be used.
  • Glass corrosion inhibitors prevent the occurrence of haze, streaks and scratches, but also iridescence of the glass surface of machine-cleaned glasses.
  • Preferred glass corrosion inhibitors come from the group of magnesium and / or zinc salts and / or magnesium and / or zinc complexes.
  • a preferred class of compounds that can be used to prevent glass corrosion are insoluble zinc salts.
  • Insoluble zinc salts in the context of this preferred embodiment are zinc salts which have a maximum solubility of 10 grams of zinc salt per liter of water at 2O 0 C.
  • Examples of particularly preferred insoluble zinc salts according to the invention are zinc silicate, zinc carbonate, zinc oxide, basic zinc carbonate (Zn 2 (OH) 2 CO 3 ), zinc hydroxide, zinc oxalate, zinc monophosphate (Zn 3 (PO 4 ) 2 ) and zinc pyrophosphate (Zn 2 (P 2 O 7 )).
  • the zinc compounds mentioned are preferably used in amounts which have a content of the zinc ions of between 0.02 and 10% by weight, preferably between 0.1 and 5.0% by weight and in particular between 0.2 and 1.0 Wt .-%, each based on the total glass corrosion inhibitor-containing agent effect.
  • the exact content of the agent on the zinc salt or zinc salts is naturally dependent on the type of zinc salts - the less soluble the zinc salt used, the higher its concentration should be in the funds.
  • the particle size of the salts is a criterion to be observed, so that the salts do not adhere to glassware or machine parts.
  • the insoluble zinc salts have a particle size below 1, 7 millimeters.
  • the insoluble zinc salt has an average particle size which is significantly below this value in order to further minimize the risk of insoluble residues, for example an average particle size of less than 250 ⁇ m. Again, this is even more true the less the zinc salt is soluble.
  • the rising Glass corrosion inhibiting effectiveness with decreasing particle size For very poorly soluble zinc salts, the average particle size is preferably below 100 microns. For still less soluble salts, it may be even lower; For example, average particle sizes below 60 ⁇ m are preferred for the very poorly soluble zinc oxide.
  • Another preferred class of compounds are magnesium and / or zinc salt (s) of at least one monomeric and / or polymeric organic acid. These have the effect that, even with repeated use, the surfaces of glassware do not undergo corrosive changes, in particular no clouding, streaks or scratches, but also no iridescence of the glass surfaces.
  • magnesium and / or zinc salt (s) of monomeric and / or polymeric organic acids can be used, yet the magnesium and / or zinc salts of monomeric and / or polymeric organic acids from the groups of unbranched saturated or unsaturated monocarboxylic acids, the branched saturated or unsaturated monocarboxylic acids, the saturated and unsaturated dicarboxylic acids, the aromatic mono-, di- and tricarboxylic acids, the sugar acids, the hydroxy acids, the oxo acids, the amino acids and / or the polymeric carboxylic acids are preferred.
  • the spectrum of the inventively preferred zinc salts of organic acids ranges from salts which are difficult or insoluble in water, ie a solubility below 100 mg / l, preferably below 10 mg / l, in particular below 0.01 mg / l have, to those salts which have a solubility in water above 100 mg / l, preferably above 500 mg / l, more preferably above 1 g / l and in particular above 5 g / l (all solubilities at 2O 0 C water temperature).
  • the first group of zinc salts includes, for example, the zinc nitrate, the zinc oleate and the zinc stearate, and the group of soluble zinc salts includes, for example, zinc formate, zinc acetate, zinc lactate and zinc gluconate.
  • At least one zinc salt of an organic carboxylic acid more preferably a zinc salt from the group zinc stearate, zinc oleate, zinc gluconate, zinc acetate, zinc lactate and / or Zinkeitrat used.
  • Zinc ricinoleate, zinc abietate and zinc oxalate are also preferred.
  • the content of cleaning agents to zinc salt is preferably between 0.1 to 5 wt .-%, preferably between 0.2 to 4 wt .-% and in particular between 0.4 to 3 wt .-%, or the content of zinc in oxidized form (calculated as Zn 2+ ) between 0.01 to 1 wt .-%, preferably between 0.02 to 0.5 wt .-% and in particular from 0.04 to 0.2 wt .-%, each based on the total weight of the glass corrosion inhibitor-containing agent.
  • Corrosion inhibitors serve to protect the items to be washed or the machine, with particular silver protectants being of particular importance in the field of automatic dishwashing. It is possible to use the known substances of the prior art. In general, silver protectants selected from the group of the triazoles, the benzotriazoles, the bisbenzotriazoles, the aminotriazoles, the alkylaminotriazoles and the transition metal salts or complexes can be used in particular. Particularly preferred to use are benzotriazole and / or alkylaminotriazole.
