WO2008059916A1 - Appareil et procédé d'exposition et procédé de fabrication de dispositif - Google Patents

Appareil et procédé d'exposition et procédé de fabrication de dispositif Download PDF

Info

Publication number
WO2008059916A1
WO2008059916A1 PCT/JP2007/072168 JP2007072168W WO2008059916A1 WO 2008059916 A1 WO2008059916 A1 WO 2008059916A1 JP 2007072168 W JP2007072168 W JP 2007072168W WO 2008059916 A1 WO2008059916 A1 WO 2008059916A1
Authority
WO
WIPO (PCT)
Prior art keywords
moving body
substrate
measurement
exposure
exposure apparatus
Prior art date
Application number
PCT/JP2007/072168
Other languages
English (en)
French (fr)
Inventor
Tohru Kiuchi
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007293198A external-priority patent/JP5320727B2/ja
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to KR1020097008366A priority Critical patent/KR101385880B1/ko
Publication of WO2008059916A1 publication Critical patent/WO2008059916A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70733Handling masks and workpieces, e.g. exchange of workpiece or mask, transport of workpiece or mask

Definitions

  • Exposure apparatus Exposure apparatus, exposure method, and device manufacturing method
  • the present invention relates to an exposure apparatus that exposes a substrate, an exposure method, and a device manufacturing method.
  • an immersion exposure apparatus that exposes a substrate through a liquid as disclosed in Patent Documents 1 and 2 below is known.
  • a multi-stage type (twin stage type) exposure apparatus having a plurality of substrate stages for holding a substrate as disclosed in Patent Documents 3 to 8 below.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-289126
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-289128
  • Patent Document 3 Japanese Patent Publication No. 2000-511704
  • Patent Document 4 Japanese Patent Laid-Open No. 2000-323404
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2000-505958
  • Patent Document 6 Special Table 2001—513267
  • Patent Document 7 Japanese Unexamined Patent Application Publication No. 2002-158168
  • Patent Document 8 International Publication No. 2005/074014 Pamphlet
  • the throughput of the exposure apparatus may be reduced.
  • the liquid deposition trace (watermark) on the light exit surface of the projection optical system due to the vaporization of the liquid. May form, or temperature changes may occur, which may degrade exposure accuracy. For this reason, it is desirable to always wet the light exit surface of the projection optical system with a liquid.
  • the light exit surface of a projection optical system and By holding the cap member (shutter member) so as to face each other, when trying to always wet the light emitting surface of the projection optical system with liquid, the cap member falls or the liquid on the cap member leaks, etc. It is undeniable that there is a possibility of the occurrence of a bug!
  • the throughput of the exposure apparatus may decrease due to the transfer operation of the cap member with the substrate stage. Therefore, even when the immersion method is applied to a multi-stage type exposure apparatus, it is desired to devise a technique capable of efficiently and satisfactorily exposing the substrate by always wetting the light exit surface of the projection optical system with the liquid.
  • the present invention has been made in view of such circumstances, and in the case where a liquid immersion method is applied to an exposure apparatus, an exposure apparatus and an exposure method capable of efficiently and satisfactorily exposing a substrate, and the exposure thereof.
  • An object of the present invention is to provide a device manufacturing method using an apparatus and an exposure method.
  • the present invention adopts the following configurations corresponding to the respective drawings shown in the embodiments.
  • the reference numerals in parentheses attached to each element are merely examples of the element and do not limit each element.
  • an exposure apparatus that exposes a substrate (P) by irradiating the substrate (P) with an exposure beam (EU), and the exposure beam (first optical that emits EU).
  • an exposure apparatus (EX) including a measurement beam (a transmission member (81) having a transmission region (81 S) that can transmit the MU).
  • the substrate can be efficiently and satisfactorily exposed.
  • an exposure apparatus that exposes a substrate (P) by irradiating the substrate (P) with an exposure beam (EU), and the exposure beam (first optical beam that emits EU).
  • the measurement member (lRz) with the slope (lSz) irradiated with the light and the first moving body (1) are supported and movably supported by the first moving body (1)
  • the moving member (81) having the end surface (81E) arranged in a predetermined positional relationship with the slope (ISz) of the member (lRz) and the end surface (81E) of the moving member (81) are the first moving body.
  • the first position that projects outward from the measuring member (1 Rz) and at least the measurement beam (ML) from the slope (ISz) of the measuring member (lRz) is not obstructed! /,
  • the substrate can be exposed efficiently and satisfactorily.
  • an exposure apparatus that exposes a substrate (P) by irradiating the substrate (P) with an exposure beam (EU), wherein the exposure beam (an optical member that emits EU ( 8), a first moving body (1) movable on the light exit side of the optical member (8), and a detector (7) provided on the first moving body (1) for detecting an exposure beam.
  • a transmission plate provided in the first moving body, the first transmission region (81 S) transmitting the measurement beam for measuring the position of the first moving body, and the second transmitting the detection light to the detector.
  • the substrate can be exposed efficiently and satisfactorily.
  • a device can be manufactured using an exposure apparatus that can efficiently and satisfactorily expose a substrate.
  • the moving body provided with the inclined surface (I Sz) for reflecting the measurement light
  • the position of the substrate was measured by measuring the position of the substrate held on the mobile body (SM1) by receiving the measurement light (ML) from the inclined surface through the transmission member provided so that the position was measured.
  • an exposure method including exposing a substrate (P) by irradiating the substrate (P) on the moving body (1) with an exposure beam (EU) (SE1).
  • the substrate can be efficiently and satisfactorily exposed.
  • the substrate is exposed using the exposure method (204). And developing the exposed substrate (204), and processing the developed substrate (205).
  • the substrate can be exposed efficiently and satisfactorily.
  • FIG. 1 is a schematic block diagram that shows an exposure apparatus according to a first embodiment.
  • FIG. 2 is a plan view showing the first and second substrate stages and the substrate stage driving system according to the first embodiment.
  • FIG. 3 is a perspective view showing the vicinity of the first substrate table according to the first embodiment.
  • FIG. 4 is a plan view showing first and second substrate tables according to the first embodiment.
  • FIG. 5 is a side view showing the first and second substrate tables according to the first embodiment.
  • FIG. 6 is a side sectional view showing the vicinity of a transmissive member provided on the first substrate table.
  • FIG. 7 is a schematic diagram for explaining an exposure method according to the first embodiment.
  • FIG. 8 is a schematic diagram for explaining an exposure method according to the first embodiment.
  • FIG. 9 is a schematic diagram for explaining an exposure method according to the first embodiment.
  • FIG. 10 is a schematic diagram for explaining the exposure method according to the first embodiment.
  • FIG. 11 is a schematic diagram for explaining the exposure method according to the first embodiment.
  • FIG. 12 is a schematic diagram for explaining the exposure method according to the first embodiment.
  • FIG. 13 is a schematic diagram for explaining the exposure method according to the first embodiment.
  • FIG. 14 is a schematic diagram for explaining a change in the measurement value of the interferometer caused by the transmissive member.
  • FIG. 15 is a perspective view showing an example of first and second substrate tables according to the second embodiment.
  • FIG. 16 is a perspective view showing an example of a first substrate table according to a third embodiment.
  • FIG. 17 is a side view showing a first substrate table according to a fourth embodiment.
  • FIG. 18 is a plan view showing a part of the first substrate table according to the fourth embodiment.
  • FIG. 19 is a side sectional view showing a part of the first substrate table according to the fourth embodiment.
  • FIG. 20 is a side sectional view showing a first substrate table according to a fourth embodiment.
  • FIG. 21 is a side sectional view showing a first substrate table according to a fourth embodiment.
  • FIGS. 22A to 22D are schematic views for explaining an exposure method according to the fourth embodiment. is there.
  • FIG. 23 is a flowchart for explaining an example of a microdevice manufacturing process.
  • FIG. 24 is a flowchart illustrating the exposure method of the present invention.
  • an XYZ orthogonal coordinate system is set, and the positional relationship of each member will be described with reference to this XYZ orthogonal coordinate system.
  • the predetermined direction in the horizontal plane is the X-axis direction
  • the direction orthogonal to the X-axis direction in the horizontal plane is the Y-axis direction
  • the direction orthogonal to each of the X-axis direction and the Y-axis direction is the z-axis direction.
  • the rotation (tilt) directions around the X, Y, and Z axes are the ⁇ X, ⁇ Y, and ⁇ directions, respectively.
  • FIG. 1 is a schematic block diagram that shows an exposure apparatus EX according to the first embodiment.
  • the exposure apparatus EX includes, for example, Japanese Patent Laid-Open Nos. 10-163099, 10-214783 (corresponding US Pat. No. 6,590,634), and Japanese Patent Laid-Open No. 2000-505958 (corresponding US Pat. No. 5,969,441).
  • No. 2000-511704 correspond US Pat. No. 5,815,246)
  • JP-A 2000-323404 corresponding US Pat. No. 6,674,510
  • JP-A 2000-505958 correspond US Pat. No. 5,969,081
  • JP 2001-513267 corresponding US Pat. No.
  • the exposure apparatus is a multi-stage type (twin stage type) exposure apparatus provided with a plurality of (two) substrate stages 1 and 2 that can move while holding the film. That is, in this embodiment, the exposure apparatus EX can move while holding the substrate P independently of the first substrate stage 1 that can move while holding the substrate P, and the first substrate stage 1. A second substrate stage 2. Multi-stage (twin-stage) exposure apparatuses are disclosed in US Pat. Nos. 6,341,007, 6,400,441, 6,549,269, and 6,590,634, and these US patents are used as far as the laws of designated or selected countries permit. As part of the text.
  • the exposure apparatus EX is independent of the mask stage 3 that can move while holding the mask M, the first substrate stage 1 that can move while holding the substrate P, and the first substrate stage 1.
  • the second substrate stage 2 that can move while holding the substrate P, the mask stage drive system 4 that moves the mask stage 3, and the substrate stage drive system 5 that moves the first substrate stage 1 and the second substrate stage 2
  • a measurement system 6 including a laser interferometer 6Px, 6Py, 6Pz, and 6M that measures position information of each stage 1, 2, and 3, an illumination system IL that illuminates the mask M with the exposure light EL, and an exposure light EL.
  • Projection optical system PL that projects an image of the illuminated mask M pattern onto the substrate P, a control device 7 that controls the overall operation of the exposure apparatus EX, and a memory that stores various information related to exposure, connected to the control device 7 With device 10! /
  • the substrate P here is a substrate for manufacturing a device.
  • a substrate such as a semiconductor wafer such as a silicon wafer is coated with a photosensitive material (photoresist) and a protective film (top coat).
  • various films such as a film) are formed.
  • the mask M includes a reticle on which a device pattern projected onto the substrate P is formed.
  • a predetermined pattern is formed on a transparent plate member such as a glass plate using a light shielding film such as chromium.
  • a force reflection type mask using a transmission type mask as the mask M may be used.
  • This transmissive mask is not limited to a binary mask in which a pattern is formed by a light shielding film, and includes, for example, a phase shift mask such as a halftone type or a spatial frequency modulation type.
  • the exposure apparatus EX includes an exposure station ST1 that irradiates the substrate P with exposure light EL, and an exposure station ST1. It is equipped with a measuring station ST2 that performs predetermined measurement and replacement of the substrate P!
  • the exposure apparatus EX includes a base member BP having a guide surface GF that movably supports each of the first substrate stage 1 and the second substrate stage 2, and the first substrate stage 1 and the second substrate stage 2 Each can move on the guide surface GF between the exposure station ST1 and the measurement station ST2 while holding the substrate P.
  • the guide surface GF is substantially parallel to the XY plane, and the first substrate stage 1 and the second substrate stage 2 are arranged along the guide surface GF in the XY direction (two-dimensional direction) and ⁇ . It can move in the Z direction.
  • Projection optical system PL has a plurality of optical elements.
  • the terminal optical element 8 closest to the image plane of the projection optical system PL has a light emission surface (lower surface) for emitting the exposure light EL.
  • the first substrate stage 1 is movable on the light exit side (image plane side of the projection optical system PL) of the terminal optical element 8 of the projection optical system PL that emits the exposure light EL.
  • the second substrate stage 2 is movable independently of the first substrate stage 1 on the light exit side of the terminal optical element 8 of the projection optical system PL (the image plane side of the projection optical system PL).
  • the projection optical system PL has a force mounted on a lens barrel surface supported by three columns via an anti-vibration mechanism, for example, as disclosed in International Publication No. 2006/038952 pamphlet.
  • the projection optical system PL may be suspended and supported on a main frame member (not shown) disposed above the projection optical system PL or a mask base on which the mask stage 3 is placed.
  • the measurement station ST2 includes an alignment system AL for acquiring positional information of the substrate P held on at least one of the first substrate stage 1 and the second substrate stage 2, and a focus level.
  • Various measurement devices that can perform measurements related to exposure of substrate P such as ring detection system FL, are installed.
  • the alignment system AL has a plurality of optical elements, and acquires the position information of the substrate P using these optical elements.
  • the focus / leveling detection system FL also has a plurality of optical elements, and acquires position information of the substrate P using these optical elements.
  • a transfer system H for exchanging the substrate P is provided in the vicinity of the measurement station ST2.
  • the control device 7 uses the transport system H to base the measurement station ST2.
  • the substrate P that has been exposed is unloaded (unloaded) from the first substrate stage 1 (or second substrate stage 2) that has moved to the plate replacement position (loading position), and the substrate P that is to be exposed is transferred to the first substrate stage 1 (or second substrate stage 2).
  • Substrate replacement work that loads (loads in) one substrate stage 1 (or second substrate stage 2) can be executed.
  • the loading position and the unloading position are the same position in the measurement station ST2, but loading and unloading may be performed at different positions.
  • the exposure apparatus EX of the present embodiment is an immersion exposure apparatus to which an immersion method is applied in order to improve the resolution by substantially shortening the exposure wavelength and substantially increase the depth of focus. Therefore, the nozzle member 30 capable of forming the liquid LQ immersion space LS is provided so as to fill the optical path space of the exposure light EL with the liquid LQ.
  • the optical path space of the exposure light EL is a space including the optical path through which the exposure light EL travels.
  • the immersion space LS is a space filled with the liquid LQ.
  • the nozzle member 30 is also called an immersion space forming member or a containment member (or confinement member).
  • the exposure apparatus EX exposes the substrate P by irradiating the substrate P with the exposure light EL through the projection optical system PL and the liquid LQ.
  • the nozzle member 30 is disclosed in, for example, Japanese Patent Application Laid-Open No. 2004-289126 (corresponding US Pat. No. 6,952,225), Japanese Patent Application Laid-Open No. 2004-289128 (corresponding US Pat. No. 7,110,081) and the like.
  • a flow path for supplying and collecting the liquid LQ with respect to the optical path space of the exposure light EL In the figure, the flow path is not shown.
  • a liquid supply device (not shown) that supplies the liquid LQ to the optical path space of the exposure light EL and a liquid recovery device (not shown) that recovers the liquid LQ are connected to the flow channel.
  • the liquid supply device can supply the liquid LQ for forming the immersion space LS via the flow path to the optical path space of the exposure light EL, and the liquid recovery device can supply the liquid immersion space LS via the flow path.
  • Liquid LQ can be recovered.
  • the liquid supply device includes a liquid supply unit that can deliver the liquid LQ, a supply pipe that connects one end of the liquid supply unit, a tank that stores the liquid LQ, a filter, and a pressure pump.
  • the liquid recovery apparatus includes a liquid recovery unit that can recover the liquid LQ, a recovery pipe that connects one end of the liquid recovery unit, a tank that stores the liquid LQ, a filter, a suction pump, and the like.
  • the exposure apparatus EX is not necessarily provided with a liquid supply device, a liquid recovery device, and a tank, a filter unit, a pump, and the like constituting them. All or some of these may be substituted by equipment such as a factory where the exposure apparatus EX is installed.
  • water pure water
  • Pure water can transmit not only ArF excimer laser light, but also far ultraviolet light (DUV light) such as emission lines emitted from mercury lamps and KrF excimer laser light.
  • the optical element 8 is made of meteorite (CaF). Since meteorite has a high affinity with water, the liquid 1 can be brought into close contact with almost the entire liquid contact surface 2a of the optical element 8.
  • the optical element 8 may be Sekiei, which has a high affinity for water.
  • WO 2004/086468 pamphlet (corresponding to US Patent Application Publication No. 2005/0280791), WO 2005/024517 Pamphlet, European Patent Application Publication No. 1420298 Specification, WO 2004/055803 pamphlet, WO 2004/057589 pamphlet, WO 2004/05 7590 pamphlet, WO 2005/029559 pamphlet (corresponding US Patent Application Publication No. 2006/0231206) No.), U.S. Pat. No. 6,952,253, and the like can also be used.
  • the nozzle member 30 can form an immersion space LS between the nozzle member 30 and an object facing the nozzle member 30.
  • the nozzle member 30 is disposed in the vicinity of the terminal optical element 8 of the projection optical system PL, and exposure light is emitted on the light emission side of the terminal optical element 8 (image surface side of the projection optical system PL).
  • the immersion space LS can be formed between an object arranged at a position where the EL can be irradiated, that is, an object arranged at a position facing the light emission surface of the terminal optical element 8.
  • the nozzle member 30 holds the liquid LQ between the object and the optical path space of the exposure light EL on the light emission side of the terminal optical element 8, specifically, the exposure between the terminal optical element 8 and the object.
  • the liquid LQ immersion space LS is formed so that the optical path space of the light EL is filled with the liquid LQ.
  • the nozzle member 30 includes, for example, a supply port formed on the inner surface facing the optical element 8 of the projection optical system PL, and a recovery port formed on the lower surface (bottom surface) on which the object is disposed. And a supply channel and a recovery channel formed inside and connected to the supply tube of the liquid supply device and the recovery tube of the liquid recovery device, respectively.
  • the supply port is on the + X direction side of optical element 8.
  • a first supply port formed and a second supply port formed on the X direction side of the optical element 8 can be arranged such that the first and second supply ports sandwich the projection region in the X direction.
  • the supply port may have a rectangular shape or an arc shape elongated in the Y direction.
  • the collection port has a rectangular (circular or other shape!) Frame arranged so as to surround the optical element 8 of the projection optical system PL, and is provided outside the optical element 8 from the supply port. Can be.
  • the recovery port may be a groove-like recess, and a mesh filter, which is a porous member in which a large number of small holes are formed in a mesh shape to cover the recovery port, is fitted! /, obviously!
  • the nozzle member 30 may be suspended and supported by a main frame (not shown) that holds the projection optical system PL, or may be provided on a frame member that is different from the main frame. Alternatively, when the projection optical system PL is suspended and supported, the nozzle member 30 may be suspended and supported integrally with the projection optical system PL, or the measurement supported by being suspended and supported independently of the projection optical system PL. The nozzle member 30 may be provided on the frame or the like. In the latter case, the projection optical system PL need not be suspended and supported.
  • the object that can face the nozzle member 30 and the terminal optical element 8 includes an object that has a facing surface that can face the terminal optical element 8 and is movable on the light emission side of the terminal optical element 8.
  • the object that can face the nozzle member 30 and the terminal optical element 8 is at least one of the first substrate stage 1 and the second substrate stage 2 that can move on the light emission side of the terminal optical element 8. including.
  • the object that can face the nozzle member 30 and the last optical element 8 also includes the substrate P held by the first and second substrate stages 1 and 2.
  • Each of the first and second substrate stages 1 and 2 has opposing surfaces 15 and 25 that can face the nozzle member 30 and the last optical element 8, and the nozzle member 30 It is possible to form a space that can hold the liquid LQ between the nozzle member 30 and the terminal optical element 8 and at least a part of the opposing surfaces 15 and 25. is there.
  • the object may include a measurement stage described later. Further, the immersion space LS formed between the nozzle member 30 and the last optical element 8 and the object is also simply referred to as an immersion area on the object.
  • the nozzle member 30 holds the liquid LQ between at least a part of the opposing surfaces 15 and 25 of the first and second substrate stages 1 and 2 to thereby provide a light emitting side of the last optical element 8.
  • a liquid LQ immersion space LS can be formed between the second substrate stages 1 and 2.
  • the nozzle member 30 includes the terminal optical element 8 and the nozzle member so that a partial region (local region) of the surface of the object is covered with the liquid LQ of the immersion space LS.
  • An immersion space LS is formed between 30 and an object (at least one of the first substrate stage 1, the second substrate stage 2, and the substrate P).
  • the exposure apparatus EX is configured so that at least a part of the region on the substrate P is covered with the liquid LQ in the immersion space LS at least during the exposure of the substrate P.
  • a local immersion method is used in which an immersion space LS is formed between 30 and substrate P.
  • the local immersion apparatus (immersion system) that forms the immersion space LS includes the nozzle member 30 and the like. In the exposure of the shot region around the substrate P, the immersion space LS protrudes from the substrate P, and part of the opposing surfaces 15 and 25 is covered with the liquid LQ.
  • the exposure apparatus EX is provided in each of the first substrate stage 1 and the second substrate stage 2, and is a measurement light for position measurement from the laser interferometer 6Pz.
  • Measurement mirrors 1Rz and 2Rz which have inclined surfaces (tilted with respect to the XY plane!)
  • the first substrate stage 1 and the second substrate stage 2 are provided on each of the measurement mirrors 1R Z And 2Rz, predetermined members 81 and 82 (hereinafter referred to as “transmission members”) having end surfaces projecting outward in the XY plane and having transmission regions through which the measurement light ML can be transmitted are provided.
  • the transmission member 81 is provided on the first substrate stage 1, and the transmission member 82 is provided on the second substrate stage 2.
  • the transmission members 81 and 82 are plate-shaped members having an upper surface and a lower surface.
  • the transmission members 81 and 82 can form a space capable of holding the liquid LQ between the nozzle member 30 and the last optical element 8. Note that a transmission member may be provided on only one of the first and second substrate stages 1 and 2.
  • the alignment system AL of the measurement station ST2 includes an optical element 9 that can face an object (at least one of the first substrate stage 1, the second substrate stage 2, and the substrate P). Each of the first substrate stage 1 and the second substrate stage 2 can be moved to a position facing the optical element 9 of the alignment system AL.
  • the alignment system AL acquires alignment marks on the substrate P via the optical element 9 in order to acquire positional information of the substrate P held on at least one of the first substrate stage 1 and the second substrate stage 2. First, second substrate stage 1, 2 base Detect quasi-marks etc.
  • the terminal optical element 8 of the projection optical system PL that emits the exposure light EL that is arranged at the exposure station ST1 is appropriately designated as the first optical element 8
  • the optical element 9 of the alignment system AL for obtaining the positional information of the substrate P arranged on the measurement station ST2 is appropriately referred to as a second optical element 9.
  • the position facing the first optical element 8 and irradiated with the exposure light EL from the first optical element 8 is appropriately referred to as an irradiation position
  • the position facing the second optical element 9 is appropriately positioned as the facing position.
  • the irradiation position can also be referred to as an exposure position.
  • the position where the opposite position is the detection position can also be called the measurement position.
  • each of the first substrate stage 1 and the second substrate stage 2 faces the first optical element 8, the position where the exposure light EL from the first optical element 8 is irradiated, and the second optical element It can move while holding the substrate P within a predetermined area on the guide surface GF including the position facing the element 9.
  • the exposure apparatus EX of the present embodiment is a scanning exposure apparatus (so-called scanning scanner) that projects an image of the pattern of the mask M onto the substrate P while synchronously moving the mask M and the substrate P in a predetermined scanning direction. It is.
  • the scanning direction (synchronous movement direction) of the substrate P is the Y-axis direction
  • the scanning direction of the mask M (synchronous movement direction) is also the Y-axis direction.
  • the exposure apparatus EX moves the substrate P in the Y-axis direction with respect to the projection area of the projection optical system PL, and synchronizes with the movement of the substrate P in the Y-axis direction with respect to the illumination area of the illumination system IL.
  • the substrate P is irradiated with the exposure light EL through the projection optical system PL and the liquid LQ to expose the substrate P.
  • an image of the pattern of the mask M is projected onto the substrate P.
  • the illumination system IL illuminates a predetermined illumination area on the mask M with exposure light EL having a uniform illuminance distribution.
  • the exposure light EL emitted from the illumination system IL includes, for example, bright ultraviolet rays (g-line, h-line, i-line) emitted from a mercury lamp and far ultraviolet light (DU V light) such as KrF excimer laser light (wavelength 248 nm). ArF excimer laser light (wavelength 193nm) and F laser light (wavelength 157nm)
  • Sky ultraviolet light (VUV light) is used.
  • Ar is used as the exposure light EL.
  • F excimer laser light is used.
  • the mask stage 3 can be moved in the X axis, Y axis, and ⁇ Z directions while holding the mask M by a mask stage drive system 4 including an actuator such as a linear motor.
  • Position information of the mask stage 3 (mask M) is measured by the laser interferometer 6M of the measurement system 6.
  • the laser interferometer 6M measures position information of the mask stage 3 in the X axis, Y axis, and ⁇ Z directions using a measurement mirror 3R provided on the mask stage 3.
  • the control device 7 drives the mask stage drive system 4 based on the measurement result of the measurement system 6 and controls the position of the mask M held on the mask stage 3.
  • Projection optical system PL projects an image of the pattern of mask M onto substrate P at a predetermined projection magnification.
  • Projection optical system PL has a plurality of optical elements, and these optical elements are held by lens barrel PK.
  • the projection optical system PL of the present embodiment is a reduction system whose projection magnification is, for example, 1/4, 1/5, 1/8 or the like.
  • the projection optical system PL may be either an equal magnification system or an enlargement system.
  • the optical axis AX of the projection optical system PL is parallel to the Z-axis direction.
  • the projection optical system PL may be any of a refractive system that does not include a reflective optical element, a reflective system that does not include a refractive optical element, and a catadioptric system that includes a reflective optical element and a refractive optical element. Further, the projection optical system PL may form either an inverted image or an erect image.
  • the exposure light EL emitted from the illumination system IL and passing through the mask M enters the projection optical system PL from the object plane side of the projection optical system PL.
  • the projection optical system PL can emit the exposure light EL incident from the object surface side from the light emission surface (lower surface) of the first optical element 8 to irradiate the substrate P.
  • the first substrate stage 2 includes a stage body 11, and a first substrate table 12 that is supported by the stage body 11 and has a substrate holder 13 that holds the substrate P in a removable manner.
  • the stage body 11 is supported in a non-contact manner on the upper surface (guide surface GF) of the base member BP by, for example, an air bearing 14.
  • the first substrate table 12 has a recess 12C, and the substrate holder 13 is disposed in the recess 12C.
  • a part of the area of the facing surface 15 around the recess 12C of the first substrate table 12 is substantially flat and is almost the same height (level) as the surface of the substrate P held by the substrate holder 13.
  • the first substrate table 12 is opposed to the first substrate table 12 having a region that is substantially flush with the surface of the substrate P held by the substrate holder 13 of the first substrate table 12. It has face 15.
  • the first substrate stage 1 is held on the base member BP while holding the substrate P by the substrate holder 13 by the substrate stage driving system 5, and the X axis, Y axis, Z axis, ⁇ X, ⁇ Y, and ⁇ It can move in the direction of 6 degrees of freedom in the Z direction.
  • the second substrate stage 2 includes a stage body 21 and a second substrate table 22 having a substrate holder 23 supported by the stage body 21 and detachably holding the substrate P.
  • the stage body 21 is supported in a non-contact manner on the upper surface (guide surface GF) of the base member BP by, for example, an air bearing 24.
  • the second substrate table 22 has a recess 22C, and the substrate holder 23 is disposed in the recess 22C.
  • a part of the facing surface 25 around the recess 22C of the second substrate table 22 is almost flat and is almost the same height (level) as the surface of the substrate P held by the substrate holder 23.
  • the second substrate table 22 has a facing surface 25 having a region that is substantially flush with the surface of the substrate P held by the substrate holder 23 of the second substrate table 22.
  • the second substrate stage 2 is held on the base member BP while holding the substrate P by the substrate holder 23 by the substrate stage driving system 5, while the X-axis, Y-axis, Z-axis, ⁇ X, ⁇ Y, and ⁇ It can move in the direction of 6 degrees of freedom in the Z direction.
  • the first substrate stage 1 including the stage body 11 and the first substrate table 12 and the second substrate stage 2 including the stage body 21 and the second substrate table 22 are substantially the same shape and size. And have almost the same configuration.
  • each of the first and second substrate tables 12 and 22 of the first and second substrate stages 1 and 2 is substantially rectangular in the XY plane.
  • the substrate stage drive system 5 includes an actuator such as a linear motor, and can move each of the first substrate stage 1 and the second substrate stage 2.
  • the substrate stage drive system 5 includes a coarse motion system 5A that moves the stage bodies 11, 21 on the base member BP, and a fine motion system 5B that moves the substrate tables 12, 22 on the stage bodies 11, 21. And.
  • the coarse motion system 5A includes an actuator such as a linear motor, and can move the stage bodies 11 and 21 on the base member BP in the X-axis, Y-axis, and ⁇ Z directions.
  • an actuator such as a linear motor
  • the substrate tables 12 and 22 mounted on the stage main bodies 11 and 21 are also moved. Move along the X axis, Y axis, and ⁇ Z direction with each stage body 11, 21.
  • FIG. 2 is a view of the first substrate stage 1 and the second substrate stage 2 as viewed from above.
  • a coarse motion system 5A for moving the first substrate stage 1 and the second substrate stage 2 includes a plurality of! Motors 42, 43, 44, 45, 46, 47.
  • the coarse motion system 5A includes a pair of Y-axis guide members 31 and 32 extending in the Y-axis direction.
  • Each of the Y-axis guide members 31 and 32 includes a magnet unit having a plurality of permanent magnets.
  • One Y-axis guide member 31 supports two slide members 35 and 36 so that they can move in the Y-axis direction, and the other Y-axis guide member 32 moves two slide members 37 and 38 in the Y-axis direction. Support as possible.
  • Each of the slide members 35, 36, 37, and 38 includes a coil unit having an armature coil. That is, in this embodiment, the sliding members 35, 36, 37, and 38 having the coil unit and the Y-axis guides and members 31 and 32 having the magnet unit make the moving coil type Y-axis linear motors 42 and 43 , 44, 45 are formed.
  • the coarse motion system 5A includes a pair of X-axis guide members 33 and 34 extending in the X-axis direction.
  • Each of the X-axis guide members 33 and 34 includes a coil unit having an armature coil.
  • One X-axis guide member 33 supports the slide member 51 to be movable in the X-axis direction
  • the other X-axis guide member 34 supports the slide member 52 to be movable in the X-axis direction.
  • Each of the slide members 51 and 52 includes a magnet unit having a plurality of permanent magnets. In FIG. 1 and FIG. 2, the slide member 51 is connected to the stage main body 11 of the first substrate stage 1, and the slide member 52 is connected to the stage main body 21 of the second substrate stage 2.
  • the moving magnet type X-axis linear motor 46 is formed by the slide member 51 having the magnet unit and the X-axis guide member 33 having the coil unit.
  • a moving magnet type X-axis linear motor 47 is formed by the slide member 52 having a magnet unit and the X-axis guide member 34 having a coil unit. 1 and 2, the first substrate stage 1 (stage body 11) is moved in the X-axis direction by the X-axis linear motor 46, and the second substrate stage 2 (stage body) is moved by the X-axis linear motor 47. 21) moves in the X-axis direction.
  • the slide members 35 and 37 are fixed to one end and the other end of the X-axis guide member 33, respectively, and the slide members 36 and 38 are fixed to one end and the other end of the X-axis guide member 34, respectively. ing. Therefore, the X-axis guide member 33 can be moved in the Y-axis direction by the Y-axis linear motors 42 and 44, and the X-axis guide member 34 can be moved in the Y-axis direction by the Y-axis linear motors 43 and 45.
  • the first substrate stage 1 (stage body 11) is moved in the Y-axis direction by the Y-axis linear motors 42 and 44, and the second substrate stage 2 (stage) is moved by the Y-axis linear motors 43 and 45.
  • the main body 21) moves in the Y-axis direction.
  • the substrate tables 12 and 22 are supported by the stage bodies 11 and 21 so as to be movable.
  • fine movement system 5B includes actuators 1 IV, 21V such as voice coil motors interposed between stage bodies 11, 21 and substrate tables 12, 22, And a measurement device (not shown) that measures the drive amount of each actuator (for example, an encoder system).
  • actuators 1 IV, 21V such as voice coil motors interposed between stage bodies 11, 21 and substrate tables 12, 22, And a measurement device (not shown) that measures the drive amount of each actuator (for example, an encoder system).
  • Each substrate table 12, 22 on each stage body 11, 21 is connected to at least Z axis, ⁇ X, And ⁇ can be moved in the Y direction.
  • the fine movement system 5B can move (finely move) the substrate tables 12 and 22 on the stage main bodies 11 and 21 in the X-axis, Y-axis, and ⁇ Z directions.
  • the drive system 5 including the coarse motion system 5A and the fine motion system 5B includes the first substrate table 12 and the second substrate table 22 as the X axis, the Y axis, the Z axis, ⁇ ⁇ , It can move in the direction of 6 degrees of freedom in ⁇ ⁇ and ⁇ ⁇ directions.
  • the first substrate stage 1 (stage body 11) and the second substrate stage 2 (stage body) are identical to each other.
  • JP 2000-505958 (corresponding US Pat. No. 5,969,441)
  • JP 2000-511704 corresponding US Pat. No. 5,815,246
  • JP 2001-223159 Corresponding U.S. Pat. No. 6,498,350
  • JP 2000-505958 corresponds US Pat. No. 5,969,441
  • JP 2000-511704 corresponds US Pat. No. 5,815,246
  • JP 2001-223159 Corresponding U.S. Pat. No. 6,498,350
  • the first substrate stage 1 includes a first joint member 61 provided on the side surface on the heel side of the stage body 11 and a second joint member 61 provided on the side surface on the + heel side. With fitting member 62 It is.
  • the second substrate stage 2 includes a third joint member 63 provided on the Y side surface of the stage body 21 and a fourth joint member 64 provided on the + Y side surface! / RU
  • the substrate stage drive system 5 includes a joint member 53 provided on the slide member 51 and a joint member 54 provided on the slide member 52.
  • the joint member 53 is provided on the side surface of the slide member 51 on the + Y side so as to face the measurement station ST2 side (+ Y side).
  • the joint member 54 is provided on the side surface on the Y side of the slide member 52 so as to face the exposure station ST1 side (—Y side).
  • the slide member 51 and the joint member 53 are connected so as to be releasable as will be described later, and the slide member 51 and the joint member 53 are movable together.
  • the slide member 52 and the joint member 54 are fixed, and the slide member 52 and the joint member 54 are movable together. Therefore, the linear motors 42, 44, and 46 can move the slide member 51 and the joint member 53 together, and the linear motors 43, 45, and 47 can move the slide member 52 and the joint member 54 together. Can be moved to.
  • the first joint member 61 of the stage body 11 and the third joint member 63 of the stage body 21 are sequentially connected so as to be releasable.
  • a second joint member 62 of the stage body 11 and a fourth joint member 64 of the stage body 21 are sequentially connected to the joint member 54 provided on the slide member 52 so as to be releasable.
  • the joint member 53 provided on the slide member 51 includes the stage body 11 of the first substrate stage 1 and the stage body 21 of the second substrate stage 2, the first joint member 61 and the third joint.
  • the joint member 54 which is sequentially connected so as to be releasable via the hand member 63 and is provided on the slide member 52, is connected to the stage body 11 of the first substrate stage 1 and the stage body 21 of the second substrate stage 2.
  • the two joint members 62 and the fourth joint member 64 are sequentially connected so as to be releasable.
  • the member 51 is collectively referred to as a first connection member 71 as appropriate.
  • the stage body 11 of the first substrate stage 1 and the stage body 21 of the second substrate stage 2 are also shown.
  • the joint member 54 and the slide member 52 fixed to the joint member 54 are sequentially referred to as a second connection member 72 as appropriate.
  • the linear motors 42, 44, 46 can move the first connection member 71, and the linear motors 43, 45, 47 move the second connection member 72.
  • the exposure apparatus EX includes a first area S Pl, a second area SP2, a third area SP3, and a fourth area SP4 set on the base member BP.
  • the first region SP1 includes a position facing the first optical element 8 of the projection optical system PL, and is a region set in at least a part of the exposure station ST1.
  • the second region SP2 is a region different from the first region SP1, includes a position facing the second optical element 9 of the alignment system AL, and is a region set as at least a part of the measurement station ST2.
  • the first region SP1 and the second region SP 2 are set along the Y-axis direction. In the present embodiment, the first region SP1 is disposed on the Y side of the second region SP2.
  • the third region SP3 and the fourth region SP4 are arranged between the first region SP1 and the second region SP2.
  • the third region SP3 and the fourth region SP4 are set along the X-axis direction that intersects the Y-axis direction.
  • the third region SP3 is disposed on the + X side of the fourth region SP4.
  • the first substrate stage 1 can be moved by the substrate stage driving system 5 while holding the substrate P in a predetermined region on the base member BP including the first region SP1 and the second region SP2.
  • the second substrate stage 2 is separated from the first substrate stage 1 by a substrate stage drive system 5 in a predetermined region on the base member BP including the first region SP1 and the second region SP2. It can move while holding the substrate P.
  • the first substrate stage 1 moves from the second region SP2 to the first region SP1
  • the first substrate stage 1 moves from the second region SP2 to the first region SP1 through at least a part of the third region SP3.
  • the first region SP1 moves to the second region SP2 via at least a part of the third region SP3.
  • the second substrate stage 2 moves from the second region SP2 to the first region SP1, it moves from the second region SP2 to the first region SP1 through at least a part of the fourth region SP4, and from the first region SP1.
  • the first region SP1 moves to the second region SP2 via at least a part of the fourth region SP4.
  • control device 7 has a first connection portion on the base member BP at a predetermined timing.
  • the connection member 71 and the second substrate stage 2 (or the first substrate stage 1) are connected, and the second connection member 72 and the first substrate stage 1 (or the second substrate stage 2) are connected. That is, the control device 7 performs the exchange operation of the first connection member 71 and the second connection member 72 for the first substrate stage 1 and the second substrate stage 2 at a predetermined timing.
  • the first connection member 71 is alternately connected to the first joint member 61 of the stage body 11 and the third joint member 63 of the stage body 21, and the second connection member 72 is connected to the first joint member 61 of the stage body 11. 2
  • the joint member 62 and the fourth joint member 64 of the stage main body 21 are alternately connected. That is, the first connection member 71 is alternately connected to the stage body 11 of the first substrate stage 1 and the stage body 21 of the second substrate stage 2 via the first joint member 61 and the third joint member 63,
  • the second connection member 72 is alternately connected to the stage main body 11 of the first substrate stage 1 and the stage main body 21 of the second substrate stage 2 via the second joint member 62 and the fourth joint member 64.
  • the first connection member 71 moves one of the connected substrate stages of the first substrate stage 1 and the second substrate stage 2 by driving the linear motors 42, 44, 46, and the second connection member 72 is driven by the linear motors 43, 45, 47 to move the other connected board stage.
  • the stage body (11, 21) and the substrate table (12, 22) may be a force that is relatively movable.
  • the stage body and the substrate table may be integrally provided. Good.
  • the stage body may be movable in the direction of 6 degrees of freedom.
  • the first substrate table 12 of the first substrate stage 1 and the second substrate table 22 of the second substrate stage 2 are respectively measured to measure the positions of the first substrate table 12 and the second substrate table 22. It has measurement mirrors lRx, lRy, lRz, 2Rx, 2Ry, 2Rz irradiated with measurement light ML from system 6.
  • Measurement system 6 includes laser interferometers 6Px, 6Py, and 6Pz that can irradiate measurement light ML for position measurement on each of measurement mirrors lRx, lRy, lRz, 2Rx, 2Ry, and 2Rz.
  • Measurement mirrors lRx, lRy, lRz, 2Rx provided at predetermined positions on the second substrate tables 12, 22
  • the position information of the first and second substrate tapes 12 and 22 can be measured by irradiating each of 2Ry and 2Rz with measurement light ML for position measurement.
  • the measurement system 6 uses the measurement mirrors lRx, lRy, 1Rz, 2Rx, 2Ry, 2Rz provided at predetermined positions on the first and second substrate tables 12 and 22, respectively. It is possible to measure the positional information on the direction of the 6 degrees of freedom of the second board tef, the No. 12 and No. 22 and the X car, Y car, Z car, ⁇ X, ⁇ Y, and ⁇ ⁇ directions.
