WO2008056592A1 - Apparatus and method for dehydration/volume reduction solidification of organic material, and die for organic material molding - Google Patents

Apparatus and method for dehydration/volume reduction solidification of organic material, and die for organic material molding Download PDF

Info

Publication number
WO2008056592A1
WO2008056592A1 PCT/JP2007/071291 JP2007071291W WO2008056592A1 WO 2008056592 A1 WO2008056592 A1 WO 2008056592A1 JP 2007071291 W JP2007071291 W JP 2007071291W WO 2008056592 A1 WO2008056592 A1 WO 2008056592A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic matter
heating zone
hole
organic
die
Prior art date
Application number
PCT/JP2007/071291
Other languages
French (fr)
Japanese (ja)
Inventor
Mamoru Koyama
Original Assignee
Kom Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kom Co., Ltd filed Critical Kom Co., Ltd
Priority to JP2008543046A priority Critical patent/JPWO2008056592A1/en
Publication of WO2008056592A1 publication Critical patent/WO2008056592A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/46Solid fuels essentially based on materials of non-mineral origin on sewage, house, or town refuse
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/22Extrusion presses; Dies therefor
    • B30B11/26Extrusion presses; Dies therefor using press rams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B9/00Presses specially adapted for particular purposes
    • B30B9/02Presses specially adapted for particular purposes for squeezing-out liquid from liquid-containing material, e.g. juice from fruits, oil from oil-containing material
    • B30B9/04Presses specially adapted for particular purposes for squeezing-out liquid from liquid-containing material, e.g. juice from fruits, oil from oil-containing material using press rams
    • B30B9/06Presses specially adapted for particular purposes for squeezing-out liquid from liquid-containing material, e.g. juice from fruits, oil from oil-containing material using press rams co-operating with permeable casings or strainers
    • B30B9/062Extrusion presses
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/13Treatment of sludge; Devices therefor by de-watering, drying or thickening by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B7/00Drying solid materials or objects by processes using a combination of processes not covered by a single one of groups F26B3/00 and F26B5/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to an apparatus and method for dehydrating and reducing solidification of organic matter and an organic molding die, and in particular, to dehydrating and reducing organic matter applicable to obtaining solid fuel and the like from organic waste.
  • the present invention relates to a solidification apparatus and method, and a die for forming an organic substance that is advantageously used in the dehydration and volume reduction solidification apparatus.
  • Solid fuel called RDF or RPF is usually obtained by dehydrating and reducing the volume of organic waste.
  • waste that can be used as a raw material for solid fuel include waste plastic, waste wood, garbage, waste paper, paper waste, sewage sludge, and livestock dung.
  • Solid fuels obtained from such wastes, especially industrial wastes, are attracting attention as alternatives to fossil fuels due to the recent rise in crude oil prices.
  • Examples of the solid fuel molding method include a flat die method, a ring die method (see, for example, Patent Document 1), a screw method (see, for example, Patent Document 2), and the like.
  • the waste to be treated is placed on a disk-shaped die provided with a molding through hole, the pressure roller is rotated on the die, and the waste is broken by the pressure roller.
  • the solid fuel is compressed and extruded by being pressed into the molding through-hole while being crushed.
  • a pressure roller is rotated on the inner surface of a ring-shaped die provided with a through-hole for molding, and the waste put inside the ring-shaped die is discharged by a pressure roller. Solid fuel is compressed and extruded by being pressed into the molding through-holes while being crushed.
  • the waste introduced from the insertion port is compressed while being sent forward by the screw, and the solid fuel is formed through a die forming through-hole provided at the tip of the screw.
  • the common disadvantage is that the size of the waste to be treated needs to be reduced, for example, under 50 mm. Therefore, the crushing process must be performed before the waste to be processed is input. In this crushing, for example, primary crushing, secondary crushing and so on, it may be necessary to carry out multiple stages of crushing! /.
  • the processing temperature can be increased to about 150 to 200 ° C.
  • an explosion due to water vapor occurs inside the housing surrounding the screw. It is very difficult to manage. Therefore, the moisture content of the waste to be treated becomes a big problem, and it has a big influence on the characteristics of the obtained solid fuel.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-285177
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-246212
  • an object of the present invention is to increase the treatment temperature safely and to enhance the dehydration effect, in particular, without the necessity of previously crushing the organic matter to be dehydrated and volume-reduced and solidified.
  • An object is to provide an apparatus and method for dehydrating and reducing the volume of solidified organic matter, which can obtain a reduced volume and solidified state with high density.