  • 3-amino-5-alkyl-1, 2,4-triazoles preferably used according to the invention which may be mentioned are: propyl, butyl, pentyl, heptyl, octyl, nonyl, decyl -, Undecyl-, -Dodecyl-, -Isononyl-, Versatic-10-Alkyl-, -Phenyl-, -p-Tolyl-, - (4-tert-butylphenyl) -, - (4-Methoxyphenyl) -, - (2-, 3-, 4-pyridyl) -, - (2-thienyl) -, - (5-methyl-2-furyl) -, - (5-oxo-2-pyrrolidinyl) -, 3-amino-1, 2,4-triazole.
  • Preferred acids for salt formation are hydrochloric acid, sulfuric acid, phosphoric acid, carbonic acid, sulphurous acid, organic carboxylic acids such as acetic, glycolic, citric, succinic acid.
  • cleaner formulations often contain active chlorine-containing agents which can markedly reduce the corrosion of the silver surface.
  • active chlorine-containing agents which can markedly reduce the corrosion of the silver surface.
  • oxygen- and nitrogen-containing organic redox-active compounds such as di- and trihydric phenols, e.g. Hydroquinone, pyrocatechol, hydroxyhydroquinone, gallic acid, Pho- roglucin, pyrogallol or derivatives of these classes of compounds used.
  • salt and complex inorganic compounds such as salts of the metals Mn, Ti, Zr, Hf, V, Co and Ce are often used.
  • transition metal salts which are selected from the group of the manganese and / or cobalt salts and / or complexes, particularly preferably the cobalt (amine) complexes, the cobalt (acetate) complexes, the cobalt (carbonyl) Complexes, the chlorides of cobalt or manganese and manganese sulfate. Also, zinc compounds can be used to prevent corrosion on the items to be washed.
  • redox-active substances can be used. These substances are preferably inorganic redox-active substances from the group of manganese, titanium, Zirconium, hafnium, vanadium, cobalt and cerium salts and / or complexes, wherein the metals are preferably in one of the oxidation states II, III, IV, V or VI.
  • the metal salts or metal complexes used should be at least partially soluble in water.
  • the counterions suitable for salt formation include all conventional mono-, di-, or tri-negatively charged inorganic anions, e.g. Oxide, sulfate, nitrate, fluoride, but also organic anions such as e.g. Stearate.
  • Metal complexes in the context of the invention are compounds which consist of a central atom and one or more ligands and optionally additionally one or more of the above-mentioned.
  • Anions exist.
  • the central atom is one of the o.g. Metals in one of the above Oxidation states.
  • the ligands are neutral molecules or anions that are mono- or polydentate;
  • the term "ligand" within the meaning of the invention is e.g. in "Römpp Chemie Lexikon, Georg Thieme Verlag Stuttgart / New York, 9th edition, 1990, page 2507" explained in more detail.
  • the charge of the central atom and the charge of the ligand (s) do not add up to zero, either one or more of the above may be provided, depending on whether there is cationic or anionic charge excess.
  • Anions or one or more cations e.g. Sodium, potassium, ammonium ions, for charge balance.
  • Suitable complexing agents are e.g. Citrate, acetylacetonate or 1-hydroxyethane-1, 1-diphosphonate.
  • metal salts and / or metal complexes are selected from the group MnSO 4 , Mn (II) citrate, Mn (II) stearate, Mn (II) acetylacetonate, Mn (II) - [I -hydroxyethane-1, 1- " diphosphonate " ), V 2 O 5 , V 2 O 4 , VO 2 , TiOSO 4 , K 2 TiF 6 , K 2 ZrF 6 , CoSO 4 , Co (NO 3 ) 2 , Ce (NO 3 ) 3 , and mixtures thereof in such a way that the metal salts and / or metal complexes selected from the group consisting of MnSO 4 , Mn (II) citrate, Mn (II) stearate, Mn (II) acetylacetonate, Mn (II) - [I-hydroxyethane-1, 1 diphosphonate], V 2 O 5 , V 2 O 4 , VO
  • metal salts or metal complexes are generally commercially available substances which can be used for the purpose of silver corrosion protection without prior purification in detergents or cleaners.
  • the mixture of pentavalent and tetravalent vanadium (V 2 O 5 , VO 2 , V 2 O 4 ) known from the SO 3 production (contact method) is suitable, as well as by diluting a Ti (SO 4 ) 2 -solution resulting titanyl sulfate, TiOSO 4 .
  • the inorganic redox-active substances, in particular metal salts or metal complexes are preferably coated, ie completely coated with a waterproof material which is readily soluble in the cleaning temperatures, in order to prevent their premature decomposition or oxidation during storage.
  • Preferred coating materials which are applied by known methods, such as Sandwik from the food industry, are paraffins, microwaxes, waxes of natural origin such as carnauba wax, candellila wax, beeswax, higher melting alcohols such as hexadecanol, soaps or fatty acids.
  • the coating material which is solid at room temperature is applied in the molten state to the material to be coated, for example by spinning finely divided material to be coated in a continuous stream through a likewise continuously produced spray zone of the molten coating material.
  • the melting point must be selected so that the coating material dissolves easily during the silver treatment or melts quickly.
  • the melting point should ideally be in the range between 45 0 C and 65 0 C and preferably in the range 5O 0 C to 6O 0 C.
