WO2008057250A2 - Formulated lubricants meeting 0w and 5w low temperature performance specifications made from a mixture of base stocks obtained by different final wax processing routes - Google Patents

Formulated lubricants meeting 0w and 5w low temperature performance specifications made from a mixture of base stocks obtained by different final wax processing routes Download PDF

Info

Publication number
WO2008057250A2
WO2008057250A2 PCT/US2007/022641 US2007022641W WO2008057250A2 WO 2008057250 A2 WO2008057250 A2 WO 2008057250A2 US 2007022641 W US2007022641 W US 2007022641W WO 2008057250 A2 WO2008057250 A2 WO 2008057250A2
Authority
WO
WIPO (PCT)
Prior art keywords
base
stock
oil
dewaxed
solvent
Prior art date
Application number
PCT/US2007/022641
Other languages
English (en)
French (fr)
Other versions
WO2008057250A3 (en
Inventor
Charles L. Baker
James W. Gleeson
Lisa I. Yeh
Kim Elizabeth Fyfe
Original Assignee
Exxonmobil Research And Engineering Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxonmobil Research And Engineering Company filed Critical Exxonmobil Research And Engineering Company
Priority to EP07861516.8A priority Critical patent/EP2087076B1/en
Priority to JP2009534655A priority patent/JP2010507720A/ja
Priority to CA002667224A priority patent/CA2667224A1/en
Publication of WO2008057250A2 publication Critical patent/WO2008057250A2/en
Publication of WO2008057250A3 publication Critical patent/WO2008057250A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • C10M101/02Petroleum fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/10Lubricating oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/17Fisher Tropsch reaction products
    • C10M2205/173Fisher Tropsch reaction products used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/74Noack Volatility
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines

