WO2008060237A1 - Appareil électronique de prise de vues par rotation - Google Patents

Appareil électronique de prise de vues par rotation Download PDF

Info

Publication number
WO2008060237A1
WO2008060237A1 PCT/SE2007/050853 SE2007050853W WO2008060237A1 WO 2008060237 A1 WO2008060237 A1 WO 2008060237A1 SE 2007050853 W SE2007050853 W SE 2007050853W WO 2008060237 A1 WO2008060237 A1 WO 2008060237A1
Authority
WO
WIPO (PCT)
Prior art keywords
patterns
related technique
rotation
electron
specific
Prior art date
Application number
PCT/SE2007/050853
Other languages
English (en)
Inventor
Sven HOVMÖLLER
Original Assignee
Hovmoeller Sven
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hovmoeller Sven filed Critical Hovmoeller Sven
Publication of WO2008060237A1 publication Critical patent/WO2008060237A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • H01J37/1478Beam tilting means, i.e. for stereoscopy or for beam channelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/252Tubes for spot-analysing by electron or ion beams; Microanalysers
    • H01J37/256Tubes for spot-analysing by electron or ion beams; Microanalysers using scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/295Electron or ion diffraction tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/15Means for deflecting or directing discharge
    • H01J2237/1505Rotating beam around optical axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/15Means for deflecting or directing discharge
    • H01J2237/1506Tilting or rocking beam around an axis substantially at an angle to optical axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/25Tubes for localised analysis using electron or ion beams

Definitions

  • Electron diffraction 0 In many modern industrial applications it is necessary to be able to study samples in the nanometer scale. Such specimens may contain from 1 to 10 000 atoms. The only way to study such minute samples is by electrons, which interact about a million times stronger with matter. However, in the traditional mode of electron diffraction, SAED, both the electron beam and crystal are fixed, thereby5 limiting the amount of data that is recorded in any one image. In order to collect a 3D data set, it is necessary to collect a large number of diffraction patterns at different angles (see Figure 1).
  • fig. 1 there is disclosed an example of a collection of electron diffraction patterns from many directions on the same crystal. Each diffraction pattern is in ⁇ fact a section through 3D space, as illustrated by the set of five lines at the bottom left of fig, 1.
  • Electron precession Recently Paul Midgley and Roger Vincent in Bristol, UK invented the precession method for electron diffraction. Here the electron beam is tilted by a small angle, typically 1-3 degrees, and then rotated around the optical axis. In this way a volume of reciprocal space is recorded, rather than just single sections.
  • the multiple scattering is greatly reduced, since at any one moment only a small number of reflections are excited.
  • the beam tilt is accomplished by adding small currents to the lens(es) above the sample in the electron microscope.
  • the electromagnetic coils below the sample are used to descan.
  • the precession technique has recently been improved and commercialized by NanoMEGAS, protected by several patents.
  • Electron precession solves all these problems, but one important thing remains. It is very difficult, not to say impossible to collect full 3D data with the precession geometry. There will be many partially recorded reflections at the borders of the scanned space.
  • SAED Selected Area Electron Diffraction
  • precession was a standard technique until about 1975, when the oscillation or rotation method was developed by Arndt and Wonacott in Cambridge, UK.
  • the main reason for going from precession to rotation was the simplified geometry, especially the fact that one film recorded by rotation could be directly added on to the following, allowing partially recorded reflections on one film to be filled in on the next film.
  • full high-quality electron diffraction data should also be collected by a rotation method.
  • Eiectron rotation can be achieved by a device rather simiiar to the one making electron precession.
  • the main difference is that the electron beam (and its corresponding descanning unit) should not go around in a circle, but rather follow a straight line, like a pendulum.
  • This Sine can be along the x-direction, along the y- direction or along any diagonal in between.
  • each scan may have a rotation of only +/- 0.5 degrees along a line.
  • the next scan will follow on from exactly where the previous stopped, i.e. from +0.5 to +1.5 degrees, with the next one + 1.5 to +2.5 degrees etc.
  • One such series of rotation images can total up to about 6 degrees (the exact range is limited by the design of the specific model of electron microscope).
  • the diffraction patterns may be recorded on any media, including photographic film, imaging plates or CCD cameras.
  • the device and related technique described in this Patent uses a combination of specific scanning protocol of ED intensities (including beam rotation) that can be further and simultaneously scanned across a specific nanocrystai surface observed in TEM.
  • This may require the presence of a scan generator configured to control scan coils for scanning an ED pattern, said scanning generator may exist in the TEM or can be built as external device to synchronize beam displacement over the sample with simultaneous acquisition of ED patterns.
  • a computer may collect such patterns (through the frame grabber) and store them for further on-line or off-Sine analysis.
  • Such ED patterns generated at each sample point of the nanocrystai under study may reveal crystal structure details such as crystal phase and local orientation after comparison with recalculated theoretical kinematical ED patterns of known crystal phases under different crystaSlographic orientations.
  • Such ED patterns obtained under specific scanning protocols may be useful as quasi-kinematicai ED intensity fingerprints of known phases and can be used as such for search/comparison with known crystaSiographic databases (for example ICDD, FIZ, CSD or others). Such comparison can be performed visually or by image processing techniques. Rotation, oscillation and alternative scanning protocois (inciuding but not limited to beam precession) are producing ED intensities close the their ideal kinematical values, aSiowing therefore direct comparison with simulated kinematical ED patterns of known compounds without taking in account crystal thickness effects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

