WO2008059568A1 - Procédé d'analyse de données de spectrométrie de masse et dispositif associé - Google Patents

Procédé d'analyse de données de spectrométrie de masse et dispositif associé Download PDF

Info

Publication number
WO2008059568A1
WO2008059568A1 PCT/JP2006/322741 JP2006322741W WO2008059568A1 WO 2008059568 A1 WO2008059568 A1 WO 2008059568A1 JP 2006322741 W JP2006322741 W JP 2006322741W WO 2008059568 A1 WO2008059568 A1 WO 2008059568A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
mass
product
value
maximum
Prior art date
Application number
PCT/JP2006/322741
Other languages
English (en)
French (fr)
Inventor
Shinichi Yamaguchi
Original Assignee
Shimadzu Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corporation filed Critical Shimadzu Corporation
Priority to PCT/JP2006/322741 priority Critical patent/WO2008059568A1/ja
Priority to US12/445,882 priority patent/US20100312487A1/en
Priority to JP2008544031A priority patent/JP4811467B2/ja
Publication of WO2008059568A1 publication Critical patent/WO2008059568A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0027Methods for using particle spectrometers
    • H01J49/0036Step by step routines describing the handling of the data generated during a measurement

Definitions

  • the present invention relates to a data analysis method and apparatus for identifying a substance produced by a chemical change such as a metabolite using data obtained by mass spectrometry.
  • Metabolites that are the products of chemical changes in vivo in various fields such as diagnosis of various diseases and diseases, evaluation of efficacy and safety of pharmaceuticals and functional foods, research on lifestyle and health
  • a method for comprehensive analysis of metabolites called metabolomics has attracted attention.
  • V which is not registered in the database, cannot be found even if an unknown metabolite is present in the sample. Even if it can be inferred that the peak is due to an unknown metabolite, the composition of the metabolite cannot be known.
  • Non-Patent Document 1 “Shimadzu Metabolomitas Solution”, [Searched on November 8, 2006], Shimadzu Corporation, Internet ⁇ URL: http://www.an.shimadzu.co.jp/ topics / 2006 1200b ⁇ 0 / metabo / metabolome.htm
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide an original material having a known composition based on mass spectral data acquired by mass spectrometry. It is an object of the present invention to provide a mass spectrometry data analysis method and apparatus capable of estimating the composition with high accuracy even if a product produced by chemical change is unknown.
  • a composition of a product generated by a chemical change of a raw material having a known composition is obtained by mass spectrometry of the product.
  • the second invention embodies the mass spectrometry data analysis method according to the first invention on a computer, and is a method for producing a product generated by a chemical change of a raw material having a known composition.
  • composition estimating means for estimating the composition of the product It is characterized by comprising.
  • i-change is typically metabolism, and in this case, the "product” is a metabolite (metabolite).
  • Many metabolic pathways are known from various past studies. For example, it is known that drug metabolism, which is important for verifying the efficacy and safety of pharmaceuticals, can be broadly divided into two stages: a phase 1 reaction and a phase 2 reaction.
  • polar groups such as a hydroxyl group, a carboxyl group, and an amino group are generated or introduced into the raw material by oxidation, reduction, hydrolysis, or the like.
  • the user is based on the estimation or knowledge of such metabolic pathways, and the raw material added to the raw material by, for example, metabolic reaction.
  • Information on the part (eg, polar group) that may be removed from the substance or replaced in the raw material is input by the information input means. For example, it is possible to select one or more from a number of options prepared in advance.
  • the condition calculation means calculates the maximum value of the increase or decrease of each element from the raw material due to metabolism based on the prediction information. For example, in the case of a reaction in which a hydroxyl group (one OH) is added, oxygen and hydrogen are increased by one each. If several reaction possibilities are specified, the raw material strength is increased accordingly.
  • the range of increase or decrease of the number of each element is determined, that is, the maximum increase value and the maximum decrease value.
  • the composition of the raw material that is, the number of each constituent element is known, the maximum value and the minimum value of the number of each constituent element of the product can be obtained using the above increase maximum value 'decrease maximum value'. .
  • the composition estimation means for example, the mass of the product with the maximum value 'minimum value of each constituent element of the product, that is, the possible range of the number of elements, as the calculation condition Search for combinations of types and numbers of elements that are consistent with each other. Since there may be a certain degree of error in mass spectrometry, it is recommended to set a suitable tolerance for the mass and put it within this range as a candidate composition. The search for the composition using the consistency with the mass as described above is practically impossible because there are too many combinations. Since the types and numbers are reasonably limited, the search can be performed in a relatively short time, and one or more composition candidates can be accurately selected. Can be found.
  • the composition estimation means calculates the mass difference from the mass of the raw material when given the mass of the product to be identified, and the maximum increase value of each constituent element accompanying the chemical reaction 'Search for combinations of element types and numbers that can be matched with the above mass difference under the condition of maximum decrease. Estimate the composition of the product, assuming that what has been found is added to or removed from the raw material. According to this, it is possible to reduce the calculation amount associated with the composition estimation.
  • the mass spectrometry data analysis method and apparatus according to the present invention can estimate the composition with high accuracy even if a product generated by a chemical change such as metabolism is unknown.