Definitions

  • the present invention relates to formulated lubricant oils meeting SAE OW-X and/or 5W-X specifications made from a base oil comprising a mixture of base stocks.
  • Formulated lubricants comprise a mixture of a base stock or a base oil and at least one performance additive.
  • the base stock is a single oil secured from a single crude source and subjected to a single processing scheme and meeting a particular specification. Mixtures of base stocks of different specifications produce a base oil. Crude oil is typically subjected initially to a dewatering/demetalling step followed by atmospheric distillation to yield various fractions, the heavier fraction being subjected typically to vacuum distillation with the heavier fractions from such vacuum pipe still being subjected to extraction to remove aromatics, hydrocracking, hydrofinishing and dewaxing to produce a suitable fraction boiling in the desirable lubricating oil boiling range.
  • the oil boiling in the lubricating oil (hereinafter lube oil) boiling range is subsequently separated into various fractions of different viscosity for use as base stocks.
  • the dewaxing can take the form of solvent dewaxing wherein the waxy lube oil is subjected to cooling using various solvents such as methylethyl ketone/methylisobutyl ketone, (MEK/MIBK), MEK/toluene, liquefied propane or butane, etc., to decrease the wax content of the oil and by so doing lower the pour point of the oil.
  • solvents such as methylethyl ketone/methylisobutyl ketone, (MEK/MIBK), MEK/toluene, liquefied propane or butane, etc.
  • Solvent dewaxing constitutes the physical removal of the wax using a solvent such as methyl ethyl ketone/methyl isobutyl ketone or an autorefrigerative solvent resulting in the recovery of a reduced wax content stream and a separate wax stream known as slack wax. Dewaxing can also be accomplished catalytically. In catalytic dewaxing the waxy feed is contacted with a dewaxing catalyst in the presence of hydrogen at elevated temperature.
  • a solvent such as methyl ethyl ketone/methyl isobutyl ketone or an autorefrigerative solvent resulting in the recovery of a reduced wax content stream and a separate wax stream known as slack wax.
  • Dewaxing can also be accomplished catalytically. In catalytic dewaxing the waxy feed is contacted with a dewaxing catalyst in the presence of hydrogen at elevated temperature.
  • the wax content of the oil is reduced either by conversion of the wax molecules, which are typically long chain normal or long chain slightly branched paraffin, into short chain paraffin, or by the rearrangement of the atoms in the wax molecule, i.e., conversion of n-paraffin or slightly branched paraffin into more heavily branched paraffin, a process known as isomerization.
  • Catalytic dewaxing changes the nature of the molecules present in the oil either by cracking or rearrangement and clearly results in the production of a dewaxed oil which is compositionally different than that obtained by solvent dewaxing.
  • lube oil base oil produced by blending different base stock, usually employ different base stocks produced in a single plant.
  • a lube oil blending plant will use as its base stock slate the base stock secured from its associated refinery and, therefore, all of the base stocks or base stock mixtures, i.e., base oils used to produce formulated oil in the lube oil blending plant will have been treated in generally the same manner including crude pretreatment, distillation, hydroprocessing (if any) and dewaxing, be it solvent dewaxing or catalytic dewaxing. Refineries rarely house two different dewaxing schemes.
  • USP 4,259,170 teaches a method for manufacturing a slate of lubricant base stocks from a paraffin base stock or a mixed crude source.
  • the heavy, high viscosity bright stock raffinate is catalytically dewaxed while the lighter lower viscosity neutral oil raffinates are solvent dewaxed.
  • the combined use of solvent and catalytic dewaxing is described as a highly efficient method of manufacture without loss of product quality.
  • the catalytically dewaxed bright stock can be used for blending automotive lubricating oils. As is apparent, however, the catalytically dewaxed bright stock and the solvent dewaxed lighter neutral oils are not of the same or similar viscosity.
  • USP 6,773,578 is directed to lube oil base stocks made by a process that involves obtaining feedstocks that have a 95% off point (T 95 ) below 115O 0 F and feed stocks that have a 95% off point (T 95 ) above 1150 0 F.
  • the feed stocks that have a 95% off point below 1150 0 F are catalytically dewaxed and the feed stocks that have a 95% off point above 115O 0 F are solvent dewaxed.
  • the resulting products can optionally be blended and the base stocks can be combined with various additives to form lube oil compositions. No examples are presented of any such blends, which even if they had been produced would have constituted mixtures of base stocks or base oils of different viscosities, not of the same or substantially similar viscosities.
  • U.S. published application 2005/0098476 is directed to a method for improving the lubricating properties of a distillate base oil characterized by a pour point of O 0 C or less and a boiling range having the 10% off point (Ti 0 ) falling between about 625 0 F and about 790 0 F and the 90% off point (T 90 ) falling between about 725°F and about 95O 0 F, the method comprising blending with said distillate base stock or base oil a sufficient amount of a pour point depressing base oil blending component to reduce the pour point of the resulting base oil blend at least 3 0 C below the pour point of the distillate base stock, wherein the pour point depressing base oil blending component is an isomerized Fischer- Tropsch derived base stock bottoms product having a pour point that is at least 3 0 C higher than the pour point of the distillate base stock.
  • USP 6,475,960 is directed to premium synthetic lubricants comprising a synthetic isoparaffinic hydrocarbon base stock and an effective amount of at least one performance additive.
  • the base stock is derived from a waxy paraffinic Fischer-Tropsch (hereinafter also referred to as F-T) synthesized hydrocarbon feed.
  • the lubricant may also contain hydrocarbonaceous and synthetic base stock materials such as mineral oils, mineral oil slack wax isomerate, PAO, and mixtures thereof. No examples of mixtures of Fischer- Tropsch wax isomerate with any mineral oil, synthetic oil or PAO are presented.
  • USP 5, 149,452 is directed to wax isomerate oil having a reduced pour point, by using a combination of low molecular weight and high molecular weight polyalkymethacrylate pour point depressant.
  • the preferred wax isomerate is hydroisomerized slack wax.
  • USP 6,332,974 is directed to wide-cut synthetic isoparaffinic lubricating oils made by hydroisomerization and then catalytic dewaxing of a waxy F-T synthesized hydrocarbon fraction feed.
  • Formulated oils made by admixing the base stock with a commercial automotive additive package meet all specifications, including low temperature properties, for multigrade internal combustion engine crankcase oils.
  • the wide cut synthetic isoparaffinic lubricating oil base stock can be used as such or mixed with other base stocks including hydro- carbonaceous base stock, synthetic base stock and mixtures thereof, hydro- carbonaceous base stocks including conventional mineral oil, shale oil tar and coal liquefaction oils, mineral oil derived slack wax, while synthetic base stocks include PAO, polyester types and other synthetics.
  • base stocks including hydro- carbonaceous base stock, synthetic base stock and mixtures thereof, hydro- carbonaceous base stocks including conventional mineral oil, shale oil tar and coal liquefaction oils, mineral oil derived slack wax, while synthetic base stocks include PAO, polyester types and other synthetics.
  • No examples are given of the wide cut synthetic isoparaffinic lube oil mixed with any other base stock (see also USP 6,475,960, WO 00/14187).
  • USP 6,090,758 is directed to a method for reducing foaming in lubricating oils derived from wax isomerization.
  • a conventional SAE 10W40 multigrade oil is formulated from an isomerized slack wax base stock (EXXSYN base stock), 150 N base stock, an additive package, VI improver and 12500 cSt silicone oil.
  • WO 03/064570 is directed to mixed Total Base Number (TBN) detergent additive compositions for lubricating oils.
  • TBN Total Base Number
  • examples are given of such detergent mixtures in combination with various base stocks and base oil mixtures of base stocks including hydrotreated base stocks mixed with PAO and hydrocarbyl aromatics. Examples are present only of formulations containing various combinations of hydrotreated base stock, PAO and hydrocarbyl aromatics for the production of SAE 5W30 multi-grade engine oils.
  • US published application 2004/0094453 is directed to a process for producing a lubricating base oil blend which comprises (a) recovering a F-T derived distillate fraction characterized by a kinematic viscosity (KV) at 100 0 C of about 2 cSt or greater but less than 3 cSt and (b) blending the F-T derived distillate fraction with a petroleum derived base oil selected from the group consisting of a Group I, a Group II a Group III base stock or mixture of two or more thereof to produce a lube base oil blend having a KV at 100 0 C of about 3 cSt or greater.
  • KV kinematic viscosity
  • Figure 1 presents the results in terms of Mini Rotary Viscometric Test (ASTM D 4684) (MRV) at -35°C and Cold Crank Simulation Viscosity Text (CCS) at -3O 0 C (ASTM D 5293) for various oils and oil blends showing that the combination of 2 base oils of similar viscosities but made by different final wax treatment process techniques (base oils A solvent dewaxed plus B catalytically dewaxed) exhibited CCS and MRV values for the blend unexpectedly superior to the CCS and MRV values exhibited for blends of base oils made using the same final wax treatment process technique (base oil A, solvent dewaxed) plus E (solvent dewaxed), or base oil D (solvent dewaxed) plus E or base oil C (solvent dewaxed) plus E).
  • the present invention is directed to multi grade engine oils meeting Society of Automotive Engineers (SAE) Surface Vehicle Standard J300, engine oil viscosity classification for OW-X or 5W-X low temperature specifications and Noack volatility of 15% or less, preferably 14% or less, more preferably 13% or less, still more preferably 10% or less, a OW-X specification of CCS viscosity at -35°C of 6200 cP or less and of MRV at -4O 0 C of 60,000 cP or less, preferably 40,000 cP or less, more preferably 30,000 cP or less, or a 5W-X specification of CCS viscosity at -3O 0 C of 6600 cP or less and MRV at -35 0 C of 60,000 cP or less, preferably 40,000 cP or less, more preferably 30,000 cP or less, and a yield stress of less than 35 pascals comprising a mixture of at least 2 base stocks or of a base stock and a
  • the present invention is also directed to a method for producing a base oil for use as the base oil in the formulation of OW-X or 5W-X multigrade engine oils said multi grade engine oils meeting the NOACK volatility, CCS viscosity and MRV low shear viscosity criteria previously indicated said method comprising mixing at least two base stocks, or base stock and base oil, or two base oils produced by different final wax removal or conversion processing routes, wherein each base stock or base oil individually making up the mixture has a kinematic viscosity at 100 0 C in the range of about 3.5 to 7.0 mm 2 /s, the mixture itself, without additive, having a kinematic viscosity at 100 0 C in the range of about 4 to 6 mm 2 /s and wherein the pour point of each base stock or base oil in the mixture without additives is about -3O 0 C or higher, preferably about -2O 0 C or higher, more preferably about -2O 0 C or higher provided that as compared to the temperature at which the
  • ASTM has two tests which measure the low temperature performance of the lubricant.
  • the cold cranking simulator viscosity (CCS) (ASTMD 5293) evaluates the lubricant's capability to allow the engine to crank at low temperature. Once the engine has cranked and started, then the oil must be able to flow rapidly to the oil pump.
  • the test for measuring low temperature pumping ability is the mini rotary viscometer test (MRV) (ASTM D 4684).
  • the MRV test is designed to predict the ability of the oil to reach critical moving components under low temperature starting conditions. Both good low temperature cranking viscosity and good mini rotary viscosity are required to protect engine components from damage due to lack of lubrication during low temperature starting.
  • the SAE viscosity grade system is used to determine the low temperature usefulness of multigraded engine oils. Both the CCS viscosity and the MRV must meet the limits of the particular SAE grade designated.
  • the CCS viscosity and the MRV test measure different low temperature properties of the lubricant and therefore good performance in the CCS viscosity test does not necessarily predict good performance in the MRV test.
  • the MRV performance is usually improved by the addition of low temperature flow improver.
  • the choice of flow improver is highly dependent upon the base stock and can be very sensitive to changes in base stock wax structure. Situations arise where no consistently capable low temperature flow improver is available.
  • High performance specifically processed API Group 11+ and Group III mineral oil base stocks set the performance standard for non-synthetic engine oils. Key to that performance is the low temperature properties enabled by the base stock as seen in the formulated lubricant MRV and CCS.
  • the MRV and CCS viscosity are measured well below the pour point of the base oils and take advantage of the various additive chemistries used, including pour point depressants (PPD's).
  • Solvent dewaxed stocks are known to generally have debits in regard to low temperature properties and are defensive relative to stocks which have been catalytically dewaxed (cat dewaxed). Formulations based on cat dewaxed stocks have lower overall formulated cost than those from solvent dewaxed stocks. Different base stocks of the same final wax processing type from the same plant are generally blended to make an engine base oil and one of the base stocks usually will have superior volatility characteristics and thus bears a price premium.
  • cat dewaxed stocks of the same or substantially similar viscosity as the solvent dewaxed stocks i.e., stocks having KV @ 100 0 C in the range of about 3.5 to 7 mm 2 /s, preferably about 4 to 7 mm 2 /s, more preferably about 4 to 6.5 mm 2 /s
  • solvent dewaxed base stock to replace part of the solvent dewaxed stock to yield a base oil which either itself meets the MRV and CCS viscosity target requirements for SAE OW-X and/or 5W-X multi grade lubricating oil or which with the addition of a minor amount of pour point depressant, i.e., zero to 0.1 wt% (as received) amounts much lower than have heretofore been employed, can result in a formulated lube oil meeting the SAE OW-X and/or 5W-X low temperature viscometric properties as measured by MRV and CCS viscosity.