  • the measurement mirror 1 Rx is disposed on the upper side of each of the + X side and X side sides of the first substrate table 12.
  • the measurement mirror lRy is disposed on the upper side of each side surface of the first substrate table 12 on the + Y side and the ⁇ Y side.
  • the measurement mirror lRz is located at the bottom of each side of the + X side, X side, + Y side, and Y side of the first substrate table.
  • the measurement mirror 2Rx is disposed on the upper side of each side surface of the second substrate table 22 on the + X side and the X side.
  • the measurement mirror 2Ry is arranged on the upper side of each side surface of the second substrate table 22 on the + Y side and the ⁇ Y side.
  • the measurement mirror 2Rz is arranged at the lower part of each side surface of the second substrate tape liner 22 on the + X side, the X side, the + Y side, and the Y side.
  • the measurement system 6 includes measurement mirrors lRx, lRy, lRz, 2Rx, 2Ry provided at predetermined positions on the first and second substrate tables 12 and 22 of the first and second substrate stages 1 and 2, respectively.
  • Laser interferometers 6Px, 6Py, and 6Pz that measure position information of the first and second substrate tables 12 and 22 by irradiating measurement light ML to each of 2Rz are provided.
  • Laser interferometers 6Px, 6Py, and 6Pz are provided in each of exposure station ST1 and measurement station ST2.
  • the laser interferometers 6Px, 6Py, 6Pz provided in the exposure station ST1 measure the position information of the first substrate table 12 (or the second substrate table 22) existing in the exposure station ST1, and are provided in the measurement station ST2.
  • the laser interferometers 6Px, 6Py, 6Pz measure the position information of the second substrate table 22 (or the first substrate table 12) existing in the measurement station ST2.
  • the laser interferometer 6Px can irradiate measurement mirrors lRx and 2Rx with measurement light ML with the X-axis direction as the measurement axis, and measures the position of the first and second substrate tables 12 and 22 in the X-axis direction. To do.
  • Laser interferometer 6Py uses measurement light ML with measurement axis in the Y-axis direction as measurement mirror lRy, 2Ry can be irradiated, and the position of the first and second substrate tables 12, 22 in the Y-axis direction is measured.
  • the laser interferometer 6Pz can irradiate measurement mirrors 1Rz and 2Rz with measurement light ML with the Z-axis direction as the measurement axis, and measures the positions of the first and second substrate tables 12 and 22 in the Z-axis direction.
  • the measurement mirrors lRz and 2Rz have slopes lSz and 2Sz to which the measurement light ML for position measurement from the laser interferometer 6Pz is irradiated.
  • the inclined surfaces lSz and 2Sz are also inclined with respect to the measurement light ML emitted from the laser interferometer 6Pz, which is inclined with respect to the XY plane as described above.
  • the slopes lSz and 2Sz of the measurement mirrors lRz and 2Rz function as reflecting surfaces that reflect the irradiated measurement light ML.
  • the inclined surfaces of the measurement mirrors lRz and 2Rz that can reflect the irradiated measurement light ML are appropriately referred to as reflection surfaces.
  • the measurement mirrors lRz and 2Rz are arranged on the side surfaces of the first substrate stage 1 and the second substrate stage 2 so that the reflection surfaces (slopes) lSz and 2Sz face upward.
  • the reflecting surfaces lSz and 2Sz of the measuring mirrors 1 Rz and 2Rz are inclined at a predetermined angle (for example, 45 degrees) with respect to the XY plane so as to face upward, and are emitted from the laser interferometer 6Pz, and are reflected by the measuring mirrors lRz and 2Rz
  • the measurement light ML irradiated on is reflected by the reflection surfaces l Sz and 2Sz of the measurement mirrors lRz and 2Rz, and is applied to the measurement mirrors 1K and 2 ⁇ provided on the predetermined support frame 19.
  • the laser interference meter 6Pz receives the light.
  • the laser interferometer 6Pz can measure the positional information of the first and second substrate tables 12 and 22 in the Z-axis direction using the received measurement light ML.
  • Z interferometer A technique relating to a laser interferometer (Z interferometer) capable of measuring position information in the Z-axis direction of the first and second substrate tables 12 and 22 is disclosed in, for example, Japanese Patent Laid-Open No. 2000-323404 (corresponding to US Pat. No. 7,206, No. 058), JP 2001-513267 (corresponding US Pat. No. 6,208,407) and the like.
  • At least one of a laser interferometer 6Px and a laser interferometer 6Py is provided, and at least one of the measurement light ML with the X axis direction as the measurement axis and at least one of the measurement light with the Y axis direction as the measurement axis is irradiated.
  • the measurement system 6 can measure the position information in the ⁇ Z direction of the first and second substrate tables 12 and 22 using the plurality of measurement lights ML.
  • laser By providing multiple interferometers 6Pz and irradiating multiple measurement light MLs with the Z-axis direction as the measurement axis, the measurement system 6 uses the multiple measurement light MLs to make the first and second substrate tables 12 ,
  • the position information of ⁇ X and ⁇ Y directions of 22 can be measured.
  • Laser interferometers 6Px, 6Py, and 6Pz are appropriately replaced with X interferometers.
  • the measurement system 6 has an alignment system AL including the second optical element 9.
  • the alignment system AL is arranged at the measurement station ST2, and the alignment mark on the substrate P or the
  • the measurement system 6 has a focus' leveling detection system FL.
  • the focus' leveling detection system FL is arranged at the measurement station ST2 and the surface position information (Z-axis, ⁇ X, and ⁇ Y directions) of the surface of the substrate P held by the first and second substrate tables 12 and 22 Position information).
  • the focus / leveling detection system FL is the measuring station ST2 and the surface position information of the surface of the substrate P held on the first substrate table 12 and the surface surface of the substrate P held on the second substrate table 22. The position information is detected alternately.
  • control device 7 drives the substrate stage drive system 5 based on the measurement result of the measurement system 6 and controls the positions of the first and second substrate tables 12, 22.
  • the position of the substrate P held by the substrate holders 13 and 23 of the first and second substrate tables 12 and 22 is controlled.
  • the substrate is exposed via projection optical system PL and liquid LQ.
  • measurement station ST2 measurement related to exposure and replacement of the substrate P are performed.
  • Each of the first substrate stage 1 and the second substrate stage 2 is movable between the first region SP1 of the exposure station ST1 and the second region SP2 of the measurement station ST2 while holding the substrate P.
  • FIG. 3 is a perspective view showing the vicinity of the first substrate table 12 provided with the transmissive member 81
  • FIG. 4 is a plan view showing the first and second substrate tables 12, 22 provided with the transmissive member 81, 82.
  • FIG. 5 and FIG. 5 are side views.
  • FIG. 6 is a side sectional view showing the vicinity of the transmission member 81 provided on the first substrate table 12. is there.
  • the force that mainly explains the transmitting member 81 provided on the first substrate table 12 is the same as the transmitting member 82 provided on the second substrate table 22.
  • the transmission member 81 has an overhanging portion 81S projecting from the first substrate table 12 (side surface) to the outside of the measurement mirror lRz.
  • the projecting portion 81S has an end surface 81E, and the end surface 81E also projects outward from the first substrate table 12 with respect to the measurement mirror lRz.
  • the overhang portion 81S defines a transmission region 81S that can transmit the measurement light ML.
  • the transparent member 81 is made of a glass material that can transmit the measurement light ML, such as quartz.
  • the measurement mirror lRz is arranged on the side surface of the first substrate table 12 so as to protrude outward from the side surface of the first substrate table 12 (in the X direction in the figure).
  • the end surface 81E of the transmissive member 81 is arranged on the first substrate table 12 so that the end surface 81E protrudes outward (in the X direction in the drawing) in the XY plane from the measurement mirror lRz.
  • the measurement mirror lRz is disposed on the side surface of the first substrate tape liner 12 so that the reflection surface lSz faces upward (+ Z direction).
  • the reflecting surface lSz of the measuring mirror lRz is inclined at a predetermined angle (for example, 45 degrees) with respect to the XY plane.
  • the transmissive member 81 is a plate-like member (glass member) having an upper surface and a lower surface, and the upper surface of the transmissive member 81 and a partial region 15A of the facing surface 15 of the first substrate table 12 are substantially planes. They are arranged on the first substrate table 12 so as to be one (the positions in the Z-axis direction are substantially equal).
  • the transmission region 81 S of the transmission member 81 is a parallel plane plate, and the upper and lower surfaces of the transmission region 81 S of the transmission member 81 held by the first substrate table 12 are substantially parallel to the XY plane.
  • the transmission member 81 is arranged above the measurement mirror lRz so that at least a part of the lower surface of the transmission member 81 and the reflection surface lSz of the measurement mirror lRz face each other.
  • the transmission member 81 is connected to a part of the opposing surface of the first substrate table 12 so that the transmission region 81S and the reflection surface lSz of the measurement mirror lRz face each other above the measurement mirror lRz.
  • the measurement mirror lRz and the transmission member 81 are arranged such that the measurement light ML that passes through one of the reflection surface lSz of the measurement mirror lRz and the transmission region 81S of the transmission member 81 is incident on the other. 12 is arranged in a predetermined positional relationship! /
  • the measurement mirror lRz it is emitted from the Z interferometer 6Pz and irradiated to the measurement mirror lRz.
  • the measured light ML is reflected by the reflection surface lSz of the measurement mirror lRz and then incident on the transmission region 81 S of the transmission member 81 disposed above the measurement mirror lRz!
  • the measurement light ML that has entered the transmission region 81 S of the transmission member 81 passes through the transmission region 81 S, and is then applied to the measurement mirror 1K provided on the predetermined support frame 19.
  • the measurement light ML irradiated to the measurement mirror 1K and reflected by the measurement mirror 1K enters the transmission region 81S of the transmission member 81, passes through the transmission region 81S, and then exits from the transmission region 81S. .
  • the measurement light ML emitted from the transmission region 81S of the transmission member 81 is incident on the reflection surface 1 Sz of the measurement mirror lRz.
  • the measurement light ML incident on the reflecting surface lSz of the measuring mirror lRz is reflected by the reflecting surface lSz and then enters the Z interferometer 6Pz.
  • the Z interferometer 6Pz receives the measurement light ML from the reflecting surface lSz of the measurement mirror lRz.
  • the facing surface 15 of the first substrate table 12 that can face the first optical element 8 is substantially flush with the surface of the substrate P held by the substrate holder 13.
  • a region 15A and a region 15B lower than the region 15A are formed.
  • the region 15B is formed so as to be connected to the side surface of the first substrate tape liner 12, and a step 12D is formed between the region 15A and the region 15B.
  • the exposure apparatus EX includes a holding mechanism 90 that is provided on the first substrate table 12 and holds at least a part of the transmissive member 81 in a detachable manner. At least a part of the holding mechanism 90 is provided in the region 15B of the facing surface 15. The lower surface of the transmissive member 81 and the region 15B of the opposing surface 15 can contact each other.
  • the transmissive member 81 includes a part of the lower surface of the transmissive member 81 and the opposing surface of the first substrate table 12
  • the holding mechanism 90 is formed in a region 15B of the facing surface 15, and has a groove 91 for forming a space between the lower surface of the transmission member 81 disposed so as to be in contact with the region 15B.
  • a suction port 92 formed on the inner side and a vacuum system 94 connected to the suction port 92 via a flow path 93 are provided.
  • the vacuum system 94 can suck the gas in the space formed between the lower surface of the transmission member 81 and the groove 91 through the suction port 92.
  • the operation of the vacuum system 94 is controlled by the controller 7.
  • the vacuum system 94 of the holding mechanism 90 in a state where the lower surface of the transmission member 81 and the region 15B of the opposing surface 15 of the first substrate table 12 are in contact with each other and a space is formed between the lower surface of the transmission member 81 and the groove 91.
  • the control device 7 can suck and hold the lower surface of the transmission member 81 in the region 15B of the facing surface 15 of the first substrate table 12. Further, the control device 7 can release the suction and holding of the transmission member 81 by stopping the driving of the vacuum system 94 of the holding mechanism 90. That is, the holding mechanism 90 of this embodiment includes a so-called vacuum chuck mechanism.
  • the upper surface of the transmission member 81 held by the holding mechanism 90 and the region 15A of the facing surface 15 of the first substrate table 12 are substantially flush with each other. That is, the region 15A of the facing surface 15 of the first substrate table 12 is substantially flush with each of the upper surface of the transmission member 81 held by the holding mechanism 90 and the surface of the substrate P held by the substrate holder 13.
  • the region 15A of the facing surface 15 that is substantially flush with the surface of the substrate P and the upper surface of the transmission member 81 is appropriately referred to as a top surface 15A.
  • the region 15B of the facing surface 15 that can hold the lower surface of the transmission member 81 is appropriately referred to as a holding surface 15B.
  • the end surface 81E of the transmission member 81 held by the holding mechanism 90 projects outward from the measurement mirror lRz.
  • the exposure apparatus EX includes an optical sensor 75 that is provided on the first substrate table 12 and that receives light via the transmission member 81.
  • the optical sensor 75 is disposed in a recess 12H formed inside the holding surface 15B.
  • the transmissive member 81 is disposed such that at least a part of the lower surface of the transmissive member 81 and the holding surface 15B of the first substrate table 12 face each other, and the transmissive member 81 is disposed on the optical sensor 75 disposed in the recess 12H. Light can be incident.
  • the transmissive member 81 includes a light shielding film 76 formed of, for example, chromium in a partial region of the upper surface thereof, and a slit-shaped opening 77 formed in a part of the light shielding film 76. And have. In the opening 77, the transmitting member 81 is exposed, and light can pass through the opening 77.
  • the region of the transmissive member 81 facing the opening 77 with respect to the transmissive region (first transmissive region) 81S (82S) is appropriately referred to as a second transmissive region 81SS (82SS).
  • the size of the light shielding film 76 in the XY plane substantially parallel to the top surface 15A of the first substrate table 12 is larger than that of the recess 12H.
  • the optical sensor 75 is, for example, Japanese Patent Application Laid-Open No. 2002-14005 (corresponding to US Patent Application Publication 2002/0041377) and Japanese Patent Application Laid-Open No. 2002-198303 (corresponding to US Patent Application Publication). No. 2002/0041377) and the like, which is an optical sensor constituting at least a part of the aerial image measurement system.
  • optical sensor 75 for example, WO 2005/074014 pamphlet (corresponding to US Patent Application Publication No. 2007/0127006), WO 2006/013806 pamphlet (corresponding to European Patent Application Publication No.
  • various detectors or measuring instruments such as an illumination unevenness measuring instrument, illuminometer, and wavefront aberration measuring instrument are arranged in the recess 12H formed on the top surface 15A of the first substrate table 12. May be. Light enters the detectors or measuring instruments through the openings of various patterns provided in the transmission member 81.
  • an uneven illuminance sensor disclosed in, for example, JP-A-57-117238 (corresponding US Pat. No. 4,465,368), for example, JP-A-2002 14005 (corresponding)
  • Illuminance monitor disclosed in Japanese Patent Publication No. (corresponding to US Patent Application Publication No. 2002/0061469) and, for example, International Publication No. 99/60361 pamphlet (corresponding European Patent No. 1,079,223) Etc.) can be used.
  • the transmission member 81 provided on the first substrate table 12 has been mainly described.
  • the second substrate table 22 is also provided with a holding mechanism 90 similar to the holding mechanism 90 provided on the first substrate table 12, and the holding mechanism 90 is similar to the transmission member 81.
  • the transparent member 82 is detachably held.
  • the end face 82E of the transmission member 82 held by the holding mechanism 90 of the second substrate table 22 projects outward from the measurement mirror 2Rz.
  • the measurement mirror 2Rz and the transmissive member 82 are arranged such that the measurement light ML that passes through one of the reflective surface 2Sz of the measurement mirror 2Rz and the transmissive region 82S of the transmissive member 82 is incident on the other substrate. In the table 22, they are arranged in a predetermined positional relationship.
  • the second substrate table 22 is provided with an optical sensor 75 on which light transmitted through the opening 77 of the light shielding film 76 formed on the transmission member 82 is incident.
  • the transmissive member 81 is opposed to the first substrate table 12 so as to face the reflecting surface lSz of the measurement mirror lRz arranged on the side surface of the first substrate table 12 on the ⁇ X side. One is placed near the X side edge of surface 15.
  • the transmissive member 82 is positioned on the + X side edge of the facing surface 25 of the second substrate table 22 so as to face the reflecting surface 2Sz of the measurement mirror 2Rz disposed on the + X side surface of the second substrate table 22. One is arranged in the vicinity.
  • the end surface 81E of the transmissive member 81 is substantially linear, and the transmissive member 81 is held by the holding mechanism 90 of the first substrate table 12 so that the end surface 81E and the Y axis are substantially parallel.
  • the end surface 82E of the transmission member 82 is substantially linear, and the transmission member 82 is held by the holding mechanism 90 of the second substrate table 22 so that the end surface 82E and the Y axis are substantially parallel.
  • the control device 7 uses the substrate stage drive system 5 to transmit the end surface 81E on the X-side of the first substrate table 12 and the second substrate 81E.
  • the first substrate stage 1 and the second substrate stage 2 are synchronously moved in the X-axis direction in a state in which at least a part of the end surface 82E on the transmissive member 82 + X side of the table 22 is approaching or contacting.
  • a step 81D is formed on a part of the end surface 81E on the transmissive member 81-X side of the first substrate table 12.
  • a step 82D corresponding to (engaging with) the step 81D of the transmissive member 81 of the first substrate table 12 is formed on a part of the end surface 82E on the transmissive member 82 + X side of the second substrate table 22!
  • the other substrate stage is the measurement station. Perform predetermined processing in the second area SP2 of ST2
  • the exposure apparatus EX includes one substrate of the first substrate stage 1 and the second substrate stage 2. Place the stage at the position where the exposure light EL from the first optical element 8 of the exposure station ST1 is irradiated, and expose the substrate P held on one of the substrate stages and the other substrate stage. It is arranged at a position facing the second optical element 9 of the measurement station ST2, and at least a part of the operation of measuring the substrate P held on the other substrate stage is performed in parallel.
  • the exposure apparatus EX has one substrate stage of the first substrate stage 1 and the second substrate stage 2 arranged in the first region SP1 of the exposure station ST1, and the other substrate stage as the first substrate stage of the measurement station ST2. Placed in area 2 SP2, using the transfer system H, unloads (unloads) the exposed substrate P from the other substrate stage and transfers the substrate P to be exposed to the other substrate stage. When the board is loaded (loaded), the board is replaced.
  • the first substrate stage 1 and the second substrate stage 2 are sequentially disposed in the first region SP1 of the exposure station ST1, and the first substrate stage disposed in the first region SP1.
  • the operation of irradiating the exposure light EL to the substrate P held by 1 and the operation of irradiating the exposure light EL to the substrate P held by the second substrate stage 2 are sequentially executed.
  • control device 7 arranges the second substrate stage 2 at the substrate exchange position of the measurement station ST2, and uses the transfer system H to perform exposure processing on the second substrate stage 2. Load substrate P to be processed. Then, the control device 7 starts predetermined measurement processing and the like related to the substrate P held on the second substrate stage 2 at the measurement station ST2 (SM1).
  • the first substrate stage 1 holding the substrate P that has already been subjected to the measurement processing in the measurement station ST2 is arranged!
  • the control device 7 starts exposure of the substrate P held on the first substrate stage 1 at the exposure station ST1 (SE1).
  • the control device 7 performs immersion exposure of the substrate P held on the first substrate stage 1 in the exposure station ST1.
  • the controller 7 controls the exposure light EL on the light emission side of the first optical element 8 with the substrate P held on the first substrate stage 1 facing the first optical element 8 of the projection optical system PL.
  • the substrate P is exposed while the optical path space is filled with the liquid LQ.
  • a plurality of shot areas are set on the substrate P, and the controller 7 drives the substrate stage.
  • the moving system 5 is used to move the first substrate stage 1 in the first region SP1, and each of the plurality of shot regions on the substrate P held by the first substrate stage 1 is projected onto the projection optical system PL. And liquid LQ sequentially.
  • the control device 7 measures the position information of the substrate P held by the second substrate stage 2 arranged at the measurement station ST2.
  • the positional information of the substrate P is the alignment information of the substrate P with respect to a predetermined reference position (position information of X, ⁇ , ⁇ ⁇ directions of a plurality of shot areas on the substrate P), and with respect to a predetermined reference plane. It includes at least one of the surface position information of the substrate ⁇ (position information in the ⁇ , ⁇ , ⁇ ⁇ direction).
  • the control device 7 executes the detection operation using the alignment system AL and the detection operation using the focus leveling detection system FL.
  • the control device 7 measures the position information of the second substrate stage 2 in the negative axis direction while measuring the positional information of the second substrate stage 2 in the measurement station ST2.
  • the leveling detection system FL the surface position information of the predetermined reference surface and the surface of the substrate is detected.
  • the control device 7 calculates an approximate plane (approximate surface) of the surface (each shot region) of the substrate ⁇ ⁇ ⁇ with reference to the reference plane in the coordinate system defined by the measurement system 6 including the ⁇ interferometer 6 ⁇ . Ask.
  • measurement mirrors 2 Rz are arranged on each of the four side surfaces of the second substrate stage 2.
  • the measurement system 6 has each of the measurement mirrors 2Pz arranged on each of at least three of the four sides.
  • the measurement light ML is irradiated from the Z interferometer 6Pz, and the position information of the second substrate stage 2 in the Z-axis direction is measured.
  • three Z interferometers 6Pz are arranged on the + X side, the X side, and the + Y side with respect to the second optical element 9 in the measurement station ST2, and these Z interferometers 6Pz
  • the measurement light ML is irradiated onto the measurement mirror 2Rz of the second substrate stage 2. At least part of the measurement light ML emitted from the Z interferometer 6Pz is transmitted through the transmission member 82 of the second substrate stage 2. To do.
  • the control device 7 uses the X interferometer 6Px and the Y interferometer 6Py in the measurement station ST2 to detect the X of the second substrate stage 2 holding the substrate P. While measuring the positional information in the axial direction and the Y-axis direction, the alignment system AL is used to correspond to the reference mark formed on a part of the second substrate stage 2 and each shot area on the substrate P. The alignment mark provided in the is detected. Thereby, the alignment mark (and thus the shot area) and the position information of the reference mark are measured.
  • the shot area where the alignment mark is detected by the alignment system AL may be all the shot areas on the substrate P, but in this embodiment, only a part of the shot areas are used. Then, based on the measured position information of the shot area, the control device 7 obtains position information of each of the plurality of shot areas on the substrate P with respect to a predetermined reference position by an arithmetic process.
  • the exposure processing of substrate P held on first substrate stage 1 is completed at exposure station ST1, and the measurement processing of substrate P held on second substrate stage 2 is completed at measurement station ST2.
  • the control device 7 starts moving the second substrate stage 2 from the second region SP2 of the measurement station ST2 to the first region SP1 of the exposure station ST1. Note that the movement of the second substrate stage 2 may be started before the exposure processing of the substrate P at the exposure station ST1 is completed.
  • the control device 7 moves the first substrate stage 1 and the first optical element 8 even when the second substrate stage 2 is moved from the second region SP2 to the first region SP1. Place it at the opposite position. As a result, even when the second substrate stage 2 is moving from the second region SP2 to the first region SP1, the liquid LQ in the immersion space LS is separated from the first optical element 8 and the first substrate stage 1 (substrate P) will continue to be held between. With the above operation, as shown in FIG. 8, both the first substrate stage 1 and the second substrate stage 2 are arranged in the first region SP1 of the exposure station ST1.
  • the first substrate stage 1 holds the liquid LQ between the first optical element and the connection member exchange operation is performed. It is moved to a predetermined position in the first area SP1 shown in FIG.
  • the control device 7 maintains the state in which the first substrate stage 1 and the first optical element 8 face each other, and the first connection member 71 for the first substrate stage 1 and the second substrate stage 2.
  • the second connecting member 72 are exchanged. That is, the control device 7 releases the first substrate stage 1 from the first connection member 71 by releasing the connection between the first connection member 71 and the first joint member 61 of the first substrate stage 1.
  • the connection between the second connection member 72 and the fourth joint member 64 of the second substrate stage 2 is released, and the second substrate stage 2 is released from the second connection member 72.
  • control device 7 moves the first connection member 71 in the ⁇ X direction to connect to the third joint member 63 of the second substrate stage 2 and to perform the second connection.
  • the member 72 is moved in the + X direction and connected to the second joint member 62 of the first substrate stage 1.
  • the second connection member 72 connected to the second substrate stage 2 is connected to the first substrate stage 1.
  • the control device 7 uses the substrate stage drive system 5 to perform immersion exposure of the substrate P of the second substrate stage 2, and uses at least one of the first substrate stage 1 and the transmissive member 81. From the state where the first optical element 8 and the first optical element 8 are opposed to each other (that is, the state where the liquid LQ is held between at least one of the first substrate stage 1 and the transmission member 81 and the first optical element 8). State where at least one of stage 2 and transmission member 82 and first optical element 8 face each other (that is, liquid LQ is held between at least one of second substrate stage 2 and transmission member 82 and first optical element 8) To change the state).
  • the substrate stage drive system 5 is the first stage.
  • the end surface 81E of the transmission member 81 of the first substrate stage 1 and the transmission member 82 of the second substrate stage 2 The first substrate stage 1 and the second substrate stage 2 are moved synchronously with the end surface 82E approaching or contacting.
  • the approach of the end surface 81E of the transparent member 81 of the first substrate stage 1 and the end surface 82E of the transparent member 82 of the second substrate stage 2 means that the end surface 81E of the transparent member 81 of the first substrate stage 1 and the second substrate Liquid LQ does not leak from the end surface 82E of the transmissive member 82 of stage 2, or liquid LQ leaks out. It means that there is no impact on the operation of the exposure apparatus!
  • the transmission member 81, the transmission member 82, the first substrate stage 1, and the second substrate stage In order to form a space in which at least one of the two can hold the liquid LQ with the first optical element 8, the transmission between the end surface 81E of the transmission member 81 of the first substrate stage 1 and the second substrate stage 2 is achieved.
  • the end surface 82E of the member 82 is brought close to or in contact with (SE2).
  • At least one of the transmission member 81, the transmission member 82, the first substrate stage 1, and the second substrate stage 2 can hold the liquid LQ with the first optical element 8. Try to keep forming space. That is, in the first region SP1 of the guide surface GF including the position facing the first optical element 8 with the end surface 81E of the transmission member 81 and the end surface 82E of the transmission member 82 approaching or contacting each other, the substrate stage drive system 5, the first substrate stage 1 and the second substrate stage 2 are synchronously moved in the XY plane with respect to the first optical element 8 (SE3).
  • the control device 7 makes the first substrate in a state in which the end surface 81E of the transmission member 81 of the first substrate stage 1 and the end surface 82E of the transmission member 82 of the second substrate stage 2 are close to or in contact with each other. Stage 1 and second substrate stage 2 are moved synchronously in the + X direction. Thus, from the state where at least one of the first substrate stage 1 and the transmissive member 81 and the first optical element 8 face each other as shown in FIG. 9, the second substrate stage 2 and the transmissive member as shown in FIG. At least one of the members 82 and the first optical element 8 can be changed to face each other.
  • the control device 7 starts with the end surface 81E of the transmission member 81 of the first substrate stage 1 and the second substrate.
  • the first substrate stage 1 and the second substrate stage 2 are moved synchronously in the Y direction with the end surface 82E of the transmission member 82 of the stage 2 approaching or in contact with each other, so that the immersion space LS is transparent in the Y direction. It moves to the position of the step 81D formed on the end surface 81E of the excess member 81.
  • the control device synchronously moves the first substrate stage 1 and the second substrate stage 2 in the + X direction, so that the immersion space LS is formed on the end surfaces 81E and 82E of the transmission members 81 and 82.
  • Step 81D It can move over the second substrate stage 2 through 82D.
  • the control device can position the first optical element 8 in the arrangement as shown in FIG.
  • the first and second substrate stages 1 and 2 are illustrated in FIG.
  • the movement of the first substrate stage 1 to the second area SP2 without the arrangement shown in FIG. 10 and the predetermined position in the first area SP1 of the second substrate stage 2, for example, a position where measurement by the optical sensor 75 is performed, or The movement to the exposure start position may be started.
  • the first and second substrate stages 1 and 2 are arranged as shown in FIGS. 8 and 9, the first optical element 8 is almost the same as the steps 81D and 82D of the transmission members 81 and 82 in the Y-axis direction.
  • the first and second substrate stages 1 and 2 may be positioned so that they are positioned.
  • the measurement mirror lRz is disposed on each of the four side surfaces of the first substrate table 12 so as to protrude (project) from the side surface. Each of them has a measuring mirror 2Rz so that it protrudes from the side (projects). Then, from the state where the liquid LQ is held between the first substrate stage 1 and the first optical element 8, the liquid LQ is held between the second substrate stage 2 and the first optical element 8.
  • the end face 81E of the transmissive member 81 projecting outward in the X direction from the measuring mirror lRz and the end face 82E of the transmissive member 82 projecting outward in the + X direction from the measuring mirror 2Rz. make contact.
  • the end surface 81E of the transmissive member 81 and the end surface 81E of the transmissive member 82 can be satisfactorily approached or brought into contact with each other while suppressing at least one of 1 and the measuring mirror 1 Rz from contacting (collising). Therefore, while the liquid LQ immersion space LS was formed, the liquid LQ was held between the first substrate stage 1 and the first optical element 8 while suppressing the leakage of the liquid LQ.
  • the liquid LQ can be smoothly changed between the second substrate stage 2 and the first optical element 8. That is, whether the first substrate stage 1 and the first optical element 8 face each other while the optical path space of the exposure light EL on the light emission side of the first optical element 8 is continuously filled with the liquid LQ.
  • the second substrate stage 2 and the first optical element 8 can be changed to face each other.
  • the end surfaces 81E and 82E of the transmission members 81 and 82 are provided with steps 81D and 82D that mesh with each other. Therefore, as shown in the schematic diagram of FIG. 12, in a state where the steps 81D and 82D are engaged, for example, the immersion space LS passes through the upper surfaces of the transmission members 81 and 82 above the steps 81D and 82D. By controlling the movement of the first and second substrate stages 1 and 2, leakage of the liquid LQ is more effectively suppressed.
  • control device 7 controls the substrate stage drive system 5 while maintaining the state in which the second substrate stage 2 and the first optical element 8 face each other, thereby controlling the first substrate stage 1 in the measurement step.
  • ST2 ST2
  • the second substrate stage 2 is arranged in the first region SP1 of the exposure station ST1, and the first substrate stage 1 is arranged in the second region SP2 of the measuring station ST2.
  • the substrate P held on the first substrate stage 1 moved to the measurement station ST2 is unloaded by the transfer system H at the substrate exchange position, and a new substrate P to be exposed is loaded onto the first substrate stage 1. (SM3).
  • the control device 7 starts measurement processing of the substrate P loaded on the first substrate stage 1 at the measurement station ST2 (SM4).
  • measurement mirrors lRz are arranged on each of the four side surfaces of the first substrate stage 1.
  • the measurement system 6 uses each of the measurement mirrors ⁇ arranged on at least three of the four side surfaces.
  • the measurement light ML is irradiated from the Z interferometer 6Pz, and the position information of the first substrate stage 1 in the Z-axis direction is measured.
  • three Z interferometers 6Pz are arranged on the + X side, the X side, and the + Y side with respect to the second optical element 9 in the measurement station ST2, and these Z interferometers 6Pz
  • the measurement light ML is irradiated to the measurement mirror lRz of the first substrate stage 1. At least a part of the measurement light ML emitted from the Z interferometer 6Pz passes through the transmission member 81 of the first substrate stage 1.
  • the control device 7 performs immersion exposure of the substrate P held on the second substrate stage 2 at the exposure station ST1 (SE5).
  • the control device 7 is held on the second substrate stage 2.
  • the substrate P and the first optical element 8 of the projection optical system PL facing each other, the optical path space of the exposure light EL on the light emission side of the first optical element 8 is filled with the liquid LQ.
  • Expose P. A plurality of shot areas are set on the substrate P, and the controller 7 uses the substrate stage drive system 5 to move the second substrate stage 2 to the first area SP1! /
  • each of a plurality of shot areas on the substrate P held on the second substrate stage 2 is sequentially exposed through the projection optical system PL and the liquid LQ.
  • control device 7 makes the first optical element 8 and the opening 77 face each other before the exposure of the substrate P is started, if necessary, and exposes the exposure light EL to the opening 77 via the liquid LQ. Can be irradiated.
  • the exposure light EL emitted from the first optical element 8 and applied to the opening 77 through the liquid LQ enters the optical sensor 75.
  • the control device 7 can execute a predetermined process such as, for example, executing calibration of the projection optical system PL.
  • the control device 7 uses the measurement result at the measurement station ST2 to adjust the position of the substrate P held by the second substrate stage 2 at the exposure station ST1, Substrate P is exposed.
  • the control apparatus 7 measures the position of the second substrate stage 2 arranged in the exposure station ST1 in the Z-axis direction with the Z interferometer 6Pz, and is defined by the measurement system 6 including the Z interferometer 6Pz.
  • the positional relationship between the approximate plane of the surface of the substrate P and the image plane of the projection optical system PL in the coordinate system is obtained.
  • the position information of the reference plane in the Z-axis direction and the approximate plane of the surface of the substrate P relative to the reference plane are already available at the measurement station ST2. It is measured.
  • the control device 7 stores in advance position information of the image plane of the projection optical system PL with respect to the reference plane.
  • the control device 7 measures the position of the second substrate stage 2 disposed in the exposure station ST1 in the Z-axis direction with the Z interferometer 6Pz, and based on the measurement result, the Z interferometer 6Pz The positional relationship between the approximate plane of the surface of the substrate P and the image plane of the projection optical system PL in the coordinate system defined by the measurement system 6 including Then, the control device 7 allows the surface of the substrate P and the image plane of the projection optical system PL to have a predetermined positional relationship (so that the surface of the base plate P and the image plane of the projection optical system PL match). Z interferometer 6Pz The substrate P is exposed while controlling the position of the second substrate stage 2 based on the position information measured by the stem 6.
  • measurement mirrors 2Rz are arranged on each of the four side surfaces of the second substrate stage 2.
  • the measurement system 6 applies Z to each of the measurement mirrors 2Pz arranged on at least three of the four side surfaces.
  • the measurement light ML is irradiated from the interferometer 6Pz, and the position information of the second substrate stage 2 in the Z-axis direction is measured.
  • three Z interferometers 6Pz are arranged on the + X side, the X side, and the Y side with respect to the first optical element 8.
  • the measurement light ML is irradiated to the measurement mirror 2Rz of the second substrate stage 2. At least a part of the measurement light ML emitted from the Z interferometer 6Pz is transmitted through the transmission member 82 of the second substrate stage 2.
  • the mark of the mask M is detected by the optical sensor 75, or the reference mark and the mark of the mask M are detected by an alignment system (not shown), and this detection result is also used for the second detection.
  • the substrate P is exposed while controlling the position of the substrate stage 2.
  • the exposure process of the substrate P held on the second substrate stage 2 is executed in the exposure station ST1, and the measurement process of the substrate P held on the first substrate stage 1 is executed in the measurement station ST2. Then, after the exposure processing of the substrate P held on the second substrate stage 2 in the exposure station ST1 and the measurement processing of the substrate held on the first substrate stage 1 in the measurement station ST2, the control device 7 Using the substrate stage drive system 5, the first substrate stage 1 arranged in the second region SP2 of the measurement station ST2 is moved to the first region SP1 of the exposure station ST1.
  • the exchange operation of the first connection member 71 and the second connection member 72 is performed, and the first connection member 71 is released from the second substrate stage 2 and connected to the first substrate stage 1, and the second connection member 72 Is released from the first substrate stage 1 and connected to the second substrate stage 2.
  • the control device 7 changes the state from the state in which the second substrate stage 2 and the first optical element 8 face each other to the state in which the first substrate stage 1 and the first optical element 8 face each other, and then the substrate Using stage drive system 5, exposure station SP1
  • the second substrate stage 2 arranged in the first area SP1 is moved to the second area SP2 of the measurement station ST2.
  • control device 7 sequentially exposes a plurality of shot areas of the substrate P held on the first substrate stage 1 while moving the first substrate stage 1 in the exposure station ST1, and also measures the measurement station ST2. Then, predetermined processing such as replacement of the substrate P of the second substrate stage 2 and measurement processing is executed.
  • control is performed when the exposure processing of the substrate P is executed in the exposure station ST1.
  • the apparatus 7 measures the position of the first substrate stage 1 placed in the exposure station ST1 in the Z-axis direction with the Z interferometer 6Pz, and based on the measurement result, projects the approximate plane of the surface of the substrate P and the projection. Obtain the positional relationship with the image plane of the optical system PL.
  • measurement mirrors lRz are arranged on each of the four side surfaces of the first substrate stage 1.
  • the measurement system 6 applies Z to each of the measurement mirrors ⁇ arranged on at least three of the four side surfaces.
  • the measurement light ML is irradiated from the interferometer 6Pz, and the position information of the first substrate stage 1 in the Z-axis direction is measured.
  • three Z interferometers 6Pz are arranged on the + X side, the X side, and the Y side with respect to the first optical element 8.
  • the measurement light ML is irradiated to the measurement mirror 2Rz of the first substrate stage 1. At least a part of the measurement light ML emitted from the Z interferometer 6Pz passes through the transmission member 81 of the first substrate stage 1.
  • the first and second substrate stages 1 and 2 have the end surfaces 81E and 82E projecting outward from the measurement mirrors lRz and 2Rz, respectively.
  • the transmission members 81 and 82 having transmission regions 81 S and 82 S through which the measurement light of the Z interferometer 6P z can be transmitted are arranged.
  • at least the transmissive member 81, the transmissive member 82, the first substrate stage 1, and the second substrate stage 2 are disposed at positions facing the first optical element 8 that do not interfere with the measurement operation of the Z interferometer 6Pz.
  • the exposure of the substrate P held on the first substrate stage 1 and the exposure held on the second substrate stage 2 can be executed while suppressing a decrease in throughput of the exposure apparatus EX.
  • the occurrence of watermarks due to the absence of liquid LQ, the occurrence of temperature changes due to heat of vaporization, etc. can be suppressed, and deterioration of exposure accuracy can be suppressed.
  • the first substrate stage 1 (first substrate table 12) and the second substrate stage 2 (second substrate table 22) have side surfaces on the side surfaces of the first and second substrate tables 12, 12, respectively.
  • 2 Measuring mirrors 1 ⁇ and ⁇ for measuring the position of 2 protrude outward, the opposing surface (top surface) 15 of the first substrate stage 1 and the opposing surface (top surface) 25 of the second substrate stage 2 It is difficult to approach or come into contact with each other.
  • the movement of the immersion space LS from one of the first substrate stage 1 and the second substrate stage 2 to the other has the end surfaces 81E and 82E projecting outward from the measurement mirrors lRz and 2Rz.
  • the first substrate stage 1 and the first optical element 8 can be changed from one to the other, and the second substrate stage and the first optical element 8 can be changed from one to the other.
  • the transmissive members 81 and 82 are detachably held by the holding mechanism 90 on the first and second substrate stages 1 and 2, for example, the deteriorated transmissive member 81, 82 can be easily replaced with a new one.
