WO2008058456A1 - Accessoire de mesure à transmission réflexions multiples pour spectromètre à infrarouge - Google Patents

Accessoire de mesure à transmission réflexions multiples pour spectromètre à infrarouge Download PDF

Info

Publication number
WO2008058456A1
WO2008058456A1 PCT/CN2007/003186 CN2007003186W WO2008058456A1 WO 2008058456 A1 WO2008058456 A1 WO 2008058456A1 CN 2007003186 W CN2007003186 W CN 2007003186W WO 2008058456 A1 WO2008058456 A1 WO 2008058456A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
mirror
sample
light
mirrors
Prior art date
Application number
PCT/CN2007/003186
Other languages
English (en)
French (fr)
Inventor
Hongbo Liu
Shoujun Xiao
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to US12/515,018 priority Critical patent/US20100051813A1/en
Publication of WO2008058456A1 publication Critical patent/WO2008058456A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/031Multipass arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0202Mechanical elements; Supports for optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/021Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using plane or convex mirrors, parallel phase plates, or particular reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N2021/0339Holders for solids, powders

Definitions

  • the invention belongs to the technical field of spectrometry and relates to the measurement of trace components in the body and the surface of an infrared (semi) transparent material, and is an accessory applied to an infrared spectrometer. Background technique
  • Infrared materials such as silicon and gallium arsenide are common electronic materials in the semiconductor industry and are widely used in many fields such as biodetection, sensors, solar cells, and molecular recognition.
  • the surface modification of these materials is an important step in each application. Infrared spectroscopy can detect the molecular composition, orientation, film formation quality and other factors of surface modification film without damage, and is an important surface analysis method.
  • the thickness of the film is only nanometer (for example, the thickness of the monomolecular film is only about 1 nm), the infrared measurement is very difficult. The reasons are as follows: 1.
  • the amount of the detected component is too small, and the infrared absorption intensity is weak;
  • both transmission and reflection occur, and the loss of energy causes the noise-to-noise ratio to decrease.
  • the above reasons also exist for the measurement of trace components in the material. Therefore, the commonly used transmission and reflection measurement methods cannot be effectively used for the measurement of trace amounts on the surface of infrared materials. This difficulty has led many researchers to abandon the characterization of infrared spectroscopy, thus limiting the application of infrared spectroscopy. At present, the most common method for surface modification measurement is multiple internal reflection.
  • This method uses a total reflection silicon crystal as the substrate of the reaction monomolecular film, and cuts the 45 degree oblique side on both sides of the silicon crystal. Infrared light enters the silicon crystal from one end, undergoes multiple internal reflections, and leaves the crystal from the other end to the detector. Full reflection can detect molecules with a thickness of about 1 ⁇ m on the surface, increasing the absorption intensity by increasing the number of total reflections.
  • the silicon crystals required for this method are expensive, are easily damaged during the reaction, and cannot be directly used as a substrate for subsequent device preparation, which causes great trouble for the experimental operation.
  • Another method is the grazing angle total reflection attachment (GATR, Harrick Scientific corporation) that has just been developed in recent years.
  • the yttrium crystal is used as a total reflection crystal, and the silicon wafer is pressed on the crystal for measurement.
  • the incident angle of the infrared light is 65 degrees. (greater than the critical angle of total reflection between ⁇ and silicon is 60 degrees).
  • the electric field will be greatly enhanced and the infrared absorption signal will be enhanced.
  • a large pressure easily damages the surface structure of the ruthenium crystal and the sample to be tested, and if the pressure control is slightly different for each measurement, the result is difficult to repeat.
  • the object of the present invention is to design an infrared spectrum measuring accessory suitable for characterizing the detection of trace components on the surface of infrared (semi)transparent materials and in vivo.
  • the use of the accessory makes the signal-to-noise ratio of the map high and repeatable, and the accessory is easy to operate. Economical and practical.
  • an infrared spectrometer multiple transmission-reflection measurement accessory the infrared spectrometer multiple transmission-reflection measurement attachment is placed on the optical path of the infrared light incident light of the infrared spectrometer, which comprises two parallel plane mirrors, in two plane mirrors There is a sample holder between the sample holder to fix the sample piece between the two plane mirrors and parallel to the plane mirror.
  • the infrared light emitted by the infrared spectrometer enters an incident angle with the plane mirror.
  • the sample piece is measured by multiple transmission-reflection of the infrared light, and the infrared light after the multiple transmission-reflection measurement of the sample enters the infrared spectrometer.
  • the detector performs the measurement.
  • the plane mirror has parallel displacement members to adjust the distance between the two plane mirrors.
  • the two plane mirrors and the sample holder have a common rotating platform to adjust the incident angle of the infrared light into the plane mirror.
  • the above-mentioned infrared spectrometer has multiple transmission-reflection measurement accessories, and an incident light guiding mirror capable of changing position or/and angle is arranged in front of the infrared light path of the two plane mirrors for adjusting infrared light into two plane mirrors and The measured angle of incidence can be changed.
  • the above-mentioned infrared spectrometer multiple transmission-reflection measurement accessories can also adopt the following structure:
  • the above-mentioned infrared spectrometer has multiple transmission-reflection measurement accessories, and has a rectangular parallelepiped casing.
  • the front end of the rectangular parallelepiped casing has an entrance of infrared light incident light emitted by the infrared spectrometer, and an upwardly inclined plane on the bottom plate of the rectangular parallelepiped casing.