La présente invention se rapporte à un dispositif permettant d'obtenir des séquences de diffraction d'électrons par rotation (osculation) en faisant osciller un faisceau dans les directions X, Y ou dans toute direction de l'axe du cristal, pour toute plage angulaire variable conformément à un quelconque protocole spécifique d'oscillation.
PCT/SE2007/050853 2006-11-15 2007-11-15 Appareil électronique de prise de vues par rotation WO2008060237A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US85895306P 2006-11-15 2006-11-15
US60/858,953 2006-11-15

Publications (1)

Publication Number Publication Date
WO2008060237A1 true WO2008060237A1 (fr) 2008-05-22

Family

ID=39401949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE2007/050853 WO2008060237A1 (fr) 2006-11-15 2007-11-15 Appareil électronique de prise de vues par rotation

Country Status (1)

Country Link
WO (1) WO2008060237A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010052289A1 (fr) * 2008-11-06 2010-05-14 Nanomegas Sprl Procédés et dispositifs d’analyse à haut débit d’une structure cristalline par diffraction électronique
EP2642279A1 (fr) 2012-03-19 2013-09-25 Universidad de Barcelona Procédé et système pour améliorer les signaux de pic caractéristique dans la microscopie électronique analytique
WO2021029519A1 (fr) * 2019-08-09 2021-02-18 재단법인 포항산업과학연구원 Appareil et procédé d'analyse de la structure cristalline d'un échantillon, et support d'enregistrement lisible par ordinateur

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4160162A (en) * 1976-11-12 1979-07-03 Siemens Aktiengesellschaft Method for the pictorial display of a diffraction image in a transmission-type, scanning, corpuscular-beam microscope
US5004918A (en) * 1989-01-25 1991-04-02 Jeol Ltd. Differential phase contrast scanning transmission electron microscope
US20030006373A1 (en) * 2001-07-05 2003-01-09 Hitachi. Ltd. Observation apparatus and observation method using an electron beam
US20040061053A1 (en) * 2001-02-28 2004-04-01 Yoshifumi Taniguchi Method and apparatus for measuring physical properties of micro region
US20040183012A1 (en) * 2003-03-18 2004-09-23 Toshie Yaguchi Material characterization system
WO2005022582A1 (fr) * 2003-09-02 2005-03-10 Nanomegas Sprl Procede de mesure de modeles de diffraction a partir d'une microscopie electronique de transmission permettant de determiner des structures cristallines et procede associe
US20060151701A1 (en) * 2005-01-12 2006-07-13 Ruriko Tsuneta Scanning transmission electron microscope and scanning transmission electron microscopy