  • the transmission members 81 and 82 are provided with the opening 77 for shaping the light incident on the optical sensor 75, so that the light incident on the optical sensor 75 is shaped. There is no need to provide a new optical member. Therefore, the number of parts can be reduced.
  • the transmissive member 81 is disposed so as to face the reflecting surface lSz of the measurement mirror lRz disposed on the side surface on the ⁇ X side of the first substrate table 12, and the first base table
  • the measurement light ML irradiated to the measurement mirror lRz disposed on the side surface on the X side of the plate table 12 is transmitted through at least a part of the transmission member 81.
  • the transmission member 81 is, for example, a plane parallel plate, and the upper surface and the lower surface of the transmission region 81 S of the transmission member 81 held by the holding mechanism 90 are It is almost parallel to the XY plane.
  • the measurement is performed according to the position of the transmission region 81 S of the transmission member 81 in the radial direction.
  • the optical path length of the optical ML may change, which may affect the measurement accuracy of the Z interferometer 6Pz.
  • the control device 7 can correct, for example, errors in the measured values of the Z interferometer 6Pz caused by uneven thickness, stagnation, and the like of the transmission member 81 as necessary.
  • an example of a method for correcting the measurement value of the Z interferometer 6Pz caused by the transmission member 81 will be described.
  • the control device 7 executes an operation of acquiring positional information of the first substrate stage 1 in the Z-axis direction in advance using the Z interferometer 6Pz. That is, the control device 7 emits the measurement light ML from the Z interferometer 6Pz, and receives the measurement light ML via the reflection surface lSz of the measurement mirror lRz and the transmission region 81S of the transmission member 81 by the Z interferometer 6Pz. Thus, the position information of the first substrate stage 1 in the Z-axis direction is acquired. At this time, as shown in the schematic diagram of FIG.
  • the control device 7 monitors the drive amount of the above-described actuator 1 IV with an encoder system or the like, and does not change the position of the first substrate table 12 in the Z-axis direction.
  • the measurement light ML is emitted from the Z interferometer 6Pz, and the reflecting surface 1 Sz of the measuring mirror lRz and the transmitting member 81 Measured light ML via the transmission region 81 S is received by the Z interferometer 6Pz.
  • the Z interferometer 6Pz sequentially receives the measurement light ML through each position of the transmission member 81 in the Y-axis direction.
  • the transmission member 81 has uneven thickness or stagnation in the Y-axis direction, it is shown in the schematic diagram of FIG. 14 according to the change in the optical path length caused by the uneven thickness.
  • the measured value of Z interferometer 6Pz changes in the Y-axis direction.
  • the control device 7 derives a correction amount related to the measured value of the Z interference meter 6Pz corresponding to the position of the transmission region 81S of the transmission member 81 in the Y-axis direction.
  • a correction amount related to the measured value of the Z interference meter 6Pz corresponding to the position of the transmission region 81S of the transmission member 81 in the Y-axis direction.
  • the control device 7 derives a correction amount for canceling the error in association with the position of the transmission region 81S of the transmission member 81 in the Y-axis direction.
  • Control device 7 The derived correction amount is stored in the storage device 10.
  • the control device 7 measures the position information of the first substrate table 12 with the Z interferometer 6Pz, the measurement result of the Z interferometer 6Pz, and the storage device 10 The measured value of Z interferometer 6Pz is adjusted based on the stored information. That is, the control device 7 determines the measured value of the Z interferometer 6Pz that may include an error due to the unevenness of the thickness of the transmission member 81 and the like based on the correction amount that is obtained in advance and stored in the storage device 10. Adjust (correct). Then, the control device 7 determines the position in the Z-axis direction of the first substrate table 12 based on the measured value of the Z interferometer 6Pz after the adjustment (after correction).
  • control device 7 does not adjust (correct) the measured value of the Z interferometer 6Pz based on the correction amount stored in the storage device 10, and the measured value of the Z interferometer 6Pz and the storage device 10 is used to determine the driving amount of the substrate stage driving system 5 (mainly fine movement system 5B) for moving the first substrate table 12 to a desired position based on the correction amount stored in FIG.
  • the position of the first substrate table 12 can also be adjusted by driving the substrate stage driving system 5 based on the driving amount.
  • the transmissive members 81 and 82 are the force transmissive region 81 S (82S) (first transmissive region), which is a member formed entirely from a transmissive material such as glass, and the above-described members.
  • a composite member in which only the second transmissive region facing the opening is formed of a permeable material may be used.
  • a metal film or a fluoride film may be partially formed on the transmission members 81 and 82 in order to strengthen the transmission members 81 and 82 or improve the liquid repellency with the liquid Q.
  • FIG. 15 is a perspective view of the first and second substrate tables 12 and 22 according to the second embodiment.
  • the transmissive member 81 has a lower surface facing almost the entire region of the reflecting surface lSz of the measuring mirror lRz arranged on the side surface of the first substrate table 12 on the ⁇ X side. In other words, it is formed so as to have approximately the same size (length) as the measurement mirror 2Rz in the Y-axis direction, as shown in FIG.
  • the transmissive member 82 may be formed so as to face a partial region of the reflection surface 2Sz of the measurement mirror 2Rz arranged on the side surface on the + X side of the second substrate table 22.
  • the transmitting members 81 and 82 are formed smaller than the measuring mirrors lRz and 2Rz, the end surface 81E of the transmitting member 81 and the end surface 82E of the transmitting member 82 are brought close to or in contact with each other, and the upper surface of the transmitting members 81 and 82 is The movement of the first and second substrate stages 1 and 2 is controlled so that the immersion space LS passes. As a result, the liquid LQ is held between the first substrate stage 1 and the first optical element 8 while suppressing the collision between the measurement mirror lRz and the measurement mirror 2Rz, and the second substrate stage 2 And the first optical element 8 can be smoothly changed from one of the states in which the liquid LQ is held to the other.
  • the measurement light ML from the Z interferometer 6Pz is transmitted through the transmission member 81 (82). Both the first state that passes through and the second state that does not pass through the transmission member 81 (82) occur. In that case, there may be an error in the measurement result of the Z interferometer 6Pz between the first state and the second state, depending on the change in the optical path length caused by the presence or absence of the transmission member 81 (82). is there.
  • the control device 7 can correct, for example, an error in the measured value of the Z interferometer 6Pz caused by the presence or absence of the transmissive member 81 (or the transmissive member 82) as necessary.
  • an example of a method for correcting the measurement value of the Z interferometer 6Pz caused by the presence or absence of the transmission member 81 will be described.
  • the control device 7 performs an operation of acquiring positional information of the first substrate stage 1 in the Z-axis direction in advance using the Z interferometer 6Pz. For example, the control device 7 monitors the drive amount of the above-described actuator 1 IV with an encoder system or the like, and prevents the first substrate table 12 (the first substrate table 12 (the first first table 12) from changing the position of the first substrate table 12 in the Z-axis direction. While moving the substrate stage 1) in the Y-axis direction, the measurement light ML is emitted from the Z interferometer 6Pz.
  • the Z interferometer 6Pz has the reflection surface lSz of the measurement mirror lRz and the transmission of the transmission member 81.
  • the measurement light ML that passes through the region 81 S and the measurement light ML that does not pass through the transmission region 81S of the transmissive member 81 enter sequentially through the reflection surface lSz of the measurement mirror lRz. That is, the control device 7 emits the measurement light ML from the Z interferometer 6Pz, and receives the measurement light ML through the transmission region 81S of the transmission member 81 or the measurement light ML not through the transmission region 81S by the Z interferometer 6Pz.
  • the position information of the first substrate stage 1 in the Z-axis direction is acquired.
  • the measurement value of the Z interferometer 6Pz changes in the Y-axis direction in accordance with the change in the optical path length caused by the presence or absence of the transmission member 81 in the Y-axis direction.
  • the control device 7 is a Z interferometer corresponding to the position of the reflecting surface lSz of the measuring mirror lRz in the Y-axis direction.
  • the amount of correction for the 6Pz measurement value is derived. That is, there is a difference in the measured value of the Z interferometer 6Pz between the position where the transmissive member 81 exists and the position where it does not exist.
  • the control device 7 derives a correction amount for canceling the difference.
  • the control device 7 stores the derived correction amount in the storage device 10.
  • the control device 7 measures the position information of the first substrate table 12 with the Z interferometer 6Pz, the measurement result of the Z interferometer 6Pz, and the storage device 10
  • the measured value of Z interferometer 6Pz is adjusted based on the stored information. That is, the control device 7 adjusts (corrects) the measurement value of the Z interferometer 6Pz that may contain an error due to the presence of the transmission member 81 based on the correction amount that is obtained in advance and stored in the storage device 10.
  • the control device 7 determines the position of the first substrate table 12 in the Z-axis direction based on the measured value of the Z interferometer 6Pz after the adjustment (after correction). Control using 5B).
  • the position of the first substrate table 12 in the Z-axis direction can be satisfactorily adjusted based on the measurement value of the Z interferometer 6Pz in which the error due to the presence of the transmission member 81 is cancelled.
  • control device 7 does not adjust (correct) the measurement value of the Z interferometer 6Pz based on the correction amount stored in the storage device 10, and the measured value of the Z interferometer 6Pz and the storage device 10 is used to determine the driving amount of the substrate stage driving system 5 (mainly fine movement system 5B) for moving the first substrate table 12 to a desired position based on the correction amount stored in FIG.
  • the position of the first substrate table 12 can also be adjusted by driving the substrate stage driving system 5 based on the driving amount.
  • FIG. 16 is a perspective view of the first substrate table 12 according to the third embodiment.
  • one transmission member 81 is arranged so as to face the measurement mirror lRz arranged on the side surface of the first substrate table 12 on the ⁇ X side.
  • four may be arranged so as to face each of the measurement mirrors lRz arranged on each of the four side surfaces of the first substrate table 12.
  • the second substrate table 22 may be provided with four transparent members 82! /.
  • the liquid LQ is held between the first substrate stage 1 and the first optical element 8, and the liquid LQ is interposed between the second substrate stage 2 and the first optical element 8.
  • the end surface 81E of the transmission member 81 disposed on the + X side of the first substrate table 12 and the ⁇ X side of the second substrate table 22 are disposed.
  • the first substrate stage 1 and the second substrate stage 2 are moved synchronously with the end surface 82E of the transmitting member 82 approaching or in contact with each other, or placed on the + Y side of the first substrate table 12.
  • the first substrate stage 1 and the second substrate stage 2 in a state where the end surface 81E of the transmissive member 81 and the end surface 82E of the member 82 arranged on the ⁇ Y side of the second substrate table 22 are close to or in contact with each other. And can be moved synchronously.
  • a characteristic part of the fourth embodiment is that transmission members (moving members) 81 and 82 are supported so as to be movable with respect to the first and second substrate tables 12 and 22. Then, the transmitting members 81 and 82 are in the first position where the end surfaces 81E and 82E project outside the measuring mirrors lRz and 2Rz. And at least a second position where the measurement light ML from the reflection surface 2Sz of the measurement mirrors lRz and 2Rz is not obstructed.
  • “do not interfere with the progress of the measurement beam (beam)” means “does not affect the optical path of the beam”, that is, the measurement beam ML can be transmitted, refracted, or reflected from the parts 81 and 82. This means that the optical path length of the measurement light does not change.
  • FIG. 17 is a side view of the first substrate table 12 according to the fourth embodiment as viewed from the X side
  • FIG. 18 is a plan view showing a part of the first substrate table 12
  • FIG. 19 is the first substrate. 4 is a side sectional view showing a part of the table 12.
  • FIG. Hereinafter, although the first substrate table 12 and the transmissive member 81 will be mainly described, the same applies to the second substrate table 22 and the transmissive member 82.
  • the transmission member 81 is a plate-like member having an upper surface and a lower surface, and has an end surface 81E.
  • the transmissive member 81 is supported so as to be movable at least in the X-axis direction in the figure with respect to the first substrate table 12, and the end surface 81E of the transmissive member 81 is the reflective surface of the measurement mirror lRz. Arranged in a predetermined positional relationship with respect to lSz.
  • a plurality of (three in the present embodiment) guided members 83 extending in the X-axis direction are connected to the lower surface of the transmissive member 81 facing the first substrate table 12. Further, inside the holding surface 15 B of the facing surface 15 of the first substrate table 12 facing the lower surface of the transmission member 81, there are guide grooves 84 extending in the X-axis direction and in which each of the guided members 83 is disposed. Is formed.
  • the size (length) of the guide groove 84 in the X-axis direction is larger than the size (length) of the guided member 8 3! /, (Long! /,). Also, the size (width) of the guide groove 84 in the Y-axis direction is larger than the size (width) of the guided member 83! /.
  • an air supply port 85 for supplying gas between the side surface of the guided member 83 and the inner side surface of the guide groove 84 is formed on the inner surface of the guide groove 84 facing the side surface of the guided member 83. Formed. The gas supplied from the air supply port 85 maintains the gap between the side surface of the guided member 83 and the inner side surface of the guide groove 84 facing the side surface.
  • the first substrate table 12 includes a support mechanism 86 that supports the transmission member 81 from the lower surface side in a non-contact manner.
  • a magnet for example, N pole
  • the support mechanism 86 is disposed on the bottom surface of the guide groove 84 facing the lower surface of the guided member 83.
  • Magnet for example, N pole
  • the magnet of the guided member 83 and the magnet of the guide groove 84 are the same poles. Therefore, when the magnets repel each other, as shown in FIG. 21, the transmission member 81 connected to the guided member 83 holds the holding surface of the first substrate table 12 facing the lower surface of the transmission member 81. Supported in a non-contact manner against 15B.
  • the support mechanism 86 also includes the above-described air supply port 85, and is supplied from the air supply port 85 even when the guided member 83 floats to / from the bottom surface of the guide groove 84 by the magnet.
  • the gap between the side surface of the guided member 83 and the inner side surface of the guide groove 84 facing the gas is maintained by the gas.
  • the transmission member 81 having the guided member 83 supported in a non-contact manner with respect to the holding surface 15B of the first substrate table 12 by the support mechanism 86 moves in the X-axis direction while being guided by the guide groove 84. Is possible.
  • the transmission member 81 moves in the X-axis direction while being guided by the guide groove 84, whereby the end surface 81E of the transmission member 81 projects outward from the measurement mirror lRz, and at least from the reflection surface lSz of the measurement mirror lRz. It can move to each of the second positions that do not interfere with the progress of the measuring light ML.
  • the nozzle member 30 can hold the transmission member 81 from the upper surface side.
  • the nozzle member 30 of the present embodiment includes, for example, JP-A-2004-289126 (corresponding US Pat. No. 6,952,253), JP-A-2004-289128 (corresponding US Pat. No. 7,110,081), etc. And has a gas inlet and a gas outlet.
  • the control device 7 makes the transmissive member 81 and the nozzle member 30 supported by the support mechanism 86 in a non-contact manner with respect to the holding surface 15B of the first substrate table 12 and through the gas introduction port of the nozzle member 30.
  • a gas bearing can be formed between the lower surface of the nozzle member 30 and the upper surface of the transmission member 81 by the gas introduction (supply) operation and the gas extraction (suction) operation through the gas outlet.
  • a pressurized vacuum type gas bearing is formed between the lower surface of the nozzle member 30 and the upper surface of the transmission member 81.
  • a gap G (for example, 0.;! To 1. Omm) between the lower surface of the nozzle member 30 and the upper surface of the transmission member 81 is maintained by the gas bearing.
  • the nozzle member 30 can form an immersion space LS for the liquid LQ with the permeable member 81, and form a gas bearing with the permeable member 81 outside the immersion space LS. Therefore, the upper surface of the transmission member 81 can be held.
  • the nozzle member 30 utilizes the adsorption action generated by forming a gas bearing between the nozzle member 30 and the transmission member 81, so that the nozzle member 30 The transparent member 81 is held in a state where a predetermined gap is maintained between the lower surface of the member 30 and the upper surface of the transparent member 81.
  • the exposure apparatus EX is provided on the first substrate table 12, and sucks the lower surface of the transmissive member 81 disposed at least one of the first position and the second position.
  • the second holding mechanism 87 capable of holding the transmitting member 81 is provided.
  • the second holding mechanism 87 is formed at a predetermined position on the holding surface 15B of the first substrate table 12 facing the lower surface of the transmission member 81, and has a suction port 88 capable of sucking a gas and a flow path to the suction port 88.
  • a vacuum system (not shown) connected thereto.
  • the vacuum system of the second holding mechanism 87 is driven, and the space between the lower surface of the transmissive member 81 and the holding surface 15B is reached.
  • the control device 7 can adsorb and hold the lower surface of the transmission member 81 with the holding surface 15B.
  • the control device 7 can release the suction holding on the transmission member 81 by stopping the driving of the vacuum system of the second holding mechanism 87.
  • the control device 7 controls the second holding mechanism 87 so that the holding force by the second holding mechanism 87, that is, the gas between the lower surface of the transmitting member 81 and the holding surface 15B by the suction port 88 is controlled.
  • the force (attraction force) that attracts and pulls the transmitting member 81 toward the holding surface 15B, which is generated by the suction operation, is larger than the repulsive force generated between the magnet of the guided member 83 and the magnet of the guide groove 84.
  • the vacuum system can be controlled so that the suction operation using the suction port 88 can be performed so as to become stronger.
  • the control device 7 generates a force (attraction force) that directs and pulls the transmitting member 81 toward the holding surface 15B generated by the suction operation of the suction port 88 between the magnet of the guided member 83 and the magnet of the guide groove 84.
  • a force attraction force
  • the suction port 88 By performing a suction operation using the suction port 88 so as to be stronger than the repulsive force generated in FIG. 20, as shown in FIG. 20, the holding surface 15B of the first substrate table 12 and the lower surface of the transmission member 81 A force S for holding (adsorbing and holding) the transmissive member 81 on the holding surface 15B of the first substrate table 12 can be achieved.
  • the control device 7 is as shown in FIG.
  • the transmitting member 81 is moved to a second position that does not hinder the progress of the measurement light from the reflection surface lSz of the measurement mirror lRz. That is, in the present embodiment, at least during the exposure of the substrate P held by the first substrate table 12, the transmission member 81 prevents at least the progress of the measurement light from the reflection surface lSz of the measurement mirror lRz. Not in the second position.
  • the control device 7 uses the second holding mechanism 87 to hold the lower surface of the transmission member 81 arranged at the second position so as to be attracted to the holding surface 15B of the first substrate table 12.
  • the transmissive member 81 is held by the second holding mechanism 87 at a position where the end surface 81E does not protrude outward from the side surface of the first substrate table 12.
  • the exposure process of substrate P held on first substrate stage 1 is completed at exposure station ST1, and the measurement process of substrate P held on second substrate stage 2 is completed at measurement station ST2.
  • the control device 7 moves the second substrate stage 2 from the second area SP2 of the measurement station ST2 to the first area SP1 of the exposure station ST1.
  • the control device 7 maintains the state in which the first substrate stage 1 and the first optical element 8 face each other, and the first connection member 71 and the second connection with respect to the first substrate stage 1 and the second substrate stage 2.
  • Exchange operation with the connecting member 72 is executed.
  • the control device 7 uses the substrate stage drive system 5 so that at least one of the first substrate stage 1 and the transmission member 81 and the first optical element 8 face each other (that is, the first substrate). From the state in which the liquid LQ is held between at least one of the stage 1 and the transmission member 81 and the first optical element 8), at least one of the second substrate stage 2 and the transmission member 82 and the first optical element 8 are The state is changed to an opposing state (that is, a state in which the liquid LQ is held between at least one of the second substrate stage 2 and the transmission member 82 and the first optical element 8). As a result, the substrate P of the second substrate stage 2 can be subjected to immersion exposure.
  • the control device 7 uses the substrate stage drive system 5 to control the position of the first substrate stage 1 so that the nozzle member 30 and the transmission member 81 face each other. Thereby, an immersion space LS is formed between the nozzle member 30 and the transmission member 81, and a gas bearing is formed outside the immersion space LS.
  • the size of the transmission member 81 in the X-axis direction is at least larger than the size of the immersion space LS in the X-axis direction.
  • the transmitting member in the XY plane substantially parallel to the upper surface of the transmitting member 81 The size of the upper surface of 81 is at least larger than the immersion space LS. Therefore, the immersion space LS can be formed between the nozzle member 30 and the transmission member 81.
  • the control device 7 stops the suction operation of the suction port 88 of the second holding mechanism 87. Accordingly, as shown in FIG. 22A, the transmission member 81 is supported in a non-contact manner with respect to the holding surface 15B of the first substrate table 12 by the action of the support mechanism 86 including the magnet.
  • a gas bearing is formed between the nozzle member 30 and the upper surface of the transmission member 81, and the nozzle member 30 is not in contact with the holding surface 15B of the first substrate table 12 by the support mechanism 86.
  • the supported transmitting member 81 is held from the upper surface side.
  • the control device 7 After the upper surface of the transmissive member 81 is held by the nozzle member 30, the control device 7 relatively moves the transmissive member 81 held by the nozzle member 30 and the first substrate table 12.
  • the control device 7 controls the substrate stage driving system 5 to move the first substrate table 12 (first substrate stage 1) to + X with respect to the transmission member 81 held by the nozzle member 30. Move in the direction.
  • the transmission member 81 having the guided member 83 held by the nozzle member 30 moves in the ⁇ X direction with respect to the first substrate table 12 while being guided by the guide groove 84. Accordingly, as shown in FIG. 22B, the transmission member 81 is moved to the first position where the end surface 81E projects outward from the measurement mirror 1 Rz.
  • the exposure apparatus EX includes the third holding mechanism 100 that can hold the transmission member 82 of the second substrate table 22 from the upper surface side.
  • the third holding mechanism 100 holds the upper surface of the transmission member 82 by forming a gas bearing with the upper surface of the transmission member 82.
  • the control device 7 controls the substrate stage drive system 5 in a state where the upper surface of the transparent member 82 supported by the second substrate table 22 in a non-contact manner is held by the third holding mechanism 100, Move the second substrate table 22 in the X direction. Thereby, as shown in FIG. 22 (B), the transmissive member 82 is moved to the first position where the end face 82E projects outward from the measurement mirror 2Rz.
  • the control device 7 uses the second holding mechanism 87 of the first substrate table 12, The lower surface of the transmission member 81 arranged at the first position is held so as to be attracted to the holding surface 15B of the first substrate table 12. Similarly, the control device 7 uses the second holding mechanism of the second substrate table 22 to change the first position. The transmitting member 82 arranged in the position is held so as to be attracted to the holding surface of the second substrate table 22.
  • control device 7 controls the substrate stage drive system 5 to move the end surface 81E of the transmission member 81 of the first substrate table 12 moved to the first position and the first position.
  • the first substrate stage 1 and the second substrate stage 2 are moved synchronously in a state in which the end surface 82E of the transmission member 82 of the second substrate table 22 is approaching or in contact.
  • the control device 7 moves the transmission member 81 and the transmission member 82 to the first position.
  • the end surface 81E of the transmission member 81 of the first substrate table 12 and the end surface 82SE of the transmission member 82 of the second substrate tape liner 22 are brought close to or in contact with each other. By doing so, a space capable of holding the liquid LQ is formed between the first optical element 8 and the force of at least one of the transmission member 81, the transmission member 82, the first substrate stage 1, and the second substrate stage 2.
  • the controller 7 uses the substrate stage drive system 5 to move the first substrate table 12 and the second substrate table 22 synchronously, the nozzle member 30, the third holding mechanism 100, and Using the substrate stage drive system 5 or the like, the transmission members 81 and 82 are moved to the first position.
  • the first substrate stage 1 and the second substrate stage 2 are moved synchronously with respect to the first optical element 8 in the XY plane.
  • the control device 7 at least one of the first substrate table 12 and the transmission member 81 and the first optical element 8 face each other, and at least one of the first substrate table 12 and the transmission member 81 and the first optical element 8 Since the liquid LQ is held between at least one of the second substrate table 22 and the transmission member 82, the first optical element 8 faces the second substrate table 22 and at least one of the transmission member 82. And the first optical element 8 can be changed to a state in which the liquid LQ is held.
  • the liquid LQ is held between the first substrate table 12 and the first optical element 8, and the liquid is interposed between the second substrate table 22 and the first optical element 8.
  • LQ When changing to the held state, the end surface 81E of the transmissive member 81 is moved to the first position protruding outward from the measuring mirror lRz, and the end surface 82E of the transmissive member 82 is extended outward from the measuring mirror 2Rz.
  • the measurement mirror lRz of the first substrate table 12 and at least one of the second substrate table 22 and the measurement mirror 2Rz are in contact with each other. (Collision) and contact (collision) between the measurement mirror 2Rz of the second substrate table 22 and at least one of the first substrate table 12 and the measurement mirror lRz can be suppressed.
  • the liquid LQ is held between the first substrate stage 1 and the first optical element 8 while suppressing the leakage of the liquid LQ
  • the second substrate stage 2 and the first optical element 8 are The liquid LQ can be smoothly changed to be held in between.
  • the control device 7 releases the holding operation of the second substrate table 22 on the transmission member 82 by the second holding mechanism.
  • the transmissive member 82 is supported in a non-contact manner with respect to the holding surface 15B of the second substrate table 22.
  • the nozzle member 30 forms an immersion space LS between the upper surface of the transmission member 82 and a gas bearing between the nozzle member 30 and the transmission member 82 outside the immersion space LS. Therefore, the upper surface of the transmission member 82 is held.
  • the size of the transmission member 82 in the X-axis direction is at least larger than the size of the immersion space LS in the X-axis direction.
  • the size of the upper surface of the transmission member 82 in the XY plane substantially parallel to the upper surface of the transmission member 82 is at least larger than the immersion space LS. Accordingly, the immersion space LS can be formed between the nozzle member 30 and the transmission member 82.
  • the control device 7 After the upper surface of the transmissive member 82 is held by the nozzle member 30, the control device 7 relatively moves the transmissive member 82 held by the nozzle member 30 and the second substrate table 22.
  • the control device 7 controls the substrate stage driving system 5 to move the second substrate table 22 (second substrate stage 2) to the transmission member 82 held by the nozzle member 30. Move in the direction.
  • the transmission member 82 does not hinder the progress of the measurement light from the reflection surface 2Sz of the measurement mirror 2 Rz, that is, the measurement light is not irradiated onto the transmission member 82! / , Moved to the second position.
  • the control device 7 After the transmitting member 82 is moved to the second position, the control device 7 Using the second holding mechanism of the lens 22, the lower surface of the transmission member 82 is held so as to be attracted to the holding surface of the second substrate table 22. After the transmissive member 82 moves to the second position, the control device 7 starts exposure of the substrate P held on the second substrate table 22.
  • the exposure apparatus EX includes a fourth holding mechanism 101 that can hold the transmission member 81 of the first substrate table 12 from the upper surface side. ing .
  • the fourth holding mechanism 101 holds the upper surface of the transmission member 81 by forming a gas bearing with the upper surface of the transmission member 81.
  • the control device 7 moves the first substrate table 12 in the ⁇ X direction while the upper surface of the transmission member 81 supported in a non-contact manner with respect to the first substrate table 12 is held by the fourth holding mechanism 101.
  • the transmissive member 81 is moved to the second position that does not hinder the progress of the measurement light from the reflection surface lSz of the measurement mirror lRz.
  • the control device 7 uses the second holding mechanism 87 of the first substrate table 12 so that the lower surface of the transmission member 81 becomes the holding surface 15B of the first substrate table 12. Hold to adsorb.
  • the liquid LQ is held between the first substrate stage 1 and the first optical element 8, and the second substrate stage 2 and the first optical element. Only when changing from one of the states in which the liquid LQ is held between the element 8 to the other, the end faces 81E and 82E of the transmission members 8 1 and 82 are projected outward from the measuring mirrors lRz and 2Rz. The transmitting members 81 and 82 are moved to the first position. At least when the substrate P is exposed, the transmission members 81 and 82 are moved to the second position so that the transmission members 81 and 82 do not hinder the progress of the measurement light of the Z interferometer 6Pz.
  • the transmission members 81 and 82 are moved to positions that do not hinder the progress of the measurement light of the Z interferometer 6Pz. 82 do not necessarily have a function of transmitting light. That is, a non-permeable member can be used in place of the transmissive members 81 and 82 used in the first embodiment.
  • a non-permeable member can be used in place of the transmissive members 81 and 82 used in the first embodiment.
  • metals such as stainless steel and titanium, or synthetic resins with liquid repellency such as polytetrafluoroethylene.
  • a formed member may be used.
  • only the portion covering the optical sensor 75 may be light transmissive, and the other portion may be formed from a non-transmissive member.
  • the projection optical systems of the first to fourth embodiments described above have a force that fills the optical path space on the image plane (exit plane) side of the optical element at the tip with a liquid, for example, International Publication No. 2004/019128.
  • a projection optical system in which the optical path space on the object surface (incident surface) side of the optical element at the tip is filled with liquid can also be adopted.
  • a thin film having a lyophilic property and / or a dissolution preventing function may be formed on a part of the surface of the terminal optical element 8 (including at least a contact surface with the liquid) or all. Quartz has a high affinity with a liquid and does not require a dissolution preventing film, but fluorite preferably forms at least a dissolution preventing film.
  • the measurement work at the measurement station ST2 may be performed in a state where the immersion space LS is formed on the substrate P or on the first and second substrate table nozzles 12 and 22.
  • Measurement station ST2 needs to supply and recover the liquid LQ in order to form the immersion space LS, but these operations are performed while the other substrate P is being exposed. It ’s V, so it has little impact on throughput! /.
  • the length of the transmissive member is longer than the length of one measuring mirror, for example, the length of the measuring mirror lRz projecting from the substrate table 12 to the outside, so that the length from the first substrate table 12 is increased.
  • the force is assumed to provide an interferometer mirror (reflection surface) on each of the four side surfaces of each substrate table (12, 22).
  • an interferometer mirror reflection surface
  • two or three side surfaces It is also possible to provide only an interferometer mirror.
  • the force that the transmission member is provided at the end of the substrate table on which the interferometer mirror is provided is not limited to this. A member may be provided.
  • a multi-stage type exposure apparatus using an immersion method is taken as an example.
  • the present invention is not limited to this.
  • An exposure apparatus with one stage may be used, or an exposure apparatus that does not use an immersion method may be used.
  • the present invention can be used depending on the relationship between the measurement light passing position for the z interferometer and the position of the substrate table.
  • the liquid LQ of the present embodiment may be a liquid other than water, which is water.
  • the light source of the exposure light EL is an F laser
  • the F laser light does not pass through water.
  • liquid LQ for example, a fluorinated fluid such as perfluorinated polyether (PFPE) or fluorinated oil may be used.
  • PFPE perfluorinated polyether
  • liquid LQ is stable against the photoresist applied to the projection optical system PL or the substrate P, which has a high refractive index as much as possible and is transmissive to the exposure light EL (for example, Cedar). Oil etc.) can also be used.
  • Liquid LQ having a refractive index of about 1.6 to about 1.8 may be used.
  • Liquid LQ with a refractive index higher than that of pure water includes, for example, CH bond or O such as isopropanol having a refractive index of about 1.50 and glycerol (glycerin) having a refractive index of about 1 ⁇ 61.
  • CH bond or O such as isopropanol having a refractive index of about 1.50 and glycerol (glycerin) having a refractive index of about 1 ⁇ 61.
  • glycerol glycerin
  • liquid LQ may be a mixture of any two or more of these liquids, or may be a liquid obtained by adding (mixing) at least one of these liquids to pure water.
  • liquid LQ contains pure water with a base or acid such as H + , Cs + , K +, Cl_, SO 2 _, PO 2 _, etc.
  • the liquid LQ includes the projection optical system PL having a small light absorption coefficient and a small temperature dependency, and / or a photosensitive material (or topcoat film or antireflection film, etc.) applied to the surface of the substrate P. It is preferable that it is stable with respect to). Further, as the liquid Q, various fluids such as a supercritical fluid can be used.
  • the positional information of the mask stage and the substrate stage is measured using the interferometer system.
  • the present invention is not limited to this.
  • the pamphlet of International Publication No. 2007/083758 Corresponding US Patent Application No. 11/655082
  • International Publication No. 2007/097379 Pamphlet (Supported US Patent Application No. 11/708533), etc.
  • Yen A coder system may be used.
  • an encoder system in which an encoder head is provided on a substrate table and a scale is disposed above the substrate table may be used. .
  • the hybrid system includes both the interferometer system and the encoder system, and the measurement result of the encoder system is calibrated using the measurement result of the interferometer system.
  • the position of the stage may be controlled by switching between the interferometer system and the encoder system or using both.
  • a planar motor may be used as an actuator for driving the first and second substrate stages.
  • the substrate P in each of the above embodiments is used not only for semiconductor wafers for manufacturing semiconductor devices, but also for glass substrates for display devices, ceramic wafers for thin film magnetic heads, or exposure apparatuses.
  • a mask or reticle master synthetic quartz, silicon wafer
  • a film member is applied.
  • the shape of the substrate P is not limited to a circle but may be other shapes such as a rectangle.
  • the exposure apparatus EX in addition to the step-and-scanning scanning type exposure apparatus (scanning stepper) that performs the mask exposure of the mask M pattern by synchronously moving the mask M and the substrate P,
  • the present invention can also be applied to a step-and-repeat projection exposure apparatus (steno) in which the pattern of the mask M is collectively exposed while the mask M and the substrate P are stationary, and the substrate P is sequentially moved stepwise.
  • steno step-and-repeat projection exposure apparatus
  • the exposure apparatus EX may be a stitch type batch exposure apparatus.
  • the stitch type exposure apparatus can also be applied to a step-and-stitch type exposure apparatus in which at least two patterns are partially superimposed and transferred on the substrate P, and the substrate P is sequentially moved.
  • the stitch type exposure apparatus may be a scanning exposure apparatus that transfers each pattern by scanning exposure.
  • JP-A-11 135400 corresponding international publication 1999/23692 pamphlet
  • JP-A 2000-164504 corresponding US Pat. No. 6,897,963
  • the present invention can also be applied to an exposure apparatus that includes a substrate stage that holds the reference mark, and a reference stage on which a reference mark is formed and / or a measurement stage on which various photoelectric sensors are mounted.
  • the disclosure of US Patent No. 6,897,963, etc. is used to make it part of the description.
  • the substrate P can be efficiently exposed by applying the present invention.
  • the substrate stage and the measurement stage are moved close to each other or brought into contact with each other, and the other stage is placed opposite to the optical element 8 by exchanging with one of the stages.
  • the immersion space can be moved to and from the stage.
  • On the measurement stage it is possible to perform exposure-related measurements (for example, baseline measurement) using a measuring instrument (measurement member) mounted on the measurement stage in a state where an immersion space is formed.
  • An exposure apparatus having a measurement stage may include a plurality of substrate stages.
  • the present invention is applied to an exposure apparatus and an exposure method that do not use the projection optical system PL, which has been described by taking an exposure apparatus provided with the projection optical system PL as an example.
  • Power S can be.
  • the projection optical system PL is not used in this way, the exposure light is irradiated onto the substrate via an optical member such as a lens, and the immersion space is placed in a predetermined space between the optical member and the substrate. Is formed. It is also possible to omit the mask stage according to the exposure method as described above.
  • the exposure light EL of The present invention can also be applied to an ordinary dry exposure apparatus that fills only gas without filling the optical path space with liquid LQ.
  • the optical element (terminal optical element) 8 of the projection optical system PL is replaced with, for example, quartz (silica), barium fluoride, strontium fluoride, lithium fluoride instead of calcium fluoride (fluorite).
  • a single crystal material of a fluorinated compound such as sodium fluoride, or a material having a higher refractive index than quartz or fluorite (eg, 1.6 or more).
  • the material having a refractive index of 1.6 or more include sapphire, germanium dioxide, etc. disclosed in International Publication No. 2005/059617, or chloride disclosed in International Publication No. 2005/059618. Potassium (refractive index is about 1.75) can be used.
  • a solid-state laser light source such as a DFB semiconductor laser or a fiber laser
  • a harmonic generation device that includes a light amplifier having a fiber amplifier and the like, a wavelength converter, and the like and that outputs Norse light having a wavelength of 193 nm may be used.
  • the projection area is rectangular, but other shapes such as an arc, trapezoid, parallelogram, or rhombus may be used.
  • the type of exposure apparatus EX is not limited to an exposure apparatus for manufacturing a semiconductor element that exposes a semiconductor element pattern onto a substrate P.
  • JP-T-2004-519850 corresponding US Pat. No. 6,611,316
  • two mask patterns are formed on the substrate via the projection optical system.
  • the present invention can also be applied to an exposure apparatus that combines and double-exposes one shot area on the substrate almost simultaneously by one scanning exposure.
  • US Pat. No. 6,611,316 is incorporated herein by reference.
  • the present invention can also be applied to proximity type exposure apparatuses, mirror projection aligners, and the like.
  • the exposure apparatus EX provides various subsystems including the constituent elements recited in the claims of the present application with predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Manufactured by assembling to keep. In order to ensure these various accuracies, before and after the assembly, various optical systems are adjusted to achieve optical accuracy, various mechanical systems are adjusted to achieve mechanical accuracy, various electrical systems Is adjusted to achieve electrical accuracy.
  • the assembly process from various subsystems to the exposure system includes mechanical connections, electrical circuit wiring connections, and pneumatic circuit piping connections between the various subsystems. Needless to say, there is an assembly process for each subsystem before the assembly process from the various subsystems to the exposure apparatus. When the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed to ensure various accuracies for the entire exposure apparatus. It is desirable to manufacture the exposure apparatus in a clean room in which the temperature and cleanliness are controlled.
  • a microdevice such as a semiconductor device is a device of a microdevice.
  • Step 201 for performing performance-performance design Step 202 for manufacturing a mask (reticle) based on this design step, Step 203 for manufacturing a substrate as a substrate of the device, and exposing the substrate P according to the above-described embodiment.
  • substrate processing step 204 including processing to develop exposed substrate P, device assembly step (including processing processes such as dicing process, bonding process, package process) 205, inspection step 206, etc.
  • a substrate can be exposed efficiently and satisfactorily, and a device having a desired performance can be manufactured with high productivity even when applied to immersion exposure. Therefore, the present invention can significantly contribute to the development of the precision instrument industry including Japan's semiconductor industry.