  • Wax hydrodewaxate, hydroisomerate/cat (and/or solvent) dewaxate, and GTL stocks offer yet additional choices for base stocks made by methods which differ from either solvent dewaxing or catalytic dewaxing.
  • Wax hydrodewaxate or hydroisomerate/cat (and/or solvent) dewaxate stocks and Gas-to-Liquids (GTL) stocks made from GTL materials are base stocks characterized by the rearrangement of the carbon atoms making up the structure of the hydrocarbon molecule.
  • hydrodewaxing physically removes wax from oil without changing the structure of the oil and traditional catalytic dewaxing physically destroys the wax by converting it from heavy molecules to light molecule
  • hydrodewaxing, or hydroisomerization/cat (or solvent) dewaxing predominantly rearranges the carbon atoms in the waxy molecule converting it from a normal straight-chain or slightly branch chain structure into a branched or more branched chain structure (iso-paraffin) of the same or similar carbon number accompanied by minimal but selective catalytic dewaxing (i.e., minimal cracking/fragmentation) or minimal solvent dewaxing, producing an oil material of significantly reduced pour point.
  • base stocks or base oils having KV @ 100 0 C in the range of about 3.5 to 7 mm 2 /s made by different final wax removal (solvent or catalytic dewaxing) and/or by different final wax molecule rearrangement (i.e., wax isomerization) techniques can be blended to produce formulated lubricating oil compositions meeting the low temperature viscometries and rheological property targets of SAE OW-X and 5W-X multi- grade engine oils without need to resort to deeply dewaxed base oils or base oils of very low pour point, or to viscosity modifiers or pour point depressants, or with the use of very low quantities of viscosity modifiers and pour point depressants (PPD).
  • PPD pour point depressants
  • a difference between the pour point of the mixture of base stock(s) and or base oil(s) and the temperature of MRV evaluation for the OW-X or 5W-X formulated oil of at least 1O 0 C is required to take advantage of the improvement brought about by the use of such mixed base stocks produced by different final wax (removal and/or molecular rearrangement) processing routes in terms of the unexpected positive effect on low temperature viscometric and rheological properties.
  • the stocks from different dewaxing processes will have differing kinds, and in all probability different amounts, of residual wax.
  • the present invention discovery of unexpected suitability of higher pour point oils to make lubricating oil formulations meeting the OW-X and 5 W-X specification enlarges the pool of oils useful to produce premium formulations without the need for recourse to severe dewaxing to produce very low pour point base stock.
  • the base stocks and/or base oils which are combined to achieve this advantageous result are base stocks or base oils characterized each individually as having kinematic viscosities (KV) at 100 0 C (by ASTM D445) in the range of about 3.5 to 7 mm 2 /s, preferably about 4 to 7 mm 2 /s, more preferably about 4.0 to 6.5 mm 2 /s, wherein each base stock or base oil in the blend is derived from the same or different feed stock source but processed by different final wax processing techniques or different oil synthesis techniques.
  • the final mixture of base stocks and/or base oils, without additives, is characterized by a kinematic viscosity at 100 0 C in the range of about 4 to 6 mm 2 /s.
  • Base stocks useful as blending components in the present invention are the API Group II, Group III, base stocks developed and defined by the American Petroleum Institute (API Publication 1509; www.API.org).
  • Group II base stocks are hydrocarbon base stocks which have a viscosity index of between about 80 to 120, and contain less than or equal to 0.03 wt% sulfur and greater than or equal to 90 wt% saturates.
  • Group III stocks are hydrocarbon base stocks which have a viscosity index greater than 120 and contain less than or equal to about 0.03 wt% sulfur and greater than 90 wt% saturates.
  • Wax hydroisomerate/catalytic (and/or solvent) dewaxate, or hydrodewaxate or GTL base stocks/base oils can also be used in combination with the aforesaid dewaxed Group II and/or Group III base stocks/base oils.
  • each oil used before blending has a kinematic viscosity at 100 0 C in the range of about 3.5 to 7 mm 2 /s, preferably about 4 to 7 mm 2 /s, more preferably about 4.0 to 6.5 mm 2 /s, and each base oil and the mixture of base oils has a pour point at least 10 0 C higher than the temperature of measurement of the MRV specification for the OW-X or 5W-X oil formulation (MRV specification for OW-X oil measured at -40 0 C, for 5W-X oil measured at - 35°C).
  • oils which are blended may come from the same or different feed sources, that is, each oil can trace their origin back to the same or to different crude oil or synthesis process but each oil has been subjected to different final wax processing procedures (i.e., solvent dewaxing, catalytic dewaxing, hydroisomerization/catalytic (and/or solvent) dewaxing, or hydrodewaxing).
  • a base oil pair can be derived from some particular crude oil provided each oil has been subjected to a different final wax processing scheme.
  • the first base stock or base stock mixture for example, can be subject to solvent extraction, solvent dewaxing and hydrotreating while the second base stock or base stock mixture can be, for example, subjected to solvent extraction, catalytic dewaxing and hydrotreating.
  • Each base stock or base oil in a base oil pair can further constitute a mixture of base stocks or base oil from the same or different feed source subjected to the same final wax processing scheme.
  • base stock or “base oil” is to be understood as embracing a single base stock or base oil or mixture of more than one base stock or base oil from the same or different feed source subject to the same final wax processing scheme unless indicated otherwise.
  • the Group II and/or Group III base oils/base stocks can be combined with non-conventional base stocks/base oils as the second oil produced by a different wax processing procedure.
  • the present invention embraces mixtures of base stocks or mixtures of mixtures of base stocks having KVs @ 100 0 C in the range of 3.5 to 7 mm 2 /s, preferably 4 to 7 mm 2 /s, more preferably 4.0 to 6.5 mm 2 /s as previously described, wherein for example: a) one base stock or base oil or mixture of base stocks or base oils is/are solvent dewaxed using a single solvent dewaxing process technique and the second base stock or base oil or mixture of base stocks or base oils is/are catalytically dewaxed using a single catalytic dewaxing process technique; b) one base stock or base oil or mixture of base stocks or base oils is/are solvent dewaxed using a single solvent dewaxing process technique or catalytically dewaxed using a single catalytic dewaxing technique and the second base stock or base oil or mixture of base stocks or base oils is/are GTL oil(s) and/or hydrodewaxed
  • the amount of catalytic dewaxed oil added to solvent dewaxed oil of the same or substantially similar viscosity ranges from about 5 to 35 wt%, preferably about 10 to 25 wt%.
  • the weight ratio of first oil processed by a first wax processing technique to a second oil processed by a second wax processing technique can be from about 10:90 to about 90:10, preferably about 25:75 to about 75:25, more preferably about 40:60 to about 60:40.
  • Non-conventional or unconventional base stocks and/or base oils include one or more of a mixture of base stock(s) and/or base oil(s) derived from one or more Gas-to-Liquids (GTL) materials, as well as hydrodewaxed, or hydroisomerized/cat (and/or solvent) dewaxed base stock(s) and/or base oils derived from natural wax or waxy feeds, mineral and or non-mineral oil waxy feed stocks such as slack waxes, natural waxes, and waxy stocks such as gas oils, waxy fuels hydrocracker bottoms, waxy raffinate, hydrocrackate, thermal crackates, or other mineral, mineral oil, or even non-petroleum oil derived waxy materials such as waxy materials received from coal liquefaction or shale oil, and mixtures of such base stocks and/or base oils.
  • GTL Gas-to-Liquids
  • wax hydrocarbonaceous material having a high pour point, typically existing as a solid at room temperature, i.e., at a temperature in the range from about 15°C to 25°C, and consisting predominantly of paraffinic materials
  • paraffinic any saturated hydrocarbons, such as alkanes.
  • Paraffinic materials may include linear alkanes, branched alkanes (iso- paraffins), cycloalkanes (cycloparaffins; mono-ring and/or multi-ring), and branched cycloalkanes; c) "hydroprocessing”: a refining process in which a feedstock is heated with hydrogen at high temperature and under pressure, commonly in the presence of a catalyst, to remove and/or convert less desirable components and to produce an improved product; d) "hydrotreating”: a catalytic hydrogenation process that converts sulfur- and/or nitrogen-containing hydrocarbons into hydrocarbon products with reduced sulfur and/or nitrogen content, and which generates hydrogen sulfide and/or ammonia (respectively) as byproducts; similarly, oxygen containing hydrocarbons can also be reduced to hydrocarbons and water; e) "catalytic dewaxing”: a conventional catalytic process in which normal paraffins (wax) and/or waxy hydrocarbons, e
  • hydrodewaxing e.g., ISODEWAXING® of Chevron or MSDWTM of Exxon Mobil corporation
  • a very selective catalytic process which in a single step or by use of a single catalyst or catalyst mixture effects conversion of wax by isomerization/rearrangement of the n-paraffins and slightly branched isoparaffins into more heavily branched isoparaffins, the resulting product not requiring a separate conventional catalytic or solvent dewaxing step to meet the desired product pour point;
  • hydroisomerate e.g., ISODEWAXING® of Chevron or MSDWTM of Exxon Mobil corporation
  • a very selective catalytic process which in a single step or by use of a single catalyst or catalyst mixture effects conversion of wax by isomerization/rearrangement of the n-paraffins and slightly branched isoparaffins into more heavily branched isoparaffins, the resulting product not requiring a separate conventional catalytic or solvent
  • hydrodewaxate refer to the products produced by the respective processes, unless otherwise specifically indicated;
  • base stock is a single oil secured from a single feed stock source and subjected to a single processing scheme and meeting a particular specification;
  • base oil comprises one or more base stock(s).
  • hydroisomerization/cat dewaxing is used to refer to catalytic processes which have the combined effect of converting normal paraffins and/or waxy hydrocarbons by rearrangement/isomerization, into more branched iso-paraffins, followed by (1) catalytic dewaxing to reduce the amount of any residual n-paraffins or slightly branched iso-paraffins present in the isomerate by cracking/fragmentation or by (2) hydrodewaxing to effect further isomerization and very selective catalytic dewaxing of the isomerate, to reduce the product pour point.
  • GTL materials are materials that are derived via one or more synthesis, combination, transformation, rearrangement, and/or degradation/deconstructive processes from gaseous carbon-containing compounds, hydrogen-containing compounds, and/or elements as feedstocks such as hydrogen, carbon dioxide, carbon monoxide, water, methane, ethane, ethylene, acetylene, propane, propylene, propyne, butane, butylenes, and butynes.
  • GTL base stocks and/or base oils are GTL materials of lubricating viscosity that are generally derived from hydrocarbons, for example waxy synthesized hydrocarbons, that are themselves derived from simpler gaseous carbon-containing compounds, hydrogen-containing compounds and/or elements as feedstocks.
  • GTL base stock(s) and/or base oil(s) include oils boiling in the lube oil boiling range separated/fractionated from synthesized GTL materials such as for example, by distillation and subsequently subjected to a final wax processing step which is either or both of the well-known catalytic dewaxing process, or solvent dewaxing process, to produce lube oils of reduced/low pour point; synthesized wax isomerates, comprising, for example, hydrodewaxed, or hydroisomerized/cat (and/or solvent) dewaxed synthesized waxy hydrocarbons; hydrodewaxed, or hydroisomerized/cat (and/or solvent) dewaxed Fischer- Tropsch (F-T) material (i.e., hydrocarbons, waxy hydrocarbons, waxes and possible analogous oxygenates); preferably hydrodewaxed, or hydroisomerized/cat (and/or solvent) dewaxed F-T hydrocarbons, or hydrodewaxed or hydroisomerized/
  • GTL base stock(s) and/or base oil(s) derived from GTL materials especially, hydrodewaxed, or hydroisomerized/cat (and/or solvent) dewaxed F-T material derived base stock(s) and/or base oil(s), and other hydrodewaxed, or hydroisomerized/cat (and/or solvent) dewaxed wax derived base stock(s) and/or base oil(s) are characterized typically as having kinematic viscosities at 100 0 C of from about 2 mm /s to about 50 mm /s, preferably from about 3 mm /s to about 50 mm 2 /s, more preferably from about 3.5 mm 2 /s to about 30 mm 2 /s, as exemplified by a GTL base stock derived by the hydrodewaxing or hydroisomerization/catalytic (or solvent dewaxing) of F-T wax, which has a kinematic viscosity of about
  • GTL base stock(s) and/or base oil(s) derived from GTL materials especially hydrodewaxed, or hydroisomerized/cat (and/or solvent) dewaxed F-T material derived base stock(s) and/or base oil(s), and other hydrodewaxed, or hydroisomerized/cat (and/or solvent) dewaxed wax-derived base stock(s) and/or base oil(s), which can be used as base stock and/or base oil components of this invention are further characterized typically as having pour points of about -5°C or lower, preferably about -10 0 C or lower, more preferably about -15°C or lower, still more preferably about -20 0 C or lower, and under some conditions may have advantageous pour points of about -25°C or lower, with useful pour points of about -3O 0 C to about -4O 0 C or lower.
  • the GTL or other hydrodewaxed or hydroisomerized/cat (and/or solvent) dewaxed wax-derived base stock(s) and/or base oil(s) used are those having pour points of about -3O 0 C or higher, preferably about -25°C or higher, more preferably about -2O 0 C or higher.
  • pour point refer to measurement made by ASTM D97 and similar automated versions.
  • the isomerate is subjected to subsequent catalytic dewaxing and/or hydrodewaxing, and/or solvent dewaxing, it is the final dewaxing step which determines whether the base oil has been processed by different wax processing techniques.
  • an isomerate secured from a single hydroisomerization process technique if divided into two fractions with one fraction being solvent dewaxed and the second fraction being catalytically dewaxed or hydrodewaxed, would be considered to be two fractions produced by different final wax processing techniques.
  • the two oils produced from the same wax or waxy feed are considered two stocks made by two different final wax processing techniques, provided that when the subsequent wax treatment step to which the first isomerate is subjected is a hydrodewaxing step, the hydrodewaxing per se practiced on the second wax fraction uses a hydrodewaxing process or catalyst different from that practiced on the first isomerate.
