WO2008059864A1 - Procédé de production d'un supraconducteur au diborure de magnésium - Google Patents

Procédé de production d'un supraconducteur au diborure de magnésium Download PDF

Info

Publication number
WO2008059864A1
WO2008059864A1 PCT/JP2007/072080 JP2007072080W WO2008059864A1 WO 2008059864 A1 WO2008059864 A1 WO 2008059864A1 JP 2007072080 W JP2007072080 W JP 2007072080W WO 2008059864 A1 WO2008059864 A1 WO 2008059864A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium diboride
magnesium
producing
silver
firing
Prior art date
Application number
PCT/JP2007/072080
Other languages
English (en)
French (fr)
Inventor
Junichi Shimoyama
Hiroaki Kumakura
Original Assignee
National Institute For Materials Science
The University Of Tokyo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute For Materials Science, The University Of Tokyo filed Critical National Institute For Materials Science
Publication of WO2008059864A1 publication Critical patent/WO2008059864A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58057Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on magnesium boride, e.g. MgB2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/02Boron; Borides
    • C01B35/04Metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0856Manufacture or treatment of devices comprising metal borides, e.g. MgB2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/401Alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/408Noble metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/421Boron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase

Definitions

  • the present invention relates to a method for producing a magnesium diboride superconductor by firing a mixed powder of magnesium and boron.
  • Mg and B are sufficiently reacted to produce MgB at a high temperature of 600 ° C or higher.
  • the present invention provides a magnesium diboride superconductor having superconducting properties equivalent to or higher than those obtained at a firing temperature of 600 ° C or higher even when fired at a firing temperature of less than 600 ° C. It is an object to provide a method for producing a magnesium diboride superconductor that can be produced.
  • the present invention basically adds 0.9 to 25 mol% of silver to magnesium to form a mixed powder, and the firing temperature is set to less than 600 ° C. It is a feature.
  • the magnesium diboride superconductor produced by the above-described method for producing a magnesium diboride superconductor of the present invention has a critical temperature of 36K or more even when fired at 550 ° C or 500 ° C. Some of them have good superconducting properties, such as a critical current density at 20K and a low magnetic field of 2 X 10 5 A / cm 2 or more. It is necessary to combine MgB and metal for wire production.
  • Mg and B are also composite gold. It can be used as a genus material (for example, sheath material) and is suitable for the performance of MgB wire.
  • Fig. 1 is a chart showing a powder X-ray diffraction pattern of magnesium diboride barta corresponding to Experiment Nos.!
  • FIG. 2 is a chart showing a powder X-ray diffraction pattern of magnesium diboride barta corresponding to Experiment Nos. 9 and 10.
  • the method for producing magnesium diboride of the present invention basically includes adding 0.9 to 25mo 1% silver to magnesium to form a mixed powder and setting the firing temperature to less than 600 ° C. It is a feature. As can be seen from Table 1 below, the amount of silver required to obtain good superconducting properties increases as the firing temperature decreases.
  • a powder in which magnesium, boron, and silver are mixed at a molar ratio of 1.1 + x: 2: x is filled into a stainless tube, sealed at both ends of the stainless tube, and then vacuumed into a quartz tube.
  • firing was performed at 500 ° C. and 550 ° C. (in units of 50 ° C., the same applies hereinafter) for 72 hours.
  • the addition amount X of silver was changed in the range of 0 to 0.25 (molar ratio).
  • Figures 1 and 2 show the results of X-ray powder diffraction study of the formation of the magnesium diboride phase in the obtained Balta sample.
  • FIG. 2 shows a powder X-ray diffraction pattern of a sample calcined at 500 ° C. for 72 hours.
  • a magnesium diboride phase is generated as a main phase. This is the first result showing that magnesium diboride is produced by adjusting the firing time even at a low temperature of 100 ° C. and at a firing temperature.
  • FIG. 3 shows the temperature dependence of the magnetic susceptibility of the samples fired at 500 ° C. and 550 ° C.
  • the critical temperature of the sample mainly composed of magnesium diboride is 550 ° C. It was confirmed that X> 0.01 (corresponding to 0.09 mol%) and high enough to be over 36K. Also, as shown in Table 1, the critical current density at 20K and low magnetic field is sufficiently high at 2 X 10 5 A / cm 2 or more.
  • the magnesium diboride superconductor to which the manufacturing method of the magnesium diboride superconductor of the present invention is applied has already been developed with a wire length of 3 km or more. In the future, this wire will be used for medical magnetic resonance diagnosis. It is expected to be put to practical use as a superconducting electromagnet for equipment (MRI) and magnetically levitated trains, and has the potential for application to current limiters and transformers.
  • MRI superconducting electromagnet for equipment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