Description

明 細 書
露光装置、露光方法及びデバイス製造方法
技術分野
[0001] 本発明は、基板を露光する露光装置、露光方法及びデバイス製造方法に関する。
背景技術
[0002] フォトリソグラフイエ程で用いられる露光装置において、下記特許文献 1、 2に開示さ れているような、液体を介して基板を露光する液浸露光装置が知られている。また、 下記特許文献 3〜8に開示されているような、基板を保持する基板ステージを複数備 えたマルチステージ型(ツインステージ型)の露光装置が知られて!/、る。
特許文献 1 :特開 2004— 289126号公報
特許文献 2 :特開 2004— 289128号公報
特許文献 3:特表 2000 - 511704号公報
特許文献 4 :特開 2000— 323404号公報
特許文献 5:特開 2000— 505958号公報
特許文献 6:特表 2001— 513267号公報
特許文献 7 :特開 2002— 158168号公報
特許文献 8:国際公開 2005/074014号パンフレット
発明の開示
発明が解決しょうとする課題
[0003] 液浸露光装置において、例えば基板交換時等、基板ステージが投影光学系から 離れる毎に液体を全て回収する場合、露光装置のスループットが低下する可能性が ある。また、液体が全て回収され、投影光学系の光射出面がウエットな状態からドライ な状態になると、液体の気化に起因して、投影光学系の光射出面に液体の付着跡( ウォーターマーク)が形成されたり、温度変化が生じたりし、露光精度が劣化する可能 性がある。そのため、投影光学系の光射出面を常に液体で濡らしておくことが望まし い。
[0004] マルチステージ型の露光装置において、従来のように、投影光学系の光射出面と 対向するようにキャップ部材 (シャツタ部材)を保持することによって、投影光学系の光 射出面を常に液体で濡らそうとする場合、キャップ部材が落下したり、キャップ部材上 の液体が漏出する等の不具合が発生する可能性が存在することは否めな!/、。また、 基板ステージとのキャップ部材の受け渡し動作によって、露光装置のスループットが 低下する可能性がある。そのため、マルチステージ型の露光装置に液浸法を適用し た場合においても、投影光学系の光射出面を常に液体で濡らして、基板を効率良く 良好に露光できる技術の案出が望まれる。
[0005] 本発明はこのような事情に鑑みてなされたものであって、露光装置に液浸法を適用 した場合において、基板を効率良く良好に露光できる露光装置及び露光方法、並び にその露光装置及び露光方法を用いるデバイス製造方法を提供することを目的とす 課題を解決するための手段
[0006] 上記の課題を解決するため、本発明は実施の形態に示す各図に対応付けした以 下の構成を採用している。但し、各要素に付した括弧付き符号はその要素の例示に 過ぎず、各要素を限定するものではない。
[0007] 本発明の第 1の態様に従えば、基板 (P)に露光ビーム(EUを照射して基板 (P)を 露光する露光装置であって、露光ビーム(EUを射出する第 1光学部材(8)と、第 1 光学部材 (8)の光射出側で移動可能な第 1移動体(1)と、第 1移動体(1)に設けられ 、位置計測用の計測ビーム (ML)が照射される斜面(lSz)を有する計測部材(lRz) と、第 1移動体(1)に設けられ、第 1移動体(1)から計測部材(lRz)よりも外側に張り 出す端面(81E)を有し、計測ビーム(MUを透過可能な透過領域(81 S)を有する 透過部材 (81)と、を備えた露光装置 (EX)が提供される。
[0008] 本発明の第 1の態様によれば、基板を効率良く良好に露光できる。
[0009] 本発明の第 2の態様に従えば、基板 (P)に露光ビーム(EUを照射して基板 (P)を 露光する露光装置であって、露光ビーム(EUを射出する第 1光学部材(8)と、第 1 光学部材 (8)の光射出側で移動可能な第 1移動体(1)と、第 1移動体(1)に設けられ 、位置計測用の計測ビーム (ML)が照射される斜面(lSz)を有する計測部材(lRz) と、第 1移動体(1)に設けられ、第 1移動体(1)に対して移動可能に支持され、計測 部材(lRz)の斜面(ISz)に対して所定の位置関係で配置される端面(81E)を有す る移動部材(81)と、移動部材(81)の端面(81E)が第 1移動体(1)から計測部材(1 Rz)よりも外側に張り出す第 1の位置、及び少なくとも計測部材(lRz)の斜面(ISz) からの計測ビーム(ML)の進行を妨げな!/、第 2の位置のそれぞれの位置に該移動部 材(81)を移動可能な駆動装置(30、 100、 101、 5等)と、を備えた露光装置 (EX) が提供される。
[0010] 本発明の第 2の態様によれば、基板を効率良く良好に露光できる。
[0011] 本発明の第 3の態様に従えば、基板 (P)に露光ビーム(EUを照射して基板 (P)を 露光する露光装置であって、露光ビーム(EUを射出する光学部材(8)と、光学部材 (8)の光射出側で移動可能な第 1移動体(1)と、第 1移動体(1)に設けられて露光ビ ームを検出する検出器(7)と、第 1移動体に設けられた透過板であって、第 1移動体 の位置計測用の計測ビームを透過する第 1透過領域(81 S)と、検出器への検出光 を透過する第 2透過領域(81 SS)を有する透過板と、を備えた露光装置が提供され
[0012] 本発明の第 3の態様によれば、基板を効率良く良好に露光できる。
[0013] 本発明の第 4の態様に従えば、上記態様の露光装置 (EX)を用いるデバイス製造 方法が提供される。
[0014] 本発明の第 4の態様によれば、基板を効率良く良好に露光できる露光装置を用い てデバイスを製造できる。
[0015] 本発明の第 5の態様に従えば、計測光を反射する斜面(I Sz)が設けられた移動体
(1)に保持された基板 (P)に露光ビーム (EUを照射して基板 (P)を露光する露光方 法であって、移動体(1)から斜面(ISz)の外側にまで延在するように設けられた透過 部材を透過して斜面からの計測光(ML)を受光することにより移動体(1)に保持され た基板の位置を計測すること(SM1)と、位置計測された移動体(1)上の基板 (P)に 露光ビーム (EUを照射して基板 (P)を露光すること(SE1)を含む露光方法が提供 される。
[0016] 本発明の第 5の態様によれば、基板を効率良く良好に露光できる。
[0017] 本発明の第 6の態様に従えば、前記露光方法を用いて基板を露光すること(204) と、露光した基板を現像すること(204)と、現像した基板を加工すること(205)を含む デバイス製造方法が提供される。
[0018] 本発明の第 6の態様によれば、基板を効率良く良好に露光できる。
図面の簡単な説明
[0019] [図 1]第 1実施形態に係る露光装置を示す概略構成図である。
[図 2]第 1実施形態に係る第 1、第 2基板ステージ及び基板ステージ駆動システムを 示す平面図である。
[図 3]第 1実施形態に係る第 1基板テーブルの近傍を示す斜視図である。
[図 4]第 1実施形態に係る第 1、第 2基板テーブルを示す平面図である。
[図 5]第 1実施形態に係る第 1、第 2基板テーブルを示す側面図である。
[図 6]第 1基板テーブルに設けられた透過部材の近傍を示す側断面図である。
[図 7]第 1実施形態に係る露光方法を説明するための模式図である。
[図 8]第 1実施形態に係る露光方法を説明するための模式図である。
[図 9]第 1実施形態に係る露光方法を説明するための模式図である。
[図 10]第 1実施形態に係る露光方法を説明するための模式図である。
[図 11]第 1実施形態に係る露光方法を説明するための模式図である。
[図 12]第 1実施形態に係る露光方法を説明するための模式図である。
[図 13]第 1実施形態に係る露光方法を説明するための模式図である。
[図 14]透過部材に起因する干渉計の計測値の変化を説明するための模式図である
[図 15]第 2実施形態に係る第 1、第 2基板テーブルの一例を示す斜視図である。
[図 16]第 3実施形態に係る第 1基板テーブルの一例を示す斜視図である。
[図 17]第 4実施形態に係る第 1基板テーブルを示す側面図である。
[図 18]第 4実施形態に係る第 1基板テーブルの一部を示す平面図である。
[図 19]第 4実施形態に係る第 1基板テーブルの一部を示す側断面図である。
[図 20]第 4実施形態に係る第 1基板テーブルを示す側断面図である。
[図 21]第 4実施形態に係る第 1基板テーブルを示す側断面図である。
[図 22]図 22 (A)〜(D)は、第 4実施形態に係る露光方法を説明するための模式図で ある。
[図 23]マイクロデバイスの製造工程の一例を説明するためのフローチャートである。
[図 24]本発明の露光方法の説明するフローチャートである。
符号の説明
[0020] ;!…第;!基板ステージ、 lRz…計測ミラー、 2···第 2基板ステージ、 2Rz…計測ミラー 、 5···基板ステージ駆動システム、 6···計測システム、 6Ρζ···Ζ干渉計、 7···制御装置 、 8···第 1光学素子、 9···第 2光学素子、 10···記憶装置、 15···対向面、 25···対向面 、 75…光センサ、 81…透過部材、 81E…端面、 81S…透過領域、 82…透過部材、 82Ε···端面、 82S…透過領域、 86···支持機構、 87···第 2保持機構、 90···保持機構 、 EL…露光光、 ΕΧ···露光装置、 LQ…液体、 LS…液浸空間、 Ρ···基板、斜面… 1S z、 2Sz
発明を実施するための最良の形態
[0021] 以下、本発明の実施形態について図面を参照しながら説明する力 本発明はこれ に限定されない。なお、以下の説明においては、 XYZ直交座標系を設定し、この XY Z直交座標系を参照しつつ各部材の位置関係について説明する。そして、水平面内 の所定方向を X軸方向、水平面内において X軸方向と直交する方向を Y軸方向、 X 軸方向及び Y軸方向のそれぞれに直交する方向(すなわち鉛直方向)を z軸方向と する。また、 X軸、 Y軸、及び Z軸まわりの回転 (傾斜)方向をそれぞれ、 Θ X、 Θ Y、及 び ΘΖ方向とする。
[0022] <第 1実施形態〉
第 1実施形態について説明する。図 1は、第 1実施形態に係る露光装置 EXを示す 概略構成図である。本実施形態においては、露光装置 EXが、例えば特開平 10— 1 63099号公報、特開平 10— 214783号公報(対応米国特許第 6,590,634号)、特 表 2000— 505958号公報(対応米国特許第 5,969,441号)、特表 2000— 51170 4号公報(対応米国特許第 5,815,246号)、特開 2000— 323404号公報(対応米国 特許第 6,674,510号)、特開 2000— 505958号公報(対応米国特許第 5,969,081 号)、特表 2001— 513267号公報(対応米国特許第 6,208,407号)、特開 2002— 158168号公報(対応米国特許第 6,710,849号)等に開示されているような、基板 P を保持しながら移動可能な複数(2つ)の基板ステージ 1、 2を備えたマルチステージ 型 (ツインステージ型)の露光装置である場合を例にして説明する。すなわち、本実 施形態においては、露光装置 EXは、基板 Pを保持しながら移動可能な第 1基板ステ ージ 1と、第 1基板ステージ 1と独立して、基板 Pを保持しながら移動可能な第 2基板 ステージ 2とを有する。なお、マルチステージ型(ツインステージ型)の露光装置は、 米国特許第 6,341,007、 6,400,441 , 6,549,269及び 6,590,634号に開示されて おり、指定国又は選択国の法令が許す限りにおいて、これらの米国特許を援用して 本文の記載の一部とする。
[0023] 図 1において、露光装置 EXは、マスク Mを保持ながら移動可能なマスクステージ 3 と、基板 Pを保持しながら移動可能な第 1基板ステージ 1と、第 1基板ステージ 1と独 立して、基板 Pを保持しながら移動可能な第 2基板ステージ 2と、マスクステージ 3を 移動するマスクステージ駆動システム 4と、第 1基板ステージ 1及び第 2基板ステージ 2を移動する基板ステージ駆動システム 5と、各ステージ 1、 2、 3の位置情報を計測 するレーザ干渉計 6Px、 6Py、 6Pz、 6Mを含む計測システム 6と、マスク Mを露光光 ELで照明する照明系 ILと、露光光 ELで照明されたマスク Mのパターンの像を基板 Pに投影する投影光学系 PLと、露光装置 EX全体の動作を制御する制御装置 7と、 制御装置 7に接続され、露光に関する各種情報を記憶した記憶装置 10とを備えて!/、
[0024] なお、ここでいう基板 Pは、デバイスを製造するための基板であって、例えば、シリコ ンウェハのような半導体ウェハ等の基材に感光材 (フォトレジスト)、保護膜(トップコ ート膜)などの各種の膜が形成されたものを含む。マスク Mは、基板 Pに投影されるデ バイスパターンが形成されたレチクルを含み、例えばガラス板等の透明板部材上にク ロム等の遮光膜を用いて所定のパターンが形成されたものである。また、本実施形態 においては、マスク Mとして透過型のマスクを用いる力 反射型のマスクを用いること もできる。この透過型マスクは、遮光膜でパターンが形成されるバイナリーマスクに限 られず、例えばハーフトーン型、あるいは空間周波数変調型などの位相シフトマスク も含む。
[0025] 露光装置 EXは、基板 Pに露光光 ELを照射する露光ステーション ST1と、露光に関 する所定の計測及び基板 Pの交換を行う計測ステーション ST2とを備えて!/、る。露光 装置 EXは、第 1基板ステージ 1及び第 2基板ステージ 2のそれぞれを移動可能に支 持するガイド面 GFを有するベース部材 BPを備えており、第 1基板ステージ 1及び第 2基板ステージ 2のそれぞれは、基板 Pを保持しながら、ガイド面 GF上を、露光ステ ーシヨン ST1と計測ステーション ST2との間で移動可能である。本実施形態において は、ガイド面 GFは、 XY平面とほぼ平行であり、第 1基板ステージ 1及び第 2基板ステ ージ 2は、ガイド面 GFに沿って、 XY方向(二次元方向)及び θ Z方向に移動可能で ある。
[0026] 露光ステーション ST1には、照明系 IL、マスクステージ 3、及び投影光学系 PL等が 配置されている。投影光学系 PLは、複数の光学素子を有する。投影光学系 PLの複 数の光学素子のうち、投影光学系 PLの像面に最も近い終端光学素子 8は、露光光 ELを射出する光射出面(下面)を有する。第 1基板ステージ 1は、露光光 ELを射出 する投影光学系 PLの終端光学素子 8の光射出側(投影光学系 PLの像面側)で移動 可能である。第 2基板ステージ 2は、投影光学系 PLの終端光学素子 8の光射出側( 投影光学系 PLの像面側)で、第 1基板ステージ 1と独立して移動可能である。図示し ていないが、投影光学系 PLは、防振機構を介して 3本の支柱で支持される鏡筒定盤 に搭載される力 例えば国際公開第 2006/038952号パンフレットに開示されてい るように、投影光学系 PLの上方に配置される不図示のメインフレーム部材、あるいは マスクステージ 3が載置されるマスクベースなどに対して投影光学系 PLを吊り下げ支 持しても良い。
[0027] 計測ステーション ST2には、第 1基板ステージ 1及び第 2基板ステージ 2の少なくと も一方に保持された基板 Pの位置情報を取得するためのァライメント系 AL、及びフォ 一カス'レべリング検出系 FL等、基板 Pの露光に関する計測を実行可能な各種計測 装置が配置されている。ァライメント系 ALは、複数の光学素子を有し、それら光学素 子を用いて、基板 Pの位置情報を取得する。フォーカス'レべリング検出系 FLも、複 数の光学素子を有し、それら光学素子を用いて、基板 Pの位置情報を取得する。
[0028] 計測ステーション ST2の近傍には、基板 Pの交換を行うための搬送システム Hが設 けられている。制御装置 7は、搬送システム Hを用いて、計測ステーション ST2の基 板交換位置(ローデイングポジション)に移動した第 1基板ステージ 1 (又は第 2基板ス テージ 2)より露光処理済みの基板 Pをアンロード (搬出)するとともに、露光処理され るべき基板 Pを第 1基板ステージ 1 (又は第 2基板ステージ 2)にロード (搬入)する基 板交換作業を実行可能である。なお、本実施形態では、計測ステーション ST2内で ローデイングポジションとアンローデイングポジションとが同一位置であるものとしたが 、異なる位置でロードとアンロードとを行っても良い。
[0029] 本実施形態の露光装置 EXは、露光波長を実質的に短くして解像度を向上するとと もに、焦点深度を実質的に広くするために液浸法を適用した液浸露光装置であって 、露光光 ELの光路空間を液体 LQで満たすように、液体 LQの液浸空間 LSを形成可 能なノズル部材 30を備えている。露光光 ELの光路空間は、露光光 ELが進行する光 路を含む空間である。液浸空間 LSは、液体 LQで満たされた空間である。ノズル部 材 30は、液浸空間形成部材あるいは containment member (又は confinement membe r)などとも呼ばれる。露光装置 EXは、投影光学系 PLと液体 LQとを介して基板 Pに 露光光 ELを照射して、その基板 Pを露光する。
[0030] ノズル部材 30は、例えば特開 2004— 289126号公報(対応米国特許第 6,952,2 53号)、特開 2004- 289128号公報(対応米国特許第 7,110,081号)等に開示さ れているようなシール部材を含み、露光光 ELの光路空間に対して液体 LQの供給及 び回収を行う流路を備えている。なお、図においては、流路の図示を省略してある。 流路には、その流路を介して露光光 ELの光路空間に液体 LQを供給する液体供給 装置(不図示)及び液体 LQを回収する液体回収装置(不図示)が接続される。液体 供給装置は、流路を介して液浸空間 LSを形成するための液体 LQを露光光 ELの光 路空間に供給可能であり、液体回収装置は、流路を介して液浸空間 LSの液体 LQを 回収可能である。液体供給装置は、液体 LQを送出可能な液体供給部、液体供給部 にその一端部を接続する供給管、液体 LQを収容するタンク、フィルタ、及び加圧ポ ンプ等を備える。液体回収装置は、液体 LQを回収可能な液体回収部、液体回収部 にその一端部を接続する回収管、液体 LQを収容するタンク、フィルタ、及び吸引ポ ンプ等を備える。なお、露光装置 EXは、液体供給装置及び液体回収装置並びにそ れらを構成するタンク、フィルタ部、ポンプなどのすベてを備えている必要はなぐそ れらの全てまたは一部を、露光装置 EXが設置される工場などの設備で代用してもよ い。
[0031] 本実施形態にぉレ、ては、液体 LQとして、水(純水)を用いる。純水は ArFエキシマ レーザ光のみならず、例えば水銀ランプから射出される輝線及び KrFエキシマレー ザ光等の遠紫外光(DUV光)も透過可能である。光学素子 8は螢石(CaF )から形 成されている。螢石は水との親和性が高いので、光学素子 8の液体接触面 2aのほぼ 全面に液体 1を密着させることができる。なお、光学素子 8は水との親和性が高い石 英であってもよい。
[0032] なお、ノズル部材 30として、例えば国際公開第 2004/086468号パンフレット(対 応米国特許出願公開第 2005/0280791号)、国際公開第 2005/024517号パ ンフレット、欧州特許出願公開第 1420298号明細書、国際公開第 2004/055803 号パンフレット、国際公開第 2004/057589号パンフレット、国際公開第 2004/05 7590号パンフレット、国際公開第 2005/029559号パンフレット(対応米国特許出 願公開第 2006/0231206号)、米国特許第 6,952,253号などに開示されているよ うな構造のノズル部材を用いることもできる。
[0033] ノズル部材 30は、そのノズル部材 30と対向する物体との間に液浸空間 LSを形成 可能である。本実施形態においては、ノズル部材 30は、投影光学系 PLの終端光学 素子 8の近傍に配置されており、終端光学素子 8の光射出側(投影光学系 PLの像面 側)において、露光光 ELが照射可能な位置に配置された物体との間、すなわち終端 光学素子 8の光射出面と対向する位置に配置された物体との間に液浸空間 LSを形 成可能である。ノズル部材 30は、その物体との間で液体 LQを保持することによって 、終端光学素子 8の光射出側の露光光 ELの光路空間、具体的には終端光学素子 8 と物体との間の露光光 ELの光路空間を液体 LQで満たすように、液体 LQの液浸空 間 LSを形成する。
[0034] ノズル部材 30は、例えば、投影光学系 PLの光学素子 8と対向する内側面に形成さ れる供給口と、物体が対向して配置される下面(底面)に形成される回収口と、内部 に形成されかつ液体供給装置の供給管及び液体回収装置の回収管とそれぞれ接 続される供給流路及び回収流路とを備える。供給口は、光学素子 8の + X方向側に 形成される第 1供給口と、光学素子 8の X方向側に形成される第 2供給口とを含み 、第 1、第 2供給口は投影領域を X方向に挟むように配置され得る。供給口は、 Y方 向に細長い矩形状または円弧状等であってもよい。回収口は、投影光学系 PLの光 学素子 8を囲むように配置された矩形(円形等でもよ!/、)の枠状であり、かつ供給口よ り光学素子 8に対して外側に設けられ得る。また、回収口は溝状の凹部であっても良 V、し、回収口を覆うように網目状に多数の小さレヽ孔が形成された多孔部材であるメッ シュフィルタが嵌め込まれて!/、てもよ!/、。
[0035] ノズル部材 30は、投影光学系 PLを保持するメインフレーム (不図示)に吊り下げ支 持されてもよいし、メインフレームとは別のフレーム部材に設けてもよい。あるいは、投 影光学系 PLが吊り下げ支持される場合は、投影光学系 PLと一体にノズル部材 30を 吊り下げ支持してもよいし、投影光学系 PLとは独立に吊り下げ支持される計測フレ ームなどにノズル部材 30を設けてもよい。後者の場合、投影光学系 PLを吊り下げ支 持していなくてもよい。
[0036] ノズル部材 30及び終端光学素子 8と対向可能な物体は、終端光学素子 8と対向可 能な対向面を有し、終端光学素子 8の光射出側で移動可能な物体を含む。本実施 形態においては、ノズル部材 30及び終端光学素子 8と対向可能な物体は、終端光 学素子 8の光射出側で移動可能な第 1基板ステージ 1及び第 2基板ステージ 2の少 なくとも一方を含む。また、ノズル部材 30及び終端光学素子 8と対向可能な物体は、 第 1、第 2基板ステージ 1、 2に保持された基板 Pも含む。第 1、第 2基板ステージ 1、 2 (第 1、第 2基板テーブル 12、 22)のそれぞれは、ノズル部材 30及び終端光学素子 8 と対向可能な対向面 15、 25を有し、ノズル部材 30及び終端光学素子 8と対向する 位置に移動可能であり、ノズル部材 30及び終端光学素子 8と対向面 15、 25の少なく とも一部との間で、液体 LQを保持可能な空間を形成可能である。なお、物体は後述 の計測ステージを含んでも良い。また、ノズル部材 30及び終端光学素子 8と物体との 間に形成される液浸空間 LSは、その物体上では単に液浸領域などとも呼ばれる。
[0037] ノズル部材 30は、その第 1、第 2基板ステージ 1、 2の対向面 15、 25の少なくとも一 部との間で液体 LQを保持することによって、終端光学素子 8の光射出側の露光光 E Lの光路空間を液体 LQで満たすように、ノズル部材 30及び終端光学素子 8と第 1、 第 2基板ステージ 1、 2との間に液体 LQの液浸空間 LSを形成可能である。
[0038] 本実施形態においては、ノズル部材 30は、物体の表面の一部の領域(局所的な領 域)が液浸空間 LSの液体 LQで覆われるように、終端光学素子 8及びノズル部材 30 と、物体(第 1基板ステージ 1、第 2基板ステージ 2、及び基板 Pの少なくとも 1つ)との 間に液浸空間 LSを形成する。すなわち、本実施形態においては、露光装置 EXは、 少なくとも基板 Pの露光中に、基板 P上の一部の領域が液浸空間 LSの液体 LQで覆 われるように、終端光学素子 8及びノズル部材 30と基板 Pとの間に液浸空間 LSを形 成する局所液浸方式を採用する。本実施形態では、液浸空間 LSを形成する局所液 浸装置 (液浸システム)はノズル部材 30などを含んで構成される。なお、基板 Pの周 辺のショット領域の露光では、液浸空間 LSが基板 Pからはみ出して、対向面 15、 25 の一部も液体 LQで覆われる。
[0039] また、後述するように、本実施形態においては、露光装置 EXは、第 1基板ステージ 1及び第 2基板ステージ 2のそれぞれに設けられ、レーザ干渉計 6Pzからの位置計測 用の計測光 MLが照射される斜面 (XY平面に対して傾!/、た面)を有する計測ミラー 1 Rz、 2Rzと、第 1基板ステージ 1及び第 2基板ステージ 2のそれぞれに設けられ、計測 ミラー 1RZ、 2Rzよりも XY平面内において外側に張り出す端面を有し、計測光 MLを 透過可能な透過領域を有する所定部材 81、 82 (以下、「透過部材」という)を備えて いる。透過部材 81は、第 1基板ステージ 1に設けられ、透過部材 82は、第 2基板ステ ージ 2に設けられている。透過部材 81、 82は、上面及び下面を有する板状の部材で ある。透過部材 81、 82は、ノズル部材 30及び終端光学素子 8との間で、液体 LQを 保持可能な空間を形成可能である。なお、第 1、第 2基板ステージ 1、 2の一方のみに 透過部材を設けてもよい。
[0040] 計測ステーション ST2のァライメント系 ALは、物体(第 1基板ステージ 1、第 2基板ス テージ 2、及び基板 Pの少なくとも 1つ)と対向可能な光学素子 9を有する。第 1基板ス テージ 1及び第 2基板ステージ 2のそれぞれは、ァライメント系 ALの光学素子 9と対 向する位置に移動可能である。ァライメント系 ALは、第 1基板ステージ 1及び第 2基 板ステージ 2の少なくとも一方に保持された基板 Pの位置情報を取得するために、光 学素子 9を介して、基板 P上のァライメントマーク、第 1、第 2基板ステージ 1、 2上の基 準マーク等を検出する。
[0041] 以下の説明にお!/、て、露光ステーション ST1に配置されて!/、る露光光 ELを射出す る投影光学系 PLの終端光学素子 8を適宜、第 1光学素子 8、と称し、計測ステーショ ン ST2に配置されている基板 Pの位置情報を取得するためのァライメント系 ALの光 学素子 9を適宜、第 2光学素子 9、と称する。また、第 1光学素子 8と対向し、その第 1 光学素子 8からの露光光 ELが照射される位置を適宜、照射位置、と称し、第 2光学 素子 9と対向する位置を適宜、対向位置、と称する。なお、照射位置では基板 Pの露 光が行われるので、照射位置を露光位置とも呼ぶことができる。また、対向位置では マークの検出が行われるので、対向位置を検出位置あるレ、は計測位置とも呼ぶこと ができる。
[0042] 従って、第 1基板ステージ 1及び第 2基板ステージ 2のそれぞれは、第 1光学素子 8 と対向し、その第 1光学素子 8からの露光光 ELが照射される位置、及び第 2光学素 子 9と対向する位置を含むガイド面 GF上の所定領域内で、基板 Pを保持しながら移 動可能である。
[0043] 本実施形態の露光装置 EXは、マスク Mと基板 Pとを所定の走査方向に同期移動し つつ、マスク Mのパターンの像を基板 Pに投影する走査型露光装置 (所謂スキヤニン ダステツバ)である。本実施形態においては、基板 Pの走査方向(同期移動方向)を Y 軸方向とし、マスク Mの走査方向(同期移動方向)も Y軸方向とする。露光装置 EXは 、基板 Pを投影光学系 PLの投影領域に対して Y軸方向に移動するとともに、その基 板 Pの Y軸方向への移動と同期して、照明系 ILの照明領域に対してマスク Mを Y軸 方向に移動しつつ、投影光学系 PLと液体 LQとを介して基板 Pに露光光 ELを照射し て、その基板 Pを露光する。これにより、基板 Pにはマスク Mのパターンの像が投影さ れる。
[0044] 照明系 ILは、マスク M上の所定の照明領域を均一な照度分布の露光光 ELで照明 する。照明系 ILから射出される露光光 ELとしては、例えば水銀ランプから射出される 輝線(g線、 h線、 i線)及び KrFエキシマレーザ光(波長 248nm)等の遠紫外光(DU V光)、 ArFエキシマレーザ光(波長 193nm)及び Fレーザ光(波長 157nm)等の真
2
空紫外光 (VUV光)等が用いられる。本実施形態においては、露光光 ELとして、 Ar Fエキシマレーザ光が用いられる。
[0045] マスクステージ 3は、例えばリニアモータ等のァクチユエータを含むマスクステージ 駆動システム 4により、マスク Mを保持しながら、 X軸、 Y軸、及び θ Z方向に移動可 能である。マスクステージ 3 (マスク M)の位置情報は、計測システム 6のレーザ干渉計 6Mによって計測される。レーザ干渉計 6Mは、マスクステージ 3上に設けられた計測 ミラー 3Rを用いて、マスクステージ 3の X軸、 Y軸、及び θ Z方向に関する位置情報を 計測する。制御装置 7は、計測システム 6の計測結果に基づ!/、てマスクステージ駆動 システム 4を駆動し、マスクステージ 3に保持されているマスク Mの位置を制御する。
[0046] 投影光学系 PLは、マスク Mのパターンの像を所定の投影倍率で基板 Pに投影する 。投影光学系 PLは、複数の光学素子を有しており、それら光学素子は鏡筒 PKで保 持されている。本実施形態の投影光学系 PLは、その投影倍率が例えば 1/4、 1/5 、 1/8等の縮小系である。なお、投影光学系 PLは等倍系及び拡大系のいずれでも よい。本実施形態においては、投影光学系 PLの光軸 AXは Z軸方向と平行である。 また、投影光学系 PLは、反射光学素子を含まない屈折系、屈折光学素子を含まな い反射系、反射光学素子と屈折光学素子とを含む反射屈折系のいずれであってもよ い。また、投影光学系 PLは、倒立像と正立像とのいずれを形成してもよい。
[0047] 照明系 ILより射出され、マスク Mを通過した露光光 ELは、投影光学系 PLの物体面 側からその投影光学系 PLに入射する。投影光学系 PLは、物体面側から入射した露 光光 ELを、第 1光学素子 8の光射出面(下面)より射出して、基板 Pに照射可能であ
[0048] 第 1基板ステージ 2は、ステージ本体 11と、ステージ本体 11に支持され、基板 Pを 着脱可能に保持する基板ホルダ 13を有する第 1基板テーブル 12とを有する。ステー ジ本体 11は、例えばエアベアリング 14により、ベース部材 BPの上面(ガイド面 GF) に非接触支持されている。第 1基板テーブル 12は凹部 12Cを有し、基板ホルダ 13は その凹部 12Cに配置されている。第 1基板テーブル 12の凹部 12Cの周囲の対向面 15の一部の領域はほぼ平坦であり、基板ホルダ 13に保持された基板 Pの表面とほ ぼ同じ高さ(面一)である。すなわち、第 1基板テーブル 12は、その第 1基板テーブル 12の基板ホルダ 13に保持された基板 Pの表面とほぼ面一となる領域を有する対向 面 15を有する。第 1基板ステージ 1は、基板ステージ駆動システム 5により、基板ホル ダ 13で基板 Pを保持しながら、ベース部材 BP上で、 X軸、 Y軸、 Z軸、 Θ X、 θ Y、及 び θ Z方向の 6自由度の方向に移動可能である。
[0049] 第 2基板ステージ 2は、ステージ本体 21と、ステージ本体 21に支持され、基板 Pを 着脱可能に保持する基板ホルダ 23を有する第 2基板テーブル 22とを有する。ステー ジ本体 21は、例えばエアベアリング 24により、ベース部材 BPの上面(ガイド面 GF) に非接触支持されている。第 2基板テーブル 22は凹部 22Cを有し、基板ホルダ 23は その凹部 22Cに配置されている。第 2基板テーブル 22の凹部 22Cの周囲の対向面 25の一部の領域はほぼ平坦であり、基板ホルダ 23に保持された基板 Pの表面とほ ぼ同じ高さ(面一)である。すなわち、第 2基板テーブル 22は、その第 2基板テーブル 22の基板ホルダ 23に保持された基板 Pの表面とほぼ面一となる領域を有する対向 面 25を有する。第 2基板ステージ 2は、基板ステージ駆動システム 5により、基板ホル ダ 23で基板 Pを保持しながら、ベース部材 BP上で、 X軸、 Y軸、 Z軸、 Θ X、 θ Y、及 び θ Z方向の 6自由度の方向に移動可能である。
[0050] また、ステージ本体 11及び第 1基板テーブル 12を含む第 1基板ステージ 1と、ステ ージ本体 21及び第 2基板テーブル 22を含む第 2基板ステージ 2とは、ほぼ同じ形状 及び大きさを有し、ほぼ同じ構成である。本実施形態においては、第 1、第 2基板ステ ージ 1、 2の第 1、第 2基板テーブル 12、 22のそれぞれは、 XY平面内においてほぼ 矩形状である。
[0051] 基板ステージ駆動システム 5は、例えばリニアモータ等のァクチユエータを含み、第 1基板ステージ 1及び第 2基板ステージ 2のそれぞれを移動可能である。基板ステー ジ駆動システム 5は、ベース部材 BP上で各ステージ本体 11、 21を移動する粗動シス テム 5Aと、各ステージ本体 11、 21上で各基板テーブル 12、 22を移動する微動シス テム 5Bとを備えている。
[0052] 粗動システム 5Aは、例えばリニアモータ等のァクチユエータを含み、ベース部材 B P上の各ステージ本体 11、 21を X軸、 Y軸、及び θ Z方向に移動可能である。粗動シ ステム 5Aによって各ステージ本体 11、 21が X軸、 Y軸、及び θ Z方向に移動すること によって、その各ステージ本体 11、 21上に搭載されている各基板テーブル 12、 22も 、各ステージ本体 11、 21と一緒に、 X軸、 Y軸、及び θ Z方向に移動する。
[0053] 図 2は、第 1基板ステージ 1及び第 2基板ステージ 2を上方から見た図である。図 2 において、第 1基板ステージ 1及び第 2基板ステージ 2を移動するための粗動システ ム 5Aは、複数の!;ユアモータ 42、 43、 44、 45、 46、 47を備えている。粗動システム 5 Aは、 Y軸方向に延びる一対の Y軸ガイド部材 31、 32を備えている。 Y軸ガイド部材 31、 32のそれぞれは、複数の永久磁石を有する磁石ユニットを備えている。一方の Y軸ガイド部材 31は、 2つのスライド部材 35、 36を Y軸方向に移動可能に支持し、他 方の Y軸ガイド部材 32は、 2つのスライド部材 37、 38を Y軸方向に移動可能に支持 する。スライド部材 35、 36、 37、 38のそれぞれは、電機子コイルを有するコイルュニ ットを備えている。すなわち、本実施形態においては、コイルユニットを有するスライド 部材 35、 36、 37、 38、及び磁石ユニットを有する Y軸ガイド、部材 31、 32によって、ム 一ビングコイル型の Y軸リニアモータ 42、 43、 44、 45が形成される。
[0054] また、粗動システム 5Aは、 X軸方向に延びる一対の X軸ガイド部材 33、 34を備え ている。 X軸ガイド部材 33、 34のそれぞれは、電機子コイルを有するコイルユニットを 備えている。一方の X軸ガイド部材 33は、スライド部材 51を X軸方向に移動可能に 支持し、他方の X軸ガイド部材 34は、スライド部材 52を X軸方向に移動可能に支持 する。スライド部材 51、 52のそれぞれは、複数の永久磁石を有する磁石ユニットを備 えている。図 1及び図 2においては、スライド部材 51は、第 1基板ステージ 1のステー ジ本体 11に接続され、スライド部材 52は第 2基板ステージ 2のステージ本体 21に接 続されている。すなわち、本実施形態においては、磁石ユニットを有するスライド部材 51、及びコイルユニットを有する X軸ガイド部材 33によって、ムービングマグネット型 の X軸リニアモータ 46が形成される。同様に、磁石ユニットを有するスライド部材 52、 及びコイルユニットを有する X軸ガイド部材 34によって、ムービングマグネット型の X 軸リニアモータ 47が形成される。図 1及び図 2においては、 X軸リニアモータ 46によつ て第 1基板ステージ 1 (ステージ本体 11)が X軸方向に移動し、 X軸リニアモータ 47に よって第 2基板ステージ 2 (ステージ本体 21)が X軸方向に移動する。