  • the metal salts and / or metal complexes mentioned are contained in cleaning agents, preferably in an amount of 0.05 to 6 wt .-%, preferably 0.2 to 2.5 wt .-%, each based on the total corrosion inhibitor-containing agent.
  • excipients are understood to mean excipients which are suitable for rapid disintegration of tablets in water or gastric juice and for the release of the drugs in resorbable form.
  • disintegration aids are, for example, carbonate / citric acid systems, although other organic acids can also be used.
  • Swelling disintegration aids are, for example, synthetic polymers such as polyvinylpyrrolidone (PVP) or natural polymers or modified natural substances such as cellulose and starch and their derivatives, alginates or casein derivatives.
  • Disintegration aids are preferably used in amounts of from 0.5 to 10% by weight, preferably from 3 to 7% by weight and in particular from 4 to 6% by weight, based in each case on the total weight of the disintegration assistant-containing agent.
  • Preferred disintegrating agents used are cellulose-based disintegrating agents, so that preferred washing and cleaning agents contain such cellulose-based disintegrants in amounts of from 0.5 to 10% by weight, preferably from 3 to 7% by weight and in particular from 4 to 6% by weight. % contain.
  • Pure cellulose has the formal gross composition (C 6 H 10 Os) n and is formally a ⁇ -1,4-polyacetal of cellobiose, which in turn is composed of two molecules of glucose.
  • Suitable celluloses consist of about 500 to 5000 glucose units and therefore have average molecular weights of 50,000 to 500,000.
  • Cellulose-based disintegrating agents which can be used in the context of the present invention are also cellulose derivatives obtainable by polymer-analogous reactions of cellulose.
  • Such chemically modified celluloses include, for example, products of esterifications or etherifications in which hydroxy hydrogen atoms have been substituted.
  • Celluloses in which the hydroxy groups have been replaced by functional groups which are not bonded via an oxygen atom can also be used as cellulose derivatives.
  • the group of cellulose derivatives includes, for example, alkali metal celluloses, carboxymethylcellulose (CMC), cellulose esters and ethers, and aminocelluloses.
  • CMC carboxymethylcellulose
  • the cellulose derivatives mentioned are preferably not used alone as disintegrating agents based on cellulose, but used in admixture with cellulose.
  • the content of these mixtures of cellulose derivatives is preferably below 50% by weight, particularly preferably below 20% by weight, based on the cellulose-based disintegrating agent. It is particularly preferred to use cellulose-based disintegrating agent which is free of cellulose derivatives.
  • the cellulose used as a disintegration aid is preferably not used in finely divided form, but converted into a coarser form, for example granulated or compacted, before it is added to the premixes to be tabletted.
  • the particle sizes of such disintegrating agents are usually above 200 .mu.m, preferably at least 90 wt .-% between 300 and 1600 .mu.m and in particular at least 90 wt .-% between 400 and 1200 microns.
  • the above and described in more detail in the documents cited coarser disintegration aids are preferred as disintegration aids and are commercially available, for example under the name of Arbocel ® TF-30-HG from Rettenmaier available in the present invention.
  • microcrystalline cellulose As a further disintegrating agent based on cellulose or as a component of this component microcrystalline cellulose can be used.
  • This microcrystalline cellulose is obtained by partial hydrolysis of celluloses under conditions which are only amorphous Attack areas of the celluloses (about 30% of the total cellulose mass) and completely dissolve them, leaving the crystalline areas (about 70%) undamaged.
  • a subsequent desaggregation of the microfine celluloses produced by the hydrolysis yields the microcrystalline celluloses which have primary particle sizes of about 5 ⁇ m and, for example, can be compacted into granules having an average particle size of 200 ⁇ m.
  • Preferred disintegration auxiliaries preferably a cellulose-based disintegration assistant, preferably in granular, cogranulated or compacted form, are present in the disintegrants in amounts of from 0.5 to 10% by weight, preferably from 3 to 7% by weight in particular from 4 to 6% by weight, based in each case on the total weight of the disintegrating agent-containing agent.
  • gas-evolving effervescent systems can furthermore be used as tablet disintegration auxiliaries.
  • the gas-evolving effervescent system may consist of a single substance that releases a gas upon contact with water.
  • the gas-releasing effervescent system in turn consists of at least two constituents which react with one another to form gas.
  • Preferred effervescent systems consist of alkali metal carbonate and / or bicarbonate and an acidifying agent which is suitable for liberating carbon dioxide from the alkali metal salts in aqueous solution.