  • the GTL base stock(s) and/or base oil(s) derived from GTL materials especially hydrodewaxed or hydroisomerized/cat (and/or solvent) dewaxed F-T material derived base stock(s) and/or base oil(s), and other such wax-derived base stock(s) and/or base oil(s) which can be used in this invention are also characterized typically as having viscosity indices of 80 or greater, preferably 100 or greater, and more preferably 120 or greater. Additionally, in certain particular instances, the viscosity index of these base stocks and/or base oil(s) may be preferably 130 or greater, more preferably 135 or greater, and even more preferably 140 or greater.
  • GTL base stock(s) and/or base oil(s) that derive from GTL materials preferably F-T materials especially F-T wax generally have a viscosity index of 130 or greater.
  • References herein to viscosity index refer to ASTM method D2270.
  • the GTL base stock(s) and/or base oil(s) are typically highly paraffinic (>90% saturates), and may contain mixtures of monocycloparaffins and multicycloparaffins in combination with non-cyclic isoparaffins.
  • the ratio of the naphthenic (i.e., cycloparaffin) content in such combinations varies with the catalyst and temperature used.
  • GTL base stock(s) and/or base oil(s) typically have very low sulfur and nitrogen content, generally containing less than about 10 ppm, and more typically less than about 5 ppm of each of these elements.
  • the sulfur and nitrogen content of GTL base stock(s) and/or base oil(s) obtained by the hydroisomerization/isodewaxing of F-T material, especially F-T wax, is essentially nil.
  • the GTL base stock(s) and/or base oil(s) comprises paraffinic materials that consist predominantly of non-cyclic isoparaffins and only minor amounts of cycloparaffins.
  • These GTL base stock(s) and/or base oil(s) typically comprise paraffinic materials that consist of greater than 60 wt% non-cyclic isoparaffins, preferably greater than 80 wt% non-cyclic isoparaffins, more preferably greater than 85 wt% non-cyclic isoparaffins, and most preferably greater than 90 wt% non-cyclic isoparaffins.
  • compositions of GTL base stock(s) and/or base oil(s), hydrodewaxed or hydroisomerized/cat (and/or solvent) dewaxed F-T material derived base stock(s), and wax-derived hydrodewaxed, or hydroisomerized/cat (and/or solvent) dewaxed base stock(s), such as wax isomerates or hydrodewaxates, are recited in U.S. Pat. Nos. 6,080,301; 6,090,989, and 6,165,949 for example.
  • Base stock(s) and/or base oil(s) derived from waxy feeds which are also suitable for use in this invention, are paraffinic fluids of lubricating viscosity derived from hydrodewaxed, or hydroisomerized/cat (and/or solvent) dewaxed waxy feedstocks of mineral oil, non-mineral oil, non-petroleum, or natural source origin, e.g., feedstocks such as one or more of gas oils, slack wax, waxy fuels hydrocracker bottoms, hydrocarbon raffinates, natural waxes, hyrocrackates, thermal crackates, foots oil, wax from coal liquefaction or from shale oil, or other suitable mineral oil, non-mineral oil, non-petroleum, or natural source derived waxy materials, linear or branched hydrocarbyl compounds with carbon number of about 20 or greater, preferably about 30 or greater, and mixtures of such isomerate/isodewaxate base stock(s)
  • Slack wax is the wax recovered from any waxy hydrocarbon oil including synthetic oil such as F-T waxy oil or petroleum oils by solvent or autorefrigerative dewaxing.
  • Solvent dewaxing employs chilled solvent such as methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), mixtures of MEK/MIBK, mixtures of MEK and toluene, while autorefrigerative dewaxing employs pressurized, liquefied low boiling hydrocarbons such as propane or butane.
  • Slack wax(es) secured from synthetic waxy oils such as F-T waxy oil will usually have zero or nil sulfur and/or nitrogen containing compound content.
  • Slack wax(es) secured from petroleum oils may contain sulfur and nitrogen containing compounds.
  • Such heteroatom compounds must be removed by hydrotreating (and not hydrocracking), as for example by hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) so as to avoid subsequent poisoning/deactivation of the hydroisomerization catalyst.
  • hydrotreating and not hydrocracking
  • HDS hydrodesulfurization
  • HDN hydrodenitrogenation
  • GTL base stock and/or base oil and/or wax isomerate base stock and/or base oil as used herein and in the claims is to be understood as embracing individual fractions of GTL base stock and/or base oil and/or of wax- derived hydrodewaxed or hydroisomerized/cat (and/or solvent) dewaxed base stock and/or base oil as recovered in the production process, mixtures of two or more GTL base stock and/or base oil fractions and/or wax-derived hydrodewaxed, or hydroisomerized/cat (and/or solvent) dewaxed base stocks and/or base oil fractions, as well as mixtures of one or two or more low viscosity GTL base stock and/or base oil fraction(s) and/or wax-derived hydrodewaxed, or hydroisomerized/cat (and/or solvent) dewaxed base stock and/or base oil fraction(s) with one, two or more higher viscosity GTL base stock and/or base oil fraction(s) and/
  • the GTL material, from which the GTL base stock(s) and/or base oil(s) is/are derived is an F-T material (i.e., hydrocarbons, waxy hydrocarbons, wax).
  • F-T material i.e., hydrocarbons, waxy hydrocarbons, wax.
  • a slurry F-T synthesis process may be beneficially used for synthesizing the feed from CO and hydrogen and particularly one employing an F-T catalyst comprising a catalytic cobalt component to provide a high Schultz-Flory kinetic alpha for producing the more desirable higher molecular weight paraffins. This process is also well known to those skilled in the art.
  • a synthesis gas comprising a mixture of H 2 and CO is catalytically converted into hydrocarbons and preferably liquid hydrocarbons.
  • the mole ratio of the hydrogen to the carbon monoxide may broadly range from about 0.5 to 4, but is more typically within the range of from about 0.7 to 2.75 and preferably from about 0.7 to 2.5.
  • F-T synthesis processes include processes in which the catalyst is in the form of a fixed bed, a fluidized bed or as a slurry of catalyst particles in a hydrocarbon slurry liquid.
  • the stoichiometric mole ratio for a F-T synthesis reaction is 2.0, but there are many reasons for using other than a stoichiometric ratio as those skilled in the art know.
  • the feed mole ratio of the H 2 to CO is typically about 2.1/1.
  • the synthesis gas comprising a mixture of H 2 and CO is bubbled up into the bottom of the slurry and reacts in the presence of the particulate F-T synthesis catalyst in the slurry liquid at conditions effective to form hydrocarbons, a portion of which are liquid at the reaction conditions and which comprise the hydrocarbon slurry liquid.
  • the synthesized hydrocarbon liquid is separated from the catalyst particles as filtrate by means such as filtration, although other separation means such as centrifugation can be used.
  • Some of the synthesized hydrocarbons pass out the top of the hydrocarbon synthesis reactor as vapor, along with unreacted synthesis gas and other gaseous reaction products.
  • Some of these overhead hydrocarbon vapors are typically condensed to liquid and combined with the hydrocarbon liquid filtrate.
  • the initial boiling point of the filtrate may vary depending on whether or not some of the condensed hydrocarbon vapors have been combined with it.
  • Slurry hydrocarbon synthesis process conditions vary somewhat depending on the catalyst and desired products.
  • Typical conditions effective to form hydrocarbons comprising mostly C 5+ paraffins, (e.g., C 5+ -C 2O o) and preferably C] 0+ paraffins, in a slurry hydrocarbon synthesis process employing a catalyst comprising a supported cobalt component include, for example, temperatures, pressures and hourly gas space velocities in the range of from about 320-850 0 F, 80-600 psi and 100-40,000 V/hr/V, expressed as standard volumes of the gaseous CO and H 2 mixture (0 0 C, 1 atm) per hour per volume of catalyst, respectively.
  • C 5+ is used herein to refer to hydrocarbons with a carbon number of greater than 4, but does not imply that material with carbon number 5 has to be present. Similarly other ranges quoted for carbon number do not imply that hydrocarbons having the limit values of the carbon number range have to be present, or that every carbon number in the quoted range is present. It is preferred that the hydrocarbon synthesis reaction be conducted under conditions in which limited or no water gas shift reaction occurs and more preferably with no water gas shift reaction occurring during the hydrocarbon synthesis. It is also preferred to conduct the reaction under conditions to achieve an alpha of at least 0.85, preferably at least 0.9 and more preferably at least 0.92, so as to synthesize more of the more desirable higher molecular weight hydrocarbons.
  • a catalyst containing a catalytic cobalt component This has been achieved in a slurry process using a catalyst containing a catalytic cobalt component.
  • suitable F-T reaction types of catalyst comprise, for example, one or more Group VIII catalytic metals such as Fe, Ni, Co, Ru and Re, it is preferred that the catalyst comprise a cobalt catalytic component.
  • the catalyst comprises catalytically effective amounts of Co and one or more of Re, Ru, Fe, Ni, Th, Zr, Hf, U, Mg and La on a suitable inorganic support material, preferably one which comprises one or more refractory metal oxides.
  • Preferred supports for Co containing catalysts comprise Titania, particularly.
  • the waxy feed from which the base stock(s) and/or base oil(s) is/are derived is a wax or waxy feed from mineral oil, non-mineral oil, non-petroleum, or other natural source, especially slack wax, or GTL material, preferably F-T material, referred to as F-T wax.
  • F-T wax preferably has an initial boiling point in the range of from 650-750 0 F and preferably continuously boils up to an end point of at least 1050 0 F.
  • a narrower cut waxy feed may also be used during the hydroisomerization.
  • a portion of the n- paraffin waxy feed is converted to lower boiling isoparaffinic material.
  • catalytic dewaxing is also practiced after isomerization/isodewaxing, some of the isomerate/isodewaxate will also be hydrocracked to lower boiling material during the conventional catalytic dewaxing.
  • the end boiling point of the waxy feed be above 1050 0 F (1050°F+).
  • the waxy feed preferably comprises the entire 650-750°F+ fraction formed by the hydrocarbon synthesis process, having an initial cut point between 650 0 F and 75O 0 F determined by the practitioner and an end point, preferably above 1050 0 F, determined by the catalyst and process variables employed by the practitioner for the synthesis.
  • Such fractions are referred to herein as "650- 750°F+ fractions”.
  • 650-750 0 F fractions refers to a fraction with an unspecified initial cut point and an end point somewhere between 650 0 F and 75O 0 F.
  • Waxy feeds may be processed as the entire fraction or as subsets of the entire fraction prepared by distillation or other separation techniques.
  • the waxy feed also typically comprises more than 90%, generally more than 95% and preferably more than 98 wt% paraffinic hydrocarbons, most of which are normal paraffins. It has negligible amounts of sulfur and nitrogen compounds (e.g., less than 1 wppm of each), with less than 2,000 wppm, preferably less than 1,000 wppm and more preferably less than 500 wppm of oxygen, in the form of oxygenates. Waxy feeds having these properties and useful in the process of the invention have been made using a slurry F-T process with a catalyst having a catalytic cobalt component, as previously indicated.
  • the process of making the lubricant oil base stocks from waxy stocks may be characterized as an isomerization process. If slack waxes are used as the feed, they may need to be subjected to a preliminary hydrotreating step under conditions already well known to those skilled in the art to reduce (to levels that would effectively avoid catalyst poisoning or deactivation) or to remove sulfur- and nitrogen-containing compounds which would otherwise deactivate the hydroisomerization or hydrodewaxing catalyst used in subsequent steps.
  • Such preliminary treatment is not required because, as indicated above, such waxes have only trace amounts (less than about 10 ppm, or more typically less than about 5 ppm to nil) of sulfur or nitrogen compound content.
  • some hydrodewaxing catalyst fed F-T waxes may benefit from prehydrotreatment for the removal of oxygenates while others may benefit from oxygenates treatment.
  • the hydroisomerization or hydrodewaxing process may be conducted over a combination of catalysts, or over a single catalyst. Conversion temperatures range from about 150 0 C to about 500 0 C at pressures ranging from about 500 to 20,000 kPa. This process may be operated in the presence of hydrogen, and hydrogen partial pressures range from about 600 to 6000 kPa.
  • the ratio of hydrogen to the hydrocarbon feedstock typically range from about 10 to 3500 n.1.1. "1 (56 to 19,660 SCF/bbl) and the space velocity of the feedstock typically ranges from about 0.1 to 20 LHSV, preferably 0.1 to 10 LHSV.
  • the hydroprocessing used for the production of base stocks from such waxy feeds may use an amorphous hydrocracking/hydroisomerization catalyst, such as a lube hydrocracking (LHDC) catalysts, for example catalysts containing Co, Mo, Ni, W, Mo, etc., on oxide supports, e.g., alumina, silica, silica/alumina, or a crystalline hydrocracking/hydroisomerization catalyst, preferably a zeolitic catalyst.
  • LHDC lube hydrocracking
  • oxide supports e.g., alumina, silica, silica/alumina, or a crystalline hydrocracking/hydroisomerization catalyst, preferably a zeolitic catalyst.
  • Hydrocarbon conversion catalysts useful in the conversion of the n-paraffin waxy feedstocks disclosed herein to form the isoparaffinic hydrocarbon base oil are zeolite catalysts, such as ZSM-5, ZSM-11, ZSM-23, ZSM-35, ZSM-12, ZSM-38, ZSM-48, offretite, ferrierite, zeolite beta, zeolite theta, and zeolite alpha, as disclosed in USP 4,906,350. These catalysts are used in combination with Group VIII metals, in particular palladium or platinum. The Group VIII metals may be incorporated into the zeolite catalysts by conventional techniques, such as ion exchange.
  • conversion of the waxy feedstock may be conducted over a combination of Pt/zeolite beta and Pt/ZSM-23 catalysts in the presence of hydrogen.
  • the process of producing the lubricant oil base stocks comprises hydroisomerization and dewaxing over a single catalyst, such as Pt/ZSM-35.
  • the waxy feed can be fed over a catalyst comprising Group VIII metal loaded ZSM-48, preferably Group VIII noble metal loaded ZSM-48, more preferably Pt/ZSM-48 in either one stage or two stages.
  • useful hydrocarbon base oil products may be obtained.
  • Catalyst ZSM-48 is described in USP 5,075,269. The use of the Group VIII metal loaded ZSM-48 family of catalysts, e.g., platinum on ZSM-48, in the hydroisomerization of the waxy feedstock eliminates the need for any subsequent, separate dewaxing step.