  • the incident light guiding mirror is such that the incident angle of the infrared light is 60-88 degrees from the mirror normal of the plane mirror, and a rectangular sample rack hole is opened on the top plate of the rectangular parallelepiped casing, and the sample rack hole is at least two pairs There is a concave shoulder on the side.
  • the shoulder can support the sample holder.
  • the sample holder is a plate with a certain thickness matching the shape of the sample holder hole, and a sample hole is arranged in the center of the sample holder.
  • the shoulder can support the sample in the hole, and the sample holder is covered with a parallel mirror A of one of the two parallel mirrors, and the mirror of the parallel mirror A faces downward, and the depth of the shoulder of the sample hole is determined to determine the sample and the parallel reflection.
  • the length of the infrared light incident light can be reflected into the sample hole of the sample holder after being reflected by the incident light guiding mirror, and the light guiding light that can be emitted to the subsequent outgoing light after multiple reflections between the two parallel reflecting mirrors Mirror
  • the exit light guide mirror is a plane mirror, tilted downward, placed on the bottom plate of the rectangular parallelepiped shell, the rear end of the rectangular parallelepiped shell has an infrared exit light exit, and the exit light guide mirror directs the infrared exit light to the detector of the infrared spectrometer .
  • the above infrared spectrometer has a plurality of transmission-reflection measurement accessories, and the parallel mirror B has a spacer underneath to ensure the distance between the parallel mirror B and the sample.
  • the above-mentioned infrared spectrometer has multiple transmission-reflection measurement accessories, and the incident light guiding mirror and the outgoing light guiding mirror have a dome-shaped pad to ensure an accurate inclination angle of the incident light guiding mirror and the outgoing light guiding mirror.
  • the above-mentioned infrared spectrometer has multiple transmission-reflection measurement accessories, which replaces the sample easily, and the distance between the two parallel mirrors is fixed, which ensures the parallel relationship between the two parallel mirrors, the sample and the parallel mirror, and the measurement result is repetitive.
  • it is easy to make, it can make multiple sample holders with different concave depths of the sample holes, and the blocks of parallel mirrors B of different heights, when you need to change the distance between the two parallel mirrors, you only need By changing the spacers of the sample holder and parallel mirror B, it is easy to change the distance between the two parallel mirrors.
  • the infrared spectrometer of the invention has multiple transmission-reflection measurement accessories, and utilizes infrared (semi) transparent characteristics of infrared materials, combined with reflection and transmission spectrum detection methods, and adopts multiple transmission-reflection methods to improve the signal-to-noise ratio of the spectrum. .
  • the operation is simple, no special treatment of the sample is required, and an expensive total reflection crystal is used, and the measurement result is reproducible.
  • it can also be used for the measurement of trace components in the material.
  • Figure 1 Schematic diagram of the overall structure of the multiple transmission-reflection measurement attachment of the infrared spectrometer of Example 1 and the optical path;
  • FIG. 3 Schematic diagram of the fixing manner of the plane mirror 7 of the multiple transmission-reflection measuring attachment of the infrared spectrometer; Fig. 4. Schematic diagram of the fixing manner of the plane mirror 8 of the multiple transmission-reflection measuring attachment of the infrared spectrometer; Fig. 5.
  • Figure 8 P-polarized infrared spectrum of the NHS monolayer on Si surface at different incident angles using the accessory of the present invention, (a) 55 degrees; (b) 60 degrees; (c) 65 degrees; (d) 70 degrees (e) 75 degrees; (f) 80 degrees.
  • Figure 9 Schematic diagram of the structure of the multiple transmission-reflection measurement attachment and the optical path of the infrared spectrometer of Example 2.
  • Figure 10. Schematic diagram of the multiple transmission-reflection measurement attachment of the infrared spectrometer of Embodiment 3;
  • FIG 11. Schematic diagram of the sample holder of the multiple transmission-reflection measurement accessory of the infrared spectrometer of Example 3; Figure 12. Infrared spectrum of the measured polycrystalline silicon wafer of Example 3. Detailed ways
  • Example 1 Infrared spectrometer multiple transmission-reflection measurement accessories
  • the design optical path of the accessory can be used on a variety of current infrared spectrometers, and in the following specific examples is designed according to Bruker's infrared spectrometer.
  • the transmissive bracket used in the Bruker infrared spectrometer is used as an attachment-mounted base.
  • the incident light from the spectrometer will be focused into a small spot in the middle of the sample chamber and then diverged to the detector.
  • the incident light having this focus point as an attachment is designed to keep the outgoing light as it is in the original diverging state to the detector.
  • the angle of incidence in the sample inspection is precisely controlled by a stepper motor.
  • Infrared spectrometer multiple transmission-reflection measurement accessories mainly include: bottom plate 1, insert plate 2, two plane mirrors 7, 8, two light guides 10, 11, and two stepper motors 5, 6, as shown in Figure 1. Shown.
  • the entire attachment is attached to the transmissive bracket of the Bruker infrared spectrometer by means of a plug-in plate.
  • the stepping motor is fixed on the lower surface of the bottom plate, and the rotating shaft extends to the upper surface of the bottom plate, and is closely matched with the plane mirror base 3 and the light guide base 4 respectively, and the rotation angle of the stepping motor is controlled by the single chip microcomputer, thereby controlling the bases 3 and 4 The angle of rotation.
  • the sample is placed between the plane mirrors 7 and 8 during measurement.
  • the position of the plane mirror 7 is fixed, and the position of the plane mirror 8 is precisely controlled by the spiral micrometer 12.
  • the position of sample 9 is precisely controlled by the helical micrometer 13 . Multiple reflections and transmissions occur on the surface of the sample 9 while the incident light 17 of the spectrometer is reflected multiple times between the plane mirrors 7 and 8. Changing the distance between the plane mirrors 7 and 8 changes the number of transmissions and reflections.