  • Another object of the present invention is to provide an organic material forming die that can be advantageously used for forming an organic material in the above-described dehydration and volume reduction solidification device. Means for solving the problem
  • An organic matter dehydrating and volume-reducing solidification device is for dehydrating and volume-reducing and solidifying organic matter containing water.
  • a part of the pressure vessel includes a pressure vessel, a piston-like member that is actuated to depressurize and reduce the organic matter contained in the pressure vessel, and a heating zone that is heated to a temperature exceeding 100 ° C.
  • Heating means for forming the piston-like member at the end of the operation in the direction of pressure reduction of the piston-like member, and a non-heating zone other than the heating zone and / or the piston-like member of the pressure vessel. Is provided with a drainage passage for draining moisture from the pressure vessel.
  • the organic material is dehydrated to reduce the volume and solidified to obtain a dehydrated volume-reduced solidified product.
  • the piston-like member that is glued is operated to pressurize and reduce the organic matter, while the organic matter in the heating zone is heated by the heating means. While the internal pressure rises and the boiling point of the moisture contained in the organic matter rises, high-temperature water and steam exceeding 100 ° C are generated, and the generated high-temperature water and steam generate the internal pressure in the heating zone.
  • the hot water and steam flow into the non-heated zone, and the water present in the non-heated zone is heated by the hot water and steam. It is configured to vaporize into vapor due to a drop in boiling point at the moment when it is discharged from the drainage passage with hot water and steam and comes into contact with the atmosphere!
  • the pressure vessel includes a cylinder-shaped portion having a predetermined axis, and the piston-shaped member is provided so as to operate in the axial direction in the cylinder-shaped portion.
  • the heating zone is preferably formed at one end of the cylinder-shaped portion in the axial direction.
  • the pressure vessel further includes a die provided on the one end side of the cylinder-shaped portion and defining a molding through-hole having an inner diameter smaller than the inner diameter of the cylinder-shaped portion, and the other end portion of the cylinder-shaped portion and the die are It is a non-heating zone, and the drainage passage is provided in the piston-like member and the die is formed
  • the organic through-hole is made part of the drainage passage, and when the piston-shaped member is pressurized, the organic matter is pushed out through the cylinder-shaped partial force die. It is preferable to be configured to vaporize as a boiling point drop.
  • the above-described die includes an approach portion having an inlet for introducing an organic substance into a molding through-hole and a bearing portion having an inner peripheral surface for molding the organic substance introduced through the approach portion. And a back release portion having an outlet for discharging the organic matter molded in the bearing portion, in order, in the direction of movement of the organic matter in the through hole for molding, and sequentially configured from the upstream side toward the downstream side, It is preferable that a dewatering hole for communicating the forming through hole and the atmosphere is provided in an intermediate portion in the axial direction of the bearing portion.
  • the present invention is also directed to a method for dehydrating and reducing the volume of organic matter.
  • the dehydration and volume-reduction solidification method comprises a first step of preparing a pressure vessel including a pressurizing means for increasing the internal pressure and having a water drainage passage, and dehydration including water.
  • the organic material to be reduced and solidified is contained in the pressure vessel, the second step, and a part of the pressure vessel is heated to a temperature exceeding 100 ° C to form a heating zone in the pressure vessel.
  • the present invention is also directed to an organic material forming die used for forming a water-containing organic material heated to a temperature exceeding 100 ° C into a rod shape while reducing the pressure.
  • An organic material molding die according to the present invention has a molding through-hole through which an organic material passes, and an approach portion having an inlet for introducing the organic material into the molding through-hole, and an approach portion.
  • the bearing part having an inner peripheral surface for molding the introduced organic substance and the back release part having an outlet for discharging the organic substance molded in the bearing part are moved in the direction of movement of the organic substance in the molding through-hole.
  • the bearings are constructed sequentially from the upstream side to the downstream side, and a dewatering hole is provided in the intermediate part in the axial direction of the bearing part to connect the molding through hole and the atmosphere. It is said.
  • a plurality of dewatering holes are provided so as to be distributed in the circumferential direction of the bearing portion, and the approach portion has a tapered inner shape whose inner diameter becomes larger toward the inlet side.
  • a circumferential surface is formed, and a plurality of grooves are provided on the tapered inner circumferential surface so as to correspond to the positions in the circumferential direction of the plurality of dewatering holes and to extend in the axial direction of the through hole for molding. ! /
  • the organic material molding die according to the present invention provides a pressure buffer that defines a larger inner diameter than the inner diameter of the other part of the molding through-hole provided on the downstream side of the dewatering hole in the bearing portion. It is preferable to have a belt.