  • the sodium and potassium salts are clearly preferred over the other salts for reasons of cost.
  • the relevant pure alkali metal carbonates or bicarbonates do not have to be used; Rather, mixtures of different carbonates and bicarbonates may be preferred.
  • Suitable acidifying agents which release carbon dioxide from the alkali metal salts in aqueous solution are, for example, boric acid and also alkali metal hydrogensulfates, alkali metal dihydrogenphosphates and other inorganic salts.
  • organic acidification used, wherein the citric acid is a particularly preferred Acidiser.
  • Tartaric acid, succinic acid, malonic acid, adipic acid, maleic acid, fumaric acid, oxalic acid and polyacrylic acid are again preferred from this group.
  • Organic sulfonic acids such as amidosulfonic acid are also usable.
  • a commercially available as an acidifier in the context of the present invention also preferably be used is Sokalan ® DCS (trademark of BASF), a mixture of succinic acid (max. 31 wt .-%), glutaric acid (max. 50 wt .-%) and adipic acid ( at most 33% by weight).
  • Acidifying agents in the effervescent system from the group of organic di-, tri- and oligocarboxylic acids or mixtures are preferred.
  • fragrance compounds e.g. the synthetic products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type are used. Fragrance compounds of the ester type are known e.g.
  • the ethers include, for example, benzyl ethyl ether, to the aldehydes e.g.
  • the linear alkanals having 8-18 C atoms citral, citronellal, citronellyloxyacetaldehyde, cyclamen aldehyde, hydroxycitronellal, lilial and bourgeonal, to the ketones e.g.
  • the alcohols include anethole, citronellol, eugenol, geraniol, linalool, phenylethyl alcohol and terpineol;
  • the hydrocarbons mainly include the terpenes such as limonene and pinene.
  • mixtures of different fragrances are used, which together produce an attractive fragrance.
  • perfume oils may also contain natural fragrance mixtures such as are available from vegetable sources, e.g.
  • Pine, citrus, jasmine, patchouly, rose or ylang-ylang oil are also suitable.
  • Muskateller, sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, lime blossom oil, juniper berry oil, vetiver oil, olibanum oil, galena oil and labdanum oil as well as orange blossom oil, neroliol, orange peel oil and sandalwood oil are also suitable.
  • fragrance To be perceptible, a fragrance must be volatile, whereby besides the nature of the functional groups and the structure of the chemical compound, the molecular weight also plays an important role plays. For example, most odorants have molecular weights up to about 200 daltons, while molecular weights of 300 daltons and above are more of an exception. Due to the different volatility of fragrances, the smell of a fragrance composed of several fragrances changes or Perfume during evaporation, wherein the odor impressions in top note, middle note or body and "base note” (end note or dry out) divided.
  • the top note of a perfume or fragrance does not consist solely of volatile compounds, while the base note consists for the most part of less volatile, ie adherent fragrances.
  • the base note consists for the most part of less volatile, ie adherent fragrances.
  • more volatile fragrances can be bound to certain fixatives, preventing them from evaporating too quickly.
  • the subsequent classification of the fragrances in "more volatile” or “adherent” fragrances so nothing about the olfactory impression and whether the corresponding fragrance is perceived as a head or middle note, nothing said.
  • Adhesive-resistant fragrances which can be used in the context of the present invention are, for example, the essential oils such as angelica root oil, aniseed oil, arnica blossom oil, basil oil, bay oil, bergamot oil, champacell blossom oil, fir pine oil, pinecone oil, elemi oil, eucalyptus oil, fennel oil, pine needle oil, galbanum oil, Geranium oil, ginger grass oil, guaiac wood oil, gurdy balm oil, helichrysum oil, ho oil, ginger oil, iris oil, cajeput oil, calamus oil, chamomile oil, camphor oil, kanga oil, cardamom oil, cassia oil, pine oil, copa ⁇ va balsam oil, coriander oil, spearmint oil, caraway oil, cumin oil, lavender oil, Lemongrass oil, lime oil, tangerine oil, lemon balm oil, musk kernel oil, myrrh oil, clove oil, neroli oil
  • fragrances can be used in the context of the present invention as adherent fragrances or fragrance mixtures, ie fragrances.
  • These compounds include the following compounds and mixtures thereof: ambrettolide, ⁇ -amylcinnamaldehyde, anethole, anisaldehyde, anisalcohol, anisole, methyl anthranilate, acetophenone, benzylacetone, benzaldehyde, ethyl benzoate, benzophenone, benzyl alcohol, benzyl acetate, benzyl benzoate, benzyl formate , Benzyl valerate, borneol, bornyl acetate, ⁇ -bromostyrene, n-decyl aldehyde, n-dodecyl aldehyde, eugenol, eugenol methyl ether, eucalyptol,