  • the light 18 leaves the sample mirror and is reflected by the light guide 10 to become light 19, 19 which is reflected on the surface of the light guide 11 and finally exits the light 20 to the detector.
  • the plane mirrors 7 and 8 also rotate, thereby achieving the purpose of changing the detected incident angle.
  • changing the angle of the mirror base 4 allows the light to reach the detector smoothly.
  • the flap 21 is fixed to the plane mirror base 3 with a spacer 22 interposed therebetween to add the flap 21 the height of.
  • the flat mirror 7 is adhered to the flap 21 with an adhesive.
  • a spring 25 is placed between the slider 23 in the slide rail and the base, and the straight rod 24 is used to fix the direction of the spring.
  • the other side of the slider is in contact with the helical micrometer 12.
  • the slider 22 can be advanced or retracted by the forward and backward expansion of the micrometer and the spring.
  • the legs 28, 29 at the bottom of the flap 16 cooperate with the two holes in the slider 23 for easy insertion and removal.
  • Springs 26 are placed on the four apex angles between the flaps 16 and the straight plates 15, are fixed together by screws 27, and the position of the straight plates 15 can be changed in three dimensions.
  • the flat mirror 8 is adhered to the straight plate 15 and can be easily removed.
  • the sliders 3 1, 33 are used to fix the sample wafer 9, and the sides of the slider are also moved forward and backward by the spiral micrometer 13 and the spring 30. During the measurement, a sliding piece 32 of the same thickness as the sample to be tested 9 is placed between 31 and 33, so that a gap of the same thickness as the silicon piece to be tested is generated between the two sliders, and the sample silicon piece 9 can be fixed in the middle.
  • the slider 31 is connected to the screw 14, and since the spring is in a compressed state, the nut 34 can be used to fix the slider 31 so as to be separated from the slider 33, and the test sample can be easily replaced.
  • the distance between the sample to be tested 9 and the plane mirror 7 and the distance between the two plane mirrors 7 and 8 can be precisely controlled.
  • the light guides 10 and 1 1 are attached to the brackets 37 and 38, respectively, and are fixed to the sides of the sliders 35 and 36.
  • the slider has internal threads that can be moved back and forth by screws 39 and 40 to control the position of the light guide.
  • Figure 8 shows the infrared spectrum measured at different incident angles, where the distance between the plane mirrors remains constant at 2 mm. In the spectrum, the curve has a good signal-to-noise ratio. As the incident angle increases, the number of transmission and reflection of the silicon surface decreases, so the intensity of the infrared absorption peak decreases.
  • the multiple transmission-reflection measurement attachment of the infrared spectrometer of this embodiment is basically the same as that of the embodiment 1, and the difference is as follows:
  • the base 3 of the plane mirror 7, 8 cannot be rotated and is not connected to the motor.
  • the light guides 10, 1 1 are changed to the light guides 41, 42, respectively placed in front of and behind the infrared light paths of the two plane mirrors 7, 8 as shown in FIG.
  • the two light guiding mirrors 41 and 42 respectively have parallel displacement members, and the base is connected with the stepping motor, and the position and direction thereof can be adjusted, and the light guiding mirror 41 can be adjusted to change the incident angle of the detected infrared light, and the guiding guide is adjusted.
  • the light mirror 42 allows the outgoing light 20 to reach the detector smoothly.
  • the measurement was carried out by using the infrared spectrometer multiple transmission-reflection measurement attachment of the present embodiment, and the results were the same as in the first embodiment.
  • Example 3 Infrared spectrometer multiple transmission-reflection measurement accessories
  • Infrared spectrometer multiple transmission-reflection measurement accessories, as shown in Fig. 10 and Fig. 11, there is a rectangular parallelepiped casing 43.
  • the front end of the rectangular parallelepiped casing 43 has an entrance of infrared light incident from an infrared spectrometer, in a rectangular parallelepiped shell.
  • a planar incident light guiding mirror 44 inclined upward by 8.2 degrees is placed on the cymbal block 52 to sandwich the incident light of the infrared light and the mirror normal of the plane mirror A 49
  • the angle is 73.6 degrees
  • a rectangular sample holder hole 45 is formed in the top plate of the rectangular parallelepiped housing 43.
  • the sample holder hole 45 has a shoulder of 0.8 mm recessed on at least two opposite sides, and the sample holder 46 is placed in the sample holder hole.
  • the inner shoulder can support the sample holder 46.
  • the sample holder 46 is a 1.5 mm thick flat plate whose shape matches the sample holder hole 45.
  • the sample holder 46 has a sample hole 47 in the center thereof, and the sample hole 47 has a convex concave around 0.7 mm. Shoulder, the sample 48 can support the sample 48 when the sample 48 is placed in the sample hole 47.
  • the upper surface of the sample holder 46 is covered with a parallel mirror A 49 of one of the two parallel mirrors, and the mirror of the parallel mirror A 49 faces down to the sample.
  • the rear end of the rectangular parallelepiped casing 43 has an infrared exit light exit, and the exit light guiding mirror 51 directs the infrared illuminating light to the infrared spectrometer. Detector.
  • the content of substituting carbon atoms, interstitial oxygen atoms, impurity phosphorus/boron, etc. in the polycrystalline silicon wafer was measured by the attachment.
  • the measurement of the content of substituting carbon atoms and interstitial oxygen atoms in the silicon wafer is generally carried out by transmission infrared spectroscopy.
  • the absorption associated with trace amounts of carbon and oxygen in the infrared transmission spectrum is difficult to measure or weakly absorbed, making further quantitative analysis difficult.
  • the infrared absorption peak of the feature can be significantly enhanced.
  • the 12 is an infrared spectrum obtained by using a polycrystalline silicon wafer having a thickness of 0.15 mm as a sample, using a multiple transmission-reflection attachment, and Brewster's angle incident, so that infrared light is transmitted through the silicon wafer 8 times.
  • the spectrum shows a distinct absorption band in the spectral range of 1600cm ⁇ 500cn ⁇ .
  • D the actual optical path length of the infrared light passing through the silicon wafer (the value is related to the infrared incident angle, the thickness of the silicon wafer, and the number of transmissions), cm;
  • the correction factor at room temperature (300 K) is obtained by ASTM standard STMFUn as follows:

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)

Description

红外光谱仪的多次透射-反射测量附件
技术领域
本发明属于光谱测量技术领域, 涉及一种红外线 (半) 透明材料体内和表界面微量 成分的测量, 是一种应用于红外光谱仪中的附件。 背景技术
硅、砷化镓等红外材料是半导体工业中常见的电子材料,并广泛的应用于生物检测、 传感器、 太阳能电池、 分子识别等许多领域, 这些材料的表面修饰是各应用中的一个重 要步骤。红外光谱能够无损伤的检测出表面修饰膜的分子组成、取向,成膜质量等因素, 是一种重要的表面分析手段。 但当膜的厚度仅为纳米级别时 (例如单分子膜厚度仅在 lnm左右), 红外测量就存在很大困难, 原因有: 1、 检测成分的数量太少, 红外吸收强 度很弱; 2、 当红外光到达材料表面的时候, 会同时发生透射和反射, 能量的损失导致 性噪比降低。 对于材料体内的微量成分测量也同样存在以上原因。 所以, 通常所用的透 射和反射测量方法不能有效的用于红外材料表面微量的测量。而这种困难导致很多研究 工作者放弃了红外光谱的表征, 从而限制了红外光谱的应用。 目前最常见的用于表面修饰测量的方法是多次内反射 (multiple internal reflection), 这种方法是采用全反射硅晶体作为反应单分子膜的基底, 在硅晶体两边切割成 45度斜 边, 红外光从一端进入硅晶体, 发生多次内反射, 从另一端离开晶体到达检测器。 全反 射可以检测到表面约 l y m厚度的分子, 通过增加全反射次数, 增加了吸收强度。 但这 种方法所需要使用的硅晶体价格昂贵, 在反应过程中容易损坏, 并且不能作为基底直接 进行后续的器件制备, 这就为实验操作带来很大的麻烦。 另一种方法是近几年刚发展起 来的掠角全反射附件 ( GATR, Harrick Scientific corporation ), 使用锗晶体作为全反射晶 体, 将硅片压在晶体上进行测量, 红外光入射角为 65度 (大于锗和硅之间全反射的临 界角 60度)。 理论上, 在两个大折射率材料之间, 电场会有很大程度的增强, 红外吸收 信号也随之增强。 但由于在实际测量中, 即使在很大的压力下, 锗晶体和待测样品间不 可避免的存在空隙, 这会导致信号的大幅下降。 同时很大的压力容易损坏锗晶体和待测 样品的表面结构, 并且如果每次测量时压力的控制略有差异, 会导致结果难以重复。
所以,对于红外材料表面的微量成分的测量,一直没有很好的解决方法,在信噪比、
确认本 数据的重复性、试验操作的难易程度、经济实用等多方面还未找到一种合适的检测方法。 发明内容
本发明的目的是设计一种适合于表征红外(半)透明材料表面及体内微量成分检测 的红外光谱测量附件,该附件的使用使得图谱的信噪比高和重复性好,该附件操作简便、 经济实用。
本发明的技术方案如下:
一种红外光谱仪多次透射-反射测量附件, 红外光谱仪多次透射 -反射测量附件置于 红外光谱仪的红外光入射光的光路上, 它包括两个平行的平面反射镜, 在两个平面反射 镜之间有样品固定架, 样品固定架可以将样品片固定在两个平面反射镜之间、 并与平面 反射镜平行, 在测量时, 红外光谱仪发射的红外光与平面反射镜呈一入射角进入两个平 面反射镜之间, 在两个平面反射镜之间进行多次反射, 样品片则被红外光多次透射-反 射测量, 经过对样品多次透射-反射测量后的红外光进入红外光谱仪的检测器进行测量。
上述的红外光谱仪多次透射 -反射测量附件中, 所述的平面反射镜有平行位移部件, 以调节两个平面反射镜之间的距离。
上述的红外光谱仪多次透射 -反射测量附件中, 所述的两个平面反射镜和样品固定 架有一个共同的旋转平台, 以调节红外光进入平面反射镜的入射角度。
上述的红外光谱仪多次透射 -反射测量附件中, 在两个平面反射镜的红外光路后方, 有可以改变位置或 /和角度的出射导光反射镜,用于调节红外光路的方向,将出射的红外 光最大可能地导入检测器, 增强检测器接收到的光信号。
上述的红外光谱仪多次透射-反射测量附件, 在两个平面反射镜的红外光路的前方 有可以改变位置或 /和角度的入射导光反射镜,用于调节红外光进入两个平面反射镜并可 以改变测量的入射角度。
上述的红外光谱仪多次透射-反射测量附件也可以采用如下结构:
上述的红外光谱仪多次透射-反射测量附件, 它有一个长方体的壳体, 长方体壳体 的前端有红外光谱仪发射的红外光入射光的进口, 在长方体壳体的底板上, 有向上倾斜 的平面入射导光反射镜, 使红外光入射光与平面反射镜镜面法线的夹角为 60-88度, 长 方体壳体的顶板上开有一个长方形的样品架孔,样品架孔至少在两条对边上有下凹的凸 肩, 样品架放在样品架孔内时凸肩可以支撑样品架, 样品架为形状与样品架孔匹配的、 有一定厚度的平板, 样品架中央幵有样品孔, 样品孔四周有下凹的凸肩, 样品放在样品 孔内时凸肩可以支撑样品, 样品架上盖有两平行反射镜之一的平行反射镜 A, 平行反射 镜 A的镜面向下, 以样品孔凸肩下凹的深度, 决定样品与平行反射镜 A之间的距离, 在样品架的正下方有平行于平行反射镜 A的两平行反射镜之二的平行反射镜 B,平行反 射镜 B的镜面向上, 平行反射镜 B的长度小于样品孔的长度, 以使红外光入射光经入 射导光反射镜反射后能进入样品架的样品孔, 并且在两平行反射镜之间进行多次反射后 能射向其后的出射光的出射导光镜, 出射导光反射镜为平面镜, 向下倾斜, 置于长方体 壳体的底板上, 长方体壳体的后端有红外出射光出口, 出射导光反射镜将红外出射光导 向红外光谱仪的检测器。