  • MS n analysis (n is 2 or more) is possible, multiple fragment peaks derived from this product appear by performing MS 2 analysis using an unknown product as a precursor. A mass spectrum can be acquired. As a result, the mass of each fragment ion can be obtained and the composition of the product of this mass force can be estimated, and this can be used to narrow down product composition candidates.
  • FIG. 1 is a schematic configuration diagram of an embodiment of a mass spectrometry system including a data analysis apparatus according to the present invention.
  • FIG. 2 is a flowchart showing an example of the procedure of an unknown metabolite analysis processing operation by the mass spectrometry system of the present embodiment.
  • FIG. 1 is a schematic configuration diagram of an embodiment of a mass spectrometry system including a data analysis apparatus according to the present invention.
  • the mass spectrometer 1 is an ion trap time-of-flight mass spectrometer (IT T)
  • the data processing unit 2 that receives mass spectrum data is usually implemented by a personal computer, and a processing function described later is achieved by executing a predetermined program installed in the computer.
  • the data processing unit 2 includes a mass spectrum creation unit 21, a metabolite identification processing unit 22, and an estimation condition setting unit 23 as functional blocks.
  • the mass spectrum creation unit 21 creates a mass spectrum based on the received data.
  • the metabolite identification processing unit 22 estimates the composition of the target metabolite and executes one or a plurality of composition candidates by performing arithmetic processing as described below based on the mass spectrum obtained by mass spectrometry. Look out and output to output unit 4 To help.
  • the estimation condition setting unit 23 sets calculation conditions for metabolite identification based on the information given from the input unit 3.
  • the input unit 3 corresponds to an information input unit in the present invention
  • the metabolite identification processing unit 22 corresponds to a composition estimation unit
  • the estimation condition setting unit 23 corresponds to a condition calculation unit.
  • the sample to be analyzed by the mass spectrometer 1 is the analyte (actually metabolized by actually administering drug A) and the control (without administering drug A, otherwise Collected under the same conditions as the analyte).
  • each of these two samples is analyzed by the mass spectrometer 1 and a mass spectrum is created by the mass spectrum creation unit 21 (step Sl).
  • the metabolite identification processing unit 22 compares the two mass spectra and extracts a peak that exists only in the mass spectrum of the analyte (step S2). Since this peak is newly generated by metabolism, it can be estimated that the substance corresponding to this peak is a metabolite. Therefore, a known metabolite is first identified by comparing the mass of each peak with a metabolite database prepared in advance (step S3).
  • step S4 If the metabolite is registered in the metabolite database and exists in the analyte, an unidentified peak remains, which becomes an unknown metabolite. Therefore, this unknown metabolite peak is extracted and its mass is read (step S4). If all the metabolites have been identified in the process of step S3, there is no problem, but if an unknown metabolite is present, for example, a display informing that is given to the output unit 4, and the user responds to this. Information on drug metabolism is input from the input unit 3 (step S5). In other words, in general, many past research capabilities are known for metabolic pathways. For example, drug metabolism can be broadly divided into two-stage reactions, the first phase and the second phase.
  • the estimation condition setting unit 23 calculates the maximum increase value and the maximum decrease value of each constituent element accompanying metabolism based on this (Ste S6).
  • the maximum value of increase and the maximum value of decrease determine the range of change of the constituent elements that change with metabolism.
  • the variation range of the type and number of drug A elements accompanying metabolism is obtained as shown in the following table.
  • carbon (C) can cause a change that decreases by up to 3 from the original drug A and increases by up to 6 with metabolism.
  • step S7 the condition for obtaining the possible range of the type and number of constituent elements of the unknown metabolite from the known composition and the maximum increase value and the maximum decrease value of each of the above constituent elements.
  • a table (step S7). For example, corresponding to Table 1 above, the maximum and minimum values of the types and number of constituent elements of unknown metabolites are obtained as shown in Table 2.
  • the metabolite identification processing unit 22 estimates the composition by searching for a combination of elements that matches the mass of the unknown metabolite that is also given a peak force as described above (step S8). For example, if the mass of an unknown metabolite is 194.0790u, Set a predetermined tolerance range that includes measurement errors, etc., and search for combinations of elements that fall within that tolerance range. Because the types and number of elements are limited, the number of combinations that should be compared with those is enormous, and the number of combinations that can be consistent with the mass of metabolites is also very large. is not.
  • the mass itself of the unknown metabolite under the calculation conditions shown in Table 2 was also estimated. If, on the other hand, it is possible to estimate that the drug A force is a part of the drug A, or if it can be estimated, or if such an assumption can be made, the mass of the drug A and the mass of the metabolite B It is often advantageous to estimate the composition with respect to the difference. This is because, unless a component having a very high molecular weight is added or desorbed, the change in mass associated with metabolism is considerably smaller than the mass of the metabolite B, and the number of combinations of elements that can be taken is small. It is.
  • the composition of an unknown metabolite that has been predicted and can be easily estimated with high accuracy.
  • the above embodiment is an example of the present invention, and it is obvious that modifications, changes, additions, and the like as appropriate within the scope of the present invention are included in the scope of the claims of the present application.
  • the present invention can be used for identification of unknown substances generated with general chemical changes such as chemical changes due to synthesis of polymer compounds as well as changes due to metabolism.