  • the more volatile fragrances include in particular the lower-boiling fragrances of natural or synthetic origin, which can be used alone or in mixtures.
  • Examples of more volatile fragrances are alkyl isothiocyanates (alkyl mustard oils), butanedione, limonene, linalool, linayl acetate and propionate, menthol, menthone, methyl-n-heptenone, phellandrene, phenylacetaldehyde, terpinyl acetate, citral, citronellal.
  • the fragrances can be processed directly, but it can also be advantageous to apply the fragrances on carriers that provide a slower fragrance release for long-lasting fragrance.
  • carrier materials for example, cyclodextrins have been proven, the cyclodextrin-perfume complexes can be additionally coated with other excipients.
  • Preferred dyes the selection of which presents no difficulty to the skilled person, have a high storage stability and insensitivity to the other ingredients of the agents and to light and no pronounced substantivity to the substrates to be treated with the dye-containing agents such as textiles, glass, ceramics or plastic dishes do not stain them.
  • the colorants do not have too high an affinity for textile surfaces, and in particular for synthetic fibers, whereas in the case of detergents an excessively high affinity for glass, ceramic or plasticware must be avoided , At the same time, it should also be taken into account when choosing suitable colorants that colorants have different stabilities to the oxidation.
  • water-insoluble colorants are more stable to oxidation than water-soluble colorants.
  • concentration of the colorant in the detergents or cleaners varies.
  • the above-mentioned Basacid ® Green or the above-mentioned Sandolan Blue ® are typically selected dye concentrations in the range of some 10 "2 to 10" 3 wt .-%.
  • the appropriate concentration of the colorant is located in washing or cleaning agents, however, typically a few 10 "3 to 10" 4 wt .-% .
  • Dyeing agents which can be oxidatively destroyed in the washing process and mixtures thereof with suitable blue dyes, so-called blue toners are preferred.
  • colorants which are soluble in water or at room temperature in liquid organic substances.
  • Suitable examples are anionic colorants, for example anionic nitrosofarbstoffe.
  • One possible dye is, for example, naphthol green (Color Index (CI) Part 1: Acid Green 1; Part 2: 10020). Which as a commercial product, for example, as Basa- cid ® Green 970 from BASF, Ludwigshafen, is obtainable, and mixtures of these with suitable blue dyes.
  • Pigmosol come ® Blue 6900 (CI 74160), Pigmosol ® Green 8730 (CI 74260), Basonyl ® Red 545 FL (CI 45170), Sandolan® ® rhodamine EB400 (CI 45100), Basacid® ® Yellow 094 (CI 47005) Sicovit ® Patentblau 85 e 131 (CI 42051), Acid Blue 183 (CAS 12217-22-0, Cl Acidblue 183), pigment Blue 15 (Cl 74160), Supranol Blue ® GLW (CAS 12219-32-8, Cl Acidblue 221 )), Nylosan Yellow ® N-7GL SGR (CAS 61814-57-1, Cl Acidyellow 218) and / or Sandolan Blue ® (Cl Acid Blue 182, CAS 12219-26-0) is used.
  • the detergents and cleaners can contain further ingredients which further improve the performance and / or aesthetic properties of these compositions.
  • Preferred agents contain one or more of the group of electrolytes, pH adjusters, fluorescers, hydrotopes, foam inhibitors, silicone oils, anti redeposition agents, optical brighteners, grayness inhibitors, anti-shrinkage agents, anti-crease agents, color transfer inhibitors, antimicrobial agents, germicides, fungicides, antioxidants, antistatic agents, ironing aids , Phobic and impregnating agents, swelling and anti-slip agents and UV absorbers.
  • electrolytes from the group of inorganic salts a wide number of different salts can be used.
  • Preferred cations are the alkali and alkaline earth metals, preferred anions are the halides and sulfates. From a manufacturing point of view, the use of NaCl or MgCl 2 in the washing or cleaning agents is preferred.
  • pH adjusters In order to bring the pH of detergents or cleaners into the desired range, the use of pH adjusters may be indicated. Can be used here are all known acids or alkalis, unless their use is not for technical application or environmental reasons or for reasons of consumer protection prohibited. Usually, the amount of these adjusting agents does not exceed 1% by weight of the total formulation.
  • Suitable foam inhibitors are, inter alia, soaps, oils, fats, paraffins or silicone oils, which may optionally be applied to support materials.
  • Suitable carrier materials are, for example, inorganic salts such as carbonates or sulfates, cellulose derivatives or silicates and mixtures of the abovementioned materials.
  • Preferred agents include paraffins, preferably unbranched paraffins (n-paraffins) and / or silicones, preferably linear-polymeric silicones, which are constructed according to the scheme (R 2 SiO) X and are also referred to as silicone oils. These silicone oils are usually clear, colorless, neutral, odorless, hydrophobic liquids having a molecular weight between 1,000 and 150,000, and viscosities between 10 and 1,000,000 mPa.s.