上述的红外光谱仪多次透射-反射测量附件, 所述的平行反射镜 B下有垫块, 保证 平行反射镜 B与样品的距离。
上述的红外光谱仪多次透射-反射测量附件, 所述的入射导光反射镜和出射导光反 射镜下有锲形垫块, 保证入射导光反射镜和出射导光反射镜准确的倾斜角。
上述红外光谱仪多次透射-反射测量附件, 它更换样品简易, 两平行反射镜之间的 距离固定, 保证了两平行反射镜之间、 样品与平行反射镜之间的平行关系, 测量结果重 复性更好; 它制作容易, 可以制作多个样品孔凸肩不同下凹深度的样品架, 和不同高度 的平行反射镜 B的垫块, 在需要改变两平行反射镜之间的距离时, 只需更换样品架和平 行反射镜 B的垫块, 就可以方便地变更两平行反射镜之间的距离。
本发明的红外光谱仪多次透射-反射测量附件, 利用红外材料对红外光 (半) 透明 的特征, 结合了反射和透射光谱的检测方法, 采用多次透射一反射的方法提高图谱的信 噪比。 操作简单, 不需要对样品进行特殊的处理以及使用昂贵的全反射晶体, 测量结果 重复性好。 除了可以检测表面的微量成分外, 也可以用于材料体内的微量成分测量。 附图说明
图 1. 实施例 1 的红外光谱仪多次透射-反射测量附件的整体结构以及光路的示意 图;
图 2. 红外光谱仪多次透射-反射测量附件的平面反射镜部分及检测样品的放置的示 意图;
图 3. 红外光谱仪多次透射-反射测量附件的平面反射镜 7的固定方式的示意图; 图 4. 红外光谱仪多次透射-反射测量附件的平面反射镜 8的固定方式的示意图; 图 5. 红外光谱仪多次透射-反射测量附件的样品固定方式的示意图; 图 6. 红外光谱仪多次透射-反射测量附件的导光镜部分结构的示意图; 图 7. 采用本发明附件检测, 入射角为 70度, 不同镜面间距时 Si表面 NHS单分子 膜的 p偏振光红外光谱图, (a) 1.5mm; (b) 2mm; (c) 2.5mm; (d) 3mm;
图 8. 采用本发明附件检测, 不同入射角下 Si表面 NHS单分子膜的 p偏振光红外 光谱图, (a) 55度; (b) 60度; (c) 65度; (d) 70度; (e) 75度; (f) 80度。
图 9. 实施例 2的红外光谱仪多次透射-反射测量附件的结构以及光路的示意简图。 图 10. 实施例 3的红外光谱仪多次透射-反射测量附件的结构示意图;
图 11. 实施例 3的红外光谱仪多次透射-反射测量附件的样品架结构示意图; 图 12. 实施例 3的测量多晶硅片的红外光谱图。 具体实施方式
实施例 1. 红外光谱仪多次透射-反射测量附件
该附件的设计光路可以在目前各种红外光谱仪上使用, 在下面的具体实施例中是根 据 Bruker公司红外光谱仪来设计的。 Bruker红外光谱仪所用的透射支架作为附件固定 的底座。 光谱仪的入射光将在样品腔的中间聚焦成一个很小的斑点, 然后发散到达检测 器。 在本实施例中将这个聚焦点作为附件的入射光, 在设计中尽可能的使出射光保持原 有的发散状态到达检测器。 样品检测中入射角度通过步进电机精确控制。
红外光谱仪多次透射 -反射测量附件主要包括: 底板 1, 插板 2, 二个平面反射镜 7、 8, 二个导光镜 10、 11, 以及两个步进电机 5、 6, 如图 1所示。 整个附件通过插板固定 与 Bruker红外光谱仪的透射支架上。步进电机固定于底板的下表面,其转轴延伸至底板 上表面, 分别与平面反射镜底座 3和导光镜底座 4紧密配合, 通过单片机控制步进电机 的转动角度,从而控制底座 3和 4的旋转角度。测量时样品置于平面反射镜 7和 8之间。 平面反射镜 7的位置固定, 平面反射镜 8的位置通过螺旋测微头 12精确控制。 样品 9 的位置由螺旋测微头 13精确控制。通过光谱仪的入射光 17在平面反射镜 7和 8之间的 多次反射的同时, 在样品 9表面发生多次反射和透射。 改变平面反射镜 7和 8之间的距 离,可以改变透射和反射的次数。光线 18离开样品镜,经导光镜 10反射后成为光线 19, 19在导光镜 11表面反射,最终出射光 20到达检测器。随着平面反射镜底座 3角度的改 变, 平面反射镜 7和 8也随之转动, 从而达到改变检测的入射角的目的。 对应地改变导 光镜底座 4的角度, 可以使光线顺利的达到检测器。
折片 21固定在平面反射镜底座 3上, 并在它们之间加一块垫片 22, 以增加折片 21 的高度。 平面反射镜 7用胶粘剂粘附在折片 21上。 在固定折片 21时, 长条形孔使其可 以方便的前后移动, 这样便于更换不同厚度的平面反射镜。 在滑轨中的滑块 23和底座 之间放置一弹簧 25, 直杆 24用于固定弹簧的方向。 滑块另一侧和螺旋测微头 12接触。 通过测微头和弹簧的前后伸缩能使滑块 22前进或后退。 折片 16底部的架脚 28, 29和 滑块 23上的两个孔配合, 可以方便的插入和取出。 折片 16和直板 15之间的四个顶角 上放置弹簧 26, 通过螺丝 27固定在一起, 并且可以三维方向上改变直板 15的位置。平 面反射镜 8粘附在直板 15上, 并且可以方便的取下。滑块 3 1, 33用于固定样品硅片 9, 滑块两侧同样用螺旋测微头 13和弹簧 30来使其前后移动。 测量时在 31 , 33之间放一 块与待测样品 9同厚度的滑片 32, 使两滑块之间产生与待测硅片同等厚度的缝隙, 样 品硅片 9可以固定在中间。 滑块 31 与螺杆 14相连, 由于弹簧处于压缩状态, 螺帽 34 可以用于固定滑块 31, 使其与滑块 33分幵, 可以很方便的更换检测样品。 这样, 待测 样品 9与平面反射镜 7之间距离以及两平面反射镜 7和 8之间距离均可以精确的控制。