Description

明 細 書
質量分析データ解析方法及び装置
技術分野
[0001] 本発明は、質量分析により得られたデータを利用して、代謝物等の化学的な変化 により生成される物質を同定するためのデータ解析方法及び装置に関する。
背景技術
[0002] 様々な疾病 ·疾患の診断、医薬品や機能性食品の有効性や安全性の評価、生活 習慣や健康に関する研究などの分野において、生体内での化学的変化の産物であ る代謝物を分析することは非常に重要であり、近年、メタボロミタス (Metabolomics)と 呼ばれる、代謝物を網羅的に解析する手法が注目されている。
[0003] このような代謝物の解析を行うには、クロマトグラフィ(典型的には高速液体クロマト グラフィ)と高精度な質量分析計とを組み合わせた手法が有用である (例えば非特許 文献 1など参照)。この場合、質量分析計で得られたマススぺ外ルを解析することで 代謝物を探索する必要がある。一般的に従来の代謝物の探索では、組成や構造が 既知である代謝物についてその質量 (厳密には質量電荷比)を登録したデータべ一 スを予め作成しておき、分析により取得されたマススペクトルに現れているピークの質 量をデータベースと照合することで代謝物を同定する。
[0004] し力しながら、上記のような従来の探索方法では、データベースに登録されていな V、未知の代謝物が試料中に存在してもそれを見つけることができな 、し、或るピーク が未知の代謝物によるものであるとの推測ができたとしても、その代謝物の組成を知 ることはできない。
[0005] なお、上記問題は代謝物の探索のみならず、組成が既知である或る物質が何らか の化学的な変化を生じた結果生じた生成物の探索についても事情は同じである。
[0006] 非特許文献 1 :「島津のメタボロミタスソリューション」、 [平成 18年 11月 8日検索]、株式 会社島津製作所、インターネット < URL: http://www.an.shimadzu.co.jp/topics/2006 1200b丄 0/ metabo/ metabolome.htm
発明の開示 発明が解決しょうとする課題
[0007] 本発明は上記課題を解決するために成されたものであり、その目的とするところは、 質量分析により取得されたマススペクトルデータに基づ 、て、組成が既知である原物 質が化学的に変化して生じた生成物が未知であっても、その組成を高い確度で推定 することができる質量分析データ解析方法及び装置を提供することにある。
課題を解決するための手段
[0008] 上記課題を解決するために成された第 1発明は、組成が既知である原物質の化学 的な変化により生成される生成物の組成を、該生成物を質量分析して取得したデー タに基づいて推定するための質量分析データ解析方法であって、
a)前記化学的変化についての予測情報を入力する情報入力ステップと、 b)前記予測情報に基づいて、前記化学的変化による原物質からの各元素の最大 増加値 ·最大減少値、及び Z又は、前記生成物を構成する各元素の最大値,最小値 を算出する条件算出ステップと、
c)前記条件算出ステップで算出された各元素の最大増加値'最大減少値又は生成 物の構成元素の最大値'最小値を計算条件として、質量分析により得られた前記生 成物の質量と整合するように前記生成物の組成を推定する組成推定ステップと、 を有することを特徴として 、る。
[0009] また第 2発明は上記第 1発明に係る質量分析データ解析方法をコンピュータ上で 具現化するものであり、組成が既知である原物質の化学的な変化により生成される生 成物の組成を、該生成物を質量分析して取得したデータに基づ!/、て推定するための 質量分析データ解析装置であって、
a)前記化学的変化についての予測情報を入力する情報入力手段と、
b)前記予測情報に基づいて、前記化学的変化による原物質からの各元素の最大 増加値 ·最大減少値、及び Z又は、前記生成物を構成する各元素の最大値,最小値 を算出する条件算出手段と、
c)前記条件算出手段で算出された各元素の最大増加値 ·最大減少値又は生成物 の構成元素の最大値'最小値を計算条件として、質量分析により得られた前記生成 物の質量と整合するように前記生成物の組成を推定する組成推定手段と、 を備えることを特徴として 、る。