  • Suitable anti-redeposition agents which are also referred to as soil repellents, are, for example, nonionic cellulose ethers such as methylcellulose and methylhydroxypropylcellulose with a proportion of methoxy groups of 15 to 30% by weight and of hydroxypropyl groups of 1 to 15% by weight, based in each case on the nonionic cellulose ether as well as the known from the prior art polymers of phthalic acid and / or terephthalic acid or derivatives thereof, in particular polymers of ethylene terephthalates and / or polyethylene glycol terephthalates or anionic and / or nonionic modified derivatives thereof.
  • Especially preferred of these are the sulfonated derivatives of the phthalic and terephthalic acid polymers.
  • Optical brighteners may be added to laundry detergents or cleaners to remove graying and yellowing of the treated fabrics which will attract the fiber and cause lightening and fake bleaching by exposing invisible ultraviolet radiation to visible, longer wavelength light .
  • Suitable compounds originate for example from the substance classes of the 4,4 'diamino-2,2' - stilbenedisulfonic (flavonic), 4,4'-biphenylene -Distyryl, Methylumbelliferone, coumarins, dihydroquinolinones, 1, 3-diaryl pyrazolines, naphthalimides, benzoxazole, benzisoxazole, and benzimidazole systems, and pyrene derivatives substituted by heterocycles.
  • Grayness inhibitors have the task of keeping the dirt detached from the fiber suspended in the liquor and thus preventing the dirt from being rebuilt.
  • Water-soluble colloids of mostly organic nature are suitable for this purpose, for example the water-soluble salts of polymeric carboxylic acids, glue, gelatin, salts of ether sulfonic acids or cellulose or salts of acidic sulfuric acid esters of cellulose or starch.
  • water-soluble polyamides containing acidic groups are suitable for this purpose. It is also possible to use soluble starch preparations and starch products other than those mentioned above, for example degraded starch, aldehyde starches etc. Polyvinylpyrrolidone is also useful.
  • graying inhibitors are also usable as graying inhibitors.
  • cellulose ethers such as carboxymethylcellulose (sodium salt), methylcellulose, hydroxyalkylcellulose and mixed ethers such as methylhydroxyethylcellulose, methylhydroxypropylcellulose, methylcarboxymethylcellulose and mixtures thereof. Since textile fabrics, in particular of rayon, rayon, cotton and their mixtures, can tend to wrinkle because the individual fibers are sensitive to bending, buckling, pressing and crushing transversely to the fiber direction, synthetic anti-crease agents can be used.
  • Phobic and impregnation processes are used to furnish textiles with substances that prevent the deposition of dirt or facilitate its leaching ability.
  • Preferred repellents and impregnating agents are perfluorinated fatty acids, also in the form of their aluminum and zirconium salts, organic silicates, silicones, polyacrylic acid esters with perfluorinated alcohol component or polymerizable compounds coupled with perfluorinated acyl or sulfonyl radical.
  • Antistatic agents may also be included.
  • the antisoiling equipment with repellents and impregnating agents is often classified as an easy-care finish. The penetration of the impregnating agent in the form of solutions or emulsions of the active substances in question can be facilitated by adding wetting agents which reduce the surface tension.
  • a further field of application of repellents and impregnating agents is the water-repellent finish of textiles, tents, tarpaulins, leather, etc., in which, in contrast to waterproofing, the fabric pores are not closed, so the fabric remains breathable (hydrophobing).
  • the water repellents used for hydrophobizing coat textiles, leather, paper, wood, etc. with a very thin layer of hydrophobic groups, such as longer alkyl chains or siloxane groups.
  • Suitable hydrophobizing agents are e.g. Paraffins, waxes, metal soaps etc.
  • Antimicrobial agents can be used to combat microorganisms. Depending on the antimicrobial spectrum and mechanism of action, a distinction is made between bacteriostats and bactericides, fungistatics and fungicides, etc. Important substances from these groups are, for example, benzalkonium chlorides, alkylarylsulfonates, halophenols and phenolmercuric acetate, although it is entirely possible to do without these compounds. To prevent undesirable changes to the detergents and cleaners and / or the treated fabrics caused by exposure to oxygen and other oxidative processes, the compositions may contain anti-oxidants. This class of compounds includes, for example, substituted phenols, hydroquinones, catechols and aromatic amines, as well as organic sulfides, polysulfides, dithiocarbamates, phosphites and phosphonates.
  • Antistatic agents increase the surface conductivity and thus allow an improved drainage of formed charges.