  • a dewaxing step when needed, may be accomplished using one or more of solvent dewaxing, catalytic dewaxing or hydrodewaxing processes and either the entire hydroisomerate or the 650-750°F+ fraction may be dewaxed, depending on the intended use of the 650-750°F- material present, if it has not been separated from the higher boiling material prior to the dewaxing.
  • the hydroisomerate may be contacted with chilled solvents such as acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), mixtures of MEK/MIBK, or mixtures of MEK/toluene and the like, and further chilled to precipitate out the higher pour point material as a waxy solid which is then separated from the solvent-containing lube oil fraction which is the raffinate.
  • the raffinate is typically further chilled in scraped surface chillers to remove more wax solids.
  • Autorefrigerative dewaxing using low molecular weight hydrocarbons, such as propane can also be used in which the hydroisomerate is mixed with, e.g., liquid propane, a least a portion of which is flashed off to chill down the hydroisomerate to precipitate out the wax.
  • the wax is separated from the raffinate by filtration, membrane separation or centrifugation.
  • the solvent is then stripped out of the raffinate, which is then fractionated to produce the preferred base stocks useful in the present invention.
  • catalytic dewaxing in which the hydroisomerate is reacted with hydrogen in the presence of a suitable dewaxing catalyst at conditions effective to lower the pour point of the hydroisomerate.
  • Catalytic dewaxing also converts a portion of the hydroisomerate to lower boiling materials, in the boiling range, for example, 650-750 0 F-, which are separated from the heavier 650-750°F+ base stock fraction and the base stock fraction fractionated into two or more base stocks. Separation of the lower boiling material may be accomplished either prior to or during fractionation of the 650-750°F+ material into the desired base stocks.
  • any dewaxing catalyst which will reduce the pour point of the hydroisomerate and preferably those which provide a large yield of lube oil base stock from the hydroisomerate may be used.
  • These include shape selective molecular sieves which, when combined with at least one catalytic metal component, have been demonstrated as useful for dewaxing petroleum oil fractions and include, for example, ferrierite, mordenite, ZSM-5, ZSM-11, ZSM-23, ZSM-35, ZSM-22 also known as theta one or TON, and the silicoaluminophosphates known as SAPO' s.
  • a dewaxing catalyst which has been found to be unexpectedly particularly effective comprises a noble metal, preferably Pt, composited with H-mordenite.
  • the dewaxing may be accomplished with the catalyst in a fixed, fluid or slurry bed.
  • Typical dewaxing conditions include a temperature in the range of from about 400-600 0 F, a pressure of 500-900 psig, H 2 treat rate of 1500-3500 SCF/B for flow-through reactors and LHSV of 0.1-10, preferably 0.2-2.0.
  • the dewaxing is typically conducted to convert no more than 40 wt% and preferably no more than 30 wt% of the hydroisomerate having an initial boiling point in the range of 650-750°F to material boiling below its initial boiling point.
  • GTL base stock(s) and/or base oil(s), hydrodewaxed, or hydroisomerized/cat (and/or solvent) dewaxed wax-derived base stock(s) and/or base oil(s), have a beneficial kinematic viscosity advantage over conventional API Group II and Group III base stock(s) and/or base oil(s) , and so may be very advantageously used with the instant invention.
  • Such GTL base stock(s) and/or base oil(s) can have significantly higher kinematic viscosities, up to about 20-50 mm 2 /s at 100 0 C, whereas by comparison commercial Group II base oils can have kinematic viscosities up to about 15 mm /s at 100 0 C, and commercial Group III base oils can have kinematic viscosities up to about 10 mm 2 /s at 100 0 C.
  • the higher kinematic viscosity range of GTL base stock(s) and/or base oil(s), compared to the more limited kinematic viscosity range of Group II and Group III base stock(s) and/or base oil(s), in combination with the instant invention can provide additional beneficial advantages in formulating lubricant compositions.
  • the preferred base stock(s) and/or base oil(s) derived from GTL materials and/or from waxy feeds are characterized as having predominantly paraffinic compositions and are further characterized as having high saturates levels, low-to-nil sulfur, low-to-nil nitrogen, low-to-nil aromatics, and are essentially water-white in color.
  • a preferred GTL liquid hydrocarbon composition is one comprising paraffinic hydrocarbon components in which the extent of branching, as measured by the percentage of methyl hydrogens (BI), and the proximity of branching, as measured by the percentage of recurring methylene carbons which are four or more carbons removed from an end group or branch (CH 2 > 4), are such that: (a) BI-0.5(CH 2 > 4) >15; and (b) BI+0.85 (CH 2 > 4) ⁇ 45 as measured over said liquid hydrocarbon composition as a whole.
  • BI methyl hydrogens
  • the preferred GTL base stock and/or base oil can be further characterized, if necessary, as having less than 0.1 wt% aromatic hydrocarbons, less than 20 wppm nitrogen containing compounds, less than 20 wppm sulfur containing compounds, a pour point of less than -18 0 C, preferably less than - 3O 0 C, a preferred BI > 25.4 and (CH 2 > 4) ⁇ 22.5. They have a nominal boiling point of 37O 0 C + , on average they average fewer than 10 hexyl or longer branches per 100 carbon atoms and on average have more than 16 methyl branches per 100 carbon atoms.
  • the preferred GTL base stock and/or base oil is also characterized as comprising a mixture of branched paraffins characterized in that the lubricant base oil contains at least 90% of a mixture of branched paraffins, wherein said branched paraffins are paraffins having a carbon chain length of about C 20 to about C 40 , a molecular weight of about 280 to about 562, a boiling range of about 650 0 F to about 1050 0 F, and wherein said branched paraffins contain up to four alkyl branches and wherein the free carbon index of said branched paraffins is at least about 3.
  • Branching Index BI
  • Branching Proximity CH 2 > 4
  • Free Carbon Index FCI
  • a 359.88 MHz 1 H solution NMR spectrum is obtained on a Bruker 360 MHz AMX spectrometer using 10% solutions in CDCl 3 .
  • TMS is the internal chemical shift reference.
  • CDCl 3 solvent gives a peak located at 7.28. All spectra are obtained under quantitative conditions using 90 degree pulse (10.9 ⁇ s), a pulse delay time of 30 s, which is at least five times the longest hydrogen spin-lattice relaxation time (Ti), and 120 scans to ensure good signal-to-noise ratios.
  • H atom types are defined according to the following regions:
  • the branching index (BI) is calculated as the ratio in percent of non- benzylic methyl hydrogens in the range of 0.5 to 1.05 ppm, to the total non- benzylic aliphatic hydrogens in the range of 0.5 to 2.1 ppm.
  • a 90.5 MHz 3 CMR single pulse and 135 Distortionless Enhancement by Polarization Transfer (DEPT) NMR spectra are obtained on a Brucker 360 MHzAMX spectrometer using 10% solutions in CDCL 3 .
  • TMS is the internal chemical shift reference.
  • CDCL 3 solvent gives a triplet located at 77.23 ppm in the 13 C spectrum.
  • All single pulse spectra are obtained under quantitative conditions using 45 degree pulses (6.3 ⁇ s), a pulse delay time of 60 s, which is at least five times the longest carbon spin-lattice relaxation time (Tj), to ensure complete relaxation of the sample, 200 scans to ensure good signal-to-noise ratios, and WALTZ- 16 proton decoupling.
  • the C atom types CH 3 , CH 2 , and CH are identified from the 135 DEPT 13 C NMR experiment.
  • a major CH 2 resonance in all 13 C NMR spectra at «29.8 ppm is due to equivalent recurring methylene carbons which are four or more removed from an end group or branch (CH2 > 4).
  • the types of branches are determined based primarily on the 13 C chemical shifts for the methyl carbon at the end of the branch or the methylene carbon one removed from the methyl on the branch.
  • FCI Free Carbon Index
  • Branching measurements can be performed using any Fourier Transform NMR spectrometer.
  • the measurements are performed using a spectrometer having a magnet of 7.0T or greater.
  • the spectral width was limited to the saturated carbon region, about 0-80 ppm vs. TMS (tetramethylsilane).
  • Solutions of 15-25 percent by weight in chloroform-dl were excited by 45 degrees pulses followed by a 0.8 sec acquisition time.
  • the proton decoupler was gated off during a 10 sec delay prior to the excitation pulse and on during acquisition. Total experiment times ranged from 11-80 minutes.
  • the DEPT and APT sequences were carried out according to literature descriptions with minor deviations described in the Varian or Bruker operating manuals.
  • DEPT Distortionless Enhancement by Polarization Transfer. DEPT does not show quaternaries.
  • the DEPT 45 sequence gives a signal for all carbons bonded to protons.
  • DEPT 90 shows CH carbons only.
  • DEPT 135 shows CH and CH 3 up and CH 2 180 degrees out of phase (down).
  • APT is Attached Proton Test. It allows all carbons to be seen, but if CH and CH 3 are up, then quaternaries and CH 2 are down.
  • the sequences are useful in that every branch methyl should have a corresponding CH and the methyls are clearly identified by chemical shift and phase.
  • the branching properties of each sample are determined by C- 13 NMR using the assumption in the calculations that the entire sample is isoparaffinic. Corrections are not made for n-paraffins or cyclo- paraffins, which may be present in the oil samples in varying amounts.
  • the cycloparaffins content is measured using Field Ionization Mass Spectroscopy (FIMS).
  • hydrodewaxed or hydroisomerized/catalytic (and/or solvent) dewaxed waxy synthesized hydrocarbon e.g., Fischer-Tropsch waxy hydrocarbon base stock(s) and/or base oil(s) are of low or zero sulfur and phosphorus content.
  • Such oils would rely on the use of base oils which themselves, inherently, are of low or zero initial sulfur and phosphorus content.
  • Such oils when used as base oils can be formulated with additives. Even if the additive or additives included in the formulation contain sulfur and/or phosphorus the resulting formulated lubricating oils will be lower or low SAPS oils as compared to lubricating oils formulated using conventional mineral oil base stock(s) and/or base oil(s).
  • low SAPS formulated oils for vehicle engines will have a sulfur content of 0.7 wt% or less, preferably 0.6 wt% or less, more preferably 0.5 wt% or less, most preferably 0.4 wt% or less, an ash content of 1.2 wt% or less, preferably 0.8 wt% or less, more preferably 0.4 wt% or less, and a phosphorus content of 0.18% or less, preferably 0.1 wt% or less, more preferably 0.09 wt% or less, most preferably 0.08 wt% or less, and in certain instances, even preferably 0.05 wt% or less.
  • the combination base stock is formulated with typical automotive engine lubricating additives, but can omit or significantly reduce the amount of viscosity modifier and pour point depressants heretofore conventionally utilized to meet SAE OW-X and 5W-X multi-grade engine oil low temperature viscometric and rheological properties.
  • Examples of typical additives include, but are not limited to, oxidation inhibitors, antioxidants, dispersants, detergents, corrosion inhibitors, rust inhibitors, metal deactivators, anti-wear agents, extreme pressure additives, antiseizure agents, wax modifiers, other viscosity index improvers, other viscosity modifiers, fluid-loss additives, seal compatibility agents, friction modifiers, lubricity agents, anti-staining agents, chromophoric agents, defoamants, demulsifiers, emulsifiers, densifiers, wetting agents, gelling agents, tackiness agents, colorants, and others.
  • Finished lubricants comprise the lubricant base stock or base oil, plus at least one performance additive.
  • ZDDP zinc dialkyldithio- phosphate
  • ZDDP compounds generally are of the formula Zn[SP(S)(OR 1 XOR 2 X] 2 where R 1 and R 2 are C r Ci 8 alkyl groups, preferably C 2 -Ci 2 alkyl groups. These alkyl groups may be straight chain or branched.
  • the ZDDP is typically used in amounts of from about 0.4 to 1.4 wt% of the total lube oil composition, although more or less can often be used advantageously.
  • Sulfurized olefins are useful as antiwear and EP additives.
  • Sulfur- containing olefins can be prepared by sulfurization or various organic materials including aliphatic, arylaliphatic or alicyclic olefinic hydrocarbons containing from about 3 to 30 carbon atoms, preferably 3-20 carbon atoms.
  • the olefinic compounds contain at least one non-aromatic double bond. Such compounds are defined by the formula
  • R 3 R 4 C CR 5 R 6 where each of R 3 -R 6 are independently hydrogen or a hydrocarbon radical.
  • Preferred hydrocarbon radicals are alkyl or alkenyl radicals. Any two of R 3 -R 6 may be connected so as to form a cyclic ring. Additional information concerning sulfurized olefins and their preparation can be found in USP 4,941,984, incorporated by reference herein in its entirety.
  • alkylthiocarbamoyl compounds bis(dibutyl)thiocarbamoyl, for example
  • a molybdenum compound oxymolybdenum diisopropyl- phosphorodithioate sulfide, for example
  • a phosphorous ester dibutyl hydrogen phosphite, for example
  • USP 4,758,362 discloses use of a carbamate additive to provide improved antiwear and extreme pressure properties.
  • the use of thiocarbamate as an antiwear additive is disclosed in USP 5,693,598.
  • Esters of glycerol may be used as antiwear agents. For example, mono-, di-, and tri-oleates, mono-palmitates and mono-myristates may be used.
  • ZDDP is combined with other compositions that provide antiwear properties.
  • USP 5,034,141 discloses that a combination of a thiodixanthogen compound (octylthiodixanthogen, for example) and a metal thiophosphate (ZDDP, for example) can improve antiwear properties.
  • USP 5,034,142 discloses that use of a metal alkyoxyalkylxanthate (nickel ethoxyethylxanthate, for example) and a dixanthogen (diethoxyethyl dixanthogen, for example) in combination with ZDDP improves antiwear properties.
  • Preferred antiwear additives include phosphorus and sulfur compounds such as zinc dithiophosphates and/or sulfur, nitrogen, boron, molybdenum phosphorodithioates, molybdenum dithiocarbamates and various organo- molybdenum derivatives including heterocyclics, for example dimercaptothia- diazoles, mercaptobenzothiadiazoles, triazines, and the like, alicyclics, amines, alcohols, esters, diols, triols, fatty amides and the like can also be used.
  • Such additives may be used in an amount of about 0.01 to 6 wt%, preferably about 0.01 to 4 wt%.
  • ZDDP-like compounds provide limited hydroperoxide decomposition capability, significantly below that exhibited by compounds disclosed and claimed in this patent and can therefore be eliminated from the formulation or, if retained, kept at a minimal concentration to facilitate production of low SAPS formulations.
  • Viscosity improvers also known as Viscosity Index modifiers, and VI improvers