  • the water contained in the organic substance in the pressure vessel becomes high-temperature water and steam exceeding 100 ° C. by heating in the heating zone together with the pressure reduction of the organic substance.
  • the high-temperature water and steam act as a pressurizing and promoting means for further increasing the internal pressure of the heating zone, and flow into the non-heating zone to heat the moisture existing in the non-heating zone, It is discharged from the drainage passage along with the hot water and steam.
  • Moisture that is about to be discharged from the drainage passage is still in a pressure state higher than atmospheric pressure, but at the moment when it comes into contact with the atmosphere, it immediately vaporizes as a drop in boiling point. Therefore, a high dehydration effect can be obtained when dehydrating and reducing the volume of organic matter to obtain a dehydrated and reduced volume solidified product.
  • the high-temperature water exceeding 100 ° C generated in the heating zone described above acts as a lubricant, and smooth movement of the organic matter in the pressure vessel. As a result, organic matter The force S to reduce the volume of the dehydrated volume-reduced solidified product obtained by dehydration and volume-reduction solidification is high.
  • the dehydration and volume reduction solidification device according to the present invention is not so complicated in structure, the device cost is relatively low and the running cost can be kept relatively low.
  • the dehydration and volume reduction and solidification device according to the present invention can accept an organic material having a size of, for example, 150 to 200 mm, without being subjected to crushing treatment in advance.
  • the piston-shaped member is provided so as to operate in the axial direction in the cylinder-shaped portion of the pressure vessel, and the heating zone force is one end in the axial direction of the cylinder-shaped portion.
  • a pressure vessel is provided on one end side of the cylinder-shaped portion and further includes a die for defining a molding through-hole having an inner diameter smaller than the inner diameter of the cylinder-shaped portion, and the other end portion of the cylinder-shaped portion The die is set as a non-heated zone, and the drainage passage is provided in the piston-like member, and the molding through-hole is made a part of the drainage passage.
  • the organic material molding die since the dewatering hole for connecting the molding through hole and the atmosphere is provided in the intermediate portion of the bearing portion, the organic material during molding is dehydrated. It will come into contact with the atmosphere through the hole. At the moment when the organic material comes into contact with the atmosphere, the high-temperature water and steam contained in the organic material are rapidly extracted through the dehydration holes due to the lowering of the boiling point. Therefore, the moisture residual rate in the organic substance after molding can be further reduced.
  • a tapered inner peripheral surface is formed in the approach portion of the organic material forming die according to the present invention.
  • a plurality of grooves are provided on the tapered inner peripheral surface so as to extend in the axial direction of the through hole for molding, when the organic substance passes through the approach portion, the portion where the grooves are provided is not. Due to the difference in compression between the portions, moisture is unevenly distributed in the organic matter. Such uneven distribution of moisture promotes the movement of moisture in the organic matter, and as a result, acts to further reduce the residual moisture rate in the organic matter.
  • the plurality of dewatering holes are provided so as to be distributed in the circumferential direction of the bearing portion, and the plurality of groove forces S described above are provided corresponding to the positions of these dewatering holes. Due to the uneven distribution of moisture, the water content becomes higher! /, High-temperature water and steam in the part facing the groove can be effectively removed through the dewatering holes.
  • the bearing portion of the organic material molding die according to the present invention, if a pressure buffering zone is provided on the downstream side of the dewatering hole, the compressed state of the organic matter passing through the bearing portion is once resolved in the pressure buffering zone. After that, it is forced to be in a compressed state again, so that a layer of compression effect can be obtained. Therefore, a good volume-reduction and solidified state can be obtained even for the porous portion in the organic matter resulting from the rapid escape of high-temperature water and steam through the dehydration holes.
  • FIG. 1 is a cross-sectional view showing a dehydration and volume reduction solidification device 1 according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a dehydration / volume reduction solidification device 11 according to a second embodiment of the present invention.
  • FIG. 3 In order to carry out dehydration and volume reduction solidification using the dehydration and volume reduction solidification device shown in Fig. 2, organic waste 12 is introduced and the cylinder-shaped part 18 is filled with this. It is a figure which shows the process to perform.
  • FIG. 4 In order to carry out dehydration / volume reduction solidification using the dehydration / volume reduction solidification device 11 shown in FIG. 2, after the process shown in FIG. It is a figure which shows the process which is going to carry out pressure reduction.
  • FIG. 5 is a view showing a state where a dehydrated and volume-reduced solidified material 29 is extruded from a die 19.