[0055] スライド部材 35、 37は、 X軸ガイド部材 33の一端及び他端のそれぞれに固定され 、スライド部材 36、 38は、 X軸ガイド部材 34の一端及び他端のそれぞれに固定され ている。したがって、 X軸ガイド部材 33は、 Y軸リニアモータ 42、 44によって Y軸方向 に移動可能であり、 X軸ガイド部材 34は、 Y軸リニアモータ 43、 45によって Y軸方向 に移動可能である。図 1及び図 2においては、 Y軸リニアモータ 42、 44によって第 1 基板ステージ 1 (ステージ本体 11)が Y軸方向に移動し、 Y軸リニアモータ 43、 45に よって第 2基板ステージ 2 (ステージ本体 21)が Y軸方向に移動する。
[0056] そして、一対の Y軸リニアモータ 42、 44のそれぞれが発生する推力を僅かに異なら せることで、第 1基板ステージ 1の Θ Z方向の位置を制御可能であり、一対の Y軸リニ ァモータ 43、 45のそれぞれが発生する推力を僅かに異ならせることで、第 2基板ステ ージ 2の θ Z方向の位置を制御可能である。
[0057] 本実施形態においては、基板テーブル 12、 22は、ステージ本体 11、 21に移動可 能に支持されている。
[0058] 図 1に示すように、微動システム 5Bは、各ステージ本体 11、 21と各基板テーブル 1 2、 22との間に介在された、例えばボイスコイルモータ等のァクチユエータ 1 IV、 21V と、各ァクチユエータの駆動量を計測する不図示の計測装置 (例えば、エンコーダシ ステム等)とを含み、各ステージ本体 11、 21上の各基板テーブル 12、 22を、少なくと も Z軸、 Θ X、及び θ Y方向に移動可能である。また、微動システム 5Bは、各ステージ 本体 11、 21上の各基板テーブル 12、 22を、 X軸、 Y軸、及び θ Z方向に移動(微動 )可能である。
[0059] このように、粗動システム 5A及び微動システム 5Bを含む駆動システム 5は、第 1基 板テーブル 12及び第 2基板テーブル 22のそれぞれを、 X軸、 Y軸、 Z軸、 Θ Χ、 Θ Υ 、及び θ Ζ方向の 6自由度の方向に移動可能である。
[0060] また、第 1基板ステージ 1 (ステージ本体 11)及び第 2基板ステージ 2 (ステージ本体
21)のそれぞれは、例えば特表 2000— 505958号公報(対応米国特許第 5,969,4 41号)、特表 2000— 511704号公報(対応米国特許第 5,815,246号)、特開 2001 — 223159号公報(対応米国特許第 6,498,350号)等に開示されているような継手 部材を介して、スライド部材 51、 52にリリース可能に接続される。
[0061] 図 1及び図 2に示すように、第 1基板ステージ 1は、ステージ本体 11の Υ側の側面 に設けられた第 1継手部材 61と、 +Υ側の側面に設けられた第 2継手部材 62とを備 えている。同様に、第 2基板ステージ 2は、ステージ本体 21の Y側の側面に設けら れた第 3継手部材 63と、 +Y側の側面に設けられた第 4継手部材 64とを備えて!/、る
[0062] また、基板ステージ駆動システム 5は、スライド部材 51に設けられた継手部材 53と、 スライド部材 52に設けられた継手部材 54とを備えて!/、る。継手部材 53は、計測ステ ーシヨン ST2側(+ Y側)を向くように、スライド部材 51の + Y側の側面に設けられて いる。継手部材 54は、露光ステーション ST1側(—Y側)を向くように、スライド部材 5 2の Y側の側面に設けられている。
[0063] スライド部材 51と継手部材 53とは、後述するようにリリース可能に連結されており、 スライド部材 51と継手部材 53とは一緒に移動可能である。また、スライド部材 52と継 手部材 54とは固定されており、スライド部材 52と継手部材 54とは一緒に移動可能で ある。したカつて、リニアモータ 42、 44、 46は、スライド部材 51と,継手部材 53とを一 緒に移動可能であり、リニアモータ 43、 45、 47は、スライド部材 52と継手部材 54とを 一緒に移動可能である。
[0064] スライド部材 51に設けられた継手部材 53には、ステージ本体 11の第 1継手部材 6 1とステージ本体 21の第 3継手部材 63とがリリース可能に順次に接続される。スライド 部材 52に設けられた継手部材 54には、ステージ本体 11の第 2継手部材 62とステー ジ本体 21の第 4継手部材 64とがリリース可能に順次接続される。
[0065] すなわち、スライド部材 51に設けられた継手部材 53には、第 1基板ステージ 1のス テージ本体 11と第 2基板ステージ 2のステージ本体 21とが、第 1継手部材 61と第 3継 手部材 63とを介してリリース可能に順次接続され、スライド部材 52に設けられた継手 部材 54には、第 1基板ステージ 1のステージ本体 11と第 2基板ステージ 2のステージ 本体 21とが、第 2継手部材 62と第 4継手部材 64とを介してリリース可能に順次接続 される。
[0066] 以下の説明において、第 1基板ステージ 1のステージ本体 11及び第 2基板ステー ジ 2のステージ本体 21がリリース可能に順次接続される継手部材 53及びその継手部 材 53に固定されたスライド部材 51を合わせて適宜、第 1接続部材 71、と称する。また 、第 1基板ステージ 1のステージ本体 11及び第 2基板ステージ 2のステージ本体 21 がリリース可能に順次接続される継手部材 54及びその継手部材 54に固定されたス ライド部材 52を合わせて適宜、第 2接続部材 72、と称する。
[0067] したがって、リニアモータ 42、 44、 46は、第 1接続部材 71を移動可能であり、リニア モータ 43、 45、 47は、第 2接続部材 72を移動する。
[0068] また、図 2に示すように、露光装置 EXは、ベース部材 BP上に設定された第 1領域 S Pl、第 2領域 SP2、第 3領域 SP3、及び第 4領域 SP4を備えている。第 1領域 SP1は 、投影光学系 PLの第 1光学素子 8と対向する位置を含み、露光ステーション ST1の 少なくとも一部に設定された領域である。第 2領域 SP2は、第 1領域 SP1とは異なる 領域であって、ァライメント系 ALの第 2光学素子 9と対向する位置を含み、計測ステ ーシヨン ST2の少なくとも一部に設定された領域である。第 1領域 SP1と第 2領域 SP 2とは Y軸方向に沿って設定されている。本実施形態においては、第 1領域 SP1は、 第 2領域 SP2の Y側に配置されている。第 3領域 SP3及び第 4領域 SP4は、第 1領 域 SP1と第 2領域 SP2との間に配置されている。第 3領域 SP3と第 4領域 SP4とは Y 軸方向と交差する X軸方向に沿って設定されている。本実施形態においては、第 3 領域 SP3は、第 4領域 SP4の + X側に配置されている。
[0069] 第 1基板ステージ 1は、基板ステージ駆動システム 5によって、第 1領域 SP1、及び 第 2領域 SP2を含むベース部材 BP上の所定領域内で、基板 Pを保持しながら移動 可能である。同様に、第 2基板ステージ 2は、基板ステージ駆動システム 5によって、 第 1領域 SP1、及び第 2領域 SP2を含むベース部材 BP上の所定領域内で、第 1基 板ステージ 1は独立して、基板 Pを保持しながら移動可能である。
[0070] 本実施形態においては、第 1基板ステージ 1は、第 2領域 SP2から第 1領域 SP1に 移動する際、第 2領域 SP2から第 3領域 SP3の少なくとも一部を経て第 1領域 SP1に 移動し、第 1領域 SP1から第 2領域 SP2に移動する際、第 1領域 SP1から第 3領域 S P3の少なくとも一部を経て第 2領域 SP2に移動する。第 2基板ステージ 2は、第 2領 域 SP2から第 1領域 SP1に移動する際、第 2領域 SP2から第 4領域 SP4の少なくとも 一部を経て第 1領域 SP1に移動し、第 1領域 SP1から第 2領域 SP2に移動する際、 第 1領域 SP1から第 4領域 SP4の少なくとも一部を経て第 2領域 SP2に移動する。
[0071] また、制御装置 7は、ベース部材 BP上において、所定のタイミングで、第 1接続部 材 71と第 1基板ステージ 1 (又は第 2基板ステージ 2)との接続の解除、及び第 2接続 部材 72と第 2基板ステージ 2 (又は第 1基板ステージ 1)との接続の解除と、第 1接続 部材 71と第 2基板ステージ 2 (又は第 1基板ステージ 1)との接続、及び第 2接続部材 72と第 1基板ステージ 1 (又は第 2基板ステージ 2)との接続とを実行する。すなわち、 制御装置 7は、所定のタイミングで、第 1基板ステージ 1と第 2基板ステージ 2とに対す る第 1接続部材 71と第 2接続部材 72との交換動作を実行する。
[0072] そして、第 1接続部材 71は、ステージ本体 11の第 1継手部材 61とステージ本体 21 の第 3継手部材 63とに交互に接続され、第 2接続部材 72は、ステージ本体 11の第 2 継手部材 62とステージ本体 21の第 4継手部材 64とに交互に接続される。すなわち、 第 1接続部材 71は、第 1継手部材 61と第 3継手部材 63とを介して第 1基板ステージ 1のステージ本体 11と第 2基板ステージ 2のステージ本体 21とに交互に接続され、第 2接続部材 72は、第 2継手部材 62と第 4継手部材 64とを介して第 1基板ステージ 1 のステージ本体 11と第 2基板ステージ 2のステージ本体 21とに交互に接続される。
[0073] 第 1接続部材 71は、リニアモータ 42、 44、 46の駆動によって、第 1基板ステージ 1 及び第 2基板ステージ 2のうち、接続された一方の基板ステージを移動し、第 2接続 部材 72は、リニアモータ 43、 45、 47の駆動によって、接続された他方の基板ステー ジを移動する。
[0074] なお、本実施形態においては、ステージ本体(11、 21)と基板テーブル(12、 22)と は、相対的に移動可能である力 ステージ本体と基板テーブルとを一体的に設けて もよい。この場合、ステージ本体を 6自由度の方向に移動可能としてもよい。
[0075] 次に、図 1及び図 2を参照しながら、第 1、第 2基板ステージ 1、 2の位置情報を計測 する計測システム 6の一例について説明する。第 1基板ステージ 1の第 1基板テープ ル 12及び第 2基板ステージ 2の第 2基板テーブル 22のそれぞれは、その第 1基板テ 一ブル 12及び第 2基板テーブル 22の位置を計測するための計測システム 6からの 計測光 MLが照射される計測ミラー lRx、 lRy、 lRz、 2Rx、 2Ry、 2Rzを有する。
[0076] 計測システム 6は、計測ミラー lRx、 lRy、 lRz、 2Rx、 2Ry、 2Rzのそれぞれに、位 置計測用の計測光 MLを照射可能なレーザ干渉計 6Px、 6Py、 6Pzを含み、第 1、第 2基板テーブル 12、 22の所定位置に設けられた計測ミラー lRx、 lRy、 lRz、 2Rx、 2Ry、 2Rzのそれぞれに位置計測用の計測光 MLを照射して、第 1、第 2基板テープ ル 12、 22の位置情報を計測可能である。本実施形態においては、計測システム 6は 、第 1、第 2基板テーブル 12、 22の所定位置に設けられた計測ミラー lRx、 lRy、 1R z、 2Rx、 2Ry、 2Rzを用レヽて、第 1、第 2基板テーフ、、ノレ 12、 22の X車由、 Y車由、 Z車由、 Θ X、 θ Y、及び θ Ζ方向の 6自由度の方向に関する位置情報を計測可能である。
[0077] 計測ミラー 1 Rxは、第 1基板テーブル 12の + X側及び X側のそれぞれの側面の 上部に配置されている。計測ミラー lRyは、第 1基板テーブル 12の +Y側及び— Y 側のそれぞれの側面の上部に配置されている。計測ミラー lRzは、第 1基板テープ ルの + X側、 X側、 +Y側、及び Y側のそれぞれの側面の下部に配置されてい
[0078] 計測ミラー 2Rxは、第 2基板テーブル 22の + X側及び X側のそれぞれの側面の 上部に配置されている。計測ミラー 2Ryは、第 2基板テーブル 22の + Y側及び— Y 側のそれぞれの側面の上部に配置されている。計測ミラー 2Rzは、第 2基板テープ ノレ 22の + X側、 X側、 +Y側、及び Y側のそれぞれの側面の下部に配置されて いる。
[0079] 計測システム 6は、第 1、第 2基板ステージ 1、 2の第 1、第 2基板テーブル 12、 22の それぞれの所定位置に設けられた計測ミラー lRx、 lRy、 lRz、 2Rx、 2Ry、 2Rzの それぞれに計測光 MLを照射して、第 1、第 2基板テーブル 12、 22の位置情報を計 測するレーザ干渉計 6Px、 6Py、 6Pzを有している。レーザ干渉計 6Px、 6Py、 6Pz は、露光ステーション ST1及び計測ステーション ST2のそれぞれに設けられている。 露光ステーション ST1に設けられたレーザ干渉計 6Px、 6Py、 6Pzは、露光ステーシ ヨン ST1に存在する第 1基板テーブル 12 (又は第 2基板テーブル 22)の位置情報を 計測し、計測ステーション ST2に設けられたレーザ干渉計 6Px、 6Py、 6Pzは、計測 ステーション ST2に存在する第 2基板テーブル 22 (又は第 1基板テーブル 12)の位 置情報を計測する。
[0080] レーザ干渉計 6Pxは、 X軸方向を計測軸とする計測光 MLを計測ミラー lRx、 2Rx に照射可能であり、第 1、第 2基板テーブル 12、 22の X軸方向に関する位置を計測 する。レーザ干渉計 6Pyは、 Y軸方向を計測軸とする計測光 MLを計測ミラー lRy、 2Ryに照射可能であり、第 1、第 2基板テーブル 12、 22の Y軸方向に関する位置を 計測する。レーザ干渉計 6Pzは、 Z軸方向を計測軸とする計測光 MLを計測ミラー 1R z、 2Rzに照射可能であり、第 1、第 2基板テーブル 12、 22の Z軸方向に関する位置 を計測する。
[0081] 計測ミラー lRz、 2Rzは、レーザ干渉計 6Pzからの位置計測用の計測光 MLが照射 される斜面 lSz、 2Szを有する。この斜面 lSz、 2Szは、前述のように XY平面に対し て傾斜してレ、る力 レーザ干渉計 6Pzから射出される計測光 MLに対しても傾斜して いる。計測ミラー lRz、 2Rzの斜面 lSz、 2Szは、照射された計測光 MLを反射する 反射面として機能する。以下の説明において、照射された計測光 MLを反射可能な 計測ミラー lRz、 2Rzの斜面を適宜、反射面、と称する。
[0082] 計測ミラー lRz、 2Rzは、その反射面 (斜面) lSz、 2Szが上方を向くように、第 1基 板ステージ 1及び第 2基板ステージ 2それぞれの側面に配置されている。計測ミラー 1 Rz、 2Rzの反射面 lSz、 2Szは、上方を向くように XY平面に対して所定角度(例え ば 45度)傾斜しており、レーザ干渉計 6Pzから射出され、計測ミラー lRz、 2Rzに照 射された計測光 MLは、その計測ミラー lRz、 2Rzの反射面 l Sz、 2Szで反射し、所 定の支持フレーム 19に設けられた計測ミラー 1K、 2Κに照射される。そして、計測ミラ 一 1Κ、 2Κに照射され、その計測ミラー 1Κ、 2Κで反射した計測光 MLは、第 1、第 2 基板テーブル 12、 22の計測ミラー lRz、 2Rzの反射面 lSz、 2Szを介して、レーザ干 渉計 6Pzに受光される。レーザ干渉計 6Pzは、その受光した計測光 MLを用いて、第 1、第 2基板テーブル 12、 22の Z軸方向の位置情報を計測可能である。なお、第 1、 第 2基板テーブル 12、 22の Z軸方向の位置情報を計測可能なレーザ干渉計 (Z干渉 計)に関する技術は、例えば特開 2000— 323404号公報(対応米国特許第 7,206, 058号)、特表 2001— 513267号公報(対応米国特許第 6,208,407号)等に開示さ れている。
[0083] また、レーザ干渉計 6Px及びレーザ干渉計 6Pyの少なくとも一方を複数設け、 X軸 方向を計測軸とする計測光 ML及び Y軸方向を計測軸とする計測光の少なくとも一 方を複数照射することにより、計測システム 6は、その複数の計測光 MLを用いて、第 1、第 2基板テーブル 12、 22の θ Z方向の位置情報を計測可能である。また、レーザ 干渉計 6Pzを複数設け、 Z軸方向を計測軸とする計測光 MLを複数照射することによ り、計測システム 6は、その複数の計測光 MLを用いて、第 1、第 2基板テーブル 12、
22の Θ X、 θ Y方向の位置情報を計測可能である。
[0084] 以下の説明にお!/、て、レーザ干渉計 6Px、 6Py、 6Pzのそれぞれを適宜、 X干渉計
6Px、 Y干渉計 6Py、 Z干渉計 6Pz、と称する。
[0085] また、計測システム 6は、第 2光学素子 9を含むァライメント系 ALを有する。ァライメ ント系 ALは、計測ステーション ST2に配置され、基板 Pのァライメントマーク、又は第
1、第 2基板テーブル 12、 22の対向面 15、 25に配置されている基準マークを検出可 能である。
[0086] また、計測システム 6は、フォーカス 'レベリング検出系 FLを有する。フォーカス'レ ベリング検出系 FLは、計測ステーション ST2に配置され、第 1、第 2基板テーブル 12 、 22に保持されている基板 Pの表面の面位置情報(Z軸、 Θ X、及び θ Y方向に関す る位置情報)を検出する。フォーカス'レべリング検出系 FLは、計測ステーション ST2 で、第 1基板テーブル 12に保持された基板 Pの表面の面位置情報と、第 2基板テー ブル 22に保持された基板 Pの表面の面位置情報とを交互に検出する。
[0087] そして、制御装置 7は、計測システム 6の計測結果に基づ!/、て、基板ステージ駆動 システム 5を駆動し、第 1、第 2基板テーブル 12、 22の位置を制御することによって、 第 1、第 2基板テーブル 12、 22の基板ホルダ 13、 23に保持されている基板 Pの位置 を制御する。
[0088] 露光ステーション ST1においては、投影光学系 PL及び液体 LQを介して基板 が 露光される。計測ステーション ST2においては、露光に関する計測及び基板 Pの交 換が行われる。第 1基板ステージ 1及び第 2基板ステージ 2のそれぞれは、基板 Pを 保持しながら、露光ステーション ST1の第 1領域 SP1と、計測ステーション ST2の第 2 領域 SP2との間で移動可能である。
[0089] 次に、透過部材 81、 82について図 2〜図 6を参照して説明する。図 3は、透過部材 81が設けられた第 1基板テーブル 12の近傍を示す斜視図、図 4は、透過部材 81、 8 2が設けられた第 1、第 2基板テーブル 12、 22を示す平面図、図 5は、側面図である 。図 6は、第 1基板テーブル 12に設けられた透過部材 81の近傍を示す側断面図で ある。以下の図 2〜図 6を用いた説明においては、第 1基板テーブル 12に設けられた 透過部材 81について主に説明する力 第 2基板テーブル 22に設けられた透過部材 82も同様である。
[0090] 透過部材 81は、計測ミラー lRzよりも第 1基板テーブル 12 (の側面)からその外側 に張り出す張出部分 81Sを有する。張出部分 81Sは端面 81Eを有し、その端面 81E もまた計測ミラー lRzよりも第 1基板テーブル 12から外側に張り出す。張出部分 81S は、計測光 MLを透過可能な透過領域 81 Sを画定する。本実施形態においては、透 過部材 81は、例えば石英等、計測光 MLを透過可能なガラス材料で形成されている 。計測ミラー lRzは、第 1基板テーブル 12の側面から外側(図では— X方向)に張り 出すように、その第 1基板テーブル 12の側面に配置されている。透過部材 81の端面 81Eは、その端面 81Eが計測ミラー lRzよりも XY平面内において外側(図では— X 方向)に張り出すように、第 1基板テーブル 12に配置されている。
[0091] 計測ミラー lRzは、その反射面 lSzが上方(+ Z方向)を向くように、第 1基板テープ ノレ 12の側面に配置されている。計測ミラー lRzの反射面 lSzは、 XY平面に対して所 定角度 (例えば 45度)傾斜している。
[0092] 透過部材 81は、上面及び下面を有する板状の部材(ガラス部材)であり、その透過 部材 81の上面と第 1基板テーブル 12の対向面 15の一部の領域 15Aとがほぼ面一( Z軸方向の位置がほぼ等しい)となるように、第 1基板テーブル 12に配置されている。 透過部材 81の透過領域 81 Sは平行平面板であり、第 1基板テーブル 12に保持され た透過部材 81の透過領域 81 Sの上面及び下面は、 XY平面とほぼ平行である。
[0093] また、透過部材 81は、その透過部材 81の下面の少なくとも一部と計測ミラー lRzの 反射面 lSzとが対向するように、計測ミラー lRzの上方に配置されている。透過部材 81は、計測ミラー lRzの上方で、透過領域 81Sと計測ミラー lRzの反射面 lSzとが対 向するように、第 1基板テーブル 12の対向面の一部に接続されている。
[0094] 計測ミラー lRzと透過部材 81とは、それら計測ミラー lRzの反射面 lSz及び透過部 材 81の透過領域 81Sの一方を介した計測光 MLが他方に入射するように、第 1基板 テーブル 12におレ、て、所定の位置関係で配置されて!/、る。
[0095] すなわち、図 6に示すように、 Z干渉計 6Pzから射出され、計測ミラー lRzに照射さ れた計測光 MLは、その計測ミラー lRzの反射面 lSzで反射した後、その計測ミラー lRzの上方に配置されて!/、る透過部材 81の透過領域 81 Sに入射する。透過部材 81 の透過領域 81 Sに入射した計測光 MLは、その透過領域 81 Sを透過した後、所定の 支持フレーム 19に設けられた計測ミラー 1Kに照射される。そして、計測ミラー 1Kに 照射され、その計測ミラー 1Kで反射した計測光 MLは、透過部材 81の透過領域 81 Sに入射し、その透過領域 81Sを透過した後、その透過領域 81Sより射出される。透 過部材 81の透過領域 81Sより射出された計測光 MLは、計測ミラー lRzの反射面 1 Szに入射する。計測ミラー lRzの反射面 lSzに入射した計測光 MLは、その反射面 lSzで反射した後、 Z干渉計 6Pzに入射する。 Z干渉計 6Pzは、計測ミラー lRzの反 射面 lSzからの計測光 MLを受光する。
[0096] また、図 6に示すように、第 1光学素子 8と対向可能な第 1基板テーブル 12の対向 面 15には、基板ホルダ 13に保持された基板 Pの表面とほぼ面一となる領域 15Aと、 その領域 15Aよりも低い領域 15Bとが形成されている。領域 15Bは、第 1基板テープ ノレ 12の側面と接続するように形成されており、領域 15Aと領域 15Bとの間には段差 1 2Dが形成されている。
[0097] 露光装置 EXは、第 1基板テーブル 12に設けられ、透過部材 81の少なくとも一部を 着脱可能に保持する保持機構 90を備えている。保持機構 90の少なくとも一部は、対 向面 15の領域 15Bに設けられている。透過部材 81の下面と対向面 15の領域 15Bと は接触可能である。
[0098] 透過部材 81は、その透過部材 81の下面の一部と、第 1基板テーブル 12の対向面
15の領域 15Bとが対向するように配置される。保持機構 90は、対向面 15の領域 15 Bに形成され、その領域 15Bと接触するように配置された透過部材 81の下面との間 で空間を形成するための溝 91と、その溝 91の内側に形成された吸引口 92と、吸引 口 92に流路 93を介して接続された真空システム 94とを備えている。真空システム 94 は、透過部材 81の下面と溝 91との間に形成された空間の気体を吸引口 92を介して 吸引可能である。真空システム 94の動作は制御装置 7に制御される。透過部材 81の 下面と第 1基板テーブル 12の対向面 15の領域 15Bとが接触し、透過部材 81の下面 と溝 91との間に空間が形成された状態で、保持機構 90の真空システム 94を駆動し て、その空間の気体を吸引口 92を介して吸引することによって、制御装置 7は、透過 部材 81の下面を、第 1基板テーブル 12の対向面 15の領域 15Bで吸着保持できる。 また、制御装置 7は、保持機構 90の真空システム 94の駆動を停止することによって、 透過部材 81に対する吸着保持を解除できる。すなわち、本実施形態の保持機構 90 は、所謂真空チャック機構を含む。
[0099] 保持機構 90で保持された透過部材 81の上面と、第 1基板テーブル 12の対向面 15 の領域 15Aとはほぼ面一となる。すなわち、第 1基板テーブル 12の対向面 15の領域 15Aは、保持機構 90で保持された透過部材 81の上面、及び基板ホルダ 13で保持 された基板 Pの表面のそれぞれとほぼ面一となる。
[0100] 以下の説明においては、基板 Pの表面及び透過部材 81の上面とほぼ面一となる対 向面 15の領域 15Aを適宜、トップ面 15A、と称する。また、透過部材 81の下面を保 持可能な対向面 15の領域 15Bを適宜、保持面 15B、と称する。
[0101] また、保持機構 90で保持された透過部材 81の端面 81Eは、計測ミラー lRzよりも 外側に張り出す。
[0102] また、露光装置 EXは、第 1基板テーブル 12に設けられ、透過部材 81を介した光が 入射する光センサ 75を備えている。光センサ 75は、保持面 15Bの内側に形成された 凹部 12Hに配置されている。透過部材 81は、透過部材 81の下面の少なくとも一部と 第 1基板テーブル 12の保持面 15Bとが対向するように配置され、凹部 12Hに配置さ れた光センサ 75には、透過部材 81を介した光が入射可能である。
[0103] 本実施形態においては、透過部材 81は、その上面の一部の領域に例えばクロム 等で形成された遮光膜 76と、その遮光膜 76の一部に形成されたスリット状の開口 77 とを有する。開口 77においては、透過部材 81が露出しており、光は、開口 77を透過 可能である。前述の透過領域 (第 1透過領域) 81S (82S)に対して、開口 77と対向す る透過部材 81の領域を適宜、第 2透過領域 81SS (82SS)と呼ぶ。
[0104] 第 1基板テーブル 12のトップ面 15Aとほぼ平行な XY平面内における遮光膜 76の 大きさは、凹部 12Hよりも大きい。透過部材 81が保持機構 90に保持された状態にお いて、光センサ 75には、開口 77を通過した光のみが入射する。すなわち、光センサ 75は、保持機構 90に保持された状態の透過部材 81の開口 77を通過した光のみを 受光する。
[0105] 本実施形態においては、光センサ 75は、例えば特開 2002— 14005号公報(対応 米国特許出願公開 2002/0041377号明細書)、特開 2002— 198303号公報(対 応米国特許出願公開第 2002/0041377号)等に開示されているような、空間像計 測システムの少なくとも一部を構成する光センサである。
[0106] なお、光センサ 75としては、例えば国際公開第 2005/074014号パンフレット(対 応米国特許出願公開第 2007/0127006号)、国際公開第 2006/013806号パ ンフレット(対応欧州特許出願公開第 1791164号)等に開示されているような、露光 光 ELの強度(透過率)を計測可能な光センサであってもよい。光センサ 75に代えて または光センサとともに、照明むら計測器、照度計、波面収差計測器などの各種検 出器または計測器を第 1基板テーブル 12のトップ面 15Aに形成した凹部 12Hに配 置してもよい。これらの検出器または計測器には、透過部材 81に設けられた各種の パターンの開口を透過して光が入射する。
[0107] それらの検出器または計測器として、例えば特開昭 57— 117238号公報(対応す る米国特許第 4,465,368号)などに開示される照度むらセンサ、例えば特開 2002 14005号公報(対応する米国特許出願公開第 2002/0041377号明細書)など に開示される、投影光学系 PLにより投影されるパターンの空間像 (投影像)の光強度 を計測する空間像計測器、例えば特開平 11 16816号公報 (対応する米国特許出 願公開第 2002/0061469号明細書)などに開示される照度モニタ、及び例えば国 際公開第 99/60361号パンフレット(対応する欧州特許第 1 , 079, 223号明細書) などに開示される波面収差計測器を用い得る。
[0108] 以上、第 1基板テーブル 12に設けられる透過部材 81について主に説明した。本実 施形態においては、第 2基板テーブル 22にも、第 1基板テーブル 12に設けられてい る保持機構 90と同様の保持機構 90が設けられ、その保持機構 90によって、透過部 材 81と同様の透過部材 82が着脱可能に保持される。第 2基板テーブル 22の保持機 構 90で保持された透過部材 82の端面 82Eは、計測ミラー 2Rzよりも外側に張り出す 。計測ミラー 2Rzと透過部材 82とは、それら計測ミラー 2Rzの反射面 2Sz及び透過部 材 82の透過領域 82Sの一方を介した計測光 MLが他方に入射するように、第 2基板 テーブル 22において、所定の位置関係で配置されている。また、第 2基板テーブル 2 2には、透過部材 82に形成された遮光膜 76の開口 77を透過した光が入射する光セ ンサ 75が設けられている。
[0109] 本実施形態においては、透過部材 81は、第 1基板テーブル 12の— X側の側面に 配置された計測ミラー lRzの反射面 lSzと対向するように、第 1基板テーブル 12の対 向面 15の— X側のエッジ近傍に 1つ配置されている。また、透過部材 82は、第 2基板 テーブル 22の + X側の側面に配置された計測ミラー 2Rzの反射面 2Szと対向するよ うに、第 2基板テーブル 22の対向面 25の + X側のエッジ近傍に 1つ配置されている。
[0110] また、透過部材 81の端面 81Eはほぼ直線状であり、透過部材 81は、その端面 81E と Y軸とがほぼ平行となるように、第 1基板テーブル 12の保持機構 90で保持される。 同様に、透過部材 82の端面 82Eはほぼ直線状であり、透過部材 82は、その端面 82 Eと Y軸とがほぼ平行となるように、第 2基板テーブル 22の保持機構 90で保持される
[0111] また、後述するように、本実施形態においては、制御装置 7は、基板ステージ駆動 システム 5を用いて、第 1基板テーブル 12の透過部材 81— X側の端面 81Eと、第 2 基板テーブル 22の透過部材 82 + X側の端面 82Eの少なくとも一部とを接近又は接 触させた状態で、第 1基板ステージ 1と第 2基板ステージ 2とを X軸方向に同期移動す る。本実施形態においては、第 1基板テーブル 12の透過部材 81— X側の端面 81E の一部には、段差 81Dが形成されている。第 2基板テーブル 22の透過部材 82 + X 側の端面 82Eの一部には、第 1基板テーブル 12の透過部材 81の段差 81Dと対応 する(かみ合う)段差 82Dが形成されて!/、る。
[0112] 次に、上述の構成を有する露光装置の動作及び露光方法の一例について図 7 図 12及び図 24を参照して説明する。
[0113] 本実施形態においては、第 1基板ステージ 1及び第 2基板ステージ 2の一方の基板 ステージが露光ステーション ST1の第 1領域 SP1に配置されているときに、他方の基 板ステージが計測ステーション ST2の第 2領域 SP2において所定の処理を実行する
[0114] 例えば、露光装置 EXは、第 1基板ステージ 1及び第 2基板ステージ 2の一方の基板 ステージを露光ステーション ST1の第 1光学素子 8からの露光光 ELが照射される位 置に配置して、その一方の基板ステージに保持された基板 Pを露光する動作と、他 方の基板ステージを計測ステーション ST2の第 2光学素子 9と対向する位置に配置し て、その他方の基板ステージに保持された基板 Pを計測する動作の少なくとも一部と を並行して行う。また、露光装置 EXは、第 1基板ステージ 1及び第 2基板ステージ 2 の一方の基板ステージを露光ステーション ST1の第 1領域 SP1に配置している状態 で、他方の基板ステージを計測ステーション ST2の第 2領域 SP2に配置して、搬送シ ステム Hを用いて、その他方の基板ステージより露光処理済みの基板 Pをアンロード( 搬出)するとともに、露光処理されるべき基板 Pをその他方の基板ステージにロード( 搬入)するとレ、つた基板交換作業を行う。
[0115] 本実施形態においては、露光ステーション ST1の第 1領域 SP1に第 1基板ステー ジ 1と第 2基板ステージ 2とが順次配置され、第 1領域 SP1に配置された第 1基板ステ ージ 1に保持されている基板 Pに露光光 ELを照射する動作と、第 2基板ステージ 2に 保持されている基板 Pに露光光 ELを照射する動作とが順次実行される。
[0116] 図 7に示すように、制御装置 7は、計測ステーション ST2の基板交換位置に第 2基 板ステージ 2を配置して、搬送システム Hを用いて、その第 2基板ステージ 2に露光処 理されるべき基板 Pをロードする。そして、制御装置 7は、計測ステーション ST2にお いて、第 2基板ステージ 2に保持されている基板 Pに関する所定の計測処理等を開始 する(SM1)。
[0117] 一方、露光ステーション ST1の第 1領域 SP1には、計測ステーション ST2における 計測処理を既に終えた基板 Pを保持した第 1基板ステージ 1が配置されて!/、る。制御 装置 7は、露光ステーション ST1において、第 1基板ステージ 1に保持されている基 板 Pの露光を開始する(SE1)。
[0118] 制御装置 7は、露光ステーション ST1において、第 1基板ステージ 1に保持されてい る基板 Pの液浸露光を実行する。制御装置 7は、第 1基板ステージ 1に保持されてい る基板 Pと投影光学系 PLの第 1光学素子 8とを対向させた状態で、第 1光学素子 8の 光射出側の露光光 ELの光路空間を液体 LQで満たした状態で、基板 Pを露光する。 基板 P上には複数のショット領域が設定されており、制御装置 7は、基板ステージ駆 動システム 5を用いて、第 1領域 SP1において第 1基板ステージ 1を移動しつつ、その 第 1基板ステージ 1に保持されている基板 P上の複数のショット領域のそれぞれを、投 影光学系 PLと液体 LQとを介して順次露光する。
[0119] 露光ステーション ST1における第 1基板ステージ 1に保持されている基板 Pの露光 処理が実行されている間、計測ステーション ST2における第 2基板ステージ 2に保持 されている基板 Pの計測処理等が実行される。例えば、制御装置 7は、計測ステーシ ヨン ST2に配置されている第 2基板ステージ 2に保持されている基板 Pの位置情報を 計測する。ここで、基板 Pの位置情報とは、所定の基準位置に対する基板 Pのァライメ ント情報(基板 P上の複数のショット領域の X、 Υ、 θ Ζ方向の位置情報)、及び所定の 基準面に対する基板 Ρの面位置情報 (Ζ、 Θ Χ、 Θ Υ方向の位置情報)の少なくとも一 方を含む。
[0120] すなわち、制御装置 7は、上述のァライメント系 ALを用いた検出動作、及びフォー カス'レべリング検出系 FLを用いた検出動作を実行する。例えば、フォーカス'レペリ ング検出系 FLを用いた検出動作では、制御装置 7は、計測ステーション ST2におい て、 Ζ干渉計 6Ρζで第 2基板ステージ 2の Ζ軸方向の位置情報を計測しつつ、フォー カス'レべリング検出系 FLを用いて、所定の基準面、及び基板 Ρの表面の面位置情 報を検出する。そして、制御装置 7は、 Ζ干渉計 6Ρζを含む計測システム 6によって規 定される座標系内における、基準面を基準とした基板 Ρの表面(各ショット領域)の近 似平面 (近似表面)を求める。
[0121] 第 2基板ステージ 2には、その第 2基板ステージ 2の 4つの側面のそれぞれに、計測 ミラー 2Rzが配置されている。計測ステーション ST2において、第 2基板ステージ 2の 基板 Pの計測処理を実行する際、計測システム 6は、その 4つの側面のうち、少なくと も 3つの側面のそれぞれに配置された計測ミラー 2Pzのそれぞれに、 Z干渉計 6Pzよ り計測光 MLを照射して、第 2基板ステージ 2の Z軸方向の位置情報を計測する。本 実施形態においては、計測ステーション ST2には、第 2光学素子 9に対して + X側、 X側、及び + Y側に 3つの Z干渉計 6Pzが配置されており、それら Z干渉計 6Pzより 、第 2基板ステージ 2の計測ミラー 2Rzに計測光 MLが照射される。 Z干渉計 6Pzから 射出される計測光 MLの少なくとも一部は、第 2基板ステージ 2の透過部材 82を透過 する。