[0010] 上記「ィ匕学的な変化」とは典型的には代謝であり、この場合「生成物」は代謝物 (代 謝産物)である。代謝の経路は過去の様々な研究によりその多くが知られている。例 えば医薬品の有効性や安全性の検証のために重要な薬物代謝は、大別して第 1相 反応と第 2相反応との 2段階に分けられることが知られており、第 1相反応では、酸ィ匕 、還元、加水分解などによって、原物質に、水酸基、カルボキシル基、アミノ基などの 極性基が生成されたり、導入されたりすることが多い。
[0011] そこで、本発明に係る質量分析データ方法を具現化した装置では、ユーザはそうし た代謝の経路等の推定や知見などに基づき、例えば代謝反応により原物質に付加さ れる、原物質から脱落する、又は原物質中で置換される可能性のある部分 (例えば 極性基)に関する情報を情報入力手段により入力する。これは例えば予め用意され て 、る多数の選択肢の中から 1乃至複数を選択するようにしてもょ 、。
[0012] 上記のように予測情報が入力されると、条件算出手段はそれに基づいて代謝によ る原物質からの各元素の増加又は減少の最大値をそれぞれ算出する。例えば水酸 基(一 OH)が付加される反応であれば、酸素、水素がそれぞれ 1個ずつ増加するこ とになり、いくつかの反応の可能性が指定されればそれに応じて原物質力 の各元 素毎の個数の増加又は減少の範囲、つまり増加最大値と減少最大値とが決まる。ま た原物質の組成つまり各構成元素の個数は既知であるから、上記増加最大値'減少 最大値を用いて生成物の各構成元素の個数の最大値と最小値とを求めることができ る。
[0013] 組成推定手段は、同定対象の生成物の質量が与えられると、例えば上記生成物の 各構成元素の最大値'最小値つまり元素個数のとり得る幅を計算条件として、生成物 の質量と整合性がとれるような元素の種類及び個数の組み合わせを探索する。質量 分析には或る程度の誤差があり得るから、質量には適度な許容範囲を設定して該範 囲に入るものは組成の候補として挙げるとよい。元素の種類やその個数の幅が設定 されて 、な 、と、上述のような質量との整合性を利用した組成の探索は組み合わせ 数が多すぎて実質的に不可能であるが、元素の種類や数が合理的に限定されてい ることで比較的短い時間で探索を行うことができ、 1乃至複数の組成の候補を的確に 見い出すことができる。
[0014] また、単純に原物質に何らかの元素(1乃至複数)が付加されたり、逆に原物質から 何らかの元素(1乃至複数)が脱落したりする化学的変化であることが事前に分かつ て 、る又は高 、確度で推定できる場合には、原物質の質量と生成物の質量との差を 用いて生成物の組成を推定するほうが有利であることが多い。何故なら、多くの場合 、こうした質量差は元の質量に比べてその値が小さぐ探索すべき元素の組み合わ せが少なくて済むからである。
[0015] 即ち、この場合には、組成推定手段は、同定対象の生成物の質量が与えられると 原物質の質量との質量差を計算し、化学的反応に伴う各構成元素の最大増加値'最 大減少値を条件として、上記質量差と整合がとれるような元素の種類及び個数の組 み合わせを探索する。そうして見出されたものが原物質に付加又は原物質力 脱落 したものであるとして、生成物の組成を推定する。これによれば、組成推定に伴う計 算量を削減することができる。
発明の効果
[0016] 本発明に係る質量分析データ解析方法及び装置によれば、例えば代謝等の化学 的変化により生成された生成物が未知であっても、その組成を高い確度で推定する ことができる。
[0017] もちろん、生成物の組成を推定する際に、上記のように質量や質量差と構成元素の 種類及び数の組み合わせとの整合性に基づいた探索を行うのにカ卩え、他の推定情 報を用いて候補を絞り込むようにしてもょ 、。
[0018] 例えば、 MSn分析 (nは 2以上)が可能な場合には、未知の生成物をプリカーサィォ ンとして MS2分析を実行することで、この生成物由来の複数のフラグメントピークが現 れるマススペクトルを取得することができる。それにより各フラグメントイオンの質量を 求め、この質量力 元の生成物の組成を推定できるから、これを利用して生成物の組 成の候補を絞ることが可能である。