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4160162A (en) * 1976-11-12 1979-07-03 Siemens Aktiengesellschaft Method for the pictorial display of a diffraction image in a transmission-type, scanning, corpuscular-beam microscope
US5004918A (en) * 1989-01-25 1991-04-02 Jeol Ltd. Differential phase contrast scanning transmission electron microscope
US20040061053A1 (en) * 2001-02-28 2004-04-01 Yoshifumi Taniguchi Method and apparatus for measuring physical properties of micro region
US20030006373A1 (en) * 2001-07-05 2003-01-09 Hitachi. Ltd. Observation apparatus and observation method using an electron beam
US20040183012A1 (en) * 2003-03-18 2004-09-23 Toshie Yaguchi Material characterization system
WO2005022582A1 (fr) * 2003-09-02 2005-03-10 Nanomegas Sprl Procede de mesure de modeles de diffraction a partir d'une microscopie electronique de transmission permettant de determiner des structures cristallines et procede associe
US20060151701A1 (en) * 2005-01-12 2006-07-13 Ruriko Tsuneta Scanning transmission electron microscope and scanning transmission electron microscopy

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010052289A1 (fr) * 2008-11-06 2010-05-14 Nanomegas Sprl Procédés et dispositifs d’analyse à haut débit d’une structure cristalline par diffraction électronique
US8253099B2 (en) 2008-11-06 2012-08-28 Nanomegas Sprl Methods and devices for high throughput crystal structure analysis by electron diffraction
EP2818852A1 (fr) * 2008-11-06 2014-12-31 Nanomegas SPRL Procédés et dispositifs pour l'analyse de structure cristalline à haut rendement par la diffraction d'électrons
EP2642279A1 (fr) 2012-03-19 2013-09-25 Universidad de Barcelona Procédé et système pour améliorer les signaux de pic caractéristique dans la microscopie électronique analytique
US9406496B2 (en) 2012-03-19 2016-08-02 Universitat De Barcelona Method and system for improving characteristic peak signals in analytical electron microscopy
WO2021029519A1 (fr) * 2019-08-09 2021-02-18 재단법인 포항산업과학연구원 Appareil et procédé d'analyse de la structure cristalline d'un échantillon, et support d'enregistrement lisible par ordinateur

Similar Documents

Publication Publication Date Title
JP5839626B2 (ja) 電子線回折による高スループット結晶構造解析のための方法及びデバイス
Zhang et al. Collecting 3D electron diffraction data by the rotation method
Kutsal et al. The ESRF dark-field x-ray microscope at ID06
De Serio et al. High precision measurements with nuclear emulsions using fast automated microscopes
JP4685877B2 (ja) 微結晶粒の方位分布測定方法及びその装置
Baruchel et al. Advances in synchrotron hard X-ray based imaging
US5153434A (en) Electron microscope and method for observing microscopic image
Bleuet et al. A hard x-ray nanoprobe for scanning and projection nanotomography
JPH04337236A (ja) 電子顕微鏡装置及び電子顕微方法
KR101594794B1 (ko) 엑스선 회절장치 및 엑스선 회절측정방법
Peetermans et al. Cold neutron diffraction contrast tomography of polycrystalline material
JP2012013703A (ja) 電子回折断層撮影の方法
JPH076725A (ja) 組成及び格子歪測定用電子顕微鏡及びその観察方法
Laanait et al. Full-field X-ray reflection microscopy of epitaxial thin-films
JPH04206132A (ja) 走査電子顕微鏡及び走査電子顕微方法
WO2008060237A1 (fr) Appareil électronique de prise de vues par rotation
Leclere et al. KB scanning of X-ray beam for Laue microdiffraction on accelero-phobic samples: Application to in situ mechanically loaded nanowires
KR100936746B1 (ko) Χ-선 토포그래피에 의한 결함의 3-차원 분포의 분석
Midgley et al. Quantitative electron diffraction: from atoms to bonds
Takata et al. High resolution X-ray powder diffraction by the combination of synchrotron radiation and imaging plate to observe electron distribution by the maximum entropy method
JP3676249B2 (ja) X線回折を用いた結晶の観察方法及びその観察装置
Beitra et al. Confocal microscope alignment of nanocrystals for coherent diffraction imaging
CN1358996A (zh) 用透射式微分干涉相衬显微镜测量表面形貌的方法和装置
Dixon et al. Transmission and double‐reflection scanning stage confocal microscope
DE3447467A1 (de) Abtastmikroskop

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07835436

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07835436

Country of ref document: EP

Kind code of ref document: A1