导光镜 10和 1 1分别粘附于支架 37和 38上, 并固定在滑块 35和 36—侧。 滑块有 内螺纹, 可以通过螺杆 39和 40使其前后移动, 达到控制导光镜位置的目的。
利用本发明附件测量了: 在 Si— H表面嫁接一层 N—羟基丁二酰亚胺 (NHS ) 的单 分子膜的分子结构。 图 7是在入射角为 70度条件下, 改变镜面间距得到的不同谱图。 其中随着镜面间距的减小, 由于透射一反射的次数增加, 所以红外吸收峰的强度也随着 增强。
图 8 为不同入射角条件下测量的红外光谱图, 其中平面镜面之间的距离保持 2mm 不变。 在谱图中曲线具有较好信噪比, 随着入射角的增加, 硅表面的透射和反射次数减 少, 所以红外吸收峰的强度减弱。 实施例 2. 红外光谱仪多次透射-反射测量附件
本实施例的红外光谱仪多次透射-反射测量附件与实施例 1的基本相同,其不同点在 于:
1. 平面反射镜 7, 8的底座 3不能旋转, 不与歩进电机相连;
2. 导光镜 10, 1 1改变成导光镜 41, 42, 分别置于两个平面反射镜 7 , 8的红外光路 前、 后方, 如图 9所示。 两个导光镜 41 , 42分别有平行位移部件, 并且底座与步进电 机相连接, 可以调节其位置和方向, 调节导光镜 41 可以达到改变检测的红外光的入射 角的目的, 调节导光镜 42可以使出射光 20顺利的达到检测器。 用本实施例的红外光谱仪多次透射 -反射测量附件进行测量, 其结果与实施例 1 相 同。 实施例 3. 红外光谱仪多次透射-反射测量附件
红外光谱仪多次透射-反射测量附件, 如图 10、 图 1 1所示, 它有一个长方体的壳体 43, 长方体壳体 43的前端有红外光谱仪发射的红外光入射光的进口, 在长方体壳体 43 的底板上的锲形垫块 52上, 锲形垫块 52上放置有向上倾斜 8.2度的平面入射导光反射 镜 44, 使红外光入射光与平面反射镜 A 49镜面法线的夹角为 73.6度, 长方体壳体 43 的顶板上开有一个长方形的样品架孔 45 , 样品架孔 45至少在两条对边上有下凹 0.8mm 的凸肩,样品架 46放在样品架孔内时凸肩可以支撑样品架 46,样品架 46为形状与样品 架孔 45匹配的、 厚 1.5mm的平板, 样品架 46中央开有样品孔 47, 样品孔 47四周有下 凹 0.7mm的凸肩, 样品 48放在样品孔 47内时凸肩可以支撑样品 48, 样品架 46上表面 盖有两平行反射镜之一的平行反射镜 A 49, 平行反射镜 A 49的镜面向下, 以样品孔 46 凸肩下凹的深度, 决定样品 48与平行反射镜 A 49之间的距离, 在样品架 46的正下方 有平行于平行反射镜 A的两平行反射镜之二的平行反射镜 B 50, 平行反射镜 B 50的镜 面向上, 放置在矩形垫块 53上, 两平行反射镜之间的距离为 L4mm, 平行反射镜 B 50 的长度小于样品孔的长度, 以使红外光入射光经入射导光反射镜 44反射后能进入样品 架 46的样品孔 47, 并且在两平行反射镜 49、 50之间进行多次反射后能射向其后的出射 光的出射导光镜 51, 出射导光反射镜为平面镜, 向下倾斜 8.2度, 置于长方体壳体 43 的底板上的锲形垫块 54上, 长方体壳体 43的后端有红外出射光出口, 出射导光反射镜 51将红外出射光导向红外光谱仪的检测器。
利用该附件测量了多晶硅片中代位碳原子、 间隙氧原子、 杂质磷 /硼等的含量。硅片 中代位碳原子和间隙氧原子含量的测量一般采用透射红外光谱。 但是在相当多的情况 下, 红外透射谱中与微量碳和氧含量相关的吸收难以测定或吸收很弱, 使得进一步的定 量分析变得困难。 采用该多次透射 -反射附件, 可以使特征的红外吸收峰明显增强。 图 12是以厚度为 0.15mm的多晶硅片为样品, 采用多次透射 -反射附件, 布鲁斯特角入射, 使红外光在硅片中透过 8次所得的红外光谱图。 谱图在 1600cm 〜500cn^光谱范围内 出现了明显的吸收带, 关于间隙氧原子、 代位碳原子的吸收分别位于波数 1117cm—1和 609cm"1 , 谱图中位于 1420 cm—1宽的吸收带是由 P ( =0 ) 和 B(=0)带迭加形成的。
根据比耳定律, 间隙氧、 代位碳浓度与吸收系数 α成正比:
Figure imgf000009_0001
C = k * a
d—红外光经过硅片的实际光程长度(其值与红外入射角、硅片厚度以及透射次数 有关), cm;
To—峰值吸收处基线透过率, %;
T一峰值透过率, %;
C一浓度, ppm A;
k一校正因子, ppm A/cm—
室温下 (300 K) 的校正因子可由 ASTM标准 STMFUn 获得如下:
k [氧] = 9.63 ppm A/cm "1
k [碳] = 2.2 ppm A/cm
间隙氧、 代位碳浓度的具体计算亦可参见中华人民共和国国家标准 (GB/T 1558-1997)。
根据图 12的 1117cm'1峰值透过率 To和 T的值, K [氧]值, 及 d值(0.167cm) 即可 计算出氧的浓度, C [氧]:
1 0 829
C [氧] =W氧] * " = 9.63 * In = 5.24 ppm A
0.167 0.757
根据图 12的 609cm—1峰值透过率, TQ和 T的值, K [碳]值, 及 d值 (0.167cm)即可 计算出碳的浓度, C [碳]:
1.31 ppm A
Figure imgf000009_0002
P (=0) 和 B (=0) 杂质的含量如选用 1420 cm"的峰值透过率与 1117cm"处 Si_ 0的峰值透过率比值作标定曲线, 即可。