[0019] また、複数の組成の候補が挙げられた場合、その各組成式から計算される同位体 分布と実際に観察される同位体分布の一致性を調べ、それに基づいて組成候補を 絞ったり信頼性の順位を定めたりすることもできる。 図面の簡単な説明
[0020] [図 1]本発明に係るデータ解析装置を含む質量分析システムの一実施例の概略構成 図。
[図 2]本実施例の質量分析システムによる未知代謝物の解析処理動作の手順の一 例を示すフローチャート。
符号の説明
[0021] 1· ··質量分析計
2…データ処理部
21 · · ·マススぺク卜ノレ作成咅
22· ··代謝物同定処理部
23· ··推定条件設定部
3…入力部
4…出力部
発明を実施するための最良の形態
[0022] 以下、本発明に係るデータ解析装置の一実施例について、図面を参照しながら具 体的に説明する。
[0023] 図 1は本発明に係るデータ解析装置を含む質量分析システムの一実施例の概略 構成図である。質量分析計 1は例えばイオントラップ飛行時間型質量分析計 (IT T
OFMS)であり、導入された試料に対し所定の質量範囲に亘る質量走査を行うような 質量分析を実行してマススペクトルデータを取得する。マススペクトルデータを受け取 るデータ処理部 2は通常パーソナルコンピュータにより具現ィ匕され、該コンピュータに インストールされた所定のプログラムを実行することで後述の処理機能が達成される
[0024] 具体的には、データ処理部 2は機能ブロックとして、マススペクトル作成部 21、代謝 物同定処理部 22、推定条件設定部 23を含む。マススペクトル作成部 21は受け取つ たデータに基づ ヽてマススペクトルを作成する。代謝物同定処理部 22は質量分析に より得られたマススペクトルに基づいて後述のような演算処理を実行することで、目的 とする代謝物の組成を推定して 1乃至複数の組成の候補を見 、出して出力部 4に出 力する。推定条件設定部 23は入力部 3から与えられる情報に基づいて代謝物同定 のための計算条件を設定する。この入力部 3が本発明における情報入力手段に相当 し、代謝物同定処理部 22が組成推定手段に相当し、推定条件設定部 23が条件算 出手段に相当する。
[0025] 次に、この質量分析システムの特徴である代謝物の同定処理の一例について、図 2のフローチャートを参照しつつ説明する。ここでは一例として、或る薬物 Aの代謝物 Bを同定する場合を考える。つまり、薬物 Aが原物質であり、代謝物 Bが生成物である 。薬物 Aの組成式は既知であり、 C H O (質量: 180.0634U)であるとする。代謝物 B
6 12 6
はこの薬物 Aが代謝 (薬物代謝)を受けて化学的に変化したものである。
[0026] この場合、質量分析計 1で分析する対象の試料は、アナライト (実際に薬物 Aを生 体に投与して代謝させたもの)とコントロール (薬物 Aを投与せずに、そのほかはアナ ライトと同一条件で採取したもの)の 2つである。まず、これら 2つの試料をそれぞれ質 量分析計 1で分析してマススペクトル作成部 21にお 、てマススペクトルを作成する( ステップ Sl)。代謝物同定処理部 22では、 2つのマススペクトルを比較し、アナライト のマススペクトルにのみ存在するピークを抽出する(ステップ S2)。このピークは代謝 により新たに発生したものであるから、このピークに対応する物質は代謝物であると推 定できる。そこで、まず各ピークの質量を予め用意された代謝物データベースと照合 することで既知の代謝物の同定を行う(ステップ S3)。
[0027] 代謝物データベースに登録されて!ヽな 、代謝物がアナライト中に存在する場合に は、同定されないピークが残り、これが未知代謝物となる。そこで、この未知代謝物の ピークを抽出してその質量を読み込む (ステップ S4)。ステップ S3の処理で全ての代 謝物が同定されていれば問題ないが、未知代謝物が存在する場合には例えばそれ を知らせる表示を出力部 4に対して行い、これに対してユーザはこの薬物代謝に関 する情報を入力部 3から入力する (ステップ S5)。即ち、一般的に代謝の経路は過去 の研究力も多くが知られている。