WO2008059705A1 - Photogravure engraving roll and method for manufacturing the same - Google Patents

Photogravure engraving roll and method for manufacturing the same Download PDF

Info

Publication number
WO2008059705A1
WO2008059705A1 PCT/JP2007/070918 JP2007070918W WO2008059705A1 WO 2008059705 A1 WO2008059705 A1 WO 2008059705A1 JP 2007070918 W JP2007070918 W JP 2007070918W WO 2008059705 A1 WO2008059705 A1 WO 2008059705A1
Authority
WO
WIPO (PCT)
Prior art keywords
gravure
layer
plating layer
diamond
copper plating
Prior art date
Application number
PCT/JP2007/070918
Other languages
French (fr)
Japanese (ja)
Inventor
Tatsuo Shigeta
Manabu Inoue
Tsutomu Sato
Hideki Nakamori
Original Assignee
Think Laboratory Co., Ltd.
Nanotec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Think Laboratory Co., Ltd., Nanotec Corporation filed Critical Think Laboratory Co., Ltd.
Priority to JP2008544104A priority Critical patent/JPWO2008059705A1/en
Publication of WO2008059705A1 publication Critical patent/WO2008059705A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/12Printing plates or foils; Materials therefor non-metallic other than stone, e.g. printing plates or foils comprising inorganic materials in an organic matrix
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only