  • External antistatic agents are generally substances with at least one hydrophilic molecule ligand and give a more or less hygroscopic film on the surfaces. These mostly surface-active antistatic agents can be subdivided into nitrogen-containing (amines, amides, quaternary ammonium compounds), phosphorus-containing (phosphoric acid esters) and sulfur-containing (alkyl sulfonates, alkyl sulfates) antistatic agents.
  • Lauryl (or stearyl) di- methylbenzylammoniumchloride are also suitable as antistatic agents for textiles or as an additive to detergents, with an additional Avivage bin is achieved.
  • Softeners can be used to care for the textiles and to improve the textile properties such as a softer "handle” (avivage) and reduced electrostatic charge (increased wearing comfort).
  • the active substances in fabric softening formulations are "esterquats", quaternary ammonium compounds having two hydrophobic radicals, such as disteryldimethylammonium chloride, which, however, due to its insufficient biodegradability, is increasingly being replaced by quaternary ammonium compounds which in their hydrophobic radicals are ester groups as predetermined breaking points for the biological Contain degradation.
  • esters with improved biodegradability are obtainable, for example, by esterifying mixtures of methyldiethanolamine and / or triethanolamine with fatty acids and then quaternizing the reaction products with alkylating agents in a manner known per se. Further suitable as a finish is dimethylolethyleneurea.
  • Silicone derivatives can be used to improve the water absorbency, rewettability of the treated fabrics, and ease of ironing the treated fabrics. These additionally improve the rinsing out of detergents or cleaning agents by their foam-inhibiting properties.
  • Preferred silicone derivatives are, for example, polydialkyl or alkylaryl siloxanes in which the alkyl groups have one to five carbon atoms and are completely or partially fluorinated.
  • Preferred silicones are polydimethylsiloxanes, which may optionally be derivatized and are then amino-functional or quaternized or have Si-OH, Si-H and / or Si-Cl bonds.
  • silicones are the polyalkylene oxide-modified polysiloxanes, ie polysiloxanes which comprise, for example, polyethylene glycols and the polyalkylene oxide-modified dimetylpolysiloxanes.
  • UV absorbers which are absorbed by the treated textiles and improve the light resistance of the fibers.
  • Compounds which have these desired properties are, for example, the compounds which are active by radiationless deactivation and derivatives of benzophenone having substituents in the 2- and / or 4-position.
  • substituted benzotriazoles in the 3-position phenyl-substituted acrylates (cinnamic acid derivatives), optionally with cyano groups in the 2-position, salicylates, organic Ni complexes and natural substances such as umbelliferone and the endogenous urocanic acid.
  • Protein hydrolyzates are due to their fiber-care effect further in the context of the present invention preferred active substances from the field of detergents and cleaners.
  • Protein hydrolysates are product mixtures obtained by acid, alkaline or enzymatically catalyzed degradation of proteins (proteins).
  • protein hydrolysates of both vegetable and animal origin can be used.
  • Animal protein hydrolysates are, for example, elastin, collagen, keratin, silk and milk protein protein hydrolysates, which may also be present in the form of salts.
  • Preferred according to the invention is the use of protein hydrolysates of plant origin, e.g. Soy, almonds, rice, pea, potato and wheat protein hydrolysates.
  • protein hydrolysates are preferred as such, amino acid mixtures or individual amino acids obtained otherwise, such as, for example, arginine, lysine, histidine or pyrroglutamic acid, may also be used in their place. Also possible is the use of derivatives of protein hydrolysates, for example in the form of their fatty acid condensation products.
  • the non-aqueous solvents which can be used according to the invention include, in particular, the organic solvents, of which only the most important can be listed here: alcohols (methanol, ethanol, propanols, butanols, octanols, cyclohexanol), glycols (ethylene glycol, diethylene glycol) , Ethers and glycol ethers (diethyl ether, dibutyl ether, anisole, dioxane, tetrahydrofuran, mono-, di-, tri-, polyethylene glycol ethers), ketones (acetone, butanone, cyclohexanone), esters (acetic acid esters, glycol esters), amides and others Nitrogen compounds (dimethylformamide, pyridine, N-methylpyrrolidone, acetonitrile), sulfur compounds (carbon disulfide, dimethylsulfoxide, sulfolane), nitro compounds (nitrobenzene), halogenated hydro
  • a solvent mixture which is particularly preferred in the context of the present application is, for example Benzine, a mixture of various hydrocarbons suitable for dry cleaning, preferably containing C12 to C14 hydrocarbons above 60% by weight, more preferably above 80% by weight and in particular above 90% by weight, based in each case on the total weight of Mixture, preferably having a boiling range of 81 to 110 0 C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Detergent Compositions (AREA)