例えば薬物代謝では大別して第 1相、第 2相の 2段 階の反応が起こり、第 1相では加水分解、酸化反応、還元反応などが生じ易ぐ第 2 相では硫酸、酢酸、ダルタチオンなどが付加される。そこで、こうした反応の種類や付 加脱離する成分 (極性基など)の種類などを情報として入力する。 [0028] 上記のような代謝に関わる情報 (予測情報)が入力されると推定条件設定部 23はこ れに基づいて、代謝に伴う各構成元素の増加最大値及び減少最大値を算出する (ス テツプ S6)。この増加最大値及び減少最大値により、代謝に伴って変化する組成の 構成元素の変化幅が決まる。いま、ここでは代謝に伴う薬物 Aの元素の種類及び数 の変化幅が次表のように求まるものとする。
[表 1]
Figure imgf000009_0001
例えば炭素 (C)は、代謝に伴って元の薬物 Aから最大 3個減少し、最大 6個増加す るような変ィ匕を生じること〖こなる。
また、薬物 Aの組成は既知であるから、この既知の組成と上記各構成元素の増加 最大値及び減少最大値とから、未知の代謝物の構成元素の種類と個数のとり得る幅 を求める条件テーブルとする (ステップ S7)。例えば上記表 1に対応して、未知代謝 物の構成元素の種類と個数の最大値、最小値は表 2のように求まる。
[表 2]
Figure imgf000009_0002
[0030] これが未知代謝物の組成を推定するための計算の前提となる条件である。代謝物 同定処理部 22はこれを計算条件として、上述のようにピーク力も与えられる未知代謝 物の質量と整合がとれるような元素の組み合わせを探索することで組成を推定する( ステップ S8)。例えば未知代謝物の質量が 194.0790uであるとすると、この質量に対し 測定誤差などを加味した所定の許容範囲を設定し、その許容範囲内に収まるような 元素の組み合わせを探索する。元素の種類や個数が限定されて 、な 、と比較すベ き組み合わせの数が膨大になり、また代謝物の質量と整合性がとれるような組み合わ せの数も非常に多くなるために実用的ではない。これに対しこの実施例の装置では、 上記のように元素の種類や個数の幅が限定されているため、計算が比較的容易で済 み、候補として挙げられる組成の数も少なくて済む。そして、こうして挙げられた組成 候補を例えばリストイ匕して出力部 4より出力する (ステップ S9)。
[0031] 上記実施例では、表 2に示したような計算条件の下で未知代謝物の質量そのもの 力も組成の推定を行っていた力 代謝に伴う変化が薬物 Aに単純に何らかが付加さ れたり逆に薬物 A力も何らかが脱離したりしたものであることが分力 ている場合、推 定できる場合、或いはそうした仮定を行い得る場合には、薬物 Aの質量と代謝物 Bの 質量との差に関して組成を推定するほうが有利であることが多い。何故なら、よほど 分子量の大きな成分が付加又は脱離したものでない限り、代謝に伴う質量変化は代 謝物 Bの質量に比べてかなりその数値が小さぐとり得る元素の組み合わせの数も少 なくなるからである。
[0032] 上述の例で考えると、未知代謝物の質量が 194.0790Uである場合、薬物 Aとの質量 の差は 194.0790-180.0634=14.0156uである。この質量差の許容範囲が士 10muであ るとして、表 1に示した元素の種類及び数を計算条件として整合性がとれるような組 み合わせを探索すると、次の表 3のような結果となる。
[表 3]
# Mass Diff. Formula DBE
1 14.0157 0.00005 CH2 1.0 つまり、 CHのみが該当する。したがって、未知代謝物は薬物 Aに何かが付加され
2
たものであるとの仮定の下では、この未知代謝物の組成は薬物 Aの組成に CHを付
2 加した、 C H Oであると推測できる。
7 14 6
このようにして本発明に係る質量分析データ解析方法及び装置によれば、予測さ れて ヽなカゝつた未知の代謝物の組成を容易に且つ高!、確度で推定することができる なお、上記実施例は本発明の一例であって、本発明の趣旨の範囲で適宜に修正、 変更、追加などを行っても本願請求の範囲に包含されることは明らかである。例えば 、本発明は代謝による変化のみならず、高分子化合物の合成による化学的変化など 、一般的な化学的変化に伴って生成される未知物質の同定に利用することができる