Definitions

  • the present invention relates to a gravure plate roll and a method for producing the same, which can be provided with a surface-enhanced coating layer having sufficient strength without using chromium plating, and in particular, surface enhancement replacing a chrome layer.
  • the present invention relates to a gravure printing roll provided with a diamond-like carbon (DLC) coating as a coating layer and a method for producing the same.
  • DLC diamond-like carbon
  • a fine concave portion (gravure cell) corresponding to the plate making information is formed to produce a plate surface, and ink is filled in the gravure cell to be printed.
  • Transcript In a general gravure plate roll, a copper plating layer (plate material) for forming a plate surface is provided on the surface of a plate base material such as aluminum or iron, and a large number of microscopic plates are etched according to the plate making information by etching.
  • a concave portion (gravure cell) is formed, and then a hard chromium layer is formed by chrome plating to increase the press life of the gravure plate making roll to form a surface-enhanced coating layer, and plate making (plate surface production) is completed.
  • a highly toxic hexavalent chromium is used in the chromium plating process, there is an extra cost to maintain the safety of the work, and there is also a problem of pollution, and the surface that replaces the chromium layer At present, the emergence of a reinforced coating layer is awaited.
  • Patent Document 1 JP-A-4 282296
  • Patent Document 2 Japanese Patent Laid-Open No. 11 309950
  • Patent Document 3 Japanese Patent Laid-Open No. 11 327124
  • Patent Document 4 Japanese Patent Laid-Open No. 2000-15770
  • the present inventors have conducted intensive research on a surface-enhanced covering layer that replaces the chromium layer.
  • the adhesion layer formed by the CVD method and the CVD method are used.
  • an adhesion layer formed by a CVD method, and a diamond-like carbon (DLC) coating formed by a CVD method In combination, the present inventors have found that a surface-enhanced coating layer having a strength comparable to that of a chromium layer and having no toxicity and no concern about the occurrence of pollution can be obtained.
  • An object of the present invention is to provide a novel gravure printing roll having a surface-enhanced coating layer that is non-toxic and has no fear of causing pollution, and is excellent in printing durability, and a method for producing the same.
  • a first aspect of the gravure printing roll of the present invention is a copper base plate provided on the surface of the base plate and a number of gravure cells formed on the surface of the base plate.
  • a adhesion layer provided on the surface of the copper plating layer; and a diamond-like carbon film covering the surface of the adhesion layer.
  • the adhesion layer and the diamond-like carbon film are formed by a CVD method. It is characterized by creating by.
  • a second aspect of the gravure plate roll of the present invention includes a plate base material, a copper plating layer provided on the surface of the plate base material and having a number of gravure cells formed on the surface, and the gravure
  • a base metal plating layer provided on the surface of the copper plating layer on which the cell is formed, an adhesion layer provided on the surface of the foundation metal plating layer, and a diamond-like carbon coating covering the surface of the adhesion layer
  • the base metal plating layer is a metal plating layer selected from the group consisting of nickel (Ni), cobalt (Co), and iron (Fe) forces, and the adhesion layer and the diamond-like force. It is characterized in that a Bonn film is formed by a CVD method.
  • a first aspect of the method for producing a gravure plate roll of the present invention includes a step of preparing a plate base material, a copper plating step of forming a copper plating layer on the surface of the plate base material, and the copper Surface of plating layer
  • a gravure cell forming step for forming a large number of gravure cells an adhesion layer forming step for forming an adhesion layer on the surface of the copper plating layer, and a diamond-like carbon coating for forming a diamond-like carbon film on the surface of the adhesion layer Forming the adhesion layer and the diamond-like carbon film by a CVD method.
  • a second aspect of the method for producing a gravure plate roll of the present invention includes a step of preparing a plate base material, a copper plating step of forming a copper plating layer on the surface of the plate base material, and the copper A gravure cell forming step of forming a number of gravure cells on the surface of the plating layer; a base metal plating layer forming step of forming a base metal plating layer on the surface of the copper plating layer on which the gravure cell is formed; An adhesion layer forming step of forming an adhesion layer on the surface of the underlayer metal plating layer; and a diamond-like carbon film formation step of forming a diamond-like carbon film on the surface of the adhesion layer, Is a plating layer of a metal selected from the group consisting of nickel (Ni), cobalt (Co), and iron (Fe) forces, characterized in that the adhesion layer and the diamond-like carbon film are formed by a CVD method.
  • the adhesion layer is preferably formed of one or more selected from the group consisting of aluminum (A1), phosphorus (P), titanium (Ti), and silicon (Si).
  • the copper plating layer has a thickness of 50 to 200 ⁇ m, the gravure cell has a depth of 5 to 150 ⁇ m, the adhesion layer has a thickness of 0.1 to 1111, and the diamond-like carbon coating
  • the thickness is preferably 0.;! To 10 mm. Further, the thickness of the base metal plating layer is preferably 0.;! To 5 ⁇ m.
  • adhesion layer In order to form the adhesion layer, one or more selected from the group consisting of trimethylaluminum, titanium tetraisopropoxide, titanium tetraethoxide, tetramethylsilane, trimethyl phosphite, and hexamethyldisiloxane. It is preferable to use these gas species.
  • the gravure cell may be formed by an etching method or an electronic engraving method, but an etching method is preferable.
  • the etching method is a method in which a gravure cell is formed by applying a photosensitive liquid to the plate cylinder surface of the gravure cylinder and baking it directly, followed by etching.
  • the electronic engraving method is a method of engraving a gravure cell on a copper surface of a Daravia cylinder by mechanically operating a diamond engraving needle by a digital signal.
  • the adhesive layer formed by the CVD method and the diamond-like carbon (DLC) film formed by the CVD method are used in combination.
  • a surface-enhanced coating layer it is possible to form a diamond-like force-bonded (DLC) film with high adhesion, and therefore, the chrome plating process can be omitted. This eliminates the need for extra costs for work safety, eliminates the risk of pollution, and the diamond-like carbon (DLC) coating has strength comparable to that of the chromium layer and has excellent printing durability. This is a great effect.
  • the specific underlayer metal plating layer, the adhesion layer formed by the CVD method, and the diamond-like carbon (DLC) formed by the CVD method When used in combination with a coating, a diamond-like carbon (DLC) coating with high adhesion can be formed as a surface-enhanced coating layer, and therefore the chrome plating step can be omitted.
  • a diamond-like carbon (DLC) coating with high adhesion can be formed as a surface-enhanced coating layer, and therefore the chrome plating step can be omitted.
  • FIG. 1 is an explanatory view schematically showing a production process of a first embodiment of a gravure printing roll of the present invention, wherein (a) is an overall sectional view of the plate base material, and (b) is a view of the plate base material. Partial enlarged sectional view showing a state in which a copper plating layer is formed on the surface, (c) is a partial enlarged sectional view showing a state in which a gravure cell is formed in the copper plating layer of the plate base material, and (d) is a plate base material. (E) is a partially enlarged sectional view showing a state in which a diamond-like carbon (DLC) film is coated on the surface of the adhesive layer of the plate base material. It is.
  • DLC diamond-like carbon
  • FIG. 2 is a flowchart showing a production method of the first embodiment of the gravure plate making roll of the present invention.
  • FIG. 3 is an enlarged cross-sectional view of the main part of the first aspect of the gravure printing roll of the present invention.
  • FIG. 4 is an explanatory view schematically showing the production process of the second embodiment of the gravure plate making roll of the present invention.
  • A is an overall cross-sectional view of the plate base material
  • (b) is a partially enlarged cross-sectional view showing a state in which a copper plating layer is formed on the surface of the plate base material
  • (c) is a copper plating of the plate base material.
  • D is a partially enlarged sectional view showing a state in which a base metal plating layer is formed on the surface of the copper plating layer of the plate base material
  • (e) is a partial enlarged sectional view showing a state in which the gravure cell is formed in the layer.
  • Partial enlarged cross-sectional view showing a state where an adhesion layer is formed on the surface of the base metal plating layer of the plate base material, (f) shows a state where the surface of the adhesion layer of the plate base material is coated with a diamond-like carbon (DLC) film It is a partial expanded sectional view.
  • DLC diamond-like carbon
  • FIG. 5 is a flowchart showing a production method of the second embodiment of the gravure printing roll of the present invention.
  • FIG. 6 is an enlarged cross-sectional view of the main part of the second aspect of the gravure printing roll of the present invention.
  • FIG. 7 is a schematic explanatory view showing a scratch testing machine.
  • 10 Plate base material (hollow roll), 10a, 10b: Gravure plate roll, 12: Copper plating layer, 14:
  • Gravure cell 15: base metal plating layer, 16: adhesion layer, 18: diamond-like carbon (DLC) coating.
  • DLC diamond-like carbon
  • reference numeral 10 denotes a plate base material, and a hollow roll made of aluminum, iron, carbon fiber reinforced resin (CFRP) or the like is used (step 100 in FIG. 2).
  • a copper plating layer 12 is formed on the surface of the hollow roll 10 by copper plating (step 102 in FIG. 2).
  • a large number of minute recesses (gravure cells) 14 are formed on the surface of the copper plating layer 12 (see FIG.
  • the gravure cell 14 can be formed by an etching method (a photosensitive liquid is applied to the plate cylinder surface and directly baked and then etched to form the gravure cell 14).
  • a force etching method that can use a known method such as engraving the Daravia cell 14 on the copper surface by mechanically operating the copper plate is suitable.
  • the adhesion layer 16 is formed on the surface of the copper plating layer 12 (including the gravure cell 14) on which the gravure cell 14 is formed (step 106 in FIG. 2).
  • a CVD method preferably a plasma CVD method is applied.
  • the CVD method includes APCVD (Atmospheric Pressure Chemical Vapor Deposition), which is formed at normal pressure, LPCVD (Low Pressure Chemical Vapor Deposition), which is formed at a reduced pressure of 0.05 Torr, and 600 Torr, which is slightly lower than normal pressure.
  • APCVD Absolutpheric Pressure Chemical Vapor Deposition
  • LPCVD Low Pressure Chemical Vapor Deposition
  • SACVD Subatmospheric Pressure Chemical Vapor Deposition
  • UHVCVD ultra-high-vacuum chemical vapor deposition