Claims

权 利 要 求
1. 一种红外光谱仪多次透射-反射测量附件, 红外光谱仪多次透射-反射测量附件置 于红外光谱仪的样品腔内, 其特征是: 它有两个平行的平面反射镜 (7和 8), 在两个平 面反射镜之间有样品固定架, 样品固定架可以将样品片 (9) 固定在两个平面反射镜(7 和 8)之间、 并与平面反射镜(7和 8)平行, 在测量时, 红外光谱仪发射的红外光(17) 与平面反射镜(7和 8) 成一入射角进入两个平面反射镜(7和 8) 之间, 在两个平面反 射镜 (7 和 8) 之间进行多次反射, 样品片 (9) 则被红外光多次透射 -反射测量, 经过 对样品多次透射-反射测量后的红外光 (20) 进入红外光谱仪的检测器。
2. 根据权利要求 1所述的红外光谱仪多次透射-反射测量附件, 其特征是: 所述的 平面反射镜 (7和 8) 有平行位移部件 (12), 以调节两个平面反射镜 (7和 8) 之间的 距离。
3. 根据权利要求 1所述的红外光谱仪多次透射一反射测量附件,其特征是:所述的 样品固定架有平行位移部件 (13), 以调节样品在平面反射镜 (7, 8) 间的位置。
4. 根据权利要求 1或 2或 3所述的红外光谱仪多次透射-反射测量附件,其特征是: 所述的两个平面反射镜 (7和 8) 和样品固定架有一个共同的旋转平台 (3), 以调节红 外光进入平面反射镜 (7和 8) 的入射角度。
5. 根据权利要求 1或 2或 3所述的红外光谱仪多次透射-反射测量附件,其特征是: 在两个平面反射镜(7和 8)的红外光路后方, 有可以改变位置或 /和角度的导光反射镜, 用于调节红外光 (18) 光路的方向, 增强检测器接收到的光信号。
6. 根据权利要求 4所述的红外光谱仪多次透射-反射测量附件, 其特征是: 在两个 平面反射镜(7和 8) 的红外光路后方, 有可以改变位置或 /和角度的导光反射镜(10和 11), 用于调节红外光 (18) 光路的方向, 最大可能地增强检测器接收到的光信号。
7. 根据权利要求 1、 2、 3或 6所述的红外光谱仪多次透射-反射测量附件, 其特征 是: 在两个平面反射镜(7, 8) 的红外光路(17) 的前方有可以改变位置或 /和角度的导 光反射镜 (41), 用于调节红外光 (17) 进入两个平面反射镜 (7和 8), 并可以改变测 量的入射角度。
8. 根据权利要求 4所述的红外光谱仪多次透射-反射测量附件, 其特征是: 在两个 平面反射镜 (7和 8) 的红外光路 (17) 的前方有可以改变位置或 /和角度的导光反射镜 (41), 用于调节红外光 (17) 进入两个平面反射镜 (7和 8), 并可以改变进入两个平 面反射镜的入射角度。
9. 根据权利要求 5所述的红外光谱仪多次透射-反射测量附件, 其特征是: 在两个 平面反射镜(7, 8)的红外光路(17)的前方有可以改变位置或 /和角度的导光反射镜(41), 用于调节红外光 (17) 进入两个平面反射镜 (7, 8), 并可以改变进入两个平面反射镜 的入射角度。
10. 根据权利要求 1所述的红外光谱仪多次透射-反射测量附件, 其特征是: 它有一 个长方体的壳体 (43), 长方体壳体 (43) 的前端有红外光谱仪发射的红外光入射光的 进口, 在长方体壳体 (43) 的底板上, 有向上倾斜的平面入射导光反射镜 (44), 使红 外光入射光与平面反射镜 A (49)镜面法线的夹角为 60~88度, 长方体壳体 (43) 的顶 板上幵有一个长方形的样品架孔 (45), 样品架孔 (45) 至少在两条对边上有下凹的凸 肩, 样品架 (46) 放在样品架孔 (45) 内时凸肩可以支撑样品架 (46), 样品架 (46) 为形状与样品架孔匹配的、 有一定厚度的平板, 样品架 (46) 中央开有样品孔 (47), 样品孔 (47) 四周有下凹的凸肩, 样品 (48) 放在样品孔 (47) 内时凸肩可以支撑样品
(48) , 样品架(46)上盖有两平行反射镜之一的平行反射镜 A (49), 平行反射镜 A
(49) 的镜面向下, 以样品孔 (47) 凸肩下凹的深度, 决定样品 (48) 与平行反射镜 A (49) 之间的距离, 在样品架 (46) 的正下方有平行于平行反射镜 A (49) 的两平行反 射镜之二的平行反射镜 B (50), 平行反射镜 B (50) 的镜面向上, 平行反射镜 B (50) 的长度小于样品孔 (47〉 的长度, 以使红外光入射光经入射导光反射镜 (44) 反射后能 进入样品架的样品孔 (47), 并且在两平行反射镜之间进行多次反射后能射向其后的出 射光的出射导光反射镜 (51), 出射导光反射镜 (51) 为平面镜, 向下倾斜, 置于长方 体壳体 (43) 的底板上, 长方体壳体 (43) 的后端有红外出射光出口, 出射导光反射镜 (51) 将红外出射光导向红外光谱仪的检测器。
PCT/CN2007/003186 2006-11-16 2007-11-12 Accessoire de mesure à transmission réflexions multiples pour spectromètre à infrarouge WO2008058456A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/515,018 US20100051813A1 (en) 2006-11-16 2007-11-12 Measurement accessory with multiple transmission-reflections used for infrared spectrometer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2006100978594A CN1975386B (zh) 2006-11-16 2006-11-16 红外光谱仪的多次透射-反射测量附件
CN200610097859.4 2006-11-16

Publications (1)

Publication Number Publication Date
WO2008058456A1 true WO2008058456A1 (fr) 2008-05-22

Family

ID=38125609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/003186 WO2008058456A1 (fr) 2006-11-16 2007-11-12 Accessoire de mesure à transmission réflexions multiples pour spectromètre à infrarouge

Country Status (3)