[0122] また、ァライメント系 ALを用いた検出動作では、制御装置 7は、計測ステーション S T2において、 X干渉計 6Px及び Y干渉計 6Pyで、基板 Pを保持した第 2基板ステー ジ 2の X軸方向及び Y軸方向の位置情報を計測しつつ、ァライメント系 ALを用いて、 第 2基板ステージ 2の一部に形成された基準マーク、及び基板 P上の各ショット領域 に対応して基板 Pに設けられたァライメントマークを検出する。これにより、ァライメント マーク(ひいてはショット領域)、及び基準マークの位置情報が計測される。なお、ァ ライメント系 ALによるァライメントマークの検出が行われるショット領域は、基板 P上の 全てのショット領域でもよいが、本実施形態では一部のショット領域のみとする。そし て、制御装置 7は、その計測されたショット領域の位置情報に基づき、所定の基準位 置に対する基板 P上の複数のショット領域のそれぞれの位置情報を演算処理によつ て求める。
[0123] 露光ステーション ST1において、第 1基板ステージ 1に保持されている基板 Pの露 光処理が完了し、計測ステーション ST2において、第 2基板ステージ 2に保持されて いる基板 Pの計測処理が完了した後、制御装置 7は、計測ステーション ST2の第 2領 域 SP2から露光ステーション ST1の第 1領域 SP1への第 2基板ステージ 2の移動を 開始する。なお、露光ステーション ST1での基板 Pの露光処理の完了前に、第 2基板 ステージ 2の移動を開始してもよレ、。
[0124] 本実施形態においては、制御装置 7は、第 2基板ステージ 2を第 2領域 SP2から第 1領域 SP1へ移動しているときにも、第 1基板ステージ 1を第 1光学素子 8と対向する 位置に配置する。これにより、第 2基板ステージ 2が第 2領域 SP2から第 1領域 SP1へ 移動する動作を実行中においても、液浸空間 LSの液体 LQは、第 1光学素子 8と第 1 基板ステージ 1 (基板 P)との間に保持され続ける。以上の動作により、図 8に示すよう に、露光ステーション ST1の第 1領域 SP1に、第 1基板ステージ 1と第 2基板ステージ 2との両方が配置される。なお、第 1基板ステージ 1に保持された基板 Pの露光処理 が完了した時点で、第 1基板ステージ 1は第 1光学素子との間に液体 LQを保持しつ つ、接続部材の交換動作が行われる、図 8に示される第 1領域 SP1内の所定位置に 移動される。 [0125] 次に、制御装置 7は、第 1基板ステージ 1と第 1光学素子 8とが対向する状態を維持 しつつ、第 1基板ステージ 1と第 2基板ステージ 2とに対する第 1接続部材 71と第 2接 続部材 72との交換動作を実行する。すなわち、制御装置 7は、第 1接続部材 71と第 1基板ステージ 1の第 1継手部材 61との接続を解除して、第 1接続部材 71から第 1基 板ステージ 1をリリースするとともに、第 2接続部材 72と第 2基板ステージ 2の第 4継手 部材 64との接続を解除して、第 2接続部材 72から第 2基板ステージ 2をリリースする。
[0126] その後、図 9に示すように、制御装置 7は、第 1接続部材 71を—X方向に移動して、 第 2基板ステージ 2の第 3継手部材 63に接続するとともに、第 2接続部材 72を + X方 向に移動して、第 1基板ステージ 1の第 2継手部材 62に接続する。
[0127] このように、交換動作において、第 1基板ステージ 1に接続されていた第 1接続部材
71が第 2基板ステージ 2に接続され、第 2基板ステージ 2に接続されていた第 2接続 部材 72が第 1基板ステージ 1に接続される。
[0128] 次に、制御装置 7は、第 2基板ステージ 2の基板 Pを液浸露光するために、基板ステ ージ駆動システム 5を用いて、第 1基板ステージ 1及び透過部材 81の少なくとも一方 と第 1光学素子 8とが対向する状態 (すなわち、第 1基板ステージ 1及び透過部材 81 の少なくとも一方と第 1光学素子 8との間に液体 LQが保持されている状態)から、第 2 基板ステージ 2及び透過部材 82の少なくとも一方と第 1光学素子 8とが対向する状態 (すなわち、第 2基板ステージ 2及び透過部材 82の少なくとも一方と第 1光学素子 8と の間に液体 LQが保持される状態)に変化させる。
[0129] 本実施形態においては、例えば国際公開第 2005/074014号パンフレット(対応 米国特許出願公開第 2007/0127006号)などに開示されているように、基板ステ ージ駆動システム 5は、第 1光学素子 8からの露光光 ELが照射される位置を含むガ イド面 GFの第 1領域 SP1において、第 1基板ステージ 1の透過部材 81の端面 81Eと 、第 2基板ステージ 2の透過部材 82の端面 82Eとを接近又は接触させた状態で、第 1基板ステージ 1と第 2基板ステージ 2とを同期移動させる。第 1基板ステージ 1の透 過部材 81の端面 81Eと、第 2基板ステージ 2の透過部材 82の端面 82Eとを接近する とは、第 1基板ステージ 1の透過部材 81の端面 81Eと第 2基板ステージ 2の透過部材 82の端面 82Eとの間から液体 LQが漏れ出さないか、あるいは液体 LQの漏れ出しが 露光装置の運転に影響がな!/、ほど少な!/、量であることを意味する。
[0130] 基板ステージ駆動システム 5は、第 1基板ステージ 1と第 2基板ステージ 2とを同期 移動させる際に、透過部材 81、透過部材 82、第 1基板ステージ 1、及び第 2基板ステ ージ 2の少なくとも 1つが、第 1光学素子 8との間で、液体 LQを保持可能な空間を形 成するために、第 1基板ステージ 1の透過部材 81の端面 81Eと第 2基板ステージ 2の 透過部材 82の端面 82Eとを接近又は接触させる(SE2)。
[0131] 制御装置 7は、透過部材 81、透過部材 82、第 1基板ステージ 1、及び第 2基板ステ ージ 2の少なくとも 1つが、第 1光学素子 8との間で液体 LQを保持可能な空間を形成 し続けるようにする。すなわち、透過部材 81の端面 81Eと透過部材 82の端面 82Eと を接近又は接触させた状態で、第 1光学素子 8と対向する位置を含むガイド面 GFの 第 1領域 SP1で、基板ステージ駆動システム 5を用いて、第 1光学素子 8に対して、第 1基板ステージ 1と第 2基板ステージ 2とを XY平面内で同期移動する(SE3)。本実施 形態においては、制御装置 7は、第 1基板ステージ 1の透過部材 81の端面 81Eと第 2基板ステージ 2の透過部材 82の端面 82Eとを接近又は接触させた状態で、第 1基 板ステージ 1と第 2基板ステージ 2とを + X方向に同期移動する。これにより、図 9に示 すような、第 1基板ステージ 1及び透過部材 81の少なくとも一方と第 1光学素子 8とが 対向する状態から、図 10に示すような、第 2基板ステージ 2及び透過部材 82の少なく とも一方と第 1光学素子 8とが対向する状態に変化させることができる。すなわち、第 1基板ステージ 1及び透過部材 81の少なくとも一方と第 1光学素子 8との間に液体 L Qが保持されている状態から、第 2基板ステージ 2及び透過部材 82の少なくとも一方 と第 1光学素子 8との間に液体 LQが保持される状態に変化させることができる。なお 、図示はしていないが、図 9に示す状態から図 10に示す状態に変化する過程で、制 御装置 7は、まず、第 1基板ステージ 1の透過部材 81の端面 81Eと第 2基板ステージ 2の透過部材 82の端面 82Eとを接近又は接触させた状態で、第 1基板ステージ 1と 第 2基板ステージ 2とを— Y方向に同期移動して、液浸空間 LSが Y方向において透 過部材 81の端面 81Eに形成されている段差 81Dの位置に至るまで移動する。次い で、制御装置は、第 1基板ステージ 1と第 2基板ステージ 2とを + X方向に同期移動し て、液浸空間 LSが透過部材 81、 82の端面 81E、 82Eに形成されている段差 81D、 82Dの上を通過して第 2基板ステージ 2上に移動することができる。そして、制御装 置は、第 1基板ステージ 1と第 2基板ステージ 2とを + Y方向に同期移動して図 10に 示すような配置に第 1光学素子 8を位置づけることができる。ここで、液浸空間 LSが 第 1基板ステージ 1ほたは透過部材 81)から第 2基板ステージ 2ほたは透過部材 82 )に移動した後、第 1、第 2基板ステージ 1、 2を図 10に示す配置にすることなぐ第 1 基板ステージ 1の第 2領域 SP2への移動、及び第 2基板ステージ 2の第 1領域 SP1内 の所定位置、例えば光センサ 75による計測が行われる位置、あるいは露光開始位 置への移動を開始しても良い。また、第 1、第 2基板ステージ 1、 2を図 8、図 9に示す 配置にした時点で、 Y軸方向に関して第 1光学素子 8が透過部材 81、 82の段差 81 D、 82Dとほぼ同一位置となるように第 1、第 2基板ステージ 1、 2を位置決めしても良 い。
本実施形態においては、第 1基板テーブル 12の 4つの側面のそれぞれに、その側 面から張り出すように(突出するように)計測ミラー lRzが配置され、第 2基板テーブル 22の 4つの側面のそれぞれに、その側面から張り出すように(突出するように)計測ミ ラー 2Rzが配置されている。そして、第 1基板ステージ 1と第 1光学素子 8との間に液 体 LQが保持されている状態から、第 2基板ステージ 2と第 1光学素子 8との間に液体 LQが保持される状態に変化させる際、計測ミラー lRzよりも—X方向に外側に張り出 す透過部材 81の端面 81Eと、計測ミラー 2Rzよりも + X方向に外側に張り出す透過 部材 82の端面 82Eとを接近又は接触させる。これにより、第 1基板ステージ 1の計測 ミラー lRzと、第 2基板ステージ 2及び計測ミラー 2Rzの少なくとも一方とが接触(衝突 )したり、第 2基板ステージ 2の計測ミラー 2Rzと、第 1基板ステージ 1及び計測ミラー 1 Rzの少なくとも一方とが接触(衝突)したりすることを抑制しつつ、透過部材 81の端面 81Eと透過部材 82の端面 81Eとを良好に接近又は接触させることができる。したがつ て、液体 LQの液浸空間 LSを形成した状態で、液体 LQの漏出を抑制しつつ、第 1基 板ステージ 1と第 1光学素子 8との間に液体 LQが保持されていた状態から、第 2基板 ステージ 2と第 1光学素子 8との間に液体 LQが保持される状態に円滑に変化させる ことができる。すなわち、第 1光学素子 8の光射出側の露光光 ELの光路空間を液体 LQで満たし続けた状態で、第 1基板ステージ 1と第 1光学素子 8とが対向する状態か ら、第 2基板ステージ 2と第 1光学素子 8とが対向する状態に変化させることができる。
[0133] また、本実施形態においては、透過部材 81、 82の端面 81E、 82Eのそれぞれには 、互いにかみ合う段差 81D、 82Dが形成されている。したがって、図 12の模式図に 示すように、段差 81D、 82Dをかみ合わせた状態で、例えば、液浸空間 LSが段差 8 1D、 82Dの上の透過部材 81、 82の上面を通過するように、第 1、第 2基板ステージ 1 、 2の移動が制御されることにより、液体 LQの漏出がより効果的に抑制される。
[0134] その後、制御装置 7は、第 2基板ステージ 2と第 1光学素子 8とを対向させた状態を 維持しつつ、基板ステージ駆動システム 5を制御して、第 1基板ステージ 1を計測ステ ーシヨン ST2に移動する(SE4)。
[0135] そして、図 11に示すように、第 2基板ステージ 2が露光ステーション ST1の第 1領域 SP1に配置されるとともに、第 1基板ステージ 1が計測ステーション ST2の第 2領域 S P2に配置される。計測ステーション ST2に移動した第 1基板ステージ 1に保持されて いる基板 Pは、基板交換位置において、搬送システム Hによってアンロードされ、露 光されるべき新たな基板 Pが第 1基板ステージ 1にロードされる(SM3)。制御装置 7 は、計測ステーション ST2において、第 1基板ステージ 1にロードされた基板 Pの計測 処理等を開始する(SM4)。
[0136] 第 1基板ステージ 1には、その第 1基板ステージ 1の 4つの側面のそれぞれに、計測 ミラー lRzが配置されている。計測ステーション ST2において、第 1基板ステージ 1の 基板 Pの計測処理を実行する際、計測システム 6は、その 4つの側面のうち、少なくと も 3つの側面のそれぞれに配置された計測ミラー ΙΡζのそれぞれに、 Z干渉計 6Pzよ り計測光 MLを照射して、第 1基板ステージ 1の Z軸方向の位置情報を計測する。本 実施形態においては、計測ステーション ST2には、第 2光学素子 9に対して + X側、 X側、及び + Y側に 3つの Z干渉計 6Pzが配置されており、それら Z干渉計 6Pzより 、第 1基板ステージ 1の計測ミラー lRzに計測光 MLが照射される。 Z干渉計 6Pzから 射出される計測光 MLの少なくとも一部は、第 1基板ステージ 1の透過部材 81を透過 する。
[0137] 制御装置 7は、露光ステーション ST1において、第 2基板ステージ 2に保持されてい る基板 Pの液浸露光を実行する(SE5)。制御装置 7は、第 2基板ステージ 2に保持さ れている基板 Pと投影光学系 PLの第 1光学素子 8とを対向させた状態で、第 1光学 素子 8の光射出側の露光光 ELの光路空間を液体 LQで満たした状態で、基板 Pを露 光する。基板 P上には複数のショット領域が設定されており、制御装置 7は、基板ステ ージ駆動システム 5を用いて、第 1領域 SP1にお!/、て第 2基板ステージ 2を移動しつ つ、その第 2基板ステージ 2に保持されている基板 P上の複数のショット領域のそれぞ れを、投影光学系 PLと液体 LQとを介して順次露光する。
[0138] なお、制御装置 7は、必要に応じて、基板 Pの露光を開始する前に、第 1光学素子 8 と開口 77とを対向させ、液体 LQを介して開口 77に露光光 ELを照射することができ る。第 1光学素子 8から射出され、液体 LQを介して開口 77に照射された露光光 EL は、光センサ 75に入射する。制御装置 7は、光センサ 75の検出結果に基づいて、例 えば投影光学系 PLのキャリブレーションを実行する等、所定の処理を実行することが できる。
[0139] 基板 Pを露光するに際し、制御装置 7は、計測ステーション ST2での計測結果を用 いて、露光ステーション ST1において、第 2基板ステージ 2に保持された基板 Pの位 置を調整しつつ、基板 Pを露光する。
[0140] 例えば、制御装置 7は、露光ステーション ST1に配置された第 2基板ステージ 2の Z 軸方向の位置を Z干渉計 6Pzで計測し、 Z干渉計 6Pzを含む計測システム 6によって 規定される座標系内における、基板 Pの表面の近似平面と、投影光学系 PLの像面と の位置関係を求める。 Z干渉計 6Pzを含む計測システム 6によって規定される座標系 内における、基準面の Z軸方向の位置情報及びその基準面を基準とした基板 Pの表 面の近似平面は、計測ステーション ST2で既に計測されている。また、制御装置 7に は、基準面に対する投影光学系 PLの像面の位置情報が予め記憶されている。した がって、制御装置 7は、露光ステーション ST1に配置された第 2基板ステージ 2の Z軸 方向の位置を Z干渉計 6Pzで計測することにより、その計測結果に基づいて、 Z干渉 計 6Pzを含む計測システム 6によって規定される座標系内における、基板 Pの表面の 近似平面と、投影光学系 PLの像面との位置関係を求めることができる。そして、制御 装置 7は、基板 Pの表面と投影光学系 PLの像面とが所定の位置関係となるように(基 板 Pの表面と投影光学系 PLの像面とが合致するように)、 Z干渉計 6Pzを含む計測シ ステム 6で計測される位置情報に基づいて第 2基板ステージ 2の位置を制御しつつ、 基板 Pを露光する。
[0141] 第 2基板ステージ 2には、その第 2基板ステージ 2の 4つの側面のそれぞれに、計測 ミラー 2Rzが配置されている。露光ステーション ST1において、第 2基板ステージ 2の 位置情報の計測を実行する際、計測システム 6は、その 4つの側面のうち、少なくとも 3つの側面のそれぞれに配置された計測ミラー 2Pzのそれぞれに、 Z干渉計 6Pzより 計測光 MLを照射して、第 2基板ステージ 2の Z軸方向の位置情報を計測する。本実 施形態においては、露光ステーション ST1には、第 1光学素子 8に対して + X側、 X側、及び Y側に 3つの Z干渉計 6Pzが配置されており、それら Z干渉計 6Pzより、 第 2基板ステージ 2の計測ミラー 2Rzに計測光 MLが照射される。 Z干渉計 6Pzから 射出される計測光 MLの少なくとも一部は、第 2基板ステージ 2の透過部材 82を透過 する。なお、基板 Pの露光に先立ち、例えば光センサ 75によってマスク Mのマークを 検出する、あるいは基準マークとマスク Mのマークとを不図示のァライメント系で検出 し、この検出結果をも用いて第 2基板ステージ 2の位置を制御しつつ基板 Pの露光が 行われる。
[0142] 以下、上述した処理が繰り返される。すなわち、露光ステーション ST1において第 2 基板ステージ 2に保持された基板 Pの露光処理が実行されるとともに、計測ステーショ ン ST2において第 1基板ステージ 1に保持された基板 Pの計測処理が実行される。そ して、露光ステーション ST1における第 2基板ステージ 2に保持された基板 Pの露光 処理、及び計測ステーション ST2における第 1基板ステージ 1に保持された基板 の 計測処理の完了後、制御装置 7は、基板ステージ駆動システム 5を用いて、計測ステ ーシヨン ST2の第 2領域 SP2に配置されている第 1基板ステージ 1を、露光ステーショ ン ST1の第 1領域 SP1に移動させる。そして、第 1接続部材 71と第 2接続部材 72との 交換動作が実行され、第 1接続部材 71は第 2基板ステージ 2からリリースされて第 1 基板ステージ 1に接続され、第 2接続部材 72は第 1基板ステージ 1からリリースされて 第 2基板ステージ 2に接続される。そして、制御装置 7は、第 2基板ステージ 2と第 1光 学素子 8とが対向する状態から、第 1基板ステージ 1と第 1光学素子 8とが対向する状 態に変化させた後、基板ステージ駆動システム 5を用いて、露光ステーション SP1の 第 1領域 SP1に配置されている第 2基板ステージ 2を、計測ステーション ST2の第 2 領域 SP2に移動させる。そして、制御装置 7は、露光ステーション ST1において、第 1 基板ステージ 1を移動しつつ、その第 1基板ステージ 1に保持されている基板 Pの複 数のショット領域を順次露光するとともに、計測ステーション ST2において、第 2基板 ステージ 2の基板 Pの交換、計測処理等の所定の処理を実行する。
[0143] また、計測ステーション ST2における計測処理を終えた基板 Pを保持した第 1基板 ステージ 1を露光ステーション ST1に移動した後、その基板 Pの露光処理を露光ステ ーシヨン ST1において実行するに際し、制御装置 7は、露光ステーション ST1に配置 された第 1基板ステージ 1の Z軸方向の位置を、 Z干渉計 6Pzで計測し、その計測結 果に基づいて、基板 Pの表面の近似平面と、投影光学系 PLの像面との位置関係を 求める。
[0144] 第 1基板ステージ 1には、その第 1基板ステージ 1の 4つの側面のそれぞれに、計測 ミラー lRzが配置されている。露光ステーション ST1において、第 1基板ステージ 1の 位置情報の計測を実行する際、計測システム 6は、その 4つの側面のうち、少なくとも 3つの側面のそれぞれに配置された計測ミラー ΙΡζのそれぞれに、 Z干渉計 6Pzより 計測光 MLを照射して、第 1基板ステージ 1の Z軸方向の位置情報を計測する。本実 施形態においては、露光ステーション ST1には、第 1光学素子 8に対して + X側、 X側、及び Y側に 3つの Z干渉計 6Pzが配置されており、それら Z干渉計 6Pzより、 第 1基板ステージ 1の計測ミラー 2Rzに計測光 MLが照射される。 Z干渉計 6Pzから 射出される計測光 MLの少なくとも一部は、第 1基板ステージ 1の透過部材 81を透過 する。
[0145] 以上説明したように、本実施形態によれば、第 1、第 2基板ステージ 1、 2のそれぞ れに、計測ミラー lRz、 2Rzよりも外側に張り出す端面 81E、 82Eを有し、 Z干渉計 6P zの計測光が透過可能な透過領域 81 S、 82Sを有する透過部材 81、 82を配置した。 それにより、 Z干渉計 6Pzの計測動作を妨げることなぐ第 1光学素子 8と対向する位 置に、透過部材 81、透過部材 82、第 1基板ステージ 1、及び第 2基板ステージ 2の少 なくとも 1つを配置して、液体 LQを全て回収する動作を実行することなぐ第 1光学素 子 8の光射出側の露光光 ELの光路空間を常に液体 LQで満たし続けることができる 。したがって、露光装置 EXのスループットの低下を抑制しつつ、第 1基板ステージ 1 に保持された基板 Pの露光と、第 2基板ステージ 2に保持された露光とを実行できる。 また、液体 LQが無くなることに起因するウォーターマークの発生、気化熱による温度 変化の発生等を抑制し、露光精度の劣化を抑制できる。
[0146] 本実施形態においては、第 1基板ステージ 1 (第 1基板テーブル 12)の側面及び第 2基板ステージ 2 (第 2基板テーブル 22)の側面には、第 1、第 2基板テーブル 12、 2 2の位置を計測するための計測ミラー 1Ρζ、 ΙΡζが外側に突出しており、第 1基板ステ ージ 1の対向面(トップ面) 15と第 2基板ステージ 2の対向面(トップ面) 25とを接近又 は接触させることは困難である。本実施形態によれば、第 1基板ステージ 1及び第 2 基板ステージ 2の一方から他方への液浸空間 LSの移動は、計測ミラー lRz、 2Rzより も外側に張り出す端面 81E、 82Eを有し、計測光 MLを透過可能な透過部材 81、 82 を用いて実行される。したがって、 Z干渉計 6Pzの計測動作を妨げることなぐ且つ、 第 1、第 2基板ステージ 1、 2の計測ミラー lRz、 2Rzの衝突等を抑制しつつ、液体 LQ を保持可能な空間を形成し続けた状態で、第 1基板ステージ 1と第 1光学素子 8とが 対向する状態、及び第 2基板ステージと第 1光学素子 8とが対向する状態の一方から 他方に変化させることができる。
[0147] また、本実施形態によれば、透過部材 81、 82は、保持機構 90によって、第 1、第 2 基板ステージ 1、 2に着脱可能に保持されるので、例えば劣化した透過部材 81、 82 を、新たなものと容易に交換できる。
[0148] また、本実施形態によれば、透過部材 81、 82には、光センサ 75に入射する光を整 形する開口 77が設けられているので、光センサ 75に入射する光を整形するための 新たな光学部材を設けなくてもすむ。したがって、部品点数の低減を図ることができ
[0149] 本実施形態においては、透過部材 81は、第 1基板テーブル 12の— X側の側面に 配置された計測ミラー lRzの反射面 lSzと対向するように配置されており、その第 1基 板テーブル 12の X側の側面に配置された計測ミラー lRzに照射される計測光 ML は、透過部材 81の少なくとも一部を透過する。透過部材 81は、例えば平行平面板で あって、保持機構 90に保持された透過部材 81の透過領域 81 Sの上面及び下面は、 XY平面とほぼ平行である。ここで、透過部材 81の厚みが Υ軸方向に関して不均一 であったり、あるいは透過部材 81に撓みが生じていると、透過部材 81の透過領域 81 Sの Υ軸方向の位置に応じて、計測光 MLの光路長が変化し、 Z干渉計 6Pzの計測 精度に影響を与える可能性がある。第 2基板テーブル 22に設けられた計測ミラー 2R zに関しても同様である。
[0150] そこで、制御装置 7は、必要に応じて、透過部材 81の厚みむら、橈み等に起因する Z干渉計 6Pzの計測値の誤差等を補正することができる。以下、透過部材 81に起因 する Z干渉計 6Pzの計測値を補正する方法の一例について説明する。
[0151] まず、制御装置 7は、基板 Pを露光する前に、予め、 Z干渉計 6Pzを用いて、第 1基 板ステージ 1の Z軸方向の位置情報を取得する動作を実行する。すなわち、制御装 置 7は、 Z干渉計 6Pzから計測光 MLを射出し、計測ミラー lRzの反射面 lSz及び透 過部材 81の透過領域 81Sを介した計測光 MLを Z干渉計 6Pzで受光して、第 1基板 ステージ 1の Z軸方向の位置情報を取得する。このとき、制御装置 7は、図 13の模式 図に示すように、例えば上述のァクチユエータ 1 IVの駆動量をエンコーダシステム等 でモニタして、第 1基板テーブル 12の Z軸方向の位置を変化させないように、第 1基 板テーブル 12 (第 1基板ステージ 1)を Y軸方向に移動しつつ、 Z干渉計 6Pzより計測 光 MLを射出するとともに、計測ミラー lRzの反射面 1 Sz及び透過部材 81の透過領 域 81 Sを介した計測光 MLを Z干渉計 6Pzで受光する。これにより、 Z干渉計 6Pzは、 透過部材 81の Y軸方向の各位置を介した計測光 MLを順次受光することになる。
[0152] このとき、 Y軸方向に関して透過部材 81に厚みむらがあったり、橈みが生じていると 、その厚みむら等に起因する光路長の変化に応じて、図 14の模式図に示すように、 Z干渉計 6Pzの計測値は Y軸方向に関して変化する。
[0153] 制御装置 7は、その透過部材 81の透過領域 81Sの Y軸方向の位置に対応した Z干 渉計 6Pzの計測値に関する補正量を導出する。すなわち、透過部材 81に厚みむら 等がある場合、実際の第 1基板テーブル 12の位置 (Z位置)と、 Z干渉計 6Pzによって 計測される第 1基板テーブル 12の位置との間には、透過部材 81の厚みむら等に起 因する誤差が生じる。制御装置 7は、その誤差をキャンセルするための補正量を、透 過部材 81の透過領域 81Sの Y軸方向の位置に対応付けて導出する。制御装置 7は 、導出した補正量を記憶装置 10に記憶する。
[0154] そして、制御装置 7は、例えば基板 Pを露光する際に、 Z干渉計 6Pzで第 1基板テー ブル 12の位置情報を計測する場合、 Z干渉計 6Pzの計測結果と、記憶装置 10の記 憶情報とに基づいて、 Z干渉計 6Pzの計測値を調整する。すなわち、制御装置 7は、 透過部材 81の厚みむら等に起因する誤差を含んでいる可能性のある Z干渉計 6Pz の計測値を、予め求めて記憶装置 10に記憶してある補正量に基づいて調整 (補正) する。そして、制御装置 7は、その調整後(補正後)の Z干渉計 6Pzの計測値に基づ いて、第 1基板テーブル 12の Z軸方向の位置を、基板ステージ駆動システム 5 (主に 微動システム 5B)を用いて制御する。これにより、透過部材 81の厚みむら等に起因 する誤差がキャンセルされた Z干渉計 6Pzの計測値に基づ!/、て、第 1基板テーブル 1 2の Z軸方向の位置を良好に調整できる。
[0155] また、制御装置 7は、 Z干渉計 6Pzの計測値を、記憶装置 10に記憶してある補正量 に基づいて調整 (補正)しないで、 Z干渉計 6Pzの計測値と、記憶装置 10に記憶して ある補正量とに基づいて、第 1基板テーブル 12を所望の位置に移動するための基板 ステージ駆動システム 5 (主に微動システム 5B)の駆動量を決定し、その決定された 駆動量に基づいて、基板ステージ駆動システム 5を駆動して、第 1基板テーブル 12 の位置を調整することもできる。
[0156] なお、ここでは、第 1基板テーブル 12の位置を調整する場合について説明したが、 第 2基板テーブル 22についても同様である。また、この実施形態においては、透過 部材 81 , 82は、全部がガラスなどの透過性材料から形成された部材であった力 透 過領域 81 S (82S) (第 1透過領域)と、前述の開口と対向する第 2の透過領域だけが 透過性材料から形成されている複合部材を用いてもよい。あるいは、透過部材 81 , 8 2の強化または液体 Qとの撥液性を向上させるために、透過部材 81 , 82上に金属膜 やフッ化物膜を部分的に形成してもよい。
[0157] <第 2実施形態〉
次に、第 2実施形態について説明する。以下の説明において、上述の第 1実施形 態と同一又は同等の構成部分については同一の符号を付し、その説明を簡略若しく は省略する。 [0158] 図 15は、第 2実施形態に係る第 1、第 2基板テーブル 12、 22の斜視図である。上 述の第 1実施形態においては、透過部材 81は、第 1基板テーブル 12の— X側の側 面に配置された計測ミラー lRzの反射面 lSzのほぼ全域と対向する下面を有するよ うに、換言すれば、 Y軸方向に関して計測ミラー 2Rzとほぼ同じ大きさ(長さ)を有する ように形成されているカ、図 15に示すように、計測ミラー lRzの反射面 lSzの一部の 領域と対向する下面を有するように形成されても良い。同様に、透過部材 82も、第 2 基板テーブル 22の + X側の側面に配置された計測ミラー 2Rzの反射面 2Szの一部 の領域と対向するように形成されてもよい。透過部材 81、 82を、計測ミラー lRz、 2R zよりも小さく形成した場合でも、それら透過部材 81の端面 81Eと透過部材 82の端面 82Eとを接近又は接触させ、その透過部材 81、 82上を液浸空間 LSが通過するよう に、第 1、第 2基板ステージ 1、 2の移動を制御する。これにより、計測ミラー lRzと計 測ミラー 2Rzとの衝突等を抑制しつつ、第 1基板ステージ 1と第 1光学素子 8との間に 液体 LQが保持されている状態、及び第 2基板ステージ 2と第 1光学素子 8との間に液 体 LQが保持される状態の一方から他方へ円滑に変化させることができる。
[0159] ここで、図 15に示す実施形態においては、第 1基板ステージ 1 (第 2基板ステージ 2 )の移動に伴って、 Z干渉計 6Pzからの計測光 MLが、透過部材 81 (82)を通過する 第 1の状態と、透過部材 81 (82)を通過しない第 2の状態との両方が発生する。その 場合、第 1の状態と第 2の状態との間に、透過部材 81 (82)の有無に起因する光路長 の変化に応じて、 Z干渉計 6Pzの計測結果に誤差が生じる可能性がある。
[0160] そこで、制御装置 7は、必要に応じて、透過部材 81 (又は透過部材 82)の有無に起 因する Z干渉計 6Pzの計測値の誤差等を補正することができる。以下、透過部材 81 の有無に起因する Z干渉計 6Pzの計測値を補正する方法の一例について説明する。
[0161] まず、制御装置 7は、基板 Pを露光する前に、予め、 Z干渉計 6Pzを用いて、第 1基 板ステージ 1の Z軸方向の位置情報を取得する動作を実行する。制御装置 7は、例え ば上述のァクチユエータ 1 IVの駆動量をエンコーダシステム等でモニタして、第 1基 板テーブル 12の Z軸方向の位置を変化させないように、第 1基板テーブル 12 (第 1基 板ステージ 1)を Y軸方向に移動しつつ、 Z干渉計 6Pzより計測光 MLを射出する。こ れにより、 Z干渉計 6Pzには、計測ミラー lRzの反射面 lSz及び透過部材 81の透過 領域 81 Sを介した計測光 MLと、計測ミラー lRzの反射面 lSzを介し、透過部材 81 の透過領域 81Sを介さない計測光 MLとが順次入射する。すなわち、制御装置 7は、 Z干渉計 6Pzから計測光 MLを射出し、透過部材 81の透過領域 81 Sを介した計測光 又は透過領域 81Sを介さない計測光 MLを Z干渉計 6Pzで受光して、第 1基板ステ ージ 1の Z軸方向の位置情報を取得する。
[0162] このとき、 Y軸方向に関する透過部材 81の有無に起因する光路長の変化に応じて 、 Z干渉計 6Pzの計測値は Y軸方向に関して変化する。
[0163] 制御装置 7は、計測ミラー lRzの反射面 lSzの Y軸方向の位置に対応した Z干渉計
6Pzの計測値に関する補正量を導出する。すなわち、透過部材 81が存在する位置と 存在しない位置との間には、 Z干渉計 6Pzの計測値に差が生じる。制御装置 7は、そ の差をキャンセルするための補正量を導出する。制御装置 7は、導出した補正量を記 憶装置 10に記憶する。
[0164] そして、制御装置 7は、例えば基板 Pを露光する際に、 Z干渉計 6Pzで第 1基板テー ブル 12の位置情報を計測する場合、 Z干渉計 6Pzの計測結果と、記憶装置 10の記 憶情報とに基づいて、 Z干渉計 6Pzの計測値を調整する。すなわち、制御装置 7は、 透過部材 81の存在によって誤差を含んでいる可能性のある Z干渉計 6Pzの計測値 を、予め求めて記憶装置 10に記憶してある補正量に基づいて調整 (補正)する。そし て、制御装置 7は、その調整後(補正後)の Z干渉計 6Pzの計測値に基づいて、第 1 基板テーブル 12の Z軸方向の位置を、基板ステージ駆動システム 5 (主に微動システ ム 5B)を用いて制御する。これにより、透過部材 81の存在に起因する誤差がキャン セルされた Z干渉計 6Pzの計測値に基づいて、第 1基板テーブル 12の Z軸方向の位 置を良好に調整できる。
[0165] また、制御装置 7は、 Z干渉計 6Pzの計測値を、記憶装置 10に記憶してある補正量 に基づいて調整 (補正)しないで、 Z干渉計 6Pzの計測値と、記憶装置 10に記憶して ある補正量とに基づいて、第 1基板テーブル 12を所望の位置に移動するための基板 ステージ駆動システム 5 (主に微動システム 5B)の駆動量を決定し、その決定された 駆動量に基づいて、基板ステージ駆動システム 5を駆動して、第 1基板テーブル 12 の位置を調整することもできる。 [0166] なお、ここでは、第 1基板テーブル 12の位置を調整する場合について説明したが、 第 2基板テーブル 22についても同様である。
[0167] <第 3実施形態〉
次に、第 3実施形態について説明する。以下の説明において、上述の実施形態と 同一又は同等の構成部分については同一の符号を付し、その説明を簡略若しくは 省略する。
[0168] 図 16は、第 3実施形態に係る第 1基板テーブル 12の斜視図である。上述の第 1実 施形態においては、透過部材 81は、第 1基板テーブル 12の—X側の側面に配置さ れた計測ミラー lRzと対向するように 1つ配置されている力 図 16に示すように、第 1 基板テーブル 12の 4つの側面のそれぞれに配置された計測ミラー lRzのそれぞれと 対向するように、 4つ配置されてもよい。同様に、第 2基板テーブル 22にも、 4つの透 過部材 82が設けられてもよ!/、。
[0169] こうすることにより、第 1基板ステージ 1と第 1光学素子 8との間に液体 LQが保持され ている状態、及び第 2基板ステージ 2と第 1光学素子 8との間に液体 LQが保持される 状態の一方から他方へ変化させる際、例えば第 1基板テーブル 12の + X側に配置さ れている透過部材 81の端面 81Eと、第 2基板テーブル 22の— X側に配置されている 透過部材 82の端面 82Eとを接近又は接触させた状態で、第 1基板ステージ 1と第 2 基板ステージ 2とを同期移動したり、あるいは、第 1基板テーブル 12の + Y側に配置 されている透過部材 81の端面 81Eと、第 2基板テーブル 22の— Y側に配置されてい る部材 82の端面 82Eとを接近又は接触させた状態で、第 1基板ステージ 1と第 2基板 ステージ 2とを同期移動することができる。
[0170] <第 4実施形態〉
次に、第 4実施形態について説明する。以下の説明において、上述の実施形態と 同一又は同等の構成部分については同一の符号を付し、その説明を簡略若しくは 省略する。
[0171] 第 4実施形態の特徴的な部分は、透過部材 (移動部材) 81、 82が、第 1、第 2基板 テーブル 12、 22に対して移動可能に支持されている点にある。そして、透過部材 81 、 82が、その端面 81E、 82Eが計測ミラー lRz、 2Rzよりも外側に張り出す第 1の位 置、及び少なくとも計測ミラー lRz、 2Rzの反射面 2Szからの計測光 MLの進行を妨 げない第 2の位置のそれぞれに移動される点にある。なお、「計測光(ビーム)の進行 を妨げない」とは、「ビームの光路に影響を与えない」、すなわち、計測光 MLが、部 材 81、 82に対して透過、屈折、反射のいずれもせず、それにより計測光の光路長が 変化しなレ、とレ、う意味である。