  • the plasma CVD method is a method in which a source gas is decomposed using plasma excitation and reactively deposited on a substrate for the purpose of forming a thin film at a lower temperature when performing the CVD method under reduced pressure.
  • the adhesion layer 16 is preferably formed of one or more selected from the group consisting of aluminum (A1), phosphorus (P), titanium (Ti), and silicon (Si) force.
  • adhesion layer 16 In order to form the adhesion layer 16, one or two selected from the group consisting of trimethylaluminum, titanium tetraisopropoxide, titanium tetraethoxide, tetramethylsilane, trimethyl phosphite, and hexamethyldisiloxane. It is preferable to use the above gas species.
  • the copper plating layer Adhesion is improved by a method in which a diamond-like carbon (DLC) film 18 is directly formed on 12.
  • the bond between the diamond-like carbon (DLC) coating 18 and the adhesion layer 16 is good! /
  • the reason is that the gas is a hydrocarbon gas, so the adhesion with the diamond-like carbon (DLC) coating 18 is high. .
  • the gas is introduced into the chamber and formed by the plasma CVD method, there is an advantage that the adhesion layer 16 is uniformly formed on the entire surface.
  • a diamond-like carbon (DLC) film 18 is formed on the surface of the adhesion layer 16 (step 108 in FIG. 2).
  • a CVD method preferably a plasma CVD method, is applied as in the formation of the adhesion layer 16.
  • the thickness of the copper plating layer 12 is 50 to 200 ⁇ m, and the depth of the gravure cell 14 is 5 to 150.
  • the thickness of the adhesion layer 16 is 0.1 to 1 m, and the thickness of the diamond-like carbon film 18 is 0.1;! to 10 mm.
  • reference numeral 10 denotes a plate base material, and a hollow roll made of aluminum, iron, carbon fiber reinforced resin (CFRP) or the like is used (step 200 in FIG. 5).
  • a copper plating layer 12 is formed on the surface of the hollow roll 10 by a copper plating process (step 202 in FIG. 5).
  • a large number of minute recesses (gravure cells) 14 are formed on the surface of the copper plating layer 12 (see FIG.
  • Step 204 of 5 As a method for forming the gravure cell 14, the method described above in Step 104 can be used in the same manner.
  • the base metal plating layer 15 is formed on the surface of the copper plating layer 12 (including the gravure cell 14) on which the gravure cell 14 is formed (step 206 in FIG. 5).
  • the underlying metal plating layer 15 is a metal plating layer selected from the group consisting of nickel (Ni), cobalt (Co), and iron (Fe) forces.
  • the thickness of the base metal plating layer 15 is preferably 0.1 to 5111.
  • the adhesion layer 16 is formed on the surface of the base metal plating layer 15 (step 208 in FIG. 5).
  • the method S described above in Step 106 can be applied in the same manner.
  • a diamond-like carbon (DLC) film 18 is formed on the surface of the adhesion layer 16 (step 210 in FIG. 5).
  • the method described above in Step 108 can be similarly used.
  • the surface of the adhesion layer 16 is covered with the diamond-like carbon (DLC) coating 18 described above, and this diamond-like carbon (DLC) coating 18 acts as a surface-enhanced coating layer, thereby causing no toxicity and causing pollution.
  • the gravure printing roll 10b with excellent printing durability can be obtained.
  • a gravure cylinder (aluminum hollow roll) with a circumference of 600mm and a surface length of 1100mm is installed in the measuring tank, and the anode chamber is brought close to the air roll up to 20mm by an automatic slide device using a computer system, overflowing the measuring liquid, A copper plating layer of 80 ⁇ m was formed at 18 A / dm 2 , 6.0 V by immersing it all. The plating time was 20 minutes, and there was no pit formation on the plating surface, and a uniform copper plating layer was obtained.
  • the copper plating layer formed above is coated with a photosensitive film, and the image is laser-exposed, developed, and burned to form a resist image, followed by dry etching, such as plasma etching, with a gravure cell.
  • a printing plate was formed by engraving an image consisting of and then removing the resist image. At this time, three hollow rolls having a gravure cell depth of 10 m (Example 1), 18 111 (Example 2), and 30 m (Example 3) were produced.
  • An aluminum (A1) layer having a thickness of 0.1 m was formed by plasma CVD using trimethylaluminum as a gas species on the upper surface of the copper plating layer on which the gravure cell was formed.
  • a diamond like carbon (DLC) film having a thickness of ⁇ was formed on the upper surface of aluminum (A1) by plasma CVD. In this way, a gravure printing roll (gravure cylinder) was completed.
  • DLC diamond like carbon
  • Titanium tetraethoxide, tetramethylsilane, trimethylol phosphite, and hexamethyldisiloxane were used as gas species, and a titanium (Ti) layer having a thickness of 0 ⁇ I nm by a plasma CVD method, A silicon (Si) layer, a phosphorus (P) layer, and a silicon (Si) layer were formed, and the same experiment was conducted to confirm that the same result was obtained.
  • a gravure cylinder (aluminum hollow roll) with a circumference of 600mm and a surface length of 1100mm is installed in the mating tank, and the anode chamber is brought close to the air roll up to 20mm by an automatic slide device using a computer system.
  • the plating time was 20 minutes, and a uniform copper plating layer with no pits on the plating surface was obtained.
  • the above-described copper plating layer is coated with a photosensitive film, and the image is laser-exposed, developed, and burned to form a resist image, followed by dry etching such as plasma etching at! /, And gravure.
  • a printing plate was formed by engraving the cell image and then removing the resist image. At this time, a hollow roll with a gravure cell depth of 10 m was produced.
  • Cobalt plating is performed on the hollow roll by the cobalt plating tank under the following conditions. To form a cobalt plating layer having a thickness of 1 ⁇ m.
  • Cobalt plating solution composition (solvent: water)
  • a silicon (Si) layer having a thickness of 0.1 m was formed on the upper surface of the cobalt plating layer by plasma CVD using hexamethyldisiloxane as a gas species.
  • a diamond-like carbon (DLC) film having a thickness of 2 m was formed on the upper surface of the silicon (Si) layer by plasma CVD.
  • a gravure printing roll gravure cylinder
  • the Vickers hardness of the diamond-like carbon (DLC) coating on this gravure cylinder was measured and found to be 1280, indicating that it had sufficient hardness. Further, when the scratch test was conducted, the scratch test value was 8.34 N, and it was found that the adhesion was further improved as compared with Example 8.
  • FIG. 7 is a schematic explanatory diagram showing a scratch testing machine.
  • a substrate 52 having a thin film 50 formed thereon is placed on a table (not shown), a diamond indenter 54 is brought into close contact with the substrate 52, and a load 56 is gradually applied. Is moved at a constant speed and the adhesion is measured.
  • the AE (acoustic emission) sensor 58 detects ultrasonic noise as a result of peeling or cracking of the thin film 50 formed on the substrate 52, and at the same time detects the friction force. S can.
  • a gravure platemaking roll was completed in the same manner as in Example 7 except that the hollow roll was not subjected to cobalt plating.
  • the Vickers hardness of the diamond-like carbon (DLC) coating on this gravure cylinder was measured and found to be 1280.
  • the scratch test value was 7.05N.
  • Example 7 The same treatment as in Example 7 was performed except that tetramethylsilane was used as the gas species for the hollow roll instead of hexamethyldisiloxane and a 0.1 m thick silicon (Si) layer was formed by plasma CVD.
  • the gravure platemaking roll was completed.
  • the Vickers hardness of the diamond-like carbon (DLC) coating on this gravure cylinder was measured and found to be 1380, indicating that it had sufficient hardness. Further, when the scratch test was conducted, the scratch test value was 10.58 N, and it was found that the adhesion was further improved as compared with Example 10.
  • a printing test was conducted in the same manner using this gravure cylinder, a printed matter having a good transferability as well as the plate capri was obtained. In these examples, it was confirmed that V, even diamond-like carbon (DLC) coating, had a performance comparable to that of the conventional chromium layer and could be used as a substitute for the chromium layer.
  • a gravure printing roll was completed in the same manner as in Example 9 except that the hollow roll was not subjected to cobalt plating.
  • This gravure cylinder diamond-like carbon The Vickers hardness of the coating (DLC) film was 1380.
  • the scratch test value was 9.21N.
  • a gravure printing roll was completed by treating in the same manner as in Example 7 except that a nickel plating layer having a thickness of 1 ⁇ m was formed on the hollow roll instead of cobalt plating under the following conditions.
  • the Vickers hardness of the diamond-like carbon (DLC) film of this gravure cylinder was measured and found to be 1280, which was sufficient. Further, when the scratch test was conducted, the scratch test value was 7.19 N, and it was found that the adhesion was further improved as compared with Example 8. When a printing test was conducted in the same manner using this gravure cylinder, it was possible to obtain a printed material having the same transferability as the plate capri. Also in these examples, it was confirmed that the diamond-like carbon (DLC) coating had a performance comparable to that of the conventional chromium layer and could be sufficiently used as a substitute for the chromium layer.
  • a gravure printing roll was completed in the same manner as in Example 9 except that a nickel plating layer having a thickness of 1 ⁇ m was formed on the hollow roll instead of cobalt plating.
  • the Vickers hardness of this gravure cylinder diamond-like carbon (DLC) film was measured and found to be 1380, which was sufficient. Further, when the scratch test was conducted, the scratch test value was 10.27 N, and it was found that the adhesion was further improved as compared with Example 10.
  • a printing test was conducted in the same manner using this gravure cylinder, a printed matter having good transferability as well as the plate capri was obtained. These fruits Also in the examples, it was confirmed that the diamond-like carbon (DLC) coating had performance comparable to that of the conventional chromium layer and could be used as a substitute for the chromium layer.
  • titanium tetraethoxide, titanium tetraisopropoxide, trimethyl phosphite, and trimethylaluminum are used as the gas species, and a titanium (1) layer and a phosphorus (P) layer having a thickness of 0.1 111 by plasma CVD, respectively. Then, an aluminum (A1) layer was formed and the same experiment was conducted, and it was confirmed that the same result was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Or Reproduction Of Printing Formes (AREA)
  • Printing Plates And Materials Therefor (AREA)

Abstract

This invention provides a novel photogravure engraving roll, which is provided with a surface reinforcing covering layer free from toxicity and having no possibility of the occurrence of pollution and, at the same time, has excellent printing durability, and a method for manufacturing the same. The photogravure engraving roll comprises a plate base material, a copper plating layer provided on the surface of the plate base material and having on its surface a number of gravure cells, an adhesion layer provided on the surface of the copper plating layer, and a diamond-like carbon film covering the surface of the adhesion layer. The adhesion layer and the diamond-like carbon film are formed by CVD.