  • Suitable viscosity improvers include high molecular weight hydrocarbons, polyesters and viscosity index improver dispersants that function as both a viscosity index improver and a dispersant. Typical molecular weights of these polymers are between about 10,000 to 1,000,000, more typically about 20,000 to 500,000, and even more typically between about 50,000 and 200,000.
  • suitable viscosity improvers are polymers and copolymers of methacrylate, butadiene, olefins, or alkylated styrenes.
  • Polyisobutylene is a commonly used viscosity index improver.
  • Another suitable viscosity index improver is polymethacrylate (copolymers of various chain length alkyl meth- acrylates, for example), some formulations of which also serve as pour point depressants.
  • Other suitable viscosity index improvers include copolymers of ethylene and propylene, hydrogenated block copolymers of styrene and isoprene, and polyacrylates (copolymers of various chain length acrylates, for example). Specific examples include styrene-isoprene or styrene-butadiene based polymers of 50,000 to 200,000 molecular weight.
  • the amount of viscosity modifier may range from zero to 8 wt%, preferably zero to 4 wt%, more preferably zero to 2 wt% based on active ingredient and depending on the specific viscosity modifier used.
  • Antioxidants retard the oxidative degradation of base oils during service. Such degradation may result in deposits on metal surfaces, the presence of sludge, or a viscosity increase in the lubricant.
  • One skilled in the art knows a wide variety of oxidation inhibitors that are useful in lubricating oil compositions. See, Klamann in Lubricants and Related Products, op cite, and U.S. Patents 4,798,684 and 5,084,197, for example.
  • Useful antioxidants include hindered phenols. These phenolic antioxidants may be ashless (metal-free) phenolic compounds or neutral or basic metal salts of certain phenolic compounds. Typical phenolic antioxidant compounds are the hindered phenolics which are the ones which contain a sterically hindered hydroxyl group, and these include those derivatives of dihydroxy aryl compounds in which the hydroxyl groups are in the o- or p-position to each other. Typical phenolic antioxidants include the hindered phenols substituted with C ⁇ + alkyl groups and the alkylene coupled derivatives of these hindered phenols.
  • phenolic materials of this type 2-t-butyl- 4-heptyl phenol; 2-t-butyl-4-octyl phenol; 2-t-butyl-4-dodecyl phenol; 2,6-di-t- butyl-4-heptyl phenol; 2,6-di-t-butyl-4-dodecyl phenol; 2-methyl-6-t-butyl-4- heptyl phenol; and 2-methyl-6-t-butyl-4-dodecyl phenol.
  • Other useful hindered mono-phenolic antioxidants may include for example hindered 2,6-di-alkyl- phenolic proprionic ester derivatives.
  • Bis-phenolic antioxidants may also be advantageously used in combination with the instant invention.
  • ortho-coupled phenols include: 2,2'-bis(4-heptyl-6-t-butyl-phenol); 2,2'-bis(4- octyl-6-t-butyl-phenol); and 2,2'-bis(4-dodecyl-6-t-butyl-phenol).
  • Para-coupled bisphenols include for example 4,4'-bis(2,6-di-t-butyl phenol) and 4,4'- methylene-bis(2,6-di-t-butyl phenol).
  • Non-phenolic oxidation inhibitors which may be used include aromatic amine antioxidants and these may be used either as such or in combination with phenolics.
  • Typical examples of non-phenolic antioxidants include: alkylated and non-alkylated aromatic amines such as aromatic monoamines of the formula R 8 R 9 R 10 N where R 8 is an aliphatic, aromatic or substituted aromatic group, R 9 is an aromatic or a substituted aromatic group, and R 10 is H, alkyl, aryl or R 11 S(O) x R 12 where R 11 is an alkylene, alkenylene, or aralkylene group, R 12 is a higher alkyl group, or an alkenyl, aryl, or alkaryl group, and x is 0, 1 or 2.
  • the aliphatic group R may contain from 1 to about 20 carbon atoms, and preferably contains from about 6 to 12 carbon atoms.
  • the aliphatic group is a saturated aliphatic group.
  • both R 8 and R 9 are aromatic or substituted aromatic groups, and the aromatic group may be a fused ring aromatic group such as naphthyl.
  • Aromatic groups R 8 and R 9 may be joined together with other groups such as S.
  • Typical aromatic amines antioxidants have alkyl substituent groups of at least about 6 carbon atoms.
  • Examples of aliphatic groups include hexyl, heptyl, octyl, nonyl, and decyl. Generally, the aliphatic groups will not contain more than about 14 carbon atoms.
  • the general types of amine antioxidants useful in the present compositions include diphenylamines, phenyl naphthylamines, phenothiazines, imidodibenzyls and diphenyl phenylene diamines. Mixtures of two or more aromatic amines are also useful. Polymeric amine antioxidants can also be used.
  • aromatic amine antioxidants useful in the present invention include: p,p'-dioctyldiphenylamine; t-octylphenyl-alpha- naphthylamine; phenyl-alphanaphthylamine; and p-octylphenyl-alpha- naphthylamine.
  • Sulfurized alkyl phenols and alkali or alkaline earth metal salts thereof also are useful antioxidants.
  • Another class of antioxidant used in lubricating oil compositions is oil- soluble copper compounds. Any oil-soluble suitable copper compound may be blended into the lubricating oil.
  • suitable copper antioxidants include copper dihydrocarbyl thio- or dithio-phosphates and copper salts of carboxylic acid (naturally occurring or synthetic).
  • suitable copper salts include copper dithiacarbamates, sulphonates, phenates, and acetylacetonates.
  • Basic, neutral, or acidic copper Cu(I) and or Cu(II) salts derived from alkenyl succinic acids or anhydrides are know to be particularly useful.
  • Preferred antioxidants include hindered phenols, arylamines. These antioxidants may be used individually by type or in combination with one another. Such additives may be used in an amount of about 0.01 to 5 wt%, preferably about 0.01 to 1.5 wt%, more preferably zero to less than 1.5 wt%, most preferably zero.
  • Detergents include hindered phenols, arylamines. These antioxidants may be used individually by type or in combination with one another. Such additives may be used in an amount of about 0.01 to 5 wt%, preferably about 0.01 to 1.5 wt%, more preferably zero to less than 1.5 wt%, most preferably zero.
  • Detergents are commonly used in lubricating compositions.
  • a typical detergent is an anionic material that contains a long chain hydrophobic portion of the molecule and a smaller anionic or oleophobic hydrophilic portion of the molecule.
  • the anionic portion of the detergent is typically derived from an organic acid such as a sulfur acid, carboxylic acid, phosphorous acid, phenol, or mixtures thereof.
  • the counterion is typically an alkaline earth or alkali metal.
  • Salts that contain a substantially stochiometric amount of the metal are described as neutral salts and have a total base number (TBN, as measured by ASTM D2896) of from 0 to 80.
  • TBN total base number
  • Many compositions are overbased, containing large amounts of a metal base that is achieved by reacting an excess of a metal compound (a metal hydroxide or oxide, for example) with an acidic gas (such as carbon dioxide).
  • a metal compound a metal hydroxide or oxide, for example
  • an acidic gas such as carbon dioxide
  • Useful detergents can be neutral, mildly overbased, or highly overbased.
  • the overbased material has a ratio of metallic ion to anionic portion of the detergent of about 1.05:1 to 50: 1 on an equivalent basis. More preferably, the ratio is from about 4: 1 to about 25: 1.
  • the resulting detergent is an overbased detergent that will typically have a TBN of about 150 or higher, often about 250 to 450 or more.
  • the overbasing cation is sodium, calcium, or magnesium.
  • a mixture of detergents of differing TBN can be used in the present invention.
  • Preferred detergents include the alkali or alkaline earth metal salts of sulfonates, phenates, carboxylates, phosphates, and salicylates.
  • Sulfonates may be prepared from sulfonic acids that are typically obtained by sulfonation of alky 1 substituted aromatic hydrocarbons.
  • Hydrocarbon examples include those obtained by alkylating benzene, toluene, xylene, naphthalene, biphenyl and their halogenated derivatives (chlorobenzene, chlorotoluene, and chloronaphthalene, for example).
  • the alkylating agents typically have about 3 to 70 carbon atoms.
  • the alkaryl sulfonates typically contain about 9 to about 80 carbon or more carbon atoms, more typically from about 16 to 60 carbon atoms.
  • Klamanri in Lubricants and Related Products, op cit discloses a number of overbased metal salts of various sulfonic acids which are useful as detergents and dispersants in lubricants.
  • Alkaline earth phenates are another useful class of detergent. These detergents can be made by reacting alkaline earth metal hydroxide or oxide (CaO, Ca(OH) 2 , BaO, Ba(OH) 2 , MgO, Mg(OH) 2 , for example) with an alkyl phenol or sulfurized alkylphenol.
  • alkaline earth metal hydroxide or oxide Ca(OH) 2 , BaO, Ba(OH) 2 , MgO, Mg(OH) 2 , for example
  • Useful alkyl groups include straight chain or branched C 1 -C 30 alkyl groups, preferably, C 4 -C 20 . Examples of suitable phenols include isobutylphenol, 2-ethylhexylphenol, nonylphenol, dodecyl phenol, and the like.
  • starting alkylphenols may contain more than one alkyl substituent that are each independently straight chain or branched.
  • the sulfurized product may be obtained by methods well known in the art. These methods include heating a mixture of alkylphenol and sulfurizing agent (including elemental sulfur, sulfur halides such as sulfur dichloride, and the like) and then reacting the sulfurized phenol with an alkaline earth metal base.
  • Metal salts of carboxylic acids are also useful as detergents. These carboxylic acid detergents may be prepared by reacting a basic metal compound with at least one carboxylic acid and removing free water from the reaction product. These compounds may be overbased to produce the desired TBN level.
  • Detergents made from salicylic acid are one preferred class of detergents derived from carboxylic acids.
  • Useful salicylates include long chain alkyl salicylates.
  • One useful family of compositions is of the formula
  • R is a hydrogen atom or an alkyl group having 1 to about 30 carbon atoms
  • n is an integer from 1 to 4
  • M is an alkaline earth metal.
  • Preferred R groups are alkyl chains of at least Cn, preferably Ci 3 or greater. R may be optionally substituted with substituents that do not interfere with the detergent's function.
  • M is preferably, calcium, magnesium, or barium. More preferably, M is calcium.
  • Hydrocarbyl-substituted salicylic acids may be prepared from phenols by the Kolbe reaction. See USP 3,595,791, which is incorporated herein by reference in its entirety, for additional information on synthesis of these compounds.
  • the metal salts of the hydrocarbyl-substituted salicylic acids may be prepared by double decomposition of a metal salt in a polar solvent such as water or alcohol.
  • Alkaline earth metal phosphates are also used as detergents.
  • Detergents may be simple detergents or what is known as hybrid or complex detergents. The latter detergents can provide the properties of two detergents without the need to blend separate materials. See USP 6,034,039 for example.
  • Preferred detergents include calcium phenates, calcium sulfonates, calcium salicylates, magnesium phenates, magnesium sulfonates, magnesium salicylates and other related components (including borated detergents).
  • the total detergent concentration is about 0.01 to about 6.0 wt%, preferably, about 0.1 to 0.4 wt%.
  • Dispersants help keep these byproducts in solution, thus diminishing their deposition on metal surfaces.
  • Dispersants may be ashless or ash-forming in nature.
  • the dispersant is ashless.
  • So called ashless dispersants are organic materials that form substantially no ash upon combustion.
  • non-metal-containing or borated metal-free dispersants are considered ashless.
  • metal-containing detergents discussed above form ash upon combustion.
  • Suitable dispersants typically contain a polar group attached to a relatively high molecular weight hydrocarbon chain.
  • the polar group typically contains at least one element of nitrogen, oxygen, or phosphorus.
  • Typical hydrocarbon chains contain 50 to 400 carbon atoms.
  • dispersants may be characterized as phenates, sulfonates, sulfurized phenates, salicylates, naphthenates, stearates, carbamates, thiocarbamates, phosphorus derivatives.
  • a particularly useful class of dispersants are the alkenylsuccinic derivatives, typically produced by the reaction of a long chain substituted alkenyl succinic compound, usually a substituted succinic anhydride, with a polyhydroxy or polyamino compound.
  • the long chain group constituting the oleophilic portion of the molecule which confers solubility in the oil is normally a polyisobutylene group.
  • Exemplary U.S. patents describing such dispersants are 3,172,892; 3,2145,707; 3,219,666; 3,316,177; 3,341,542; 3,444,170; 3,454,607; 3,541,012; 3,630,904; 3,632,511; 3,787,374 and 4,234,435.
  • Other types of dispersant are described in U.S. Pat. Nos.
  • Hydrocarbyl-substituted succinic acid compounds are popular dispersants.
  • succinimide, succinate esters, or succinate ester amides prepared by the reaction of a hydrocarbon-substituted succinic acid compound preferably having at least 50 carbon atoms in the hydrocarbon substituent, with at least one equivalent of an alkylene amine are particularly useful.
  • Succinimides are formed by the condensation reaction between alkenyl succinic anhydrides and amines. Molar ratios can vary depending on the poly- amine. For example, the molar ratio of alkenyl succinic anhydride to TEPA can vary from about 1 :1 to about 5: 1. Representative examples are shown in U.S. Patents 3,087,936; 3,172,892; 3,219,666; 3,272,746; 3,322,670; and 3,652,616, 3,948,800; and Canada Pat. No. 1,094,044.
  • Succinate esters are formed by the condensation reaction between alkenyl succinic anhydrides and alcohols or polyols. Molar ratios can vary depending on the alcohol or polyol used. For example, the condensation product of an alkenyl succinic anhydride and pentaerythritol is a useful dispersant.
  • Succinate ester amides are formed by condensation reaction between alkenyl succinic anhydrides and alkanol amines.
  • suitable alkanol amines include ethoxylated polyalkylpolyamines, propoxylated polyalkylpoly- amines and polyalkenylpoly amines such as polyethylene polyamines.
  • propoxylated hexamethylenediamine Representative examples are shown in USP 4,426,305.
  • the molecular weight of the alkenyl succinic anhydrides used in the preceding paragraphs will typically range between 800 and 2,500.
  • the above products can be post-reacted with various reagents such as sulfur, oxygen, formaldehyde, carboxylic acids such as oleic acid, and boron compounds such as borate esters or highly borated dispersants.
  • the dispersants can be borated with from about 0.1 to about 5 moles of boron per mole of dispersant reaction product.
  • Mannich base dispersants are made from the reaction of alkylphenols, formaldehyde, and amines. See USP 4,767,551, which is incorporated herein by reference. Process aids and catalysts, such as oleic acid and sulfonic acids, can also be part of the reaction mixture. Molecular weights of the alkylphenols range from 800 to 2,500. Representative examples are shown in U.S. Patents 3,697,574; 3,703,536; 3,704,308; 3,751,365; 3,756,953; 3,798,165; and 3,803,039.