Claims

請求の範囲
[1] 組成が既知である原物質の化学的な変化により生成される生成物の組成を、該生 成物を質量分析して取得したデータに基づいて推定するための質量分析データ解 析方法であって、
a)前記化学的変化についての予測情報を入力する情報入力ステップと、 b)前記予測情報に基づいて、前記化学的変化による原物質からの各元素の最大 増加値 ·最大減少値、及び Z又は、前記生成物を構成する各元素の最大値,最小値 を算出する条件算出ステップと、
c)前記条件算出ステップで算出された各元素の最大増加値'最大減少値又は生成 物の構成元素の最大値'最小値を計算条件として、質量分析により得られた前記生 成物の質量と整合するように前記生成物の組成を推定する組成推定ステップと、 を有することを特徴とする質量分析データ解析方法。
[2] 前記組成推定ステップでは、前記原物質の質量と前記生成物の質量との差に対応 する組成を前記条件算出ステップで得られた各元素の最大増加値 ·最大減少値を条 件として推定し、その推定組成と原物質の組成とから生成物の組成を推定することを 特徴とする請求項 1に記載の質量分析データ解析方法。
[3] 組成が既知である原物質の化学的な変化により生成される生成物の組成を、該生 成物を質量分析して取得したデータに基づいて推定するための質量分析データ解 析装置であって、
a)前記化学的変化についての予測情報を入力する情報入力手段と、
b)前記予測情報に基づいて、前記化学的変化による原物質からの各元素の最大 増加値 ·最大減少値、及び Z又は、前記生成物を構成する各元素の最大値,最小値 を算出する条件算出手段と、
c)前記条件算出手段で算出された各元素の最大増加値 ·最大減少値又は生成物 の構成元素の最大値'最小値を計算条件として、質量分析により得られた前記生成 物の質量と整合するように前記生成物の組成を推定する組成推定手段と、
を備えることを特徴とする質量分析データ解析装置。
[4] 前記組成推定手段は、前記原物質の質量と前記生成物の質量との差に対応する 組成を前記条件算出手段で得られた各元素の最大増加値 ·最大減少値を条件とし て推定し、その推定組成と原物質の組成とから生成物の組成を推定することを特徴と する請求項 3に記載の質量分析データ解析装置。
PCT/JP2006/322741 2006-11-15 2006-11-15 Procédé d'analyse de données de spectrométrie de masse et dispositif associé WO2008059568A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2006/322741 WO2008059568A1 (fr) 2006-11-15 2006-11-15 Procédé d'analyse de données de spectrométrie de masse et dispositif associé
US12/445,882 US20100312487A1 (en) 2006-11-15 2006-11-15 Mass analysis data analyzing method and apparatus thereof
JP2008544031A JP4811467B2 (ja) 2006-11-15 2006-11-15 質量分析データ解析方法及び装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/322741 WO2008059568A1 (fr) 2006-11-15 2006-11-15 Procédé d'analyse de données de spectrométrie de masse et dispositif associé

Publications (1)

Publication Number Publication Date
WO2008059568A1 true WO2008059568A1 (fr) 2008-05-22

Family

ID=39401383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322741 WO2008059568A1 (fr) 2006-11-15 2006-11-15 Procédé d'analyse de données de spectrométrie de masse et dispositif associé

Country Status (3)

Country Link
US (1) US20100312487A1 (ja)
JP (1) JP4811467B2 (ja)
WO (1) WO2008059568A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051148A1 (ja) * 2011-10-07 2013-04-11 株式会社島津製作所 質量分析データ解析方法及び装置
JP2020085822A (ja) * 2018-11-30 2020-06-04 日本電子株式会社 化学構造推定装置及び方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8026476B2 (en) * 2006-09-21 2011-09-27 Shimadzu Corporation Mass analyzing method
EP2741224A1 (en) * 2012-11-20 2014-06-11 Thermo Finnigan LLC Methods for generating local mass spectral libraries for interpreting multiplexed mass spectra
JP6149810B2 (ja) * 2014-06-13 2017-06-21 株式会社島津製作所 代謝物解析システム及び代謝物解析方法
US11237154B2 (en) * 2015-05-29 2022-02-01 Waters Technologies Corporation Metabolic pathway and metabolite identification