[0172] 図 17は、第 4実施形態に係る第 1基板テーブル 12を X側から見た側面図、図 18 は第 1基板テーブル 12の一部を示す平面図、図 19は、第 1基板テーブル 12の一部 を示す側断面図である。以下、第 1基板テーブル 12及び透過部材 81について主に 説明するが、第 2基板テーブル 22及び透過部材 82も同様である。
[0173] 上述の各実施形態と同様、透過部材 81は、上面及び下面を有する板状の部材で あり、端面 81Eを有する。本実施形態においては、透過部材 81は、第 1基板テープ ル 12に対して、図中、少なくとも X軸方向に移動可能に支持され、透過部材 81の端 面 81Eは、計測ミラー lRzの反射面 lSzに対して所定の位置関係で配置される。
[0174] 本実施形態においては、第 1基板テーブル 12と対向する透過部材 81の下面には 、 X軸方向に延びる複数 (本実施形態では 3つ)の被ガイド部材 83が接続されている 。また、透過部材 81の下面と対向する第 1基板テーブル 12の対向面 15の保持面 15 Bの内側には、 X軸方向に延び、被ガイド部材 83のそれぞれが配置されるガイド溝 8 4が形成されている。 X軸方向に関するガイド溝 84の大きさ(長さ)は、被ガイド部材 8 3の大きさ (長さ)よりも大き!/、 (長!/、)。また、 Y軸方向に関するガイド溝 84の大きさ( 幅)は、被ガイド部材 83の大きさ(幅)よりも大き!/、。
[0175] また、被ガイド部材 83の側面と対向するガイド溝 84の内側面には、被ガイド部材 8 3の側面とガイド溝 84の内側面との間に気体を供給する給気口 85が形成されている 。給気口 85から供給される気体によって、被ガイド部材 83の側面と対向するガイド溝 84の内側面とのギャップが維持される。
[0176] 図 20及び図 21は、図 17の断面図である。第 1基板テーブル 12は、透過部材 81を 下面側から非接触で支持する支持機構 86を備えて!/、る。本実施形態にぉレ、ては、 被ガイド部材 83の下面に磁石(例えば N極)が配置されており、支持機構 86は、被 ガイド部材 83の下面と対向するガイド溝 84の底面に配置された磁石(例えば N極)を 含む。被ガイド部材 83の磁石とガイド溝 84の磁石とは同じ極同士である。したがって 、その磁石同士が反発し合うことによって、図 21に示すように、被ガイド部材 83に接 続された透過部材 81は、その透過部材 81の下面と対向する第 1基板テーブル 12の 保持面 15Bに対して非接触で支持される。
[0177] また、支持機構 86は、上述の給気口 85も含み、磁石によって、ガイド溝 84の底面 に対して被ガイド部材 83が浮!/、た状態でも、給気口 85から供給される気体によって 、被ガイド部材 83の側面と対向するガイド溝 84の内側面とのギャップが維持される。
[0178] 支持機構 86によって第 1基板テーブル 12の保持面 15Bに対して非接触で支持さ れた被ガイド部材 83を有する透過部材 81は、ガイド溝 84に案内されつつ、 X軸方向 に移動可能である。透過部材 81は、ガイド溝 84に案内されつつ X軸方向に移動する ことによって、その端面 81Eが計測ミラー lRzよりも外側に張り出す第 1の位置、及び 少なくとも計測ミラー lRzの反射面 lSzからの計測光 MLの進行を妨げない第 2の位 置のそれぞれに移動可能である。
[0179] 本実施形態においては、ノズル部材 30は、透過部材 81を上面側から保持可能で ある。上述のように、本実施形態のノズル部材 30は、例えば特開 2004— 289126号 公報(対応米国特許第 6,952,253号)、特開 2004— 289128号公報(対応米国特 許第 7, 110,081号)等に開示されているようなシール部材を含み、ガス導入口とガス 導出口とを有する。制御装置 7は、支持機構 86によって第 1基板テーブル 12の保持 面 15Bに対して非接触で支持された透過部材 81とノズル部材 30とを対向させ、ノズ ル部材 30のガス導入口を介したガス導入 (供給)動作、及びガス導出口を介したガス 導出(吸引)動作により、ノズル部材 30の下面と透過部材 81の上面との間に、ガスべ ァリングを形成可能である。ノズル部材 30の下面と透過部材 81の上面との間には、 与圧真空型のガスベアリングが形成される。ガスベアリングにより、ノズル部材 30の下 面と透過部材 81の上面とのギャップ G (例えば、 0. ;!〜 1. Omm)が維持される。ノズ ル部材 30は、透過部材 81との間で液体 LQの液浸空間 LSを形成可能であるととも に、液浸空間 LSの外側で、透過部材 81との間でガスベアリングを形成することによ つて、透過部材 81の上面を保持可能である。すなわち、ノズル部材 30は、透過部材 81との間にガスベアリングを形成することによって生じる吸着作用を利用して、ノズノレ 部材 30の下面と透過部材 81の上面との間に所定のギャップを維持した状態で、透 過部材 81を保持する。
[0180] また、本実施形態においては、露光装置 EXは、第 1基板テーブル 12に設けられ、 第 1の位置及び第 2の位置の少なくとも一方に配置された透過部材 81の下面を吸着 することでその透過部材 81を保持可能な第 2保持機構 87を備えている。第 2保持機 構 87は、透過部材 81の下面と対向する第 1基板テーブル 12の保持面 15Bの所定 位置に形成され、気体を吸引可能な吸引口 88と、その吸引口 88に流路を介して接 続された真空システム(不図示)とを含む。
[0181] 透過部材 81の下面と第 1基板テーブル 12の保持面 15Bとが対向した状態で、第 2 保持機構 87の真空システムを駆動して、透過部材 81の下面と保持面 15Bとの間の 空間の気体を吸引口 88を介して吸引することによって、制御装置 7は、透過部材 81 の下面を、保持面 15Bで吸着保持できる。また、制御装置 7は、第 2保持機構 87の 真空システムの駆動を停止することによって、透過部材 81に対する吸着保持を解除 できる。
[0182] 制御装置 7は、第 2保持機構 87を制御して、第 2保持機構 87による保持力、すなわ ち、吸引口 88による透過部材 81の下面と保持面 15Bとの間の気体の吸引動作によ つて発生する、透過部材 81を保持面 15Bに向力、つて引き寄せる力(吸引力)が、被 ガイド部材 83の磁石とガイド溝 84の磁石との間で発生する反発力よりも強くなるよう に、真空システムを制御して、吸引口 88を用いた吸引動作を実行可能である。制御 装置 7は、吸引口 88の吸引動作によって発生する、透過部材 81を保持面 15Bに向 力、つて引き寄せる力(吸引力)が、被ガイド部材 83の磁石とガイド溝 84の磁石との間 で発生する反発力よりも強くなるように、吸引口 88を用いた吸引動作を実行すること によって、図 20に示すように、第 1基板テーブル 12の保持面 15Bと透過部材 81の下 面とが接触するように、第 1基板テーブル 12の保持面 15Bで透過部材 81を保持(吸 着保持)すること力 Sできる。
[0183] 次に、第 4実施形態に係る露光装置 EXの動作の一例について図 22の模式図を参 照して説明する。本実施形態においては、少なくとも第 1基板テーブル 12に保持され ている基板 Pに露光光 ELを照射している間は、制御装置 7は、図 19等に示すように 、透過部材 81を、計測ミラー lRzの反射面 lSzからの計測光の進行を妨げない第 2 の位置に移動させておく。すなわち、本実施形態においては、少なくとも第 1基板テ 一ブル 12に保持されている基板 Pの露光中においては、透過部材 81は、少なくとも 計測ミラー lRzの反射面 lSzからの計測光の進行を妨げない第 2の位置に配置され る。制御装置 7は、第 2保持機構 87を用いて、第 2の位置に配置されている透過部材 81の下面を第 1基板テーブル 12の保持面 15Bに吸着するように保持する。本実施 形態においては、透過部材 81は、その端面 81Eが第 1基板テーブル 12の側面よりも 外側に張り出さない位置に、第 2保持機構 87によって保持される。
[0184] 露光ステーション ST1において、第 1基板ステージ 1に保持されている基板 Pの露 光処理が完了し、計測ステーション ST2において、第 2基板ステージ 2に保持されて いる基板 Pの計測処理が完了した後、制御装置 7は、計測ステーション ST2の第 2領 域 SP2から露光ステーション ST1の第 1領域 SP1へ第 2基板ステージ 2を移動する。 そして、制御装置 7は、第 1基板ステージ 1と第 1光学素子 8とが対向する状態を維持 しつつ、第 1基板ステージ 1と第 2基板ステージ 2とに対する第 1接続部材 71と第 2接 続部材 72との交換動作を実行する。
[0185] 次に、制御装置 7は、基板ステージ駆動システム 5を用いて、第 1基板ステージ 1及 び透過部材 81の少なくとも一方と第 1光学素子 8とが対向する状態 (すなわち、第 1 基板ステージ 1及び透過部材 81の少なくとも一方と第 1光学素子 8との間に液体 LQ が保持されている状態)から、第 2基板ステージ 2及び透過部材 82の少なくとも一方 と第 1光学素子 8とが対向する状態 (すなわち、第 2基板ステージ 2及び透過部材 82 の少なくとも一方と第 1光学素子 8との間に液体 LQが保持される状態)に変化させる 。これにより、第 2基板ステージ 2の基板 Pを液浸露光することが可能となる。
[0186] まず、制御装置 7は、基板ステージ駆動システム 5を用いて、第 1基板ステージ 1の 位置を制御して、ノズル部材 30と透過部材 81とを対向させる。これにより、ノズル部 材 30と透過部材 81との間には液浸空間 LSが形成されるとともに、その液浸空間 LS の外側に、ガスベアリングが形成される。本実施形態においては、透過部材 81の X 軸方向の大きさは、少なくとも液浸空間 LSの X軸方向の大きさよりも大きい。本実施 形態においては、透過部材 81の上面とほぼ平行な XY平面における、その透過部材 81の上面の大きさは、少なくとも液浸空間 LSよりも大きい。したがって、液浸空間 LS は、ノズル部材 30と透過部材 81との間に形成可能である。
[0187] そして、制御装置 7は、第 2保持機構 87の吸引口 88の吸引動作を停止する。これ により、図 22 (A)に示すように、透過部材 81は、磁石を含む支持機構 86の作用によ つて、第 1基板テーブル 12の保持面 15Bに対して非接触で支持される。
[0188] ノズル部材 30と透過部材 81の上面との間にはガスベアリングが形成されており、ノ ズノレ部材 30は、支持機構 86によって第 1基板テーブル 12の保持面 15Bに対して非 接触で支持された透過部材 81を上面側から保持する。
[0189] ノズル部材 30で透過部材 81の上面を保持した後、制御装置 7は、ノズル部材 30に 保持された透過部材 81と第 1基板テーブル 12とを相対的に移動する。本実施形態 においては、制御装置 7は、基板ステージ駆動システム 5を制御して、ノズル部材 30 に保持された透過部材 81に対して、第 1基板テーブル 12 (第 1基板ステージ 1)を + X方向に移動する。ノズル部材 30に保持された被ガイド部材 83を有する透過部材 8 1は、ガイド溝 84に案内されつつ、第 1基板テーブル 12に対して—X方向に移動す る。これにより、図 22 (B)に示すように、透過部材 81は、その端面 81Eが計測ミラー 1 Rzよりも外側に張り出す第 1の位置に移動される。
[0190] また、本実施形態においては、露光装置 EXは、第 2基板テーブル 22の透過部材 8 2を上面側から保持可能な第 3保持機構 100を有している。第 3保持機構 100は、透 過部材 82の上面との間でガスベアリングを形成することによって、その透過部材 82 の上面を保持する。制御装置 7は、第 2基板テーブル 22に対して非接触で支持され てレ、る透過部材 82の上面を第 3保持機構 100で保持した状態で、基板ステージ駆 動システム 5を制御して、第 2基板テーブル 22を— X方向に移動する。これにより、図 22 (B)に示すように、透過部材 82は、その端面 82Eが計測ミラー 2Rzよりも外側に張 り出す第 1の位置に移動される。
[0191] そして、図 22 (C)に示すように、透過部材 81が第 1の位置に移動された後、制御装 置 7は、第 1基板テーブル 12の第 2保持機構 87を用いて、第 1の位置に配置された 透過部材 81の下面を第 1基板テーブル 12の保持面 15Bに吸着させるように保持す る。同様に、制御装置 7は、第 2基板テーブル 22の第 2保持機構を用いて、第 1の位 置に配置された透過部材 82を第 2基板テーブル 22の保持面に吸着させるように保 持する。
[0192] そして、制御装置 7は、基板ステージ駆動システム 5を制御して、第 1の位置に移動 された第 1基板テーブル 12の透過部材 81の端面 81Eと、第 1の位置に移動された 第 2基板テーブル 22の透過部材 82の端面 82Eとを接近又は接触させた状態で、第 1基板ステージ 1と第 2基板ステージ 2とを同期移動する。
[0193] 制御装置 7は、基板ステージ駆動システム 5を用いて第 1基板ステージ 1と第 2基板 ステージ 2とを同期移動させる際に、透過部材 81及び透過部材 82のそれぞれを第 1 の位置に移動し、第 1基板テーブル 12の透過部材 81の端面 81Eと第 2基板テープ ノレ 22の透過部材 82の端面 82SEを接近又は接触させる。こうすることによって、透過 部材 81、透過部材 82、第 1基板ステージ 1、及び第 2基板ステージ 2の少なくとも 1つ 力 第 1光学素子 8との間で液体 LQを保持可能な空間を形成する。
[0194] すなわち、制御装置 7は、基板ステージ駆動システム 5を用いて第 1基板テーブル 1 2と第 2基板テーブル 22とを同期移動させるときに、ノズル部材 30、第 3保持機構 10 0、及び基板ステージ駆動システム 5等を用いて、透過部材 81、 82を第 1の位置に移 動する。
[0195] そして、基板ステージ駆動システム 5を用いて、透過部材 81の端面 81Eと透過部材
82の端面 82Eとを接近又は接触させた状態で、第 1光学素子 8と対向し、第 1光学素 子 8からの露光光 ELが照射される位置を含むガイド面 GFの第 1領域 SP1において、 第 1光学素子 8に対して、第 1基板ステージ 1と第 2基板ステージ 2とを XY平面内で 同期移動する。これにより、制御装置 7は、第 1基板テーブル 12及び透過部材 81の 少なくとも一方と第 1光学素子 8とが対向し、第 1基板テーブル 12及び透過部材 81の 少なくとも一方と第 1光学素子 8との間に液体 LQが保持されている状態から、第 2基 板テーブル 22及び透過部材 82の少なくとも一方と第 1光学素子 8とが対向し、第 2基 板テーブル 22及び透過部材 82の少なくとも一方と第 1光学素子 8との間に液体 LQ が保持される状態に変化させることができる。
[0196] 本実施形態においては、第 1基板テーブル 12と第 1光学素子 8との間に液体 LQが 保持されている状態から、第 2基板テーブル 22と第 1光学素子 8との間に液体 LQが 保持される状態に変化させる際、透過部材 81の端面 81Eを計測ミラー lRzよりも外 側に張り出す第 1の位置に移動させるとともに、透過部材 82の端面 82Eを計測ミラー 2Rzよりも外側に張り出す第 1の位置に移動させる。そして、透過部材 81の端面 81E と透過部材 82の端面 82Eとを接近又は接触させるので、第 1基板テーブル 12の計 測ミラー lRzと、第 2基板テーブル 22及び計測ミラー 2Rzの少なくとも一方とが接触( 衝突)したり、第 2基板テーブル 22の計測ミラー 2Rzと、第 1基板テーブル 12及び計 測ミラー lRzの少なくとも一方とが接触(衝突)したりすることを抑制できる。これにより 、液体 LQの漏出を抑制しつつ、第 1基板ステージ 1と第 1光学素子 8との間に液体 L Qが保持されていた状態から、第 2基板ステージ 2と第 1光学素子 8との間に液体 LQ が保持される状態に円滑に変化させることができる。
[0197] ノズル部材 30と透過部材 82とが対向した後、制御装置 7は、第 2基板テーブル 22 の第 2保持機構による透過部材 82に対する保持動作を解除する。これにより、透過 部材 82は、第 2基板テーブル 22の保持面 15Bに対して非接触で支持される。
[0198] ノズル部材 30は、透過部材 82の上面との間に液浸空間 LSを形成するとともに、そ の液浸空間 LSの外側で、透過部材 82との間にガスベアリングを形成することによつ て、透過部材 82の上面を保持する。本実施形態においては、透過部材 82の X軸方 向の大きさは、少なくとも液浸空間 LSの X軸方向の大きさよりも大きい。本実施形態 においては、透過部材 82の上面とほぼ平行な XY平面における、その透過部材 82 の上面の大きさは、少なくとも液浸空間 LSよりも大きい。したがって、液浸空間 LSは 、ノズル部材 30と透過部材 82との間に形成可能である。
[0199] ノズル部材 30で透過部材 82の上面を保持した後、制御装置 7は、ノズル部材 30に 保持された透過部材 82と第 2基板テーブル 22とを相対的に移動する。本実施形態 においては、制御装置 7は、基板ステージ駆動システム 5を制御して、ノズル部材 30 に保持された透過部材 82に対して、第 2基板テーブル 22 (第 2基板ステージ 2)を + X方向に移動する。これにより、図 22 (D)に示すように、透過部材 82は、計測ミラー 2 Rzの反射面 2Szからの計測光の進行を妨げない、すなわち、計測光が透過部材 82 に照射されな!/、第 2の位置に移動される。
[0200] そして、透過部材 82が第 2の位置に移動された後、制御装置 7は、第 2基板テープ ル 22の第 2保持機構を用いて、透過部材 82の下面が第 2基板テーブル 22の保持面 に吸着するように保持する。透過部材 82が第 2の位置に移動した後、制御装置 7は、 その第 2基板テーブル 22に保持されている基板 Pの露光を開始する。
[0201] また、本実施形態においては、図 22 (D)に示すように、露光装置 EXは、第 1基板 テーブル 12の透過部材 81を上面側から保持可能な第 4保持機構 101を有している 。第 4保持機構 101は、透過部材 81の上面との間でガスベアリングを形成することに よって、その透過部材 81の上面を保持する。制御装置 7は、第 1基板テーブル 12に 対して非接触で支持されている透過部材 81の上面を第 4保持機構 101で保持した 状態で、第 1基板テーブル 12を— X方向に移動する。これにより、図 22 (D)に示すよ うに、透過部材 81は、計測ミラー lRzの反射面 lSzからの計測光の進行を妨げない 第 2の位置に移動される。透過部材 81が第 2の位置に移動された後、制御装置 7は 、第 1基板テーブル 12の第 2保持機構 87を用いて、透過部材 81の下面が第 1基板 テーブル 12の保持面 15Bに吸着するように保持する。
[0202] 以上説明したように、本実施形態によれば、第 1基板ステージ 1と第 1光学素子 8と の間に液体 LQが保持されている状態、及び第 2基板ステージ 2と第 1光学素子 8との 間に液体 LQが保持される状態の一方から他方に変化させるときにのみ、透過部材 8 1、 82の端面 81E、 82Eが計測ミラー lRz、 2Rzよりも外側に張り出すように、それら 透過部材 81、 82を第 1の位置に移動させる。そして、少なくとも基板 Pの露光を行うと きには、透過部材 81、 82が Z干渉計 6Pzの計測光の進行を妨げないように、それら 透過部材 81、 82を第 2の位置に移動するようにしたので、第 1基板テーブル 12と第 2 基板テーブル 22との間における液浸空間 LSの移動を円滑に実行可能であるととも に、少なくとも基板 Pの露光中における Z干渉計 6Pzの計測精度を維持することがで きる。したがって、基板 Pを良好に露光できる。
[0203] なお、第 4実施形態においては、少なくとも基板 Pの露光中には、透過部材 81、 82 は、 Z干渉計 6Pzの計測光の進行を妨げない位置に移動されるので、透過部材 81、 82は、必ずしも光を透過する機能を有していなくてもよい。すなわち、第 1実施形態 で用いた透過部材 81、 82に代えて、非透過性部材を用い得る。例えば、ステンレス 鋼、チタン等の金属、あるいはポリ四フッ化工チレン等の撥液性を有する合成樹脂で 形成された部材を用い得る。あるいは、光センサ 75を覆う部分だけを光透過性とし他 の部分を非透過性部材から形成し得る。
[0204] なお、上述の第 1〜第 4実施形態の投影光学系は、先端の光学素子の像面 (射出 面)側の光路空間を液体で満たしている力 例えば国際公開第 2004/019128号 パンフレット(対応米国特許出願公開第 2005/0248856号)などに開示されている ように、先端の光学素子の物体面 (入射面)側の光路空間も液体で満たす投影光学 系を採用することもできる。さらに、終端光学素子 8の表面の一部(少なくとも液体との 接触面を含む)又は全部に、親液性及び/又は溶解防止機能を有する薄膜を形成 してもよい。なお、石英は液体との親和性が高ぐかつ溶解防止膜も不要であるが、 蛍石は少なくとも溶解防止膜を形成することが好ましい。
[0205] また、計測ステーション ST2での計測作業を、基板 P上あるいは第 1、第 2基板テー ブノレ 12、 22上に液浸空間 LSを形成した状態で行うようにしてもよい。計測ステーショ ン ST2で液浸空間 LSを形成するために液体 LQの供給及び回収作業が必要になる 力、もしれないが、もう一方の基板 Pの露光を行っている間にそれらの動作を行えばよ V、ので、スループットに与える影響はほとんどな!/、。
[0206] また、上述の各実施形態では、第 1基板テーブル 12に透過部材 81が、第 2基板テ 一ブル 22に透過部材 82がそれぞれ設けられている例を示した力 いずれか一方の 基板テーブルだけに透過部材が設けられてもよい。この場合、透過部材の長さは、 一つの計測ミラー、例えば、計測ミラー lRzの基板テーブル 12から外側に張り出す 長さの 2倍以上の長さを有することにより、第 1基板テーブル 12から第 2基板テープ ノレ 22へ液浸空間 LSが受け渡しされるときに、計測ミラー lRz、 2Rz同士が衝突する ことが防止される。さらに、上述の各実施形態では、各基板テーブル(12、 22)の 4つ の側面にそれぞれ干渉計ミラー(反射面)を設けるものとした力 これに限らず、例え ば 2つ又は 3つの側面に干渉計ミラーを設けるだけでも良い。また、上述の各実施形 態では、干渉計ミラーが設けられる基板テーブルの端部に透過部材を設けるものとし た力 これに限らず、干渉計ミラーが設けられていない基板テーブルの端部に透過 部材を設けても良い。
[0207] また、上述の各実施形態では、液浸法を用いたマルチステージ型の露光装置を例 にとつて説明した力 本発明はこれに限定されることはない。ステージが 1つの露光 装置でもよいし、液浸法を用いない露光装置でもよい。 z干渉計のための計測光の 通過位置と基板テーブルとの位置との関係によっては、本発明を用いることが可能で ある。
[0208] なお、本実施形態の液体 LQは水である力 水以外の液体であってもよい、例えば 、露光光 ELの光源が Fレーザである場合、この Fレーザ光は水を透過しないので、
2 2
液体 LQとして、例えば過フッ化ポリエーテル(PFPE)やフッ素系オイル等のフッ素系 流体を用いてもよい。また、液体 LQとしては、その他にも、露光光 ELに対する透過 性があってできるだけ屈折率が高ぐ投影光学系 PLや基板 P表面に塗布されている フォトレジストに対して安定なもの(例えばセダー油など)を用いることも可能である。 また、液体 LQとしては、屈折率が 1. 6〜; 1. 8程度のものを使用してもよい。純水より も屈折率が高い(例えば 1. 5以上の)液体 LQとしては、例えば、屈折率が約 1. 50の イソプロパノール、屈折率が約 1 · 61のグリセロール(グリセリン)といった C H結合 あるいは O— H結合を持つ所定液体、へキサン、ヘプタン、デカン等の所定液体(有 機溶剤)、あるいは屈折率が約 1 · 60のデカリン (Decalin: Decahydronaphthalene)など 力 S挙げられる。また、液体 LQは、これら液体のうち任意の 2種類以上の液体を混合し たものでもよいし、純水にこれら液体の少なくとも 1つを添加(混合)したものでもよい。 さらに、液体 LQは、純水に H+、 Cs+、 K+、 Cl_、 SO 2_、 PO 2_等の塩基又は酸を
4 4
添加(混合)したものでもよ!/、し、純水に A1酸化物等の微粒子を添加(混合)したもの でもよい。なお、液体 LQとしては、光の吸収係数が小さぐ温度依存性が少なぐ投 影光学系 PL、及び/又は基板 Pの表面に塗布されている感光材(又はトップコート 膜あるいは反射防止膜など)に対して安定なものであることが好ましい。また、液体し Qとして、種々の流体、例えば、超臨界流体を用いることも可能である。
[0209] なお、上記各実施形態においては、干渉計システムを用いてマスクステージ及び 基板ステージの各位置情報を計測するものとしたが、これに限らず、例えば国際公開 第 2007/083758号パンフレット(対応米国特許出願番号 11/655082)、国際公 開第 2007/097379号パンフレット(対応米国特許出願番号 11/708533)などに 開示されているように、各ステージに設けられるスケール(回折格子)を検出するェン コーダシステムを用いてもよい。あるいは、例えば米国特許出願公開第 2006/022 7309号などに開示されているように、基板テーブルにエンコーダヘッドが設けられ、 かつ基板テーブルの上方にスケールが配置されるエンコーダシステムを用いても良 い。この場合、干渉計システムとエンコーダシステムとの両方を備えるハイブリッドシス テムとし、干渉計システムの計測結果を用いてエンコーダシステムの計測結果の較正 (キャリブレーション)を行うことが好ましい。また、干渉計システムとエンコーダシステ ムとを切り換えて用いる、あるいはその両方を用いて、ステージの位置制御を行うよう にしてもよい。さらに、上記各実施形態では、第 1、第 2基板ステージを駆動するァク チユエータとして平面モータを用いても良レ、。
[0210] なお、上記各実施形態の基板 Pとしては、半導体デバイス製造用の半導体ウェハ のみならず、ディスプレイデバイス用のガラス基板、薄膜磁気ヘッド用のセラミックゥェ ノ、、あるいは露光装置で用いられるマスクまたはレチクルの原版 (合成石英、シリコン ウェハ)、またはフィルム部材等が適用される。また、基板 Pの形状は円形のみならず 、矩形など他の形状でもよい。
[0211] 露光装置 EXとしては、マスク Mと基板 Pとを同期移動してマスク Mのパターンを走 查露光するステップ ·アンド ' ·スキャン方式の走査型露光装置 (スキャニングステツパ) の他に、マスク Mと基板 Pとを静止した状態でマスク Mのパターンを一括露光し、基 板 Pを順次ステップ移動させるステップ'アンド'リピート方式の投影露光装置 (ステツ ノ )にも適用することができる。
[0212] さらに、ステップ ·アンド'リピート方式の露光において、第 1パターンと基板 Pとをほ ぼ静止した状態で、投影光学系を用いて第 1パターンの縮小像を基板 P上に転写し た後、第 2パターンと基板 Pとをほぼ静止した状態で、投影光学系を用いて第 2バタ ーンの縮小像を第 1パターンと部分的に重ねて基板 P上に一括露光してもよい。すな わち、露光装置 EXはスティツチ方式の一括露光装置などでも良い。また、ステイッチ 方式の露光装置としては、基板 P上で少なくとも 2つのパターンを部分的に重ねて転 写し、基板 Pを順次移動させるステップ 'アンド '·スティツチ方式の露光装置にも適用 できる。なお、ステイッチ方式の露光装置は、走査露光によって各パターンを転写す る走査型露光装置でも良い。 [0213] また、例えば特開平 11 135400号公報(対応国際公開第 1999/23692号パン フレット)、特開 2000— 164504号公報(対応米国特許第 6,897,963号)等に開示 されているように、基板を保持する基板ステージと、基準マークが形成された基準部 材及び/又は各種の光電センサを搭載した計測ステージとを備えた露光装置にも本 発明を適用することができる。指定国及び選択国の国内法令が許す限りにおいて、 米国特許 6,897,963号などの開示を援用して本文の記載の一部とする。例えば、基 板ステージ及び計測ステージの少なくとも一方に、側面より張り出す計測ミラー(ミラ 一面が斜面)が設けられている場合、本発明を適用することによって、基板 Pを効率 良く露光できる。この場合、基板ステージと計測ステージとを近接又は接触させた状 態で移動して、一方のステージとの交換で他方のステージを光学素子 8と対向して配 置することで、基板ステージと計測ステージとの間で液浸空間を移動することができ る。計測ステージ上では液浸空間を形成した状態で計測ステージに搭載されてレ、る 計測器 (計測部材)を使って、露光に関する計測 (例えば、ベースライン計測)を実行 すること力 Sできる。これにより、基板 Pの液浸露光に必要な情報 (例えば、ベースライン 量、あるいは露光光 ELの照度など)が取得できる。液浸空間を、基板ステージと計測 ステージとの間で移動する動作、及び基板の交換中における計測ステージの計測動 作の詳細は、国際公開第 2005/074014号パンフレット(対応する欧州特許出願公 開第 1713113号明細書)、国際公開第 2006/013806号パンフレットなどに開示 されている。また、計測ステージを有する露光装置は複数の基板ステージを備えてい ても良い。
[0214] 上述の各実施形態においては、投影光学系 PLを備えた露光装置を例に挙げて説 明してきた力 投影光学系 PLを用いない露光装置及び露光方法に本発明を適用す ること力 Sできる。このように投影光学系 PLを用いない場合であっても、露光光はレン ズ等の光学部材を介して基板に照射され、そのような光学部材と基板との間の所定 空間に液浸空間が形成される。また、マスクステージを前述のような露光方式に応じ て省略することあでさる。
[0215] なお、上述の各実施形態においては、露光光 ELの光路空間を液体 LQで満たした 状態で基板 Pを露光する液浸法を適用した場合を例にして説明したが、露光光 ELの 光路空間を液体 LQで満たさずに、気体のみを満たす、通常のドライ型露光装置にも 、本発明を適用可能である。
[0216] また、投影光学系 PLの光学素子(終端光学素子) 8を、フッ化カルシウム(蛍石)に 代えて、例えば石英(シリカ)、あるいは、フッ化バリウム、フッ化ストロンチウム、フッ化 リチウム、及びフッ化ナトリウム等のフッ化化合物の単結晶材料で形成してもよいし、 石英や蛍石よりも屈折率が高い(例えば 1. 6以上)材料で形成してもよい。屈折率が 1. 6以上の材料としては、例えば、国際公開第 2005/059617号パンフレットに開 示される、サファイア、二酸化ゲルマニウム等、あるいは、国際公開第 2005/0596 18号パンフレットに開示される、塩化カリウム(屈折率は約 1. 75)等を用いることがで きる。
[0217] 上記各実施形態では、露光光 ELの光源として ArFエキシマレーザを用いた力 例 えば米国特許第 7,023,610号などに開示されているように、 DFB半導体レーザ又は フアイバーレーザなどの固体レーザ光源、フアイバーアンプなどを有する光増幅部、 及び波長変換部などを含み、波長 193nmのノ ルス光を出力する高調波発生装置を 用いてもよい。さらに、上記各実施形態では、投影領域 (露光領域)が矩形状である ものとしたが、他の形状、例えば円弧状、台形状、平行四辺形状、あるいは菱形状な どでもよい。
[0218] 露光装置 EXの種類としては、基板 Pに半導体素子パターンを露光する半導体素 子製造用の露光装置に限られず、液晶表示素子製造用又はディスプレイ製造用の 露光装置、薄膜磁気ヘッド、撮像素子(CCD)、マイクロマシン、 MEMS, DNAチッ プ、あるいはレチクル又はマスクなどを製造するための露光装置などにも広く適用で きる。
[0219] なお、上述の実施形態においては、光透過性の基板上に所定の遮光パターン (又 は位相パターン '減光パターン)を形成した光透過型マスクを用いた力 このマスクに 代えて、例えば米国特許第 6, 778, 257号公報に開示されているように、露光すベ きパターンの電子データに基づ!/、て透過パターン又は反射パターン、ある!/、は発光 パターンを形成する電子マスク(可変成形マスク、アクティブマスク、あるいはイメージ ジェネレータとも呼ばれ、例えば非発光型画像表示素子(空間光変調器)の一種で ある DMD (Digital Micro-mirror Device)などを含む)を用いてもよい。なお、 DMDを 用いた露光装置は、上記米国特許のほかに、例えば特開平 8— 313842号公報、特 開 2004— 304135号公報に開示されている。指定国または選択国の法令が許す範 囲において米国特許第 6,778,257号公報の開示を援用して本文の記載の一部とす
[0220] また、例えば国際公開第 2001/035168号パンフレットに開示されているように、 干渉縞を基板 P上に形成することによって、基板 P上にライン 'アンド '·スペースパター ンを露光する露光装置(リソグラフィシステム)にも本発明を適用することができる。
[0221] また、例えば特表 2004— 519850号公報(対応米国特許第 6,611,316号)に開 示されているように、 2つのマスクのパターンを、投影光学系を介して基板上で合成し 、 1回の走査露光によって基板上の 1つのショット領域をほぼ同時に二重露光する露 光装置などにも本発明を適用することができる。本国際出願の指定国又は選択の法 令が許す限りにおいて、米国特許第 6, 611 , 316号を援用して本文の記載の一部と する。また、プロキシミティ方式の露光装置、ミラープロジェクシヨン'ァライナーなどに も本発明を適用することができる。
[0222] 以上のように、本願実施形態の露光装置 EXは、本願請求の範囲に挙げられた各 構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精 度を保つように、組み立てることで製造される。これら各種精度を確保するために、こ の組み立ての前後には、各種光学系については光学的精度を達成するための調整 、各種機械系については機械的精度を達成するための調整、各種電気系について は電気的精度を達成するための調整が行われる。各種サブシステムから露光装置へ の組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、 気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立 て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各 種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露 光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびク リーン度等が管理されたクリーンルームで行うことが望ましい。
[0223] 半導体デバイス等のマイクロデバイスは、図 23に示すように、マイクロデバイスの機 能-性能設計を行うステップ 201、この設計ステップに基づいたマスク(レチクル)を製 作するステップ 202、デバイスの基材である基板を製造するステップ 203、上述した 実施形態に従って、基板 Pを露光し、露光した基板 Pを現像する処理を含む基板処 理ステップ 204、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッ ケージ工程などの加工プロセスを含む) 205、検査ステップ 206等を経て製造される
[0224] 本願明細書に掲げた種々の米国特許及び米国特許出願公開などにつ!/、ては、特 に援用表示をしたもの以外についても、指定国または選択国の法令が許す範囲に おいてそれらの開示を援用して本文の一部とする。
産業上の利用可能性
[0225] 本発明によれば、基板を効率良く良好に露光でき、液浸露光に適用した場合も所 望の性能を有するデバイスを生産性良く製造できる。それゆえ、本発明は、我国の半 導体産業を含む精密機器産業の発展に著しく貢献することができる。