明 細 書
二ホウ化マグネシウム超伝導体の製造方法
技術分野
[0001] 本発明は、マグネシウムとホウ素の混合粉末を焼成して二ホウ化マグネシウム超伝 導体を製造する方法に関する。
背景技術
[0002] 従来法では、 Mgと Bを十分に反応させて MgBを生成するのに 600°C以上の高温
2
熱処理が必要であった力 S、 600°C以上では、 MgBの結晶粒が粗大化するのに加え
2
て高温であるために、熱処理のコストがかさむという問題があり、実用化などを考慮す ると、低温での熱処理が望まれていた。
発明の開示
発明が解決しょうとする課題
[0003] 本発明は、 600°C未満の焼成温度での焼成でも、 600°C以上の焼成温度で得られ るものと同等またはそれ以上の超伝導特性を有する二ホウ化マグネシウム超伝導体 を製造することのできる二ホウ化マグネシウム超伝導体の製造方法を提供することを 課題としている。
課題を解決するための手段
[0004] 本発明は、上記の課題を解決するために、マグネシウムに対して 0. 9〜25mol% の銀を添加して混合粉末とし、焼成温度を 600°C未満としたことを基本的な特徴とし ている。
発明の効果
[0005] 上記の本発明の二ホウ化マグネシウム超伝導体の製造方法により製造した二ホウ 化マグネシウム超伝導体には、 550°Cまたは 500°Cでの焼成によっても、臨界温度 は 36K以上、 20K、低磁場での臨界電流密度も 2 X 105A/cm2以上という良好な 超伝導特性を示すものがある。線材化のためには、 MgBと金属を複合化する必要
2
があるが、低温での熱処理が可能となったことで、従来では使用出来な力、つた Mgや Bと反応しやすい金属(たとえば、銅、銅—ニッケル合金、アルミニウムなど)も複合金 属材 (たとえば、シース材など)として使用することが可能となり、 MgB線材の性能向
2
上および低コスト化に寄与する。
図面の簡単な説明
[0006] [図 1]実験 No.;!〜 6に対応する二ホウ化マグネシウムバルタの粉末 X線回折パター ンを示すチャートである。
[図 2]実験 No. 9、 10に対応する二ホウ化マグネシウムバルタの粉末 X線回折パター ンを示すチャートである。
[図 3]実験 No.;!〜 5、 10に対応する二ホウ化マグネシウムバルタの磁化率の温度依 発明を実施するための最良の形態
[0007] 本発明の二ホウ化マグネシウムの製造方法は、マグネシウムに対して 0. 9〜25mo 1%の銀を添加して混合粉末とし、焼成温度を 600°C未満とすることを基本的な特徴 としている。下記の表 1から確認されるように、良好な超伝導特性を得るために必要と される銀の添加量は、焼成温度が低くなるほど多くなる。
[0008] 焼成温度を 550°C (50° 単位)とした場合、 0. 9mol%でも十分な超伝導特性が得 られる力 焼成温度を 500°Cとすると、銀の添加量が 2· 65mol%のときに、 550°Cで の焼成および 0. 9mol%の銀の添加の場合に得られる臨界電流密度を超える。この こと力、ら、良好な超伝導特性を得るための銀の添加量は、焼成温度を低くするほど、 多くする必要があると推測される。また、焼成温度が 550°Cの場合の銀の添加量と臨 界電流密度の関係から、 25mol%までは 0. 9mol%の場合と同等かそれ以上の臨 界電流密度が得られると合理的に考えられる。
実施例
[0009] マグネシウム、ホウ素、銀をモル比で、 1. 1 +x : 2 : xの比で混合した粉末を、ステン レス管に充填し、ステンレス管の両端を封じた後、石英管に真空封入して、表 1に示 すように、 500°Cおよび 550°C (50°C単位、以下同じ)で 72時間焼成を行った。この とき、銀の添加量 Xは、 0〜0. 25 (モル比)の範囲で変えた。得られたバルタ試料に ついて二ホウ化マグネシウム相の生成の様子を粉末 X線回折で調べた結果を図 1お よび図 2に示す。 [0010] 図 1は、 550°Cで 72時間焼成した試料の粉末 X線回折パターンを示し、銀を添加し ない x = 0の試料では、二ホウ化マグネシウム相がほとんど生成していないのに対し、 x = 0. 02の試料では、原料のマグネシウムの回折ピークが消え、二ホウ化マグネシ ゥム相が主相となった。さらに銀の添加量を増やした試料でも二ホウ化マグネシウム 相が主相となり、また、マグネシウム一銀合金相の生成量が増加することが確認され d * o
[0011] 図2は、 500°Cで 72時間焼成した試料の粉末 X線回折パターンを示し、 x=0. 05 の試料では、二ホウ化マグネシウム相が主相として生成している。これは、従来より 10 0°C低レ、焼成温度でも、焼成時間の調整によって二ホウ化マグネシウムが生成するこ とを示す初めての結果である。
[0012] 図 3は、上記の 500°Cおよび 550°Cで焼成した試料の磁化率の温度依存性を示し 、二ホウ化マグネシウムが主相となった試料の臨界温度は、 550°Cでの焼成では、 X > 0. 01 (0. 09mol%に相当)で 36K以上と十分に高いことが確認される。また、表 1 に示す通り、 20K、低磁場での臨界電流密度も、 2 X 105A/cm2以上と十分高い。
[0013] ただし、 550°Cでの焼成の場合、 x=0. 01でも試料の臨界温度は 36Kに肉迫して いるので、この試料の有効性を確認することができる。同様に、 500°Cで焼成した試 料も、臨界温度はほぼ 36Kまたは 36Kを超えるので、有効性が確認される。
[0014] [表 1] マグネシウム:ホウ素:銀のモル比 = I . 1 + X : 2 : X
舗 No. 焼成 銀添加 ¾ 参照 臨界 臨界電流 ffi'度 (2 ϋ K ) 時間 X m o 1 % (K) ( 1 0 5A/ c πι2)
1 550°C 72h 0 0.00 図 1 33.0 0.01
2 0.01 0.90 35.9 0.37
3 0.02 1.79 37.8 2.12
4 0.03 2.65 37.7 2.41
5 0.05 4.35 " 37.6 2.03
6 /' 0.10 8.33 37.6 1.57
7 500で 0.01 0.90
8 0.02 1.79
9 0.03 2.65 図 2 35.6 0.44
10 0.05 4.35 37.0 U.82
1 1 " 0.10 8.33
12 550°C 0.25 21.74 37. 1 0.56 本発明の二ホウ化マグネシウム超伝導体の製造方法が適用される二ホウ化マグネ シゥム超伝導体は、すでに 3km以上の長さの線材が開発され、今後、この線材の、 医療用磁気共鳴診断装置 (MRI)や磁気浮上列車用の超伝導電磁石としての実用 化が期待されている他、限流器、変圧器などへの応用の潜在的な可能性を有する。