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003529044A (ja) * 1999-04-20 2003-09-30 ターゲット ディスカバリー, インコーポレイテッド ポリペプチドフィンガープリント法、代謝プロファイル、およびバイオインフォマティクスデータベース
JP2006017570A (ja) * 2004-07-01 2006-01-19 Sumitomo Chemical Co Ltd 薬物代謝酵素反応により生じる代謝物の構造提案方法及びその利用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6680203B2 (en) * 2000-07-10 2004-01-20 Esperion Therapeutics, Inc. Fourier transform mass spectrometry of complex biological samples
GB0415046D0 (en) * 2004-07-05 2004-08-04 Micromass Ltd Mass spectrometer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003529044A (ja) * 1999-04-20 2003-09-30 ターゲット ディスカバリー, インコーポレイテッド ポリペプチドフィンガープリント法、代謝プロファイル、およびバイオインフォマティクスデータベース
JP2006017570A (ja) * 2004-07-01 2006-01-19 Sumitomo Chemical Co Ltd 薬物代謝酵素反応により生じる代謝物の構造提案方法及びその利用

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051148A1 (ja) * 2011-10-07 2013-04-11 株式会社島津製作所 質量分析データ解析方法及び装置
CN103842809A (zh) * 2011-10-07 2014-06-04 株式会社岛津制作所 质量分析数据解析方法以及装置
JPWO2013051148A1 (ja) * 2011-10-07 2015-03-30 株式会社島津製作所 質量分析データ解析方法及び装置
JP2020085822A (ja) * 2018-11-30 2020-06-04 日本電子株式会社 化学構造推定装置及び方法
JP7266997B2 (ja) 2018-11-30 2023-05-01 日本電子株式会社 化学構造推定装置及び方法

Also Published As

Publication number Publication date
JPWO2008059568A1 (ja) 2010-02-25
JP4811467B2 (ja) 2011-11-09
US20100312487A1 (en) 2010-12-09

Similar Documents

Publication Publication Date Title
Bonner et al. SWATH data independent acquisition mass spectrometry for metabolomics
Bouhifd et al. toxicometabolomics
Milman General principles of identification by mass spectrometry
Cao et al. Predicting retention time in hydrophilic interaction liquid chromatography mass spectrometry and its use for peak annotation in metabolomics
Benton et al. XCMS2: processing tandem mass spectrometry data for metabolite identification and structural characterization
Smith et al. Proteomics, lipidomics, metabolomics: a mass spectrometry tutorial from a computer scientist's point of view
Barnes et al. Training in metabolomics research. II. Processing and statistical analysis of metabolomics data, metabolite identification, pathway analysis, applications of metabolomics and its future
Dunn et al. Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy
Bilbao et al. A preprocessing tool for enhanced ion mobility–mass spectrometry-based omics workflows
Sadygov et al. Large-scale database searching using tandem mass spectra: looking up the answer in the back of the book
Yang et al. Quality control for building libraries from electrospray ionization tandem mass spectra
Wang et al. Analytical approaches to metabolomics and applications to systems biology
Yin et al. DecoMetDIA: deconvolution of multiplexed MS/MS spectra for metabolite identification in SWATH-MS-based untargeted metabolomics
Pasikanti et al. Development and validation of a gas chromatography/mass spectrometry metabonomic platform for the global profiling of urinary metabolites
Zeng et al. Ion fusion of high-resolution LC–MS-based metabolomics data to discover more reliable biomarkers
JP2007287531A (ja) 質量分析データ解析方法
WO2008059568A1 (fr) Procédé d&#39;analyse de données de spectrométrie de masse et dispositif associé
Shahaf et al. Constructing a mass measurement error surface to improve automatic annotations in liquid chromatography/mass spectrometry based metabolomics
Crockford et al. Statistical search space reduction and two-dimensional data display approaches for UPLC− MS in biomarker discovery and pathway analysis
Lundgren et al. Protein identification using Sorcerer 2 and SEQUEST
Habchi et al. An innovative chemometric method for processing direct introduction high resolution mass spectrometry metabolomic data: Independent component–discriminant analysis (IC–DA)
Alves et al. Mass spectrometry-based metabolomics for an in-depth questioning of human health
Bjerrum Metabonomics: analytical techniques and associated chemometrics at a glance
Hoopmann et al. Identification of peptide features in precursor spectra using Hardklör and Krönik
Wille et al. Liquid chromatography high-resolution mass spectrometry in forensic toxicology: what are the specifics of method development, validation and quality assurance for comprehensive screening approaches?

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06832672

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008544031

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12445882

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06832672

Country of ref document: EP

Kind code of ref document: A1