  • FIG. 6 is a view showing a state in which the piston-like member 15 is returned to the starting end position after the step shown in FIG. 7]
  • FIG. 8 is an end view of the die 31 shown in FIG.
  • FIG. 9 is a sectional view taken along the spring AA in FIG.
  • FIG. 10 Approach when volume reduction solidification process is performed using the die 31 shown in Fig. 7 Organic waste for explaining the distribution of moisture content on the cross section of the organic waste 12 that has passed through the part 34 FIG.
  • FIG. 1 is a cross-sectional view showing a dehydration and volume reduction solidification device 1 according to a first embodiment of the present invention.
  • the dehydration / volume reduction and solidification device 1 includes a pressure vessel 2.
  • the pressure vessel 2 contains organic waste 3 to be dehydrated and reduced in volume.
  • Waste 3 is an organic substance containing moisture with a moisture content of 10% by weight or more, for example.
  • Waste 3 can be industrial waste or general waste. Materials such as waste plastic, waste wood, driftwood accumulated in dams, garbage, waste paper, paper waste, sewage sludge It may be any of livestock dung, etc.
  • the form may be any of powder, bulk, fluff, mud and the like.
  • the dehydration / volume reduction solidification device 1 includes a piston-like member 5 that is operated to pressurize and reduce the waste 3 contained in the pressure vessel 2 as indicated by an arrow 4 in FIG. .
  • the dehydration and volume reduction solidification device 1 operates a heating zone 6 heated to a temperature exceeding 100 ° C. in a part of the pressure vessel 2 and operates in the pressure reduction direction 4 of the piston-like member 5.
  • a heater 7 is provided as a heating means for forming on the end side of the.
  • the non-heating zone 8 of the pressure vessel 2 other than the heating zone 6 is provided with a plurality of dewatering holes 9 serving as drainage passages for draining the water in the pressure vessel 2, and the dewatering holes 9 are provided.
  • the porous material 10 is disposed so as to cover the outer periphery of the portion.
  • the waste 3 in the heating zone 6 is heated while the piston-like member 5 is operated in the direction of the arrow 4 so that the waste 3 is pressurized and reduced.
  • the internal pressure rises and the boiling point of the water contained in the waste 3 rises, but high-temperature water and steam exceeding 100 ° C. are generated.
  • the high-temperature water and steam act to increase the internal pressure of the heating zone 6 beyond the pressure due to pressurization of the piston-like member 5.
  • the high temperature water and steam described above flow into the non-heating zone 8, and the water present in the non-heating zone is heated by these high temperature water and steam.
  • the water present in the non-heated zone 8 is discharged through the dewatering holes 9 and the porous material 10 together with the high-temperature water and steam.
  • the moisture to be discharged is in a state of pressure higher than atmospheric pressure, but when it comes into contact with the atmosphere, the boiling point decreases, and as a result, it rapidly vaporizes and vaporizes.
  • FIG. 2 is a cross-sectional view showing a dehydration / volume reduction solidification device 11 according to a second embodiment of the present invention.
  • 3 to 6 are cross-sectional views for explaining the operation of the dehydrating / volume reducing and solidifying apparatus 1 shown in FIG.
  • the dehydration and volume reduction and solidification device 1 shown in Fig. 1 is a force S, which was a so-called batch type, and the dehydration and volume reduction and solidification device 11 shown in Fig. 2 is semi-continuous. It is intended to solidify.
  • the dehydration / volume reduction solidification device 11 is a waste 1 as in the case of the dehydration / volume reduction solidification device 1 described above.
  • a pressure vessel 13 for accommodating 2 a piston-like member 15 actuated in the direction of arrow 14 (see FIG. 4) to pressurize and reduce the waste 12 contained in the pressure vessel 13, and 100 ° Over C
  • the heating zone 16 heated to a certain temperature is a part of the pressure vessel 13 and is formed as a heating means as a heating means for forming the piston-like member 15 on the terminal side of the operation in the pressure reducing direction 14. 17 and so on.
  • the pressure vessel 13 has a cylinder-shaped portion 18 having a predetermined axis, and the piston-shaped member 15 in the cylinder-shaped portion 18 as shown by a solid line and a broken line in FIG. It is provided to operate in the axial direction.
  • the heating zone 16 is formed at one end of the cylinder-shaped portion 18 in the axial direction.
  • the pressure vessel 13 further includes a die 19 provided on the one end side of the cylinder-shaped portion 18.
  • the die 19 is provided with a forming through hole 20 having an inner diameter smaller than the inner diameter of the cylinder-shaped portion 18.
  • a non-heating zone 21 is formed at the other end of the cylinder-shaped portion 18, and a non-heating zone 22 is also formed by the die 19.