Claims

請求の範囲
[1] マグネシウムとホウ素の混合粉末を焼成して二ホウ化マグネシウム超伝導体を製造 する方法であって、マグネシウムに対して 0. 9〜25mol%の銀を添加して混合粉末 とし、焼成温度を 600°C未満としたことを特徴とする二ホウ化マグネシウム超伝導体 の製造方法。
[2] 焼成温度範囲を 500°C〜550°Cとすることを特徴とする請求項 1に記載の二ホウ化 マグネシウム超伝導体の製造方法。
[3] 焼成時間を二ホウ化マグネシウムが生成する時間に調整することを特徴とする請求 項 2に記載の二ホウ化マグネシウム超伝導体の製造方法。
[4] 焼成温度が 500°Cのとき、焼成時間を 72時間以上とする請求項 3に記載の二ホウ 化マグネシウム超伝導体の製造方法。
[5] 焼成温度を 550°Cするときの銀の添加量を 0. 9〜25mol%とする請求項 2に記載 の二ホウ化マグネシウム超伝導体の製造方法。
[6] 焼成温度を 500°Cとするときの銀の添加量を 2· 65mol〜25mol%とする請求項 2 に記載の二ホウ化マグネシウムの製造方法。
PCT/JP2007/072080 2006-11-16 2007-11-14 Procédé de production d'un supraconducteur au diborure de magnésium WO2008059864A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006309780A JP5126768B2 (ja) 2006-11-16 2006-11-16 二ホウ化マグネシウム超伝導体の製造方法
JP2006-309780 2006-11-16

Publications (1)

Publication Number Publication Date
WO2008059864A1 true WO2008059864A1 (fr) 2008-05-22

Family

ID=39401670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072080 WO2008059864A1 (fr) 2006-11-16 2007-11-14 Procédé de production d'un supraconducteur au diborure de magnésium

Country Status (2)