  • Typical high molecular weight aliphatic acid modified Mannich condensation products useful in this invention can be prepared from high molecular weight alkyl-substituted hydroxyaromatics or HN(R) 2 group- containing reactants.
  • Examples of high molecular weight alkyl-substituted hydroxyaromatic compounds are polypropylphenol, polybutylphenol, and other polyalkylphenols. These polyalkylphenols can be obtained by the alkylation, in the presence of an alkylating catalyst, such as BF 3 , of phenol with high molecular weight polypropylene, polybutylene, and other polyalkylene compounds to give alkyl substituents on the benzene ring of phenol having an average 600-100,000 molecular weight.
  • an alkylating catalyst such as BF 3
  • Examples OfHN(R) 2 group-containing reactants are alkylene polyamines, principally polyethylene polyamines.
  • Other representative organic compounds containing at least one HN(R) 2 group suitable for use in the prepara- tion of Mannich condensation products are well known and include the mono- and di-amino alkanes and their substituted analogs, e.g., ethylamine and diethanol amine; aromatic diamines, e.g., phenylene diamine, diamino naphthalenes; heterocyclic amines, e.g., morpholine, pyrrole, pyrrolidine, imidazole, imidazolidine, and piperidine; melamine and their substituted analogs.
  • alkylene polyamide reactants include ethylenediamine, diethylene triamine, triethylene tetraamine, tetraethylene pentaamine, penta- ethylene hexamine, hexaethylene heptaamine, heptaethylene octaamine, octaethylene nonaamine, nonaethylene decamine, and decaethylene undecamine and mixture of such amines having nitrogen contents corresponding to the alkylene polyamines, in the formula H 2 N-(Z-NH-) n H, mentioned before, Z is a divalent ethylene and n is 1 to 10 of the foregoing formula.
  • propylene polyamines such as propylene diamine and di-, tri-, tetra-, penta- propylene tri-, tetra-, penta- and hexaamines are also suitable reactants.
  • the alkylene polyamines are usually obtained by the reaction of ammonia and dihalo alkanes, such as dichloro alkanes.
  • the alkylene polyamines obtained from the reaction of 2 to 11 moles of ammonia with 1 to 10 moles of dichloroalkanes having 2 to 6 carbon atoms and the chlorines on different carbons are suitable alkylene polyamine reactants.
  • Aldehyde reactants useful in the preparation of the high molecular products useful in this invention include the aliphatic aldehydes such as formaldehyde (also as paraformaldehyde and formalin), acetaldehyde and aldol ( ⁇ -hydroxybutyraldehyde). Formaldehyde or a formaldehyde-yielding reactant is preferred.
  • Hydrocarbyl substituted amine ashless dispersant additives are well known to one skilled in the art; see, for example, U.S. Patents 3,275,554; 3,438,757; 3,565,804; 3,755,433, 3,822,209, and 5,084,197, which are incorporated herein in their entirety by reference.
  • Preferred dispersants include borated and non-borated succinimides, including those derivatives from mono-succinimides, bis-succinimides, and/or mixtures of mono- and bis-succinimides, wherein the hydrocarbyl succinimide is derived from a hydrocarbylene group such as polyisobutylene having a Mn of from about 500 to about 5000 or a mixture of such hydrocarbylene groups.
  • Other preferred dispersants include succinic acid-esters and amides, alkylphenol- polyamine-coupled Mannich adducts, their capped derivatives, and other related components. Such additives may be used in an amount of about 0.1 to 20 wt%, preferably about 0.1 to 8 wt%.
  • pour point depressants also known as lube oil flow improvers
  • lube oil flow improvers may be added to the compositions of the present invention if desired to help meet MRV and/or yield stress targets.
  • These pour point depressant may be added to lubricating compositions of the present invention to lower the minimum temperature at which the fluid will flow or can be poured.
  • suitable pour point depressants include alkylated naphthalenes polymeth- acrylates, polyacrylates, polyarylamides, condensation products of haloparaffin waxes and aromatic compounds, vinyl carboxylate polymers, and terpolymers of dialkylfumarates, vinyl esters of fatty acids and allyl vinyl ethers. USP Nos.
  • 1,815,022; 2,015,748; 2,191,498; 2,387,501; 2,655, 479; 2,666,746; 2,721,877; 2.721,878; and 3,250,715 describe useful pour point depressants and/or the preparation thereof.
  • Such additives may be omitted totally or may be used in a minor amount of about 0.001 to 0.1 wt% on an as-received basis.
  • Corrosion inhibitors are used to reduce the degradation of metallic parts that are in contact with the lubricating oil composition.
  • Suitable corrosion inhibitors include thiadiazoles. See, for example, USP Nos. 2,719,125; 2,719,126; and 3,087,932, which are incorporated herein by reference in their entirety.
  • Such additives may be used in an amount of about 0.01 to 5 wt%, preferably about 0.01 to 1.5 wt%.
  • Seal compatibility agents help to swell elastomeric seals by causing a chemical reaction in the fluid or physical change in the elastomer.
  • Suitable seal compatibility agents for lubricating oils include organic phosphates, aromatic esters, aromatic hydrocarbons, esters (butylbenzyl phthalate, for example), and polybutenyl succinic anhydride. Such additives may be used in an amount of about 0.01 to 3 wt%, preferably about 0.01 to 2 wt%.
  • Anti-foam agents may advantageously be added to lubricant compositions. These agents retard the formation of stable foams. Silicones and organic polymers are typical anti-foam agents. For example, polysiloxanes, such as silicon oil or polydimethyl siloxane, provide antifoam properties. Anti-foam agents are commercially available and may be used in conventional minor amounts along with other additives such as demulsifiers; usually the amount of these additives combined is less than 1 percent and often less than 0.1 percent.
  • Antirust additives are additives that protect lubricated metal surfaces against chemical attack by water or other contaminants. A wide variety of these are commercially available; they are referred to in Klamann in Lubricants and Related Products, op cit.
  • antirust additive is a polar compound that wets the metal surface preferentially, protecting it with a film of oil.
  • Another type of antirust additive absorbs water by incorporating it in a water-in-oil emulsion so that only the oil touches the metal surface.
  • Yet another type of antirust additive chemically adheres to the metal to produce a non-reactive surface.
  • suitable additives include zinc dithiophosphates, metal phenolates, basic metal sulfonates, fatty acids and amines. Such additives may be used in an amount of about 0.01 to 5 wt%, preferably about 0.01 to 1.5 wt%.
  • a friction modifier is any material or materials that can alter the coefficient of friction of a surface lubricated by any lubricant or fluid containing such material(s).
  • Friction modifiers also known as friction reducers, or lubricity agents or oiliness agents, and other such agents that change the ability of base oils, formulated lubricant compositions, or functional fluids, to modify the coefficient of friction of a lubricated surface may be effectively used in combination with the base oils or lubricant compositions of the present invention if desired. Friction modifiers that lower the coefficient of friction are particularly advantageous in combination with the base oils and lube compositions of this invention. Friction modifiers may include metal-containing compounds or materials as well as ashless compounds or materials, or mixtures thereof.
  • Metal-containing friction modifiers may include metal salts or metal- ligand complexes where the metals may include alkali, alkaline earth, or transition group metals. Such metal-containing friction modifiers may also have low-ash characteristics. Transition metals may include Mo, Sb, Sn, Fe, Cu, Zn, and others.
  • Ligands may include hydrocarbyl derivative of alcohols, polyols, glycerols, partial ester glycerols, thiols, carboxylates, carbamates, thiocarba- mates, dithiocarbamates, phosphates, thiophosphates, dithiophosphates, amides, imides, amines, thiazoles, thiadiazoles, dithiazoles, diazoles, triazoles, and other polar molecular functional groups containing effective amounts of O, N, S, or P, individually or in combination.
  • Mo-containing compounds can be particularly effective such as for example Mo-dithiocarbamates, Mo(DTC), Mo- dithiophosphates, Mo(DTP), Mo-amines, Mo (Am), Mo-alcoholates, Mo- alcohol-amides, etc. See USP 5,824,627; USP 6,232,276; USP 6,153,564; USP 6,143,701; USP 6,110,878; USP 5,837,657; USP 6,010,987; USP 5,906,968; USP 6,734,150; USP 6,730,638; USP 6,689,725; USP 6,569,820; WO 99/66013; WO 99/47629; WO 98/26030.
  • Ashless friction modifiers may have also include lubricant materials that contain effective amounts of polar groups, for example, hydroxy 1-containing hydrocarbyl base oils, glycerides, partial glycerides, glyceride derivatives, and the like.
  • Polar groups in friction modifiers may include hydrocarbyl groups containing effective amounts of O, N, S, or P, individually or in combination.
  • Other friction modifiers that may be particularly effective include, for example, salts (both ash-containing and ashless derivatives) of fatty acids, fatty alcohols, fatty amides, fatty esters, hydroxyl-containing carboxylates, and comparable synthetic long-chain hydrocarbyl acids, alcohols, amides, esters, hydroxy carboxylates, and the like.
  • fatty organic acids, fatty amines, and sulfurized fatty acids may be used as suitable friction modifiers.
  • Useful concentrations of friction modifiers may range from about 0.01 wt% to 10-15 wt% or more, often with a preferred range of about 0.1 wt% to 5 wt%. Concentrations of molybdenum-containing materials are often described in terms of Mo metal concentration. Advantageous concentrations of Mo may range from about 10 ppm to 3000 ppm or more, and often with a preferred range of about 20-2000 ppm, and in some instances a more preferred range of about 30-1000 ppm. Friction modifiers of all types may be used alone or in mixtures with the materials of this invention. Often mixtures of two or more friction modifiers, or mixtures of friction modifier(s) with alternate surface active material(s), are also desirable.
  • lubricating oil compositions contain one or more of the additives discussed above, the additive(s) are blended into the composition in an amount sufficient for it to perform its intended function.
  • Typical amounts of such additives useful in the present invention are shown in Table 1 below.
  • Table 1 Typical amounts of such additives useful in the present invention.
  • Viscosity Improver 0.0 - 8 preferably 0.0 to 2
  • Anti-foam Agent 0.001 - 3 0.001 - 0.15
  • MRV was determined by ASTM D 4684, CCS viscosity by ASTM D 5293, KV by ASTM D 445, pour point by ASTM D 97, and viscosity index by ASTM D 2270.
  • a solvent dewaxed base stock (A) was blended with varying amounts (5 wt%, 15 wt% and 25 wt%) of a catalytically dewaxed base stock (B) and formulated to a 5W-30 multi-grade lube oil composition using 10 wt% of a commercially available GF-4 additive package.
  • Base Stock A a solvent dewaxed base oil having a pour point of -18°C, a KV at 40 0 C of 20.76 mm 2 /s, a KV at 100 0 C of 4.31 mm 2 /s.
  • Base Stock B a catalytically dewaxed base oil having a pour point of -18 0 C 5 a KV at 40 0 C of 31.99 mm 2 /s, a KV at 100 0 C of 5.58 mm 2 /s.
  • Base Stock E a solvent dewaxed base oil having a pour point of -21 0 C, a KV at 4O 0 C of 22.83 mm 2 /s, a KV at 100 0 C of 4.57 mm 2 /s;
  • Base Stock D a solvent dewaxed base oil characterized by a pour point of -21 0 C, a KV at 4O 0 C of 23.32 mm 2 /s, a KV at 100 0 C of 4.64 mm 2 /s;
  • Base Stock E a solvent dewaxed base oil having a pour point of -18°C, a KV at 4O 0 C of 34.87 mm 2 /s, a KV at 100 0 C of
  • Base stock B catalytically dewaxed
  • Base stock E solvent dewaxed
  • pour point -18 0 C
  • KV KV at 40 0 C
  • KV at 100 0 C 5.58 mm 2 /s vs. 5.91 mm 2 /s.
  • Solvent dewaxed base stock E was added in an amount of about 15 wt% to each of solvent dewaxed base stocks A, C and D, while 5 wt%, 15 wt% and 25 wt% of base stock B was added to Base stock A.
  • the MRV and CCS viscosity of all the above formulations results are plotted on Figure 1.
  • Table 4 shows the results for GTL base stocks and slack wax hydrodewaxate base stocks as well as for Group III base stock (NEXBASE which are hydrodewaxed waxy oil stock made via a process which employs a different catalyst than that used to make the GTL base stock or slack wax hydrodewaxate base stocks). All oils in Table 4 are formulated oils containing substantially the same amounts of an additive package but no flow improver or pour point depressant.
  • Formulated oils I-IV met the same KV at 100 0 C target of about 10.7 mm 2 /s, and exhibited similar CCS viscosities at -30 0 C within the limits of the repeatability of the test.
  • Formulation V (mixture of two hydrodewaxed slack wax base oils produced by the same hydrodewaxing process (but of different viscosities)) failed MRV and yield stress by such wide margins that it would not be expected that the formulation could be made to meet MRV or yield stress target specification by the additive of any amount of a PPD.
  • Formulations utilizing mixtures of base oils produced by different final wax processing routes exhibit MRV, CCS and yield stress characteristics approaching those exhibited by pure PAO based formulations (Formulation IX) or those containing PAO as a component (Formulation IV and VIII).
  • formulated oils meeting the MRV and CCS viscosity targets of SAE OW-X or 5 W-X multi grade engine oils can be produced by using two oils of the same or similar viscosity produced by different final wax producing techniques (Formulations II, III, VI, VII) without the addition of a PPD or which came close enough to the target MRV and CCS viscosity targets of SAE OW-X or 5W-X multi grade engine oils (evidenced by a significant reduction in MRV and almost passing the yield stress target), that the addition of a minimal amount of PPD would bring the formulation into specification.
  • Such formulation approach the performance of formulations containing PAO (pour point ⁇ -5O 0 C) (formulations IV, VIII and IX) without resort to such synthetic oils.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Lubricants (AREA)
PCT/US2007/022641 2006-10-27 2007-10-26 Formulated lubricants meeting 0w and 5w low temperature performance specifications made from a mixture of base stocks obtained by different final wax processing routes WO2008057250A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07861516.8A EP2087076B1 (en) 2006-10-27 2007-10-26 Formulated lubricants meeting 0w and 5w low temperature performance specifications made from a mixture of base stocks obtained by different final wax processing routes
JP2009534655A JP2010507720A (ja) 2006-10-27 2007-10-26 異なる最終ワックス処理経路によって得られた基材混合物から作製された、0wおよび5w低温性能規格を満足する処方潤滑油
CA002667224A CA2667224A1 (en) 2006-10-27 2007-10-26 Formulated lubricants meeting 0w and 5w low temperature performance specifications made from a mixture of base stocks obtained by different final wax processing routes