Country Link
US (1) US20100051813A1 (zh)
CN (1) CN1975386B (zh)
WO (1) WO2008058456A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1975386B (zh) * 2006-11-16 2010-10-13 南京大学 红外光谱仪的多次透射-反射测量附件
CN102445440A (zh) * 2010-10-09 2012-05-09 北京网新易尚科技有限公司 薄层荧光检测仪
CN102608033B (zh) * 2012-04-09 2014-03-12 中国科学院长春应用化学研究所 一种红外光谱仪反射附件
US9097583B2 (en) 2012-05-22 2015-08-04 Los Gatos Research Long-path infrared spectrometer
CN103383344B (zh) * 2013-06-24 2015-10-28 西安近代化学研究所 一种多晶体整合型红外光谱衰减全反射附件
DE102013212512A1 (de) * 2013-06-27 2015-01-15 Robert Bosch Gmbh Außenteil für ein Gerät und Gerät
CN105300910B (zh) * 2014-06-27 2018-08-28 中国科学院苏州纳米技术与纳米仿生研究所 用于红外测试中的承载装置
CN105092511A (zh) * 2015-08-12 2015-11-25 南京秀科仪器有限公司 一种测量单晶硅代位碳和间隙氧含量的方法
CN108074829A (zh) * 2016-11-10 2018-05-25 上海新昇半导体科技有限公司 基于ftir的表征设备
CN109975213B (zh) * 2019-05-05 2024-01-26 荧飒光学科技(上海)有限公司 傅里叶变换光谱仪用全反射装置
CN112179863B (zh) * 2020-09-01 2021-10-19 长江存储科技有限责任公司 透射采样装置及方法
CN115753817B (zh) * 2022-11-17 2023-09-26 无锡联发易创科技有限公司 一种硅晶圆片表面缺陷的视觉检测设备
CN117782999B (zh) * 2024-02-27 2024-04-30 上海英盛分析仪器有限公司 一种基于激光气体分析仪用的光束方向调节装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU883714A1 (ru) * 1978-10-10 1981-11-23 Предприятие П/Я А-7629 Многоходова оптическа кювета
DE4312320A1 (de) * 1993-04-15 1994-10-20 Bayer Ag Transmissionsphotometer zur Messung der Absorption von Flüssigkeiten
CN1975386A (zh) * 2006-11-16 2007-06-06 南京大学 红外光谱仪的多次透射-反射测量附件

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5214286A (en) * 1992-02-05 1993-05-25 Harrick Scientific Corporation Horizontal multiple internal reflection accessory for internal reflection spectroscopy
US5534698A (en) * 1993-07-07 1996-07-09 Research Development Corporation Solid state surface evaluation methods and devices
US5381234A (en) * 1993-12-23 1995-01-10 International Business Machines Corporation Method and apparatus for real-time film surface detection for large area wafers
US6310348B1 (en) * 1999-06-25 2001-10-30 Ramspec Corporation Spectroscopic accessory for examining films and coatings on solid surfaces
US6818894B2 (en) * 2001-04-30 2004-11-16 The Board Of Trustees Of The University Of Illinois Method and apparatus for characterization of ultrathin silicon oxide films using mirror-enhanced polarized reflectance fourier transform infrared spectroscopy
TWI334921B (en) * 2003-09-15 2010-12-21 Zygo Corp Surface profiling using an interference pattern matching template

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU883714A1 (ru) * 1978-10-10 1981-11-23 Предприятие П/Я А-7629 Многоходова оптическа кювета
DE4312320A1 (de) * 1993-04-15 1994-10-20 Bayer Ag Transmissionsphotometer zur Messung der Absorption von Flüssigkeiten
CN1975386A (zh) * 2006-11-16 2007-06-06 南京大学 红外光谱仪的多次透射-反射测量附件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU H.B. ET AL.: "Grazing Angle Mirror-Backed Reflection (GMBR) for Infrared Analysis of Monolayers on Silicon", J. PHYS. CHEM. B, vol. 110, 2006 *

Also Published As

Publication number Publication date
CN1975386A (zh) 2007-06-06
US20100051813A1 (en) 2010-03-04
CN1975386B (zh) 2010-10-13

Similar Documents

Publication Publication Date Title
WO2008058456A1 (fr) Accessoire de mesure à transmission réflexions multiples pour spectromètre à infrarouge
Kamaras et al. The low‐temperature infrared optical functions of SrTiO3 determined by reflectance spectroscopy and spectroscopic ellipsometry
US7633625B1 (en) Spectroscopic ellipsometer and polarimeter systems
TWI280349B (en) Spectrum measurement apparatus
Higashi et al. An attenuated total reflectance far-UV spectrometer
US5048970A (en) Optical attachment for variable angle reflection spectroscopy
US9310292B2 (en) Methods and apparatus for vacuum ultraviolet (VUV) or shorter wavelength circular dichroism spectroscopy
CN107270822B (zh) 测定多孔薄膜厚度和孔隙率的方法
US9207117B2 (en) Apparatus and method for performing surface plasmon resonance (SPR) spectroscopy with an infrared (IR) spectrometer
WO1986006834A1 (en) Automated refractometer
EP2335050A1 (en) High resolution surface plasmon resonance instrument using a dove prism
US8743367B2 (en) Optical resonance analysis using a multi-angle source of illumination
JP2005532563A (ja) 分子検出器装置
WO2004015387A2 (en) Sample holder
Boulet-Audet et al. Attenuated total reflection infrared spectroscopy: an efficient technique to quantitatively determine the orientation and conformation of proteins in single silk fibers
US8547555B1 (en) Spectrometer with built-in ATR and accessory compartment
WO2001020252A9 (en) Method and apparatus for performing optical measurements of layers and surface properties
JPH07159319A (ja) センサ装置
CN107991233B (zh) 贵金属纳米阵列消光光谱测量装置及其传感检测方法
KR101008376B1 (ko) 다중채널 분광타원해석기
CN114910422A (zh) 一种可变入射角的光谱椭偏仪
Chen et al. Refractive index and thickness analysis of natural silicon dioxide film growing on silicon with variable-angle spectroscopic ellipsometry
CN218382395U (zh) 一种基于棱镜的spr传感器及抗生素浓度检测系统
Li et al. Research on spectroscopic ellipsometry in China with future challenges
US20200371019A1 (en) Rotating-compensator ellipsometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07816798

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12515018

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07816798

Country of ref document: EP

Kind code of ref document: A1