Claims

請求の範囲
[1] 基板に露光ビームを照射して前記基板を露光する露光装置であって、
前記露光ビームを射出する第 1光学部材と、
前記第 1光学部材の光射出側で移動可能な第 1移動体と、
前記第 1移動体に設けられ、位置計測用の計測ビームが照射される斜面を有する 計測部材と、
前記第 1移動体に設けられ、前記第 1移動体から前記計測部材よりも外側に張り出 す端面を有し、前記計測ビームを透過可能な透過領域を有する透過部材と、を備え た露光装置。
[2] 前記第 1光学部材の光射出側で前記第 1移動体と独立して移動可能な第 2移動体 を備え、
前記計測部材は前記第 1移動体及び前記第 2移動体のそれぞれに設けられるとと もに、
前記透過部材は前記第 1移動体及び前記第 2移動体のそれぞれに設けられている 請求項 1記載の露光装置。
[3] 前記計測部材と前記透過部材とは、前記斜面及び前記透過領域の一方を介した 前記計測ビームが他方に入射するように、前記第 1移動体及び前記第 2移動体のそ れぞれにお!/、て所定の位置関係で配置されて!/、る請求項 2記載の露光装置。
[4] 前記計測部材は、前記斜面が上方を向くように、前記第 1移動体及び前記第 2移 動体それぞれの少なくとも 1つの側面に配置され、
前記透過部材は、上面及び下面を有する板状の部材であり、
前記第 1移動体及び前記第 2移動体は、ともに前記第 1光学部材と対向可能な対 向面を有し、
前記透過部材の上面と、前記第 1移動体及び前記第 2移動体それぞれの前記対 向面のトップ面とがほぼ面一となるように、且つ、該透過部材の下面の少なくとも一部 と前記計測部材の斜面とが対向するように、前記計測部材の上方に配置されている 請求項 2又は 3記載の露光装置。
[5] 前記第 1移動体及び前記第 2移動体のそれぞれに設けられ、前記透過部材の少な くとも一部を着脱可能に保持する保持機構を備えた請求項 2〜4のいずれか一項記 載の露光装置。
[6] 前記透過部材は、該透過部材の下面の少なくとも一部と前記第 1移動体及び前記 第 2移動体のそれぞれの前記対向面の所定領域とが対向するように配置され、 前記第 1移動体及び前記第 2移動体のそれぞれに設けられ、前記透過部材を介し た光が入射する光センサを備えた請求項 4又は 5記載の露光装置。
[7] 前記透過部材は、前記透過領域とは異なる別の透過領域を有し、該別の透過領域 は、前記計測ビームとは異なる計測ビームを透過する請求項 1記載の露光装置。
[8] 前記計測部材の前記斜面及び前記透過部材の前記透過領域を介した前記計測ビ 一ムを受光して、前記第 1移動体及び前記第 2移動体の位置情報を取得する計測装 置と、
前記透過部材の前記透過領域の位置に対応した前記計測装置の計測値に関する 補正量を記憶した記憶装置と、
前記計測装置の計測結果と、前記記憶装置の記憶情報とに基づいて、少なくとも 基板の露光中に、前記計測装置の計測値、前記第 1移動体の位置、及び前記第 2 移動体の位置の少なくとも 1つを調整可能な制御装置とを備えた請求項 4〜6のいず れか一項記載の露光装置。
[9] 前記第 1光学部材カ の露光ビームが照射される照射位置を含む所定面において 、前記第 1移動体の前記透過部材の前記端面と前記第 2移動体の前記透過部材の 前記端面とを接近又は接触させた状態で、前記第 1移動体と前記第 2移動体とを同 期移動させる駆動システムを備えた請求項 2〜8のいずれか一項記載の露光装置。
[10] 前記駆動システムは、前記第 1移動体と前記第 2移動体とを同期移動させる際に、 前記透過部材、前記第 1移動体、及び前記第 2移動体の少なくとも 1つが前記第 1光 学部材との間で液体を保持可能な空間を形成するために、前記第 1移動体の前記 透過部材の前記端面と前記第 2移動体の前記透過部材の前記端面とを接近又は接 触させる請求項 9記載の露光装置。
[11] さらに、露光ステーション及び計測ステーションを備え、前記第 1移動体及び前記 第 2移動体が露光ステーション及び計測ステーション内並びにそれらの間を移動する ことを制御する制御装置を備える請求項 2記載の露光装置。
[12] 前記制御装置は、前記第 1移動体の前記透過部材の端面と、前記第 2移動体の前 記透過部材の端面とを接近又は接触するように前記第 1移動体と前記第 2移動体の 移動を制御する請求項 11記載の露光装置。
[13] 前記第 1移動体の前記透過部材がその端面から延在する第 1延在部を有し、前記 第 2移動体の前記透過部材がその端面から延在する第 2延在部を有し、第 1延在部 の端面と第 2延在部の端面が接近又は接触する請求項 12記載の露光装置。
[14] 基板に露光ビームを照射して前記基板を露光する露光装置であって、
前記露光ビームを射出する第 1光学部材と、
前記第 1光学部材の光射出側で移動可能な第 1移動体と、
前記第 1移動体に設けられ、位置計測用の計測ビームが照射される斜面を有する 計測部材と、
前記第 1移動体に設けられ、該第 1移動体に対して移動可能に支持され、前記計 測部材の斜面に対して所定の位置関係で配置される端面を有する移動部材と、 前記移動部材の端面が前記第 1移動体から前記計測部材よりも外側に張り出す第 1の位置、及び少なくとも前記計測部材の斜面からの前記計測ビームの進行を妨げ な!/、第 2の位置のそれぞれの位置に前記移動部材を移動する駆動装置と、を備えた g|光装置。
[15] 前記駆動装置は、少なくとも前記基板に露光ビームを照射している間は、前記移動 部材を前記第 2の位置に位置付ける請求項 14記載の露光装置。
[16] 前記第 1光学部材の光射出側で前記第 1移動体と独立して移動可能な第 2移動体 と、前記第 1光学部材カ の露光ビームが照射される照射位置を含む所定面におい て、前記第 1移動体と前記第 2移動体とを同期移動させる駆動システムを備え、 前記計測部材は前記第 1移動体及び前記第 2移動体のそれぞれに設けられるとと もに、
前記移動部材は前記第 1移動体及び前記第 2移動体のそれぞれに設けられ、該第 1移動体及び該第 2移動体のそれぞれに対して移動可能に支持され、
前記駆動装置は、前記駆動システムによって前記第 1移動体と前記第 2移動体とが 同期移動するときに、前記移動部材を前記第 1の位置に移動させ、
前記駆動システムは、前記第 1移動体の前記移動部材の前記端面と前記第 2移動 体の前記移動部材の前記端面とを接近又は接触させた状態で、前記第 1移動体と 前記第 2移動体とを同期移動させる請求項 14又は 15記載の露光装置。
[17] 前記駆動装置は、前記駆動システムによって前記第 1移動体と前記第 2移動体とが 同期移動する際に、前記移動部材、前記第 1移動体、及び前記第 2移動体の少なく とも 1つが前記第 1光学部材との間で液体を保持可能な空間を形成するために、前 記移動部材を前記第 1の位置に移動させる請求項 16記載の露光装置。
[18] 前記移動部材は、上面及び下面を有する板状の部材であり、
前記計測部材は、前記斜面が上方を向くように、前記第 1移動体及び前記第 2移 動体それぞれの少なくとも 1つの側面に配置され、
前記第 1移動体及び前記第 2移動体は、ともに前記第 1光学部材と対向可能な対 向面を有し、
前記移動部材の上面と、前記第 1移動体及び前記第 2移動体それぞれの前記対 向面のトップ面とがほぼ面一となるように、且つ、該移動部材の下面の少なくとも一部 と前記計測部材の斜面とが対向するように、前記計測部材の上方に配置されている 請求項 16又は 17記載の露光装置。
[19] 前記第 1移動体及び前記第 2移動体のそれぞれに設けられ、前記移動部材を下面 側から非接触で支持する支持機構と、
前記移動部材を上面側から保持する第 1保持機構とを有し、
前記駆動装置は、前記第 1保持機構に保持された前記移動部材と前記第 1移動体 及び前記第 2移動体とを相対的に移動させることによって、前記移動部材を前記第 1 の位置及び前記第 2の位置の少なくとも一方に移動させる請求項 18記載の露光装 置。
[20] 前記第 1保持機構は、前記移動部材との間で液体の液浸空間を形成可能であると ともに、前記液浸空間の外側で、前記移動部材との間でガスベアリングを形成するこ とによって、前記移動部材を保持する請求項 19記載の露光装置。
[21] 前記駆動システムは、前記第 1移動体と前記第 2移動体とを前記所定面の第 1方向 に同期移動させ、
前記移動部材の前記第 1方向の大きさは、少なくとも前記液浸空間の前記第 1方向 の大きさよりも大き!/、請求項 20記載の露光装置。
[22] 前記第 1移動体及び前記第 2移動体のそれぞれに設けられ、前記第 1の位置及び 前記第 2の位置の少なくとも一方に配置された前記移動部材の下面を吸着すること で前記移動部材を保持する第 2保持機構を備えた請求項 20又は 21記載の露光装 置。
[23] 前記第 1移動体及び前記第 2移動体のそれぞれは、基板を保持しながら移動可能 である請求項 2〜; 13、及び 16〜22のいずれか一項記載の露光装置。
[24] 前記第 1移動体及び前記第 2移動体の少なくとも一方に保持された基板の位置情 報を取得するための第 2光学部材を備え、
前記第 1移動体及び前記第 2移動体のそれぞれは、前記第 2光学部材と対向する 対向位置に移動可能であり、
前記第 1移動体を前記第 1光学部材からの露光ビームが照射される照射位置に配 置して該第 1移動体に保持された基板を露光する動作と、前記第 2移動体を前記第
2光学部材と対向する対向位置に配置して該第 2移動体に保持された基板を計測す る動作の少なくとも一部とが並行して行われる請求項 2〜9及び 16〜23のいずれか 一項記載の露光装置。
[25] 基板に露光ビームを照射して前記基板を露光する露光装置であって、
前記露光ビームを射出する光学部材と、
前記光学部材の光射出側で移動可能な第 1移動体と、
第 1移動体に設けられて前記露光ビームを検出する検出器と、
第 1移動体に設けられた透過板であって、第 1移動体の位置計測用の計測ビーム を透過する第 1透過領域と、前記検出器への検出光を透過する第 2透過領域を有す る透過板とを備えた露光装置。
[26] 前記移動体が、前記基板が設置される表面を有し、該表面に前記検出器が設置さ れる凹部が形成され、前記透過板が該凹部を覆うとともに、前記移動体の表面から 延在している請求項 25に記載の露光装置。
[27] 請求項;!〜 26のいずれか一項記載の露光装置を用いるデバイス製造方法。
[28] 計測光を反射する第 1斜面が設けられた第 1移動体に保持された基板に露光ビー ムを照射して前記基板を露光する露光方法であって、
第 1移動体力 斜面の外側にまで延在するように設けられた第 1透過部材を透過し て前記斜面からの計測光を受光することにより第 1移動体に保持された基板の位置 を計測することと、
位置計測された第 1移動体上の基板に露光ビームを照射して前記基板を露光する ことを含む露光方法。
[29] 第 1移動体と独立して移動可能な第 2移動体の位置計測することを含み、第 2移動 体が計測光を反射する第 2斜面と、第 2斜面の外側にまで延在するように設けられた 第 2透過部材を備え、第 2透過部材を透過して第 2斜面からの計測光を受光すること により第 2移動体の位置を計測する請求項 28記載の露光方法。
[30] 露光ステーションで基板の露光が行われ、露光ステーションとは離れた計測ステー シヨンで第 1移動体または第 2移動体の位置の計測が行われる請求項 29記載の露 光方法。
[31] 請求項 28記載の露光方法を用いて基板を露光することと、
露光した基板を現像することと、
現像した基板を加工することを含むデバイス製造方法。
PCT/JP2007/072168 2006-11-15 2007-11-15 Appareil et procédé d'exposition et procédé de fabrication de dispositif WO2008059916A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020097008366A KR101385880B1 (ko) 2006-11-15 2007-11-15 노광 장치, 노광 방법 및 디바이스 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-309168 2006-11-15
JP2006309168 2006-11-15
JP2007293198A JP5320727B2 (ja) 2006-11-15 2007-11-12 露光装置、露光方法及びデバイス製造方法
JP2007-293198 2007-11-12

Publications (1)

Publication Number Publication Date
WO2008059916A1 true WO2008059916A1 (fr) 2008-05-22

Family

ID=39401720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072168 WO2008059916A1 (fr) 2006-11-15 2007-11-15 Appareil et procédé d'exposition et procédé de fabrication de dispositif

Country Status (1)

Country Link
WO (1) WO2008059916A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054520A1 (en) * 2007-10-22 2009-04-30 Nikon Corporation Exposure apparatus and exposure method
JP2011061199A (ja) * 2009-09-11 2011-03-24 Asml Netherlands Bv シャッター部材、リソグラフィ装置及びデバイス製造方法
CN102681363A (zh) * 2012-05-11 2012-09-19 清华大学 一种多工位硅片台多台交换系统及其交换方法
US9784732B2 (en) 2011-09-07 2017-10-10 The University Of Tokyo Acidic environment-detecting fluorescent probe

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001513267A (ja) * 1997-12-22 2001-08-28 エイエスエム リトグラフィー ベスローテン フエンノートシャップ 時間を節約する高さ測定を用いた、基板にマスク・パターンを繰り返し投影する方法および装置
JP2003247804A (ja) * 2002-02-27 2003-09-05 Nikon Corp 干渉計、露光装置及び露光方法
JP2004104050A (ja) * 2002-09-13 2004-04-02 Canon Inc 露光装置
WO2005043607A1 (ja) * 2003-10-31 2005-05-12 Nikon Corporation 露光装置及びデバイス製造方法
JP2005268759A (ja) * 2004-02-19 2005-09-29 Nikon Corp 光学部品及び露光装置
WO2006013806A1 (ja) * 2004-08-03 2006-02-09 Nikon Corporation 露光装置、露光方法及びデバイス製造方法
JP2006186380A (ja) * 2004-12-27 2006-07-13 Asml Netherlands Bv Z位置の誤差/ばらつき、及び基板テーブルの平坦度を決定するためのリソグラフィ装置及び方法
JP2006245145A (ja) * 2005-03-01 2006-09-14 Nikon Corp 光学特性計測方法及び装置、並びに露光方法及び装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001513267A (ja) * 1997-12-22 2001-08-28 エイエスエム リトグラフィー ベスローテン フエンノートシャップ 時間を節約する高さ測定を用いた、基板にマスク・パターンを繰り返し投影する方法および装置
JP2003247804A (ja) * 2002-02-27 2003-09-05 Nikon Corp 干渉計、露光装置及び露光方法
JP2004104050A (ja) * 2002-09-13 2004-04-02 Canon Inc 露光装置
WO2005043607A1 (ja) * 2003-10-31 2005-05-12 Nikon Corporation 露光装置及びデバイス製造方法
JP2005268759A (ja) * 2004-02-19 2005-09-29 Nikon Corp 光学部品及び露光装置
WO2006013806A1 (ja) * 2004-08-03 2006-02-09 Nikon Corporation 露光装置、露光方法及びデバイス製造方法
JP2006186380A (ja) * 2004-12-27 2006-07-13 Asml Netherlands Bv Z位置の誤差/ばらつき、及び基板テーブルの平坦度を決定するためのリソグラフィ装置及び方法
JP2006245145A (ja) * 2005-03-01 2006-09-14 Nikon Corp 光学特性計測方法及び装置、並びに露光方法及び装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054520A1 (en) * 2007-10-22 2009-04-30 Nikon Corporation Exposure apparatus and exposure method
US8279399B2 (en) 2007-10-22 2012-10-02 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
JP2011061199A (ja) * 2009-09-11 2011-03-24 Asml Netherlands Bv シャッター部材、リソグラフィ装置及びデバイス製造方法
US8599356B2 (en) 2009-09-11 2013-12-03 Asml Netherlands B.V. Shutter member, a lithographic apparatus and device manufacturing method
US9784732B2 (en) 2011-09-07 2017-10-10 The University Of Tokyo Acidic environment-detecting fluorescent probe
CN102681363A (zh) * 2012-05-11 2012-09-19 清华大学 一种多工位硅片台多台交换系统及其交换方法
CN102681363B (zh) * 2012-05-11 2014-02-19 清华大学 一种多工位硅片台多台交换系统及其交换方法

Similar Documents

Publication Publication Date Title
JP5321722B2 (ja) 露光装置、露光方法及びデバイス製造方法
US8089615B2 (en) Substrate holding apparatus, exposure apparatus, exposing method, and device fabricating method
US8780326B2 (en) Exposure apparatus, exposure method, and device manufacturing method
EP1947683A1 (en) Exposure apparatus, exposure method and device manufacturing method
JP4720743B2 (ja) 露光装置及び露光方法、デバイス製造方法
US8013975B2 (en) Exposure apparatus, exposure method, and method for producing device
TWI416594B (zh) 液浸曝光裝置及液浸曝光方法、以及元件製造方法
US8040490B2 (en) Liquid immersion exposure apparatus, exposure method, and method for producing device
WO2007083592A1 (ja) 基板保持装置及び露光装置、並びにデバイス製造方法
WO2007001045A1 (ja) 露光装置、基板処理方法、及びデバイス製造方法
WO2008059916A1 (fr) Appareil et procédé d&#39;exposition et procédé de fabrication de dispositif
US20080212047A1 (en) Exposure apparatus, exposing method, and device fabricating method
JP5262455B2 (ja) 露光装置、露光方法、及びデバイス製造方法
JP2009182110A (ja) 露光装置、露光方法、及びデバイス製造方法
JP2014093456A (ja) 露光装置及び露光方法並びにデバイス製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07831898

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020097008366

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07831898

Country of ref document: EP

Kind code of ref document: A1