Country Link
JP (1) JP5126768B2 (ja)
WO (1) WO2008059864A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009134969A (ja) * 2007-11-30 2009-06-18 Hitachi Ltd MgB2超電導線材の製造方法
WO2013187268A1 (ja) * 2012-06-11 2013-12-19 株式会社 日立製作所 MgB2超電導線材およびその製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5283423B2 (ja) 2008-05-02 2013-09-04 株式会社エヌ・ティ・ティ・ドコモ 移動通信システムにおける基地局装置、ユーザ装置及び方法
US8325661B2 (en) * 2008-08-28 2012-12-04 Qualcomm Incorporated Supporting multiple access technologies in a wireless environment
JPWO2011059066A1 (ja) * 2009-11-13 2013-04-04 王子ホールディングス株式会社 植物代謝産物を利用した植物の種、雑種及び雑種両親種同定方法、並びにその方法により同定された植物の植栽方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222619A (ja) * 2001-01-24 2002-08-09 Hideyuki Shinagawa 二硼化マグネシウム超伝導線材
JP2004269268A (ja) * 2003-03-04 2004-09-30 National Institute For Materials Science MgB2超伝導体の製造方法
JP2006143500A (ja) * 2004-11-17 2006-06-08 Yokohama National Univ ナノ微粒子含有MgB2系高温超伝導体、及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222619A (ja) * 2001-01-24 2002-08-09 Hideyuki Shinagawa 二硼化マグネシウム超伝導線材
JP2004269268A (ja) * 2003-03-04 2004-09-30 National Institute For Materials Science MgB2超伝導体の製造方法
JP2006143500A (ja) * 2004-11-17 2006-06-08 Yokohama National Univ ナノ微粒子含有MgB2系高温超伝導体、及びその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009134969A (ja) * 2007-11-30 2009-06-18 Hitachi Ltd MgB2超電導線材の製造方法
WO2013187268A1 (ja) * 2012-06-11 2013-12-19 株式会社 日立製作所 MgB2超電導線材およびその製造方法
JP2013257970A (ja) * 2012-06-11 2013-12-26 Hitachi Ltd MgB2超電導線材およびその製造方法

Also Published As

Publication number Publication date
JP2008120659A (ja) 2008-05-29
JP5126768B2 (ja) 2013-01-23

Similar Documents

Publication Publication Date Title
Scabarozi et al. Thermal expansion of select Mn+ 1AXn (M= earlytransitionmetal, A= Agroupelement, X= C or N) phases measured by high temperature x-ray diffraction and dilatometry
CN109437177B (zh) 以Cl为表面基团的MXene材料及其制备方法与应用
US20130052438A1 (en) Max-phase oriented ceramic and method for producing the same
WO2008059864A1 (fr) Procédé de production d'un supraconducteur au diborure de magnésium
JP4700578B2 (ja) 高抵抗希土類系永久磁石の製造方法
WO2002103716A1 (fr) Materiau de fil supraconducteur et son procede de preparation, aimant supraconducteur comprenant ce dernier
Mizutani et al. Understanding routes for high connectivity in ex situ MgB2 by self-sintering
Huang et al. Effect of carbon addition on the single crystalline magnetostriction of Fe-X (X= Al and Ga) alloys
Luo et al. Ferromagnetism in the Mn-based Heusler alloy Mn2NiSb
JP2012066960A (ja) 鉄系超伝導体及びその製造方法
Sun et al. Giant negative thermal expansion in ultrafine-grained Mn3 (Cu1− xGex) N (x= 0.5) bulk
WO2002069353A1 (en) Superconducting borides and wires made thereof
WO2016122856A1 (en) Method for tuning the ferromagnetic ordering temperature of aluminum iron boride
JP4033375B2 (ja) MgB2系超伝導体及びその製造方法
Beckmann et al. Reactive single-step hot-pressing and magnetocaloric performance of polycrystalline Fe2Al1. 15− xB2GexGax (x= 0, 0.05) MAB phases
Chen et al. Anomalous phase composition in the two-phase region of DyFe3− xAlx (x≤ 1.0)
JP3728504B2 (ja) MgB2超伝導線材の作製方法
Vignolo et al. High temperature heat treatment on boron precursor and PIT process optimization to improve the Jc performance of MgB2-based conductors
Zhang et al. Evolution of phase transformation and magnetic properties with Fe content in Ni55− xFexMn20Ga25 Heusler alloys
CN102254665A (zh) 铁钴基纳米晶软磁合金及其制备方法
JP2004307256A (ja) 臨界電流密度及び不可逆磁界の高いMgB2系超電導体
Hu et al. Large magnetostrain in magnetic-field-aligned Mn0. 965CoGe compound
CN100352961C (zh) 一种Pr系稀土超磁致伸缩材料及制备方法
US6093337A (en) Material for magnetostrictive sensors and other applications based on ferrite materials
Luo et al. Microstructure and superconducting properties of MgB2 bulks prepared from Mg+ B+ Mg (BH4) 2 composites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07831810

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07831810

Country of ref document: EP

Kind code of ref document: A1