  • the piston-like member 15 is provided with a plurality of dewatering holes 23 as drainage passages.
  • a gap serving as a drainage passage may be formed between the piston-shaped member 15 and the cylinder-shaped portion 18. Further, the molding through hole 20 is a part of the drainage passage.
  • an inlet 24 for introducing the waste 12 into the pressure vessel 13 is provided.
  • the input port 24 is a waste 12 having a size of 150 mm or less, it should be sized so that it can be input.
  • waste 12 to be dehydrated / volume-reduced and solidified is introduced into the pressure vessel 13 from the inlet 24.
  • the input waste 12 is filled into the cylinder-shaped portion 18 by reciprocating the piston-like member 15 as indicated by a double arrow 25.
  • the introduction of the waste 12 from the inlet 24 and the reciprocating operation of the piston-like member 15 are repeated until the waste 12 reaches the vicinity of the inlet 24 as shown in FIG. At this time, the waste 12 is compressed to some extent.
  • the heater 17 is turned on, and the heating zone 16 is heated to a temperature exceeding 100 ° C. [0052] As shown in FIG.
  • the piston-like member 15 pressurizes and reduces the waste 12 as shown in Figs. Actuated in the direction of arrow 14 as shown. At this time, the waste 12 in the heating zone 16 is heated, so that the internal pressure rises in the heating zone 16 and the boiling point of the water contained in the waste 12 rises, but exceeds 100 ° C. Hot water and steam are generated. Due to the generated high-temperature water and steam, the internal pressure in the heating zone 16 rises above the pressure due to pressurization of the piston-like member 15.
  • the above-described high-temperature water and steam flow to the non-heated zone 21 and the water force S existing in the non-heated zone 21 is heated by these high-temperature water and steam. From 23, it is discharged as shown by arrow 27. Since the water before being discharged from the dewatering hole 23 is in a pressure state higher than the atmospheric pressure, it has a boiling point exceeding 100 ° C! /, And the force is discharged from the dewatering hole 23 and comes into contact with the atmosphere. At the moment, the boiling point drops, vaporizes instantly, and is discharged as shown by arrow 27.
  • the waste 12 in the heating zone 16 is pushed out from the cylinder-shaped portion 18 through the die 19 by the pressurization of the piston-like member 15. At this time, the moisture contained in the waste 12 exerts a lubricating effect between the die 19 and the waste 12 and acts to smoothly push out the waste 12.
  • the moisture contained in the waste 12 instantly becomes steam as shown by the arrow 28 due to the lowering of its boiling point. Vaporize. In this way, the waste 12 is pressurized and compressed in the cylinder-shaped portion 18 and is pushed out of the die 19 to become a dehydrated / volume-reduced solidified material 29 formed into a rod shape. At this time, steam generated in the heating zone 16 Qi acts to further push out the waste 12.
  • the piston-like member 15 is returned to the starting end position as shown in FIG. 6 after reaching the final end of its stroke.
  • the internal pressure of the cylinder-shaped portion 18 decreases at a stroke, and the residual moisture in the waste 12 is vaporized as indicated by an arrow 30. Therefore, the waste 12 left in the cylinder-shaped portion 18 is dehydrated and reduced in volume at this position.
  • the process returns to the process shown in Fig. 3 again, and the waste 12 is newly input.
  • the waste 12 already reduced in volume as described above is Since water is hardly absorbed, the water contained in the newly input waste 12 hardly penetrates again into the waste 12 already reduced in volume.
  • the waste 12 dehydrated and volume-reduced and solidified in the cylinder-shaped portion 18 can be plastically deformed as long as it is heated in the heating zone 16 and can be extruded from the die 19. In particular, when the waste 12 includes waste plastic, the plastic is melted in the heating zone 16 and can be smoothly extruded through the die 19.
  • the temperature conditions in the heating zone 16 and the pressure conditions of the pressure applied by the piston-like member 15 differ depending on the material of the waste 12 to be treated. .
  • temperature conditions when the main component of the waste 12 is waste plastic, a temperature of 120 to 200 ° C. is given, and when it is waste wood, a higher temperature is given.
  • pressure condition if the main component of waste 12 is, for example, paper, a pressure of 150 kg / cm 2 or more is applied, and if it is waste plastic (or 300-350 kg / cm 2 In the case of waste wood (approx. 400-420 kg / cm 2 is applied, especially when various foreign substances mixed with the main component are mixed, the range is 150-450 kg / cm 2 From these pressures, a empirically preferred pressure is selected.