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US85492506P 2006-10-27 2006-10-27
US60/854,925 2006-10-27
US11/974,428 US20080110797A1 (en) 2006-10-27 2007-10-12 Formulated lubricants meeting 0W and 5W low temperature performance specifications made from a mixture of base stocks obtained by different final wax processing routes
US11/974,428 2007-10-12

Publications (2)

Publication Number Publication Date
WO2008057250A2 true WO2008057250A2 (en) 2008-05-15
WO2008057250A3 WO2008057250A3 (en) 2008-07-03

Family

ID=39311524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/022641 WO2008057250A2 (en) 2006-10-27 2007-10-26 Formulated lubricants meeting 0w and 5w low temperature performance specifications made from a mixture of base stocks obtained by different final wax processing routes

Country Status (6)

Country Link
US (1) US20080110797A1 (ja)
EP (1) EP2087076B1 (ja)
JP (1) JP2010507720A (ja)
KR (1) KR20090074269A (ja)
CA (1) CA2667224A1 (ja)
WO (1) WO2008057250A2 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010039295A1 (en) * 2008-10-01 2010-04-08 Chevron U.S.A. Inc. A method for predicting a property of a base oil
US8784643B2 (en) * 2008-10-01 2014-07-22 Chevron U.S.A. Inc. 170 neutral base oil with improved properties
CN102209772A (zh) * 2008-10-01 2011-10-05 雪佛龙美国公司 具有改进性能的170中性基础油
US10214703B2 (en) 2015-07-16 2019-02-26 Afton Chemical Corporation Lubricants with zinc dialkyl dithiophosphate and their use in boosted internal combustion engines
US10280383B2 (en) 2015-07-16 2019-05-07 Afton Chemical Corporation Lubricants with molybdenum and their use for improving low speed pre-ignition
US10421922B2 (en) 2015-07-16 2019-09-24 Afton Chemical Corporation Lubricants with magnesium and their use for improving low speed pre-ignition
US10550349B2 (en) 2015-07-16 2020-02-04 Afton Chemical Corporation Lubricants with titanium and/or tungsten and their use for improving low speed pre-ignition
US10336959B2 (en) 2015-07-16 2019-07-02 Afton Chemical Corporation Lubricants with calcium-containing detergent and their use for improving low speed pre-ignition
US10377963B2 (en) * 2016-02-25 2019-08-13 Afton Chemical Corporation Lubricants for use in boosted engines
EP3420058A1 (en) * 2016-02-25 2019-01-02 Afton Chemical Corporation Lubricants for use in boosted engines
US20190330555A1 (en) * 2016-02-25 2019-10-31 Afton Chemical Corporation Lubricants for use in boosted engines
US11155764B2 (en) 2016-05-05 2021-10-26 Afton Chemical Corporation Lubricants for use in boosted engines
US10370615B2 (en) 2017-01-18 2019-08-06 Afton Chemical Corporation Lubricants with calcium-containing detergents and their use for improving low-speed pre-ignition
US10443558B2 (en) 2017-01-18 2019-10-15 Afton Chemical Corporation Lubricants with calcium and magnesium-containing detergents and their use for improving low-speed pre-ignition and for corrosion resistance
US10443011B2 (en) 2017-01-18 2019-10-15 Afton Chemical Corporation Lubricants with overbased calcium and overbased magnesium detergents and method for improving low-speed pre-ignition
WO2019163996A1 (ja) * 2018-02-26 2019-08-29 Jxtgエネルギー株式会社 潤滑油組成物
CN112852478B (zh) * 2021-04-13 2023-02-07 上海科瑞德能源科技有限公司 一种浆态床和沸腾床耦合的上流式反应器、反应器系统及催化加氢工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5911874A (en) * 1996-06-28 1999-06-15 Exxon Research And Engineering Co. Raffinate hydroconversion process
US20040043910A1 (en) * 2002-09-04 2004-03-04 Lok Brent K. Blending of low viscosity fischer-tropsch base oils to produce high quality lubricating base oils
US20040178118A1 (en) * 2003-03-11 2004-09-16 John Rosenbaum Blending of low viscosity Fischer-Tropsch base oils and Fischer-Tropsch derived bottoms or bright stock
WO2004081157A1 (en) * 2003-03-10 2004-09-23 Shell Internationale Research Maatschappij B.V. Lubricant composition based on fischer-tropsch derived base oils
US20050098476A1 (en) * 2003-11-07 2005-05-12 Chevron U.S.A. Inc. Process for improving the lubricating properties of base oils using a Fischer-Tropsch derived bottoms

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4259170A (en) * 1979-09-14 1981-03-31 Mobil Oil Corporation Process for manufacturing lube base stocks
JPH03143995A (ja) * 1989-10-31 1991-06-19 Tonen Corp 潤滑油組成物
US5149452A (en) * 1990-12-19 1992-09-22 Exxon Research And Engineering Company Wax isomerate having a reduced pour point
US6090758A (en) * 1997-01-07 2000-07-18 Exxon Research And Engineering Co. Method for reducing foaming of lubricating oils
US6090989A (en) * 1997-10-20 2000-07-18 Mobil Oil Corporation Isoparaffinic lube basestock compositions
JP4112070B2 (ja) * 1998-03-31 2008-07-02 新日本石油株式会社 内燃機関用潤滑油組成物
US6080301A (en) * 1998-09-04 2000-06-27 Exxonmobil Research And Engineering Company Premium synthetic lubricant base stock having at least 95% non-cyclic isoparaffins
US6475960B1 (en) * 1998-09-04 2002-11-05 Exxonmobil Research And Engineering Co. Premium synthetic lubricants
JP4076634B2 (ja) * 1998-09-09 2008-04-16 新日本石油株式会社 二輪車用4サイクルエンジン油組成物
US6332974B1 (en) * 1998-09-11 2001-12-25 Exxon Research And Engineering Co. Wide-cut synthetic isoparaffinic lubricating oils
KR20020051932A (ko) * 1999-11-09 2002-06-29 추후기재 윤활제 기본원료의 연료 경제성을 최적화하는 방법
US7067049B1 (en) * 2000-02-04 2006-06-27 Exxonmobil Oil Corporation Formulated lubricant oils containing high-performance base oils derived from highly paraffinic hydrocarbons
US6773578B1 (en) * 2000-12-05 2004-08-10 Chevron U.S.A. Inc. Process for preparing lubes with high viscosity index values
US6806237B2 (en) * 2001-09-27 2004-10-19 Chevron U.S.A. Inc. Lube base oils with improved stability
US6500786B1 (en) * 2001-11-26 2002-12-31 Infineum International Ltd. Lubricating oil composition
US20030171223A1 (en) * 2002-01-31 2003-09-11 Winemiller Mark D. Lubricating oil compositions with improved friction properties
US20040129603A1 (en) * 2002-10-08 2004-07-08 Fyfe Kim Elizabeth High viscosity-index base stocks, base oils and lubricant compositions and methods for their production and use
US7144497B2 (en) * 2002-11-20 2006-12-05 Chevron U.S.A. Inc. Blending of low viscosity Fischer-Tropsch base oils with conventional base oils to produce high quality lubricating base oils
US20050070450A1 (en) * 2003-09-30 2005-03-31 Roby Stephen H. Engine oil compositions
US7572361B2 (en) * 2004-05-19 2009-08-11 Chevron U.S.A. Inc. Lubricant blends with low brookfield viscosities

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5911874A (en) * 1996-06-28 1999-06-15 Exxon Research And Engineering Co. Raffinate hydroconversion process
US20040043910A1 (en) * 2002-09-04 2004-03-04 Lok Brent K. Blending of low viscosity fischer-tropsch base oils to produce high quality lubricating base oils
WO2004081157A1 (en) * 2003-03-10 2004-09-23 Shell Internationale Research Maatschappij B.V. Lubricant composition based on fischer-tropsch derived base oils
US20040178118A1 (en) * 2003-03-11 2004-09-16 John Rosenbaum Blending of low viscosity Fischer-Tropsch base oils and Fischer-Tropsch derived bottoms or bright stock
US20050098476A1 (en) * 2003-11-07 2005-05-12 Chevron U.S.A. Inc. Process for improving the lubricating properties of base oils using a Fischer-Tropsch derived bottoms

Also Published As

Publication number Publication date
US20080110797A1 (en) 2008-05-15
JP2010507720A (ja) 2010-03-11
CA2667224A1 (en) 2008-05-15
EP2087076A2 (en) 2009-08-12
KR20090074269A (ko) 2009-07-06
EP2087076B1 (en) 2016-07-20
WO2008057250A3 (en) 2008-07-03

Similar Documents

Publication Publication Date Title
EP2087076B1 (en) Formulated lubricants meeting 0w and 5w low temperature performance specifications made from a mixture of base stocks obtained by different final wax processing routes
US8318002B2 (en) Lubricant composition with improved solvency
CA2695889C (en) Method for enhancing the oxidation and nitration resistance of natural gas engine oil compositions and such compositions
CA2632753C (en) Aviation piston engine oil compositions
US7863227B2 (en) High performance lubricant containing high molecular weight aromatic amine antioxidant and low boron content dispersant
US8642524B2 (en) Soot control for diesel engine lubricants
EP2238226B1 (en) Method for reducing haze in gas-to-liquid base stocks
US20140274849A1 (en) Lubricating composition providing high wear resistance
CA2654923C (en) Synthetic phenolic ether lubricant base stocks and lubricating oils comprising such base stocks mixed with co-base stocks and/or additives
US7662757B2 (en) Stable defoamant composition containing GTL fluid and/or hydrodewaxate and/or hydroisomerized/catalytic (and/or solvent) dewaxed fluid as diluent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07861516

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2009534655

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2667224

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2007861516

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007861516

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020097010829

Country of ref document: KR