Abstract

L'invention concerne un contenant rigide présentant une hauteur maximale hmax et renfermant un détergent ou nettoyant particulaire à teneur en agents de blanchiment, contenu dans le contenant rigide. Ce contenant, qui présente un encombrement A avec un diamètre minimal dmin ainsi qu'une ouverture supérieure avec une surface A' et un diamètre maximal dmax, est caractérisé en ce que dmin est supérieur à hmax et dmin est supérieur à dmax. Ledit contenant constitue un emballage fiable et permet une manipulation en toute sécurité des produits à teneur en agents de blanchiment contenus.
PCT/EP2005/012969 2004-12-20 2005-12-03 Detergent ou nettoyant emballe WO2006066722A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200410062338 DE102004062338A1 (de) 2004-12-20 2004-12-20 Verpacktes Wasch- oder Reinigungsmittel
DE102004062338.4 2004-12-20

Publications (1)

Publication Number Publication Date
WO2006066722A1 true WO2006066722A1 (fr) 2006-06-29

Family

ID=36580281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/012969 WO2006066722A1 (fr) 2004-12-20 2005-12-03 Detergent ou nettoyant emballe

Country Status (2)

Country Link
DE (1) DE102004062338A1 (fr)
WO (1) WO2006066722A1 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3509331A1 (de) * 1984-04-02 1985-10-10 Colgate-Palmolive Co., New York, N.Y. Nicht zusammenbackende bleichende waschmittelzusammensetzung
EP0258991A2 (fr) * 1986-08-04 1988-03-09 The Clorox Company Récipient pour agent de blanchiment oxydant

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7032756B2 (en) * 2000-04-11 2006-04-25 Wylie Arun M Container
BR0313662A (pt) * 2002-08-20 2005-06-14 Procter & Gamble Método para produção de composições detergentes em gel lìquido contendo solvente anidro para lavagem de pratos em lavadora automática

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3509331A1 (de) * 1984-04-02 1985-10-10 Colgate-Palmolive Co., New York, N.Y. Nicht zusammenbackende bleichende waschmittelzusammensetzung
EP0258991A2 (fr) * 1986-08-04 1988-03-09 The Clorox Company Récipient pour agent de blanchiment oxydant

Also Published As

Publication number Publication date
DE102004062338A1 (de) 2006-06-29

Similar Documents

Publication Publication Date Title
DE102004030318B4 (de) Mehrkammer-Pouch
WO2006045449A1 (fr) Agent de lavage ou de nettoyage
WO2006032371A1 (fr) Constituants de produits nettoyants
WO2006018108A1 (fr) Procede de fabrication d'agents de lavage ou de nettoyage en portions
WO2006045452A1 (fr) Agents de lavage ou de nettoyage
EP1922401B1 (fr) Detergent ou nettoyant
WO2006066723A1 (fr) Procede de production d'un detergent ou nettoyant en dose individuelle
WO2006021284A1 (fr) Corps moule detergent ou nettoyant pourvu d'un revetement
WO2006018107A1 (fr) Agents de lavage et de nettoyage contenant des produits de rinçage et des acides amines soufres
WO2006045451A1 (fr) Agents de lavage ou de nettoyage
WO2006063724A1 (fr) Outil de coupe destine a des bandes de films
WO2006066721A1 (fr) Unite de dosage pour detergent ou nettoyant
DE102005022786B4 (de) Wasch- oder Reinigungsmitteldosiereinheit
DE102004020082A1 (de) Verfahren zur Herstellung von Wasch- und/oder Reinigungsmitteln
WO2006066722A1 (fr) Detergent ou nettoyant emballe
WO2005123368A1 (fr) Procede pour la production d'emballages-portions constitues d'un film polymere hydrosoluble pour des substances detergentes
WO2006045453A1 (fr) Unite dosee de lessive ou detergent
WO2006066695A1 (fr) Corps moule de lavage ou de nettoyage multiphase
WO2006045447A1 (fr) Unite de dosage pour produit nettoyant ou detergent
WO2006045450A1 (fr) Unite de dosage d'agent de lavage ou de nettoyage

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05813509

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5813509

Country of ref document: EP