Description

明 細 書  Specification
グラビア製版ロール及びその製造方法  Gravure plate making roll and method for producing the same
技術分野  Technical field
[0001] 本発明は、クロムめつきを用いることなぐ充分な強度を有する表面強化被覆層を具 備することができるようにしたグラビア製版ロール及びその製造方法に関し、特にクロ ム層に替わる表面強化被覆層としてダイヤモンドライクカーボン (DLC)被膜を設ける ようにしたグラビア製版ロール及びその製造方法に関する。  TECHNICAL FIELD [0001] The present invention relates to a gravure plate roll and a method for producing the same, which can be provided with a surface-enhanced coating layer having sufficient strength without using chromium plating, and in particular, surface enhancement replacing a chrome layer. The present invention relates to a gravure printing roll provided with a diamond-like carbon (DLC) coating as a coating layer and a method for producing the same.
背景技術  Background art
[0002] グラビア印刷では、グラビア製版ロール (グラビアシリンダー)に対し、製版情報に応 じた微小な凹部(グラビアセル)を形成して版面を製作し当該グラビアセルにインキを 充填して被印刷物に転写するものである。一般的なグラビア製版ロールにおいては、 アルミニウムや鉄などの版母材の表面に版面形成用の銅めつき層(版材)を設け、該 銅めつき層にエッチングによって製版情報に応じ多数の微小な凹部(グラビアセル) を形成し、次いでグラビア製版ロールの耐刷カを増すためのクロムめつきによって硬 質のクロム層を形成して表面強化被覆層とし、製版 (版面の製作)が完了する。しかし 、クロムめつき工程においては毒性の高い六価クロムを用いているために、作業の安 全維持を図るために余分なコストがかかる他、公害発生の問題もあり、クロム層に替 わる表面強化被覆層の出現が待望されているのが現状である。  In gravure printing, on a gravure printing roll (gravure cylinder), a fine concave portion (gravure cell) corresponding to the plate making information is formed to produce a plate surface, and ink is filled in the gravure cell to be printed. Transcript. In a general gravure plate roll, a copper plating layer (plate material) for forming a plate surface is provided on the surface of a plate base material such as aluminum or iron, and a large number of microscopic plates are etched according to the plate making information by etching. A concave portion (gravure cell) is formed, and then a hard chromium layer is formed by chrome plating to increase the press life of the gravure plate making roll to form a surface-enhanced coating layer, and plate making (plate surface production) is completed. . However, because the highly toxic hexavalent chromium is used in the chromium plating process, there is an extra cost to maintain the safety of the work, and there is also a problem of pollution, and the surface that replaces the chromium layer At present, the emergence of a reinforced coating layer is awaited.
[0003] 一方、グラビア製版ロール (グラビアシリンダー)の製造について、セルを形成した 銅めつき層にダイヤモンドライクカーボン (DLC)被膜を形成し、表面強化被覆層とし て用いる技術は知られているが(特許文献 1)、 DLC被膜は銅との密着性が弱ぐ剥 離し易いという問題があった。また、本願出願人の一方は、版母材にゴム又は樹脂層 を形成し、その上にダイヤモンドライクカーボン (DLC)の被膜を形成した後、セルを 形成し、グラビア印刷版を製造する技術をすでに提案して!/、る(特許文献 2〜4)。 特許文献 1 :特開平 4 282296号公報 [0003] On the other hand, for the production of gravure printing rolls (gravure cylinders), a technique is known in which a diamond-like carbon (DLC) film is formed on a copper plating layer on which cells are formed and used as a surface reinforcing coating layer. (Patent Document 1) The DLC film has a problem that it is easily peeled off due to weak adhesion to copper. In addition, one of the applicants of the present application has a technology for forming a gravure printing plate by forming a rubber or resin layer on a plate base material, forming a diamond-like carbon (DLC) film thereon, and then forming cells. Proposed already! /, Ru (Patent Documents 2 to 4). Patent Document 1: JP-A-4 282296
特許文献 2:特開平 11 309950号公報  Patent Document 2: Japanese Patent Laid-Open No. 11 309950
特許文献 3:特開平 11 327124号公報 特許文献 4:特開 2000— 15770号公報 Patent Document 3: Japanese Patent Laid-Open No. 11 327124 Patent Document 4: Japanese Patent Laid-Open No. 2000-15770
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 本発明者らは、上記した従来技術の問題点に鑑み、クロム層に替わる表面強化被 覆層について鋭意研究を続けたところ、 CVD法により形成された密着層と、 CVD法 により形成されたダイヤモンドライクカーボン (DLC)被膜とを組み合わせて用い、又 は、特定の下地金属めつき層と、 CVD法により形成された密着層と、 CVD法により 形成されたダイヤモンドライクカーボン (DLC)被膜とを組み合わせて用いることによ つてクロム層に匹敵する強度を有しかつ毒性はなく公害発生の心配も全くない表面 強化被覆層を得ることができることを見出し、本発明を完成した。  [0004] In view of the above-mentioned problems of the prior art, the present inventors have conducted intensive research on a surface-enhanced covering layer that replaces the chromium layer. As a result, the adhesion layer formed by the CVD method and the CVD method are used. In combination with a specific diamond-like carbon (DLC) coating, or a specific base metal plating layer, an adhesion layer formed by a CVD method, and a diamond-like carbon (DLC) coating formed by a CVD method In combination, the present inventors have found that a surface-enhanced coating layer having a strength comparable to that of a chromium layer and having no toxicity and no concern about the occurrence of pollution can be obtained.
[0005] 本発明は、毒性がなくかつ公害発生の心配も皆無な表面強化被覆層を具備すると ともに耐刷力に優れた新規なグラビア製版ロール及びその製造方法を提供すること を目的とする。  [0005] An object of the present invention is to provide a novel gravure printing roll having a surface-enhanced coating layer that is non-toxic and has no fear of causing pollution, and is excellent in printing durability, and a method for producing the same.
課題を解決するための手段  Means for solving the problem
[0006] 上記課題を解決するために、本発明のグラビア製版ロールの第 1の態様は、版母 材と、該版母材の表面に設けられかつ表面に多数のグラビアセルが形成された銅め つき層と、該銅めっき層の表面に設けられた密着層と、該密着層の表面を被覆するダ ィャモンドライクカーボン被膜とを有し、前記密着層及びダイヤモンドライクカーボン 被膜を CVD法により作成することを特徴とする。  [0006] In order to solve the above-mentioned problems, a first aspect of the gravure printing roll of the present invention is a copper base plate provided on the surface of the base plate and a number of gravure cells formed on the surface of the base plate. A adhesion layer provided on the surface of the copper plating layer; and a diamond-like carbon film covering the surface of the adhesion layer. The adhesion layer and the diamond-like carbon film are formed by a CVD method. It is characterized by creating by.
[0007] 本発明のグラビア製版ロールの第 2の態様は、版母材と、該版母材の表面に設けら れかつ表面に多数のグラビアセルが形成された銅めつき層と、該グラビアセルが形成 された銅めつき層の表面に設けられた下地金属めつき層と、該下地金属めつき層の 表面に設けられた密着層と、該密着層の表面を被覆するダイヤモンドライクカーボン 被膜とを有し、前記下地金属めつき層がニッケル (Ni)、コバルト(Co)、及び鉄(Fe) 力、らなる群から選ばれる金属のめっき層であり、前記密着層及びダイヤモンドライク力 一ボン被膜を CVD法により作成することを特徴とする。  [0007] A second aspect of the gravure plate roll of the present invention includes a plate base material, a copper plating layer provided on the surface of the plate base material and having a number of gravure cells formed on the surface, and the gravure A base metal plating layer provided on the surface of the copper plating layer on which the cell is formed, an adhesion layer provided on the surface of the foundation metal plating layer, and a diamond-like carbon coating covering the surface of the adhesion layer And the base metal plating layer is a metal plating layer selected from the group consisting of nickel (Ni), cobalt (Co), and iron (Fe) forces, and the adhesion layer and the diamond-like force. It is characterized in that a Bonn film is formed by a CVD method.
[0008] 本発明のグラビア製版ロールの製造方法の第 1の態様は、版母材を準備する工程 と、該版母材の表面に銅めつき層を形成する銅めつき工程と、該銅めっき層の表面 に多数のグラビアセルを形成するグラビアセル形成工程と、該銅めっき層の表面に 密着層を形成する密着層形成工程と、該密着層の表面にダイヤモンドライクカーボ ン被膜を形成するダイヤモンドライクカーボン被膜形成工程とを含み、前記密着層及 びダイヤモンドライクカーボン被膜を CVD法により作成することを特徴とする。 [0008] A first aspect of the method for producing a gravure plate roll of the present invention includes a step of preparing a plate base material, a copper plating step of forming a copper plating layer on the surface of the plate base material, and the copper Surface of plating layer A gravure cell forming step for forming a large number of gravure cells, an adhesion layer forming step for forming an adhesion layer on the surface of the copper plating layer, and a diamond-like carbon coating for forming a diamond-like carbon film on the surface of the adhesion layer Forming the adhesion layer and the diamond-like carbon film by a CVD method.
[0009] 本発明のグラビア製版ロールの製造方法の第 2の態様は、版母材を準備する工程 と、該版母材の表面に銅めつき層を形成する銅めつき工程と、該銅めっき層の表面 に多数のグラビアセルを形成するグラビアセル形成工程と、該グラビアセルが形成さ れた銅めつき層の表面に下地金属めつき層を形成する下地金属めつき層形成工程と 、該下地金属めつき層の表面に密着層を形成する密着層形成工程と、該密着層の 表面にダイヤモンドライクカーボン被膜を形成するダイヤモンドライクカーボン被膜形 成工程とを含み、前記下地金属めつき層が、ニッケル (Ni)、コバルト(Co)、及び鉄( Fe)力 なる群から選ばれる金属のめっき層であり、前記密着層及びダイヤモンドライ クカーボン被膜を CVD法により作成することを特徴とする。  [0009] A second aspect of the method for producing a gravure plate roll of the present invention includes a step of preparing a plate base material, a copper plating step of forming a copper plating layer on the surface of the plate base material, and the copper A gravure cell forming step of forming a number of gravure cells on the surface of the plating layer; a base metal plating layer forming step of forming a base metal plating layer on the surface of the copper plating layer on which the gravure cell is formed; An adhesion layer forming step of forming an adhesion layer on the surface of the underlayer metal plating layer; and a diamond-like carbon film formation step of forming a diamond-like carbon film on the surface of the adhesion layer, Is a plating layer of a metal selected from the group consisting of nickel (Ni), cobalt (Co), and iron (Fe) forces, characterized in that the adhesion layer and the diamond-like carbon film are formed by a CVD method.
[0010] 前記密着層が、アルミニウム (A1)、リン (P)、チタン (Ti)、及び珪素(Si)からなる群 から選ばれる一種又は二種以上から形成されるのが好ましい。  [0010] The adhesion layer is preferably formed of one or more selected from the group consisting of aluminum (A1), phosphorus (P), titanium (Ti), and silicon (Si).
[0011] 前記銅めつき層の厚さが 50〜200 μ m、前記グラビアセルの深度が 5〜150 μ m、 前記密着層の厚さが 0. 1〜1 111、及び前記ダイヤモンドライクカーボン被膜の厚さ が 0.;!〜 10〃 mであるのが好ましい。また、前記下地金属めつき層の厚さが 0.;!〜 5 〃mであるのが好ましい。  [0011] The copper plating layer has a thickness of 50 to 200 μm, the gravure cell has a depth of 5 to 150 μm, the adhesion layer has a thickness of 0.1 to 1111, and the diamond-like carbon coating The thickness is preferably 0.;! To 10 mm. Further, the thickness of the base metal plating layer is preferably 0.;! To 5 〜m.
[0012] 前記密着層を形成するために、トリメチルアルミニウム、チタニウムテトライソプロボ キシド、チタニウムテトラエトキシド、テトラメチルシラン、亜リン酸トリメチル、へキサメチ ルジシロキサンからなる群から選ばれる一種又は二種以上のガス種を用いるのが好 適である。  [0012] In order to form the adhesion layer, one or more selected from the group consisting of trimethylaluminum, titanium tetraisopropoxide, titanium tetraethoxide, tetramethylsilane, trimethyl phosphite, and hexamethyldisiloxane. It is preferable to use these gas species.
[0013] 前記グラビアセルの形成は、エッチング法又は電子彫刻法によって行えばよいが、 エッチング法が好適である。ここでエッチング法はグラビアシリンダーの版胴面に感 光液を塗布して直接焼き付けた後、エッチングしてグラビアセルを形成する方法であ る。電子彫刻法は、デジタル信号によりダイヤモンド彫刻針を機械的に作動させダラ ビアシリンダーの銅表面にグラビアセルを彫刻する方法である。 発明の効果 The gravure cell may be formed by an etching method or an electronic engraving method, but an etching method is preferable. Here, the etching method is a method in which a gravure cell is formed by applying a photosensitive liquid to the plate cylinder surface of the gravure cylinder and baking it directly, followed by etching. The electronic engraving method is a method of engraving a gravure cell on a copper surface of a Daravia cylinder by mechanically operating a diamond engraving needle by a digital signal. The invention's effect
[0014] 本発明のグラビア製版ロールの第 1の態様によれば、 CVD法により形成された密 着層と、 CVD法により形成されたダイヤモンドライクカーボン (DLC)被膜とを組み合 わせて用いることによって、表面強化被覆層として密着性の高いダイヤモンドライク力 一ボン (DLC)被膜を形成することができ、従って、クロムめつき工程を省略することが できるので、毒性の高い六価クロムを用いることがなくなり、作業の安全性を図るため の余分なコストが不要で、公害発生の心配も全くなぐしかもダイヤモンドライクカーボ ン (DLC)被膜はクロム層に匹敵する強度を有し耐刷力にも優れるという大きな効果 を奏するものである。  [0014] According to the first aspect of the gravure plate roll of the present invention, the adhesive layer formed by the CVD method and the diamond-like carbon (DLC) film formed by the CVD method are used in combination. As a surface-enhanced coating layer, it is possible to form a diamond-like force-bonded (DLC) film with high adhesion, and therefore, the chrome plating process can be omitted. This eliminates the need for extra costs for work safety, eliminates the risk of pollution, and the diamond-like carbon (DLC) coating has strength comparable to that of the chromium layer and has excellent printing durability. This is a great effect.
[0015] 本発明のグラビア製版ロールの第 2の態様によれば、特定の下地金属めつき層と、 CVD法により形成された密着層と、 CVD法により形成されたダイヤモンドライクカー ボン (DLC)被膜とを組み合わせて用いることによって、表面強化被覆層として密着 性の高いダイヤモンドライクカーボン (DLC)被膜を形成することができ、従って、クロ ムめっき工程を省略することができるので、毒性の高い六価クロムを用いることがなく なり、作業の安全性を図るための余分なコストが不要で、公害発生の心配も全くなぐ し力、もダイヤモンドライクカーボン (DLC)被膜はクロム層に匹敵する強度を有し耐刷 力にも優れるという大きな効果を奏するものである。  [0015] According to the second aspect of the gravure plate roll of the present invention, the specific underlayer metal plating layer, the adhesion layer formed by the CVD method, and the diamond-like carbon (DLC) formed by the CVD method When used in combination with a coating, a diamond-like carbon (DLC) coating with high adhesion can be formed as a surface-enhanced coating layer, and therefore the chrome plating step can be omitted. This eliminates the need to use valence chromium, eliminates the need for extra costs for work safety, eliminates the risk of pollution, and the diamond-like carbon (DLC) coating has a strength comparable to that of the chromium layer. It has a great effect of having excellent printing durability.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]本発明のグラビア製版ロールの第 1の態様の製造工程を模式的に示す説明図 で、(a)は版母材の全体断面図、(b)は版母材の表面に銅めつき層を形成した状態 を示す部分拡大断面図、(c)は版母材の銅めつき層にグラビアセルを形成した状態 を示す部分拡大断面図、(d)は版母材の銅めつき層表面に密着層を形成した状態を 示す部分拡大断面図、(e)は版母材の密着層表面にダイヤモンドライクカーボン (D LC)被膜を被覆した状態を示す部分拡大断面図である。  FIG. 1 is an explanatory view schematically showing a production process of a first embodiment of a gravure printing roll of the present invention, wherein (a) is an overall sectional view of the plate base material, and (b) is a view of the plate base material. Partial enlarged sectional view showing a state in which a copper plating layer is formed on the surface, (c) is a partial enlarged sectional view showing a state in which a gravure cell is formed in the copper plating layer of the plate base material, and (d) is a plate base material. (E) is a partially enlarged sectional view showing a state in which a diamond-like carbon (DLC) film is coated on the surface of the adhesive layer of the plate base material. It is.
[図 2]本発明のグラビア製版ロールの第 1の態様の製造方法を示すフローチャートで ある。  FIG. 2 is a flowchart showing a production method of the first embodiment of the gravure plate making roll of the present invention.
[図 3]本発明のグラビア製版ロールの第 1の態様の要部の拡大断面図である。  FIG. 3 is an enlarged cross-sectional view of the main part of the first aspect of the gravure printing roll of the present invention.
[図 4]本発明のグラビア製版ロールの第 2の態様の製造工程を模式的に示す説明図 で、(a)は版母材の全体断面図、(b)は版母材の表面に銅めつき層を形成した状態 を示す部分拡大断面図、(c)は版母材の銅めつき層にグラビアセルを形成した状態 を示す部分拡大断面図、(d)は版母材の銅めつき層表面に下地金属めつき層を形 成した状態を示す部分拡大断面図、(e)は版母材の下地金属めつき層表面に密着 層を形成した状態を示す部分拡大断面図、(f)は版母材の密着層表面にダイヤモン ドライクカーボン (DLC)被膜を被覆した状態を示す部分拡大断面図である。 FIG. 4 is an explanatory view schematically showing the production process of the second embodiment of the gravure plate making roll of the present invention. (A) is an overall cross-sectional view of the plate base material, (b) is a partially enlarged cross-sectional view showing a state in which a copper plating layer is formed on the surface of the plate base material, and (c) is a copper plating of the plate base material. (D) is a partially enlarged sectional view showing a state in which a base metal plating layer is formed on the surface of the copper plating layer of the plate base material, and (e) is a partial enlarged sectional view showing a state in which the gravure cell is formed in the layer. Partial enlarged cross-sectional view showing a state where an adhesion layer is formed on the surface of the base metal plating layer of the plate base material, (f) shows a state where the surface of the adhesion layer of the plate base material is coated with a diamond-like carbon (DLC) film It is a partial expanded sectional view.
[図 5]本発明のグラビア製版ロールの第 2の態様の製造方法を示すフローチャートで ある。  FIG. 5 is a flowchart showing a production method of the second embodiment of the gravure printing roll of the present invention.
[図 6]本発明のグラビア製版ロールの第 2の態様の要部の拡大断面図である。  FIG. 6 is an enlarged cross-sectional view of the main part of the second aspect of the gravure printing roll of the present invention.
[図 7]スクラッチ試験機を示す概略説明図である。  FIG. 7 is a schematic explanatory view showing a scratch testing machine.
符号の説明  Explanation of symbols
[0017] 10 :版母材(中空ロール)、 10a, 10b:グラビア製版ロール、 12 :銅めつき層、 14 :  [0017] 10: Plate base material (hollow roll), 10a, 10b: Gravure plate roll, 12: Copper plating layer, 14:
グラビアセル、 15 :下地金属めつき層、 16 :密着層、 18 :ダイヤモンドライクカーボン( DLC)被膜。  Gravure cell, 15: base metal plating layer, 16: adhesion layer, 18: diamond-like carbon (DLC) coating.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下に本発明の実施の形態を説明するが、これら実施の形態は例示的に示される もので、本発明の技術思想から逸脱しない限り種々の変形が可能なことはいうまでも ない。 [0018] Embodiments of the present invention will be described below, but these embodiments are exemplarily shown, and it goes without saying that various modifications are possible without departing from the technical idea of the present invention. .
[0019] 本発明方法の第 1の態様を図 1〜図 3を用いて説明する。図 1 (a)及び図 3におい て、符号 10は版母材で、アルミニウム、鉄又は炭素繊維強化樹脂(CFRP)等からな る中空ロールが用いられる(図 2のステップ 100)。該中空ロール 10の表面には銅メッ キ処理によって銅メツキ層 12が形成される(図 2のステップ 102)。  [0019] A first embodiment of the method of the present invention will be described with reference to Figs. In FIGS. 1 (a) and 3, reference numeral 10 denotes a plate base material, and a hollow roll made of aluminum, iron, carbon fiber reinforced resin (CFRP) or the like is used (step 100 in FIG. 2). A copper plating layer 12 is formed on the surface of the hollow roll 10 by copper plating (step 102 in FIG. 2).
[0020] 該銅メツキ層 12の表面には多数の微小な凹部(グラビアセル) 14が形成される(図  [0020] A large number of minute recesses (gravure cells) 14 are formed on the surface of the copper plating layer 12 (see FIG.
2のステップ 104)。グラビアセル 14の形成方法としては、エッチング法(版胴面に感 光液を塗布して直接焼き付けた後、エッチングしてグラビアセル 14を形成する)ゃ電 子彫刻法 (デジタル信号によりダイヤモンド彫刻針を機械的に作動させ銅表面にダラ ビアセル 14を彫刻する)等の公知の方法を用いることができる力 エッチング法が好 適である。 [0021] 次に、グラビアセル 14を形成した銅メツキ層 12 (グラビアセル 14を含む)の表面に 密着層 16を形成する(図 2のステップ 106)。該密着層 16の形成方法としては、 CVD 法、好ましくはプラズマ CVD法を適用する。 Step 104 of 2). The gravure cell 14 can be formed by an etching method (a photosensitive liquid is applied to the plate cylinder surface and directly baked and then etched to form the gravure cell 14). A force etching method that can use a known method such as engraving the Daravia cell 14 on the copper surface by mechanically operating the copper plate is suitable. Next, the adhesion layer 16 is formed on the surface of the copper plating layer 12 (including the gravure cell 14) on which the gravure cell 14 is formed (step 106 in FIG. 2). As a method for forming the adhesion layer 16, a CVD method, preferably a plasma CVD method is applied.
[0022] CVD法としては、常圧で成膜する APCVD (Atmospheric Pressure Chemical Vapo r Deposition) , 0. 05Torr程度の減圧で成膜する LPCVD (Low Pressure Chemical Vapor Deposition) ,常圧よりやや低い 600Torr程度の圧力の SACVD (Subatmosph eric Pressure Chemical Vapor Deposition)、超—尚真 の UHVCVD (Ultra- High- Va cuum Chemical Vapor Deposition)、 600〜; 1000。Cの高温の熱 CVD、高周波プラズ マエネルギーを用い 200〜450°Cで成膜するプラズマ CVD (Plasma-Enhanced Che mical Vapor Deposition)、紫外線による励起を利用した光 CVD、ソースに有機金属 を用いた化合物結晶成長用の MOCVD (Metal Organic Chemical Vapor Deposition )等が知られている力 プラズマ CVDが好適である。  [0022] The CVD method includes APCVD (Atmospheric Pressure Chemical Vapor Deposition), which is formed at normal pressure, LPCVD (Low Pressure Chemical Vapor Deposition), which is formed at a reduced pressure of 0.05 Torr, and 600 Torr, which is slightly lower than normal pressure. SACVD (Subatmospheric Pressure Chemical Vapor Deposition), ultra-high-vacuum chemical vapor deposition (UHVCVD), 600-1000. C high-temperature thermal CVD, plasma CVD (plasma-enhanced chemical vapor deposition) using 200 to 450 ° C using high-frequency plasma energy, photo-CVD using ultraviolet excitation, and organic metal as the source Power plasma CVD, which is known for MOCVD (Metal Organic Chemical Vapor Deposition) for compound crystal growth, is suitable.
[0023] プラズマ CVD法は、減圧下で CVD法を行う際により低温で薄膜形成を行う目的か ら、プラズマ励起を利用して原料ガスを分解させ、基板上で反応堆積させる方法であ  [0023] The plasma CVD method is a method in which a source gas is decomposed using plasma excitation and reactively deposited on a substrate for the purpose of forming a thin film at a lower temperature when performing the CVD method under reduced pressure.
[0024] 前記密着層 16が、アルミニウム (A1)、リン(P)、チタン (Ti)、及び珪素(Si)力もなる 群から選ばれる一種又は二種以上から形成されるのが好ましい。 [0024] The adhesion layer 16 is preferably formed of one or more selected from the group consisting of aluminum (A1), phosphorus (P), titanium (Ti), and silicon (Si) force.
[0025] 前記密着層 16を形成するために、トリメチルアルミニウム、チタニウムテトライソプロ ポキシド、チタニウムテトラエトキシド、テトラメチルシラン、亜リン酸トリメチル、へキサメ チルジシロキサンからなる群から選ばれる一種又は二種以上のガス種を用いるのが 好適である。  [0025] In order to form the adhesion layer 16, one or two selected from the group consisting of trimethylaluminum, titanium tetraisopropoxide, titanium tetraethoxide, tetramethylsilane, trimethyl phosphite, and hexamethyldisiloxane. It is preferable to use the above gas species.
[0026] 前記密着層 16として使用する上記ガス種に含まれるアルミニウム (A1)、リン (P)、 チタン (Ti)、及び珪素(Si)が銅メツキ層 12と共有結合するため、銅メツキ層 12上に ダイヤモンドライクカーボン (DLC)被膜 18を直接成膜する方法より密着性が向上す る。ダイヤモンドライクカーボン (DLC)被膜 18と密着層 16との結合が良!/、理由は上 記ガスが炭化水素ガスであるためダイヤモンドライクカーボン (DLC)被膜 18との密 着性が高いからである。また、上記ガスはチャンバ一内に導入され、プラズマ CVD法 によって成膜されるため、密着層 16は全体に均一に成膜されるという利点がある。 [0027] 続いて、前記密着層 16の表面にダイヤモンドライクカーボン (DLC)被膜 18を被覆 形成する(図 2のステップ 108)。ダイヤモンドライクカーボン (DLC)被膜 18の形成方 法としては、密着層 16の形成と同様に、 CVD法、好ましくはプラズマ CVD法を適用 する。 [0026] Since the aluminum (A1), phosphorus (P), titanium (Ti), and silicon (Si) contained in the gas species used as the adhesion layer 16 are covalently bonded to the copper plating layer 12, the copper plating layer Adhesion is improved by a method in which a diamond-like carbon (DLC) film 18 is directly formed on 12. The bond between the diamond-like carbon (DLC) coating 18 and the adhesion layer 16 is good! / The reason is that the gas is a hydrocarbon gas, so the adhesion with the diamond-like carbon (DLC) coating 18 is high. . Further, since the gas is introduced into the chamber and formed by the plasma CVD method, there is an advantage that the adhesion layer 16 is uniformly formed on the entire surface. Subsequently, a diamond-like carbon (DLC) film 18 is formed on the surface of the adhesion layer 16 (step 108 in FIG. 2). As a method for forming the diamond-like carbon (DLC) film 18, a CVD method, preferably a plasma CVD method, is applied as in the formation of the adhesion layer 16.
[0028] 前記銅メツキ層 12の厚さが 50〜200 μ m、前記グラビアセル 14の深度が 5〜 150  [0028] The thickness of the copper plating layer 12 is 50 to 200 μm, and the depth of the gravure cell 14 is 5 to 150.
μ m、前記密着層 16の厚さが 0. 1〜1 m、及び前記ダイヤモンドライクカーボン被 膜 18の厚さが 0.;!〜 10〃 mであるのが好ましい。  It is preferable that the thickness of the adhesion layer 16 is 0.1 to 1 m, and the thickness of the diamond-like carbon film 18 is 0.1;! to 10 mm.
[0029] 上記したダイヤモンドライクカーボン (DLC)被膜 18により被覆し、このダイヤモンド ライクカーボン (DLC)被膜 18を表面強化被覆層として作用させることによって、毒性 がなくかつ公害発生の心配も皆無となるとともに耐刷力に優れたグラビア製版ロール 10aを得ること力 Sできる。  [0029] By coating with the above-mentioned diamond-like carbon (DLC) coating 18 and making this diamond-like carbon (DLC) coating 18 act as a surface-enhanced coating layer, there is no toxicity and no concern about the occurrence of pollution. Capable of obtaining gravure plate roll 10a with excellent printing durability.
[0030] 本発明方法の第 2の態様を図 4〜図 6を用いて説明する。図 4 (a)及び図 6におい て、符号 10は版母材で、アルミニウム、鉄又は炭素繊維強化樹脂(CFRP)等からな る中空ロールが用いられる(図 5のステップ 200)。該中空ロール 10の表面には銅め つき処理によって銅めつき層 12が形成される(図 5のステップ 202)。  [0030] A second embodiment of the method of the present invention will be described with reference to Figs. 4 (a) and 6, reference numeral 10 denotes a plate base material, and a hollow roll made of aluminum, iron, carbon fiber reinforced resin (CFRP) or the like is used (step 200 in FIG. 5). A copper plating layer 12 is formed on the surface of the hollow roll 10 by a copper plating process (step 202 in FIG. 5).
[0031] 該銅めっき層 12の表面には多数の微小な凹部(グラビアセル) 14が形成される(図  [0031] A large number of minute recesses (gravure cells) 14 are formed on the surface of the copper plating layer 12 (see FIG.
5のステップ 204)。グラビアセル 14の形成方法としては、ステップ 104において前述 した方法を同様に用いることができる。  Step 204 of 5). As a method for forming the gravure cell 14, the method described above in Step 104 can be used in the same manner.
[0032] 次に、グラビアセル 14を形成した銅めつき層 12 (グラビアセル 14を含む)の表面に 下地金属めつき層 15を形成する(図 5のステップ 206)。該下地金属めつき層 15は、 ニッケル (Ni)、コバルト(Co)、及び鉄(Fe)力 なる群から選ばれる金属のめっき層 である。前記下地金属めつき層 15の厚さが 0. 1〜5 111であるのが好ましい。  Next, the base metal plating layer 15 is formed on the surface of the copper plating layer 12 (including the gravure cell 14) on which the gravure cell 14 is formed (step 206 in FIG. 5). The underlying metal plating layer 15 is a metal plating layer selected from the group consisting of nickel (Ni), cobalt (Co), and iron (Fe) forces. The thickness of the base metal plating layer 15 is preferably 0.1 to 5111.
[0033] さらに、該下地金属めつき層 15の表面に密着層 16を形成する(図 5のステップ 208 )。該密着層 16の形成方法としては、ステップ 106において前述した方法を同様に適 用すること力 Sでさる。  Further, the adhesion layer 16 is formed on the surface of the base metal plating layer 15 (step 208 in FIG. 5). As a method for forming the adhesion layer 16, the method S described above in Step 106 can be applied in the same manner.
[0034] 続いて、前記密着層 16の表面にダイヤモンドライクカーボン (DLC)被膜 18を被覆 形成する(図 5のステップ 210)。ダイヤモンドライクカーボン (DLC)被膜 18の形成方 法としては、ステップ 108において前述した方法を同様に用いることができる。 [0035] 上記したダイヤモンドライクカーボン (DLC)被膜 18により前記密着層 16の表面を 被覆し、このダイヤモンドライクカーボン (DLC)被膜 18を表面強化被覆層として作用 させることによって、毒性がなくかつ公害発生の心配も皆無となるとともに耐刷力に優 れたグラビア製版ロール 10bを得ることができる。 Subsequently, a diamond-like carbon (DLC) film 18 is formed on the surface of the adhesion layer 16 (step 210 in FIG. 5). As a method for forming the diamond-like carbon (DLC) film 18, the method described above in Step 108 can be similarly used. [0035] The surface of the adhesion layer 16 is covered with the diamond-like carbon (DLC) coating 18 described above, and this diamond-like carbon (DLC) coating 18 acts as a surface-enhanced coating layer, thereby causing no toxicity and causing pollution. The gravure printing roll 10b with excellent printing durability can be obtained.
実施例  Example
[0036] 以下に実施例をあげて本発明をさらに具体的に説明する力 これらの実施例は例 示的に示されるもので限定的に解釈されるべきでないことはいうまでもない。  [0036] The ability of the present invention to be described more specifically with reference to the following examples. Needless to say, these examples are given by way of illustration and should not be construed as limiting.
[0037] (実施例;!〜 3)  [0037] (Example;! To 3)
円周 600mm、面長 1100mmのグラビアシリンダー(アルミ中空ロール)をメツキ槽 に装着し、陽極室をコンピューターシステムによる自動スライド装置で 20mmまで中 空ロールに近接させ、メツキ液をオーバーフローさせ、中空ロールを全没させて 18A /dm2, 6. 0Vで 80〃 mの銅メツキ層を形成した。メツキ時間は 20分、メツキ表面は ブッゃピットの発生がなく、均一な銅メツキ層を得た。 A gravure cylinder (aluminum hollow roll) with a circumference of 600mm and a surface length of 1100mm is installed in the measuring tank, and the anode chamber is brought close to the air roll up to 20mm by an automatic slide device using a computer system, overflowing the measuring liquid, A copper plating layer of 80 μm was formed at 18 A / dm 2 , 6.0 V by immersing it all. The plating time was 20 minutes, and there was no pit formation on the plating surface, and a uniform copper plating layer was obtained.
[0038] 上記形成した銅メツキ層に感光膜をコートして画像をレーザー露光し現像しバー二 ングしてレジスト画像を形成し、次!/、でプラズマエッチング等のドライエッチングを行 つてグラビアセルからなる画像を彫り込み、その後レジスト画像を取り除くことにより印 刷版を形成した。このとき、グラビアセルの深度を 10 m (実施例 1)、 18 111 (実施 例 2)、 30 m (実施例 3)とした 3本の中空ロールを作製した。  [0038] The copper plating layer formed above is coated with a photosensitive film, and the image is laser-exposed, developed, and burned to form a resist image, followed by dry etching, such as plasma etching, with a gravure cell. A printing plate was formed by engraving an image consisting of and then removing the resist image. At this time, three hollow rolls having a gravure cell depth of 10 m (Example 1), 18 111 (Example 2), and 30 m (Example 3) were produced.
[0039] このグラビアセルを形成した銅メツキ層の上面にガス種としてトリメチルアルミニウム を用いプラズマ CVD法によって厚さ 0· 1 mのアルミニウム(A1)層を形成した。  [0039] An aluminum (A1) layer having a thickness of 0.1 m was formed by plasma CVD using trimethylaluminum as a gas species on the upper surface of the copper plating layer on which the gravure cell was formed.
[0040] 次に、アルミニウム(A1)の上面にプラズマ CVD法によって厚さ Ι πιのダイヤモン ドライクカーボン (DLC)被膜を被覆形成した。このようにして、グラビア製版ロール( グラビアシリンダー)を完成した。  Next, a diamond like carbon (DLC) film having a thickness of ππι was formed on the upper surface of aluminum (A1) by plasma CVD. In this way, a gravure printing roll (gravure cylinder) was completed.
[0041] 上記した 3本のグラビアシリンダーを用いて、実施例 1 (グラビアセルの深度: 10〃 m )のグラビアシリンダーに対しては水性インキ、実施例 2 (グラビアセルの深度: 18〃 m )に対しては油性インキ、実施例 3 (グラビアセルの深度: 30〃 m)に対しては銀ぺー ストインキをそれぞれ適用して OPPフィルム(Oriented Polypropylene Film : 2軸延伸 ポリプロピレンフィルム)を用いて印刷テスト(印刷速度: 200m/分、 OPPフィルムの 長さ: 4000m)を行った。得られた印刷物はいずれも版カプリがなぐ転移性が良好 であった。この結果として、ダイヤモンドライクカーボン (DLC)被膜は従来のクロム層 に匹敵する性能を有し、クロム層代替品として充分使用できることを確認した。 [0041] Using the above three gravure cylinders, water-based ink for the gravure cylinder of Example 1 (gravure cell depth: 10 mm), Example 2 (depth of gravure cell: 18 mm) For example, an oil-based ink was used, and for Example 3 (gravure cell depth: 30 mm), a silver paste ink was applied, and an OPP film (Oriented Polypropylene Film) was used for a printing test. (Printing speed: 200m / min, OPP film Length: 4000m). All of the obtained printed materials had good transferability that the plate capri had. As a result, it was confirmed that the diamond-like carbon (DLC) film has performance comparable to that of the conventional chromium layer and can be used as a substitute for the chromium layer.
[0042] (実施例 4〜6)  [0042] (Examples 4 to 6)
実施例 1〜3と同様にしてグラビアセルの深度を 10 m (実施例 4)、 18 m (実施 例 5)、 30 m (実施例 6)とした 3本の中空ロールを作製した。上記 3本の中空ロール に対してガス種をチタニウムテトライソプロポキシドとしてプラズマ CVD法によって厚 さ 0. 1 a mのチタン (Ti)層を形成した以外は実施例 1〜3と同様に処理してグラビア 製版ロールを完成し、同様に印刷テストを行ったところ、同様に版カプリがなぐ転移 性が良好な印刷物を得ることができた。これらの実施例においてもダイヤモンドライク カーボン (DLC)被膜は従来のクロム層に匹敵する性能を有し、クロム層代替品とし て充分使用できることを確認した。  In the same manner as in Examples 1 to 3, three hollow rolls having a gravure cell depth of 10 m (Example 4), 18 m (Example 5), and 30 m (Example 6) were produced. The above three hollow rolls were treated in the same manner as in Examples 1 to 3, except that titanium tetraisopropoxide was used as the gas species and a 0.1 am thick titanium (Ti) layer was formed by plasma CVD. When a gravure platemaking roll was completed and a printing test was conducted in the same manner, it was possible to obtain a printed material having the same transferability as the plate capri. Also in these examples, it was confirmed that the diamond-like carbon (DLC) coating had a performance comparable to that of the conventional chromium layer and could be sufficiently used as a substitute for the chromium layer.
[0043] なお、ガス種として、チタニウムテトラエトキシド、テトラメチルシラン、亜リン酸トリメチ ノレ、へキサメチルジシロキサンを用い、プラズマ CVD法によってそれぞれ厚さ 0· I n mのチタン (Ti)層、珪素(Si)層、リン (P)層、珪素(Si)層を形成して、同様の実験を 行い、同様の結果が得られることを確認した。  [0043] Titanium tetraethoxide, tetramethylsilane, trimethylol phosphite, and hexamethyldisiloxane were used as gas species, and a titanium (Ti) layer having a thickness of 0 · I nm by a plasma CVD method, A silicon (Si) layer, a phosphorus (P) layer, and a silicon (Si) layer were formed, and the same experiment was conducted to confirm that the same result was obtained.
[0044] (実施例 7)  [0044] (Example 7)
円周 600mm、面長 1100mmのグラビアシリンダー(アルミ中空ロール)をめつき槽 に装着し、陽極室をコンピューターシステムによる自動スライド装置で 20mmまで中 空ロールに近接させ、めっき液をオーバーフローさせ、中空ロールを全没させて 18A /dm2, 6. 0Vで 80 mの銅めつき層を形成した。めっき時間は 20分、めっき表面 はブッゃピットの発生がなぐ均一な銅めつき層を得た。 A gravure cylinder (aluminum hollow roll) with a circumference of 600mm and a surface length of 1100mm is installed in the mating tank, and the anode chamber is brought close to the air roll up to 20mm by an automatic slide device using a computer system. Was completely submerged to form an 80 m copper plating layer at 18 A / dm 2 , 6.0 V. The plating time was 20 minutes, and a uniform copper plating layer with no pits on the plating surface was obtained.
[0045] 上記形成した銅めつき層に感光膜をコートして画像をレーザー露光し現像しバー二 ングしてレジスト画像を形成し、次!/、でプラズマエッチング等のドライエッチングを行 つてグラビアセルからなる画像を彫り込み、その後レジスト画像を取り除くことにより印 刷版を形成した。このとき、グラビアセルの深度を 10 mとした中空ロールを作製し た。 [0045] The above-described copper plating layer is coated with a photosensitive film, and the image is laser-exposed, developed, and burned to form a resist image, followed by dry etching such as plasma etching at! /, And gravure. A printing plate was formed by engraving the cell image and then removing the resist image. At this time, a hollow roll with a gravure cell depth of 10 m was produced.
[0046] この中空ロールに対してコバルトめっき槽によって下記する条件でコバルトめっきを 施して厚さ 1 μ mのコバルトめっき層を形成した。 [0046] Cobalt plating is performed on the hollow roll by the cobalt plating tank under the following conditions. To form a cobalt plating layer having a thickness of 1 μm.
コバルトめっき液組成 (溶媒:水)  Cobalt plating solution composition (solvent: water)
硫酸コバルト 250g/L  Cobalt sulfate 250g / L
塩化コバルト 40g/L  Cobalt chloride 40g / L
ホウ酸 30g/L  Boric acid 30g / L
pH 4. 5  pH 4.5
液温度 50°C  Liquid temperature 50 ° C
電流密度 2A/dm2 Current density 2A / dm 2
めっき時間 3分間  Plating time 3 minutes
[0047] このコバルトめっき層の上面にガス種としてへキサメチルジシロキサンを用いプラズ マ CVD法によって厚さ 0. 1 mの珪素(Si)層を形成した。  [0047] A silicon (Si) layer having a thickness of 0.1 m was formed on the upper surface of the cobalt plating layer by plasma CVD using hexamethyldisiloxane as a gas species.
[0048] 次に、珪素(Si)層の上面にプラズマ CVD法によって厚さ 2 mのダイヤモンドライ クカーボン (DLC)被膜を被覆形成した。このようにして、グラビア製版ロール (グラビ ァシリンダー)を完成した。このグラビアシリンダーのダイヤモンドライクカーボン(DL C)被膜のビッカース硬度を測定したところ 1280であり、十分な硬度を有することがわ かった。また、そのスクラッチ試験をおこなったところスクラッチ試験値は 8· 34Nであ り、実施例 8に比べて密着性がより向上していることがわ力、つた。  [0048] Next, a diamond-like carbon (DLC) film having a thickness of 2 m was formed on the upper surface of the silicon (Si) layer by plasma CVD. In this way, a gravure printing roll (gravure cylinder) was completed. The Vickers hardness of the diamond-like carbon (DLC) coating on this gravure cylinder was measured and found to be 1280, indicating that it had sufficient hardness. Further, when the scratch test was conducted, the scratch test value was 8.34 N, and it was found that the adhesion was further improved as compared with Example 8.
[0049] スクラッチ試験について図 7を用いて説明する。図 7はスクラッチ試験機を示す概略 説明図である。図 7において、テーブル(図示せず)の上に薄膜 50を成膜した基板 5 2を置き、その基板 52の上にダイヤモンド圧子 54を密着させ、徐々に荷重 56を加え ていき、同時に基板 52を一定の速度で移動させ密着力を測定する。この時、 AE (ァ コースティック 'ェミッション)センサー 58により、基板 52に成膜されている薄膜 50の 剥離やクラックに起因する破壊音を超音波として検出し、同時に摩擦力も検出するこ と力 Sできる。スクラッチ痕 60の光学顕微鏡等による観察、摩擦力の波形の急激な上 昇と AEの波形の急激な変化から、各ポイントや剥離臨界荷重を読み取りその機械的 な強度や密着性を考察する。特に剥離臨界荷重は、工業的には薄膜の密着力とし て比較されることが多い。また、膜厚に対して使用する圧子先端の曲率半径には注 意が必要である。図 7において、 62は深さセンサー及び 64は摩擦力センサーである 。 ISO20502 : 2005 (E)には、スクラッチの剥離モードの例が示されている。通常使 用する圧子 54は、 200 mダイヤモンド圧子である。なお、図中において、 PDは深 さセンサー、 FTは摩擦力センサーである。 [0049] The scratch test will be described with reference to FIG. FIG. 7 is a schematic explanatory diagram showing a scratch testing machine. In FIG. 7, a substrate 52 having a thin film 50 formed thereon is placed on a table (not shown), a diamond indenter 54 is brought into close contact with the substrate 52, and a load 56 is gradually applied. Is moved at a constant speed and the adhesion is measured. At this time, the AE (acoustic emission) sensor 58 detects ultrasonic noise as a result of peeling or cracking of the thin film 50 formed on the substrate 52, and at the same time detects the friction force. S can. From the observation of scratch mark 60 with an optical microscope, the sudden rise in the waveform of friction force and the sudden change in the waveform of AE, each point and critical peeling load are read and the mechanical strength and adhesion are considered. In particular, the critical peeling load is often compared industrially as the adhesion of thin films. In addition, attention must be paid to the radius of curvature of the indenter tip used for the film thickness. In FIG. 7, 62 is a depth sensor and 64 is a friction force sensor. . ISO20502: 2005 (E) shows an example of a scratch peeling mode. A commonly used indenter 54 is a 200 m diamond indenter. In the figure, PD is a depth sensor and FT is a friction force sensor.
[0050] 上記したグラビアシリンダーを用いて、水性インキを適用して OPPフィルム(Oriente d Polypropylene Film : 2軸延伸ポリプロピレンフィルム)を用いて印刷テスト(印刷速 度: 200m/分、 OPPフィルムの長さ: 4000m)を行った。得られた印刷物はいずれ も版カプリがなぐ転移性が良好であった。この結果として、ダイヤモンドライクカーボ ン (DLC)被膜は従来のクロム層に匹敵する性能を有し、クロム層代替品として充分 使用できることを確言忍した。  [0050] Using the gravure cylinder described above, applying water-based ink and printing test using OPP film (Oriented Polypropylene Film) (printing speed: 200 m / min, length of OPP film) : 4000m). All of the obtained printed materials had good transferability that the plate capri had. As a result, we confirmed that the diamond-like carbon (DLC) coating has performance comparable to that of the conventional chromium layer and can be used as a substitute for the chromium layer.
[0051] (実施例 8)  [0051] (Example 8)
中空ロールに対してコバルトめっきを行わなかった以外は実施例 7と同様に処理し てグラビア製版ロールを完成した。このグラビアシリンダーのダイヤモンドライクカーボ ン(DLC)被膜のビッカース硬度を測定したところ 1280であった。また、そのスクラッ チ試験をおこなったところスクラッチ試験値は 7. 05Nであった。  A gravure platemaking roll was completed in the same manner as in Example 7 except that the hollow roll was not subjected to cobalt plating. The Vickers hardness of the diamond-like carbon (DLC) coating on this gravure cylinder was measured and found to be 1280. When the scratch test was conducted, the scratch test value was 7.05N.
[0052] (実施例 9) [Example 9]
中空ロールに対してガス種としてへキサメチルジシロキサンの替わりにテトラメチル シランを用いプラズマ CVD法によって厚さ 0. 1 mの珪素(Si)層を形成した以外は 実施例 7と同様に処理してグラビア製版ロールを完成した。このグラビアシリンダーの ダイヤモンドライクカーボン (DLC)被膜のビッカース硬度を測定したところ 1380であ り、十分な硬度を有することがわ力 た。また、そのスクラッチ試験をおこなったところ スクラッチ試験値は 10. 58Nであり、実施例 10に比べて密着性がより向上しているこ とがわ力 た。このグラビアシリンダーを用いて同様に印刷テストを行ったところ、同様 に版カプリがなぐ転移性が良好な印刷物を得ることができた。これらの実施例にお V、てもダイヤモンドライクカーボン (DLC)被膜は従来のクロム層に匹敵する性能を有 し、クロム層代替品として充分使用できることを確言忍した。  The same treatment as in Example 7 was performed except that tetramethylsilane was used as the gas species for the hollow roll instead of hexamethyldisiloxane and a 0.1 m thick silicon (Si) layer was formed by plasma CVD. The gravure platemaking roll was completed. The Vickers hardness of the diamond-like carbon (DLC) coating on this gravure cylinder was measured and found to be 1380, indicating that it had sufficient hardness. Further, when the scratch test was conducted, the scratch test value was 10.58 N, and it was found that the adhesion was further improved as compared with Example 10. When a printing test was conducted in the same manner using this gravure cylinder, a printed matter having a good transferability as well as the plate capri was obtained. In these examples, it was confirmed that V, even diamond-like carbon (DLC) coating, had a performance comparable to that of the conventional chromium layer and could be used as a substitute for the chromium layer.
[0053] (実施例 10) [Example 10]
中空ロールに対してコバルトめっきを行わなかった以外は実施例 9と同様に処理し てグラビア製版ロールを完成した。このグラビアシリンダーのダイヤモンドライクカーボ ン(DLC)被膜のビッカース硬度を測定したところ 1380であった。また、そのスクラッ チ試験をおこなったところスクラッチ試験値は 9. 21Nであった。 A gravure printing roll was completed in the same manner as in Example 9 except that the hollow roll was not subjected to cobalt plating. This gravure cylinder diamond-like carbon The Vickers hardness of the coating (DLC) film was 1380. When the scratch test was conducted, the scratch test value was 9.21N.
[0054] (実施例 11) [Example 11]
中空ロールに対してコバルトめっきの替わりに厚さ 1 μ mのニッケルめっき層を下記 の条件で形成した以外は実施例 7と同様に処理してグラビア製版ロールを完成した。 A gravure printing roll was completed by treating in the same manner as in Example 7 except that a nickel plating layer having a thickness of 1 μm was formed on the hollow roll instead of cobalt plating under the following conditions.
ニッケノレめつき液組成 (溶媒:水)  Nikkenore Meat Solution Composition (Solvent: Water)
硫酸ニッケノレ 250g/L  Nickenole sulfate 250g / L
塩化ニッケル 40g/L  Nickel chloride 40g / L
ホウ酸 30g/L  Boric acid 30g / L
pH 4. 5  pH 4.5
液温度 50°C  Liquid temperature 50 ° C
電流密度 2A/dm2 Current density 2A / dm 2
めっき時間 3分間  Plating time 3 minutes
[0055] このグラビアシリンダーのダイヤモンドライクカーボン(DLC)被膜のビッカース硬度 を測定したところ 1280であり、十分な硬度を有することがわかった。また、そのスクラ ツチ試験をおこなったところスクラッチ試験値は 7. 19Nであり、実施例 8に比べて密 着性がより向上していることがわかった。このグラビアシリンダーを用いて同様に印刷 テストを行ったところ、同様に版カプリがなぐ転移性が良好な印刷物を得ることがで きた。これらの実施例においてもダイヤモンドライクカーボン (DLC)被膜は従来のク ロム層に匹敵する性能を有し、クロム層代替品として充分使用できることを確認した。 [0055] The Vickers hardness of the diamond-like carbon (DLC) film of this gravure cylinder was measured and found to be 1280, which was sufficient. Further, when the scratch test was conducted, the scratch test value was 7.19 N, and it was found that the adhesion was further improved as compared with Example 8. When a printing test was conducted in the same manner using this gravure cylinder, it was possible to obtain a printed material having the same transferability as the plate capri. Also in these examples, it was confirmed that the diamond-like carbon (DLC) coating had a performance comparable to that of the conventional chromium layer and could be sufficiently used as a substitute for the chromium layer.
[0056] (実施例 12) [Example 12]
中空ロールに対してコバルトめっきの替わりに厚さ 1 μ mのニッケルめっき層を形成 した以外は実施例 9と同様に処理してグラビア製版ロールを完成した。このグラビアシ リンダ一のダイヤモンドライクカーボン (DLC)被膜のビッカース硬度を測定したところ 1380であり、十分な硬度を有することがわかった。また、そのスクラッチ試験をおこな つたところスクラッチ試験値は 10. 27Nであり、実施例 10に比べて密着性がより向上 していることがわかった。このグラビアシリンダーを用いて同様に印刷テストを行ったと ころ、同様に版カプリがなぐ転移性が良好な印刷物を得ることができた。これらの実 施例においてもダイヤモンドライクカーボン (DLC)被膜は従来のクロム層に匹敵する 性能を有し、クロム層代替品として充分使用できることを確認した。 A gravure printing roll was completed in the same manner as in Example 9 except that a nickel plating layer having a thickness of 1 μm was formed on the hollow roll instead of cobalt plating. The Vickers hardness of this gravure cylinder diamond-like carbon (DLC) film was measured and found to be 1380, which was sufficient. Further, when the scratch test was conducted, the scratch test value was 10.27 N, and it was found that the adhesion was further improved as compared with Example 10. When a printing test was conducted in the same manner using this gravure cylinder, a printed matter having good transferability as well as the plate capri was obtained. These fruits Also in the examples, it was confirmed that the diamond-like carbon (DLC) coating had performance comparable to that of the conventional chromium layer and could be used as a substitute for the chromium layer.
なお、ガス種として、チタニウムテトラエトキシド、チタニウムテトライソプロポキシド、 亜リン酸トリメチル、トリメチルアルミニウムを用い、プラズマ CVD法によってそれぞれ 厚さ 0. 1 111のチタン(1 )層、リン (P)層、アルミニウム (A1)層を形成して、同様の実 験を行い、同様の結果が得られることを確認した。  In addition, titanium tetraethoxide, titanium tetraisopropoxide, trimethyl phosphite, and trimethylaluminum are used as the gas species, and a titanium (1) layer and a phosphorus (P) layer having a thickness of 0.1 111 by plasma CVD, respectively. Then, an aluminum (A1) layer was formed and the same experiment was conducted, and it was confirmed that the same result was obtained.

Claims

請求の範囲 The scope of the claims
[1] 版母材と、該版母材の表面に設けられかつ表面に多数のグラビアセルが形成され た銅めつき層と、該銅めっき層の表面に設けられた密着層と、該密着層の表面を被 覆するダイヤモンドライクカーボン被膜とを有し、前記密着層及びダイヤモンドライク カーボン被膜を CVD法により作成することを特徴とするグラビア製版ロール。  [1] A plate base material, a copper plating layer provided on the surface of the plate base material and having a number of gravure cells formed on the surface, an adhesion layer provided on the surface of the copper plating layer, and the adhesion A gravure plate making roll, comprising: a diamond-like carbon film covering a surface of the layer, and forming the adhesion layer and the diamond-like carbon film by a CVD method.
[2] 版母材と、該版母材の表面に設けられかつ表面に多数のグラビアセルが形成され た銅めつき層と、該グラビアセルが形成された銅めつき層の表面に設けられた下地金 属めっき層と、該下地金属めつき層の表面に設けられた密着層と、該密着層の表面 を被覆するダイヤモンドライクカーボン被膜とを有し、前記下地金属めつき層がニッケ ノレ(Ni)、コバルト(Co)、及び鉄(Fe)力もなる群から選ばれる金属のめっき層であり、 前記密着層及びダイヤモンドライクカーボン被膜を CVD法により作成することを特徴 とするグラビア製版ロール。  [2] A plate base material, a copper plating layer provided on the surface of the plate base material and having a number of gravure cells formed on the surface, and a copper plating layer provided with the gravure cell. An underlayer metal plating layer, an adhesion layer provided on the surface of the underlayer metal plating layer, and a diamond-like carbon film covering the surface of the adhesion layer. A gravure plate making roll characterized by being a metal plating layer selected from the group consisting of (Ni), cobalt (Co), and iron (Fe) forces, wherein the adhesion layer and the diamond-like carbon film are formed by a CVD method.
[3] 前記銅めつき層の厚さが 50〜200 μ m、前記グラビアセルの深度が 5〜150 μ m、 前記密着層の厚さが 0. 1〜1 111、及び前記ダイヤモンドライクカーボン被膜の厚さ が 0. ;!〜 10 mであることを特徴とする請求項 1記載のグラビア製版ロール。  [3] The copper plating layer has a thickness of 50 to 200 μm, the gravure cell has a depth of 5 to 150 μm, the adhesion layer has a thickness of 0.1 to 1111, and the diamond-like carbon coating The gravure printing roll according to claim 1, wherein the thickness of the gravure is 0 .;
[4] 前記銅めつき層の厚さが 50〜200 μ m、前記グラビアセルの深度が 5〜150 μ m、 前記下地金属めつき層の厚さが 0. 1〜5 111、前記密着層の厚さが 0. l— l ^ m, 及び前記ダイヤモンドライクカーボン被膜の厚さが 0· ;!〜 10 mであることを特徴と する請求項 2記載のグラビア製版ロール。  [4] The thickness of the copper plating layer is 50 to 200 μm, the depth of the gravure cell is 5 to 150 μm, the thickness of the base metal plating layer is 0.1 to 5 111, and the adhesion layer The gravure plate-making roll according to claim 2, wherein the thickness of the film is 0.1 l-l ^ m, and the thickness of the diamond-like carbon coating is 0 ·! -10 m.
[5] 前記密着層が、アルミニウム (A1)、リン (P)、チタン (Ti)、及び珪素(Si)からなる群 力、ら選ばれる一種又は二種以上からなることを特徴とする請求項 1〜4のいずれか 1 項記載のグラビア製版ロール。  [5] The adhesion layer is composed of one or more selected from the group force consisting of aluminum (A1), phosphorus (P), titanium (Ti), and silicon (Si). The gravure plate-making roll of any one of 1-4.
[6] 前記密着層を形成するために、トリメチルアルミニウム、チタニウムテトライソプロボ キシド、チタニウムテトラエトキシド、テトラメチルシラン、亜リン酸トリメチル、へキサメチ ルジシロキサンからなる群から選ばれる一種又は二種以上のガス種を用いることを特 徴とする請求項 1〜5のいずれ力、 1項記載のグラビア製版ロール。  [6] To form the adhesion layer, one or more selected from the group consisting of trimethylaluminum, titanium tetraisopropoxide, titanium tetraethoxide, tetramethylsilane, trimethyl phosphite, and hexamethyldisiloxane. The gravure printing roll according to any one of claims 1 to 5, wherein the gas type is used.
[7] 版母材を準備する工程と、該版母材の表面に銅めつき層を形成する銅めつき工程 と、該銅めっき層の表面に多数のグラビアセルを形成するグラビアセル形成工程と、 該銅めっき層の表面に密着層を形成する密着層形成工程と、該密着層の表面にダ ィャモンドライクカーボン被膜を形成するダイヤモンドライクカーボン被膜形成工程と を含み、前記密着層及びダイヤモンドライクカーボン被膜を CVD法により作成するこ とを特徴とするグラビア製版ロールの製造方法。 [7] A step of preparing a plate base material, a copper plating step of forming a copper plating layer on the surface of the plate base material, and a gravure cell formation step of forming a number of gravure cells on the surface of the copper plating layer When, An adhesion layer forming step for forming an adhesion layer on the surface of the copper plating layer; and a diamond-like carbon film formation step for forming a diamond-like carbon film on the surface of the adhesion layer. A method for producing a gravure plate making roll, characterized in that a carbon film is formed by a CVD method.
[8] 版母材を準備する工程と、該版母材の表面に銅めつき層を形成する銅めつき工程 と、該銅めっき層の表面に多数のグラビアセルを形成するグラビアセル形成工程と、 該グラビアセルが形成された銅めつき層の表面に下地金属めつき層を形成する下地 金属めつき層形成工程と、該下地金属めつき層の表面に密着層を形成する密着層 形成工程と、該密着層の表面にダイヤモンドライクカーボン被膜を形成するダイヤモ ンドライクカーボン被膜形成工程とを含み、前記下地金属めつき層がニッケル (Ni)、 コバルト(Co)、及び鉄(Fe)力 なる群から選ばれる金属のめっき層であり、前記密 着層及びダイヤモンドライクカーボン被膜を CVD法により作成することを特徴とする グラビア製版ロールの製造方法。  [8] A step of preparing a plate base material, a copper plating step of forming a copper plating layer on the surface of the plate base material, and a gravure cell formation step of forming a number of gravure cells on the surface of the copper plating layer Forming a base metal plating layer on the surface of the copper plating layer on which the gravure cell is formed; and forming an adhesion layer on the surface of the base metal plating layer. And a diamond-like carbon film forming step for forming a diamond-like carbon film on the surface of the adhesion layer, wherein the base metal plating layer has a nickel (Ni), cobalt (Co), and iron (Fe) force. A method for producing a gravure printing roll, which is a plating layer of a metal selected from the group consisting of forming the adhesion layer and the diamond-like carbon film by a CVD method.
[9] 前記密着層が、アルミニウム (A1)、リン (P)、チタン (Ti)、及び珪素(Si)からなる群 力、ら選ばれる一種又は二種以上からなることを特徴とする請求項 7又は 8記載のダラ ビア製版ロールの製造方法。  [9] The adhesive layer is composed of one or more selected from the group force consisting of aluminum (A1), phosphorus (P), titanium (Ti), and silicon (Si). A method for producing a Daravia plate roll according to 7 or 8.
[10] 前記密着層を形成するために、トリメチルアルミニウム、チタニウムテトライソプロボ キシド、チタニウムテトラエトキシド、テトラメチルシラン、亜リン酸トリメチル、へキサメチ ルジシロキサンからなる群から選ばれる一種又は二種以上のガス種を用いることを特 徴とする請求項 7〜9のいずれ力、 1項記載のグラビア製版ロールの製造方法。  [10] To form the adhesion layer, one or more selected from the group consisting of trimethylaluminum, titanium tetraisopropoxide, titanium tetraethoxide, tetramethylsilane, trimethyl phosphite, and hexamethyldisiloxane. The method of producing a gravure plate-making roll according to any one of claims 7 to 9, wherein the gas type is used.
PCT/JP2007/070918 2006-11-13 2007-10-26 Photogravure engraving roll and method for manufacturing the same WO2008059705A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008544104A JPWO2008059705A1 (en) 2006-11-13 2007-10-26 Gravure plate making roll and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006306875 2006-11-13
JP2006-306875 2006-11-13
JP2006-345938 2006-12-22
JP2006345938 2006-12-22

Publications (1)

Publication Number Publication Date
WO2008059705A1 true WO2008059705A1 (en) 2008-05-22

Family

ID=39401514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070918 WO2008059705A1 (en) 2006-11-13 2007-10-26 Photogravure engraving roll and method for manufacturing the same

Country Status (2)

Country Link
JP (1) JPWO2008059705A1 (en)
WO (1) WO2008059705A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013176048A1 (en) * 2012-05-25 2013-11-28 旭硝子株式会社 Method for feeding raw material and device for feeding raw material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06299146A (en) * 1993-04-20 1994-10-25 Mitsubishi Cable Ind Ltd Production of silica-coated fluorescent material
JP2002105641A (en) * 2000-10-03 2002-04-10 Murakami Corp Composite material and manufacturing method
JP2002172752A (en) * 2000-12-06 2002-06-18 Utec:Kk Doctor blade and printing plate
JP2004130718A (en) * 2002-10-11 2004-04-30 Nikka Kk Plate cylinder and rotary press
JP2004353018A (en) * 2003-05-28 2004-12-16 Ishikawajima Harima Heavy Ind Co Ltd Sliding member and manufacturing method therefor
JP2005319678A (en) * 2004-05-07 2005-11-17 Nippon Zeon Co Ltd Laminate, light emitting element and its use

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06299146A (en) * 1993-04-20 1994-10-25 Mitsubishi Cable Ind Ltd Production of silica-coated fluorescent material
JP2002105641A (en) * 2000-10-03 2002-04-10 Murakami Corp Composite material and manufacturing method
JP2002172752A (en) * 2000-12-06 2002-06-18 Utec:Kk Doctor blade and printing plate
JP2004130718A (en) * 2002-10-11 2004-04-30 Nikka Kk Plate cylinder and rotary press
JP2004353018A (en) * 2003-05-28 2004-12-16 Ishikawajima Harima Heavy Ind Co Ltd Sliding member and manufacturing method therefor
JP2005319678A (en) * 2004-05-07 2005-11-17 Nippon Zeon Co Ltd Laminate, light emitting element and its use

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013176048A1 (en) * 2012-05-25 2013-11-28 旭硝子株式会社 Method for feeding raw material and device for feeding raw material

Also Published As

Publication number Publication date
JPWO2008059705A1 (en) 2010-03-04

Similar Documents

Publication Publication Date Title
EP2578413B1 (en) Screen-printing stencil having amorphous carbon films and manufacturing method therefor
TWI444502B (en) Gravure printing engraving roll and manufacturing method thereof
WO2007040141A1 (en) Photogravure engraving roll and production method thereof
WO2007135901A1 (en) Photogravure roll and process for manufacturing the same
JP4967765B2 (en) Intaglio and manufacturing method thereof
WO2007040140A1 (en) Photogravure engraving roll with cushioning layer and production method therefor
JP2004130718A (en) Plate cylinder and rotary press
JP7381651B2 (en) Printing stencil and its manufacturing method
KR20080047422A (en) Gravure printing roll and method for manufacture thereof
JP2014515708A (en) Printing plate for intaglio printing, method for producing and using the same
EP3284610B1 (en) Gravure cylinder and manufacturing method thereof
JP2002172752A (en) Doctor blade and printing plate
WO2008059705A1 (en) Photogravure engraving roll and method for manufacturing the same
JP4975787B2 (en) Roll for printing press and method for manufacturing the same
WO2006132085A1 (en) Gravure engraving roll and process for producing the same
WO2007079426A2 (en) Coated print roll and method therefor
JP2007118593A (en) Photogravure reproduction roll with cushion layer and its manufacturing method
WO2007132734A1 (en) Photogravure roll and process for manufacturing the same
JP4608084B2 (en) Printing plate and manufacturing method thereof
JP5143128B2 (en) Gravure plate making roll and method for producing the same
JP3886643B2 (en) Production method of gravure printing plate
US20210023834A1 (en) Printing body
CN111993763A (en) DLC-based gravure plate roller and manufacturing method thereof
WO2007132755A1 (en) Gravure roll and process for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830652

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008544104

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07830652

Country of ref document: EP

Kind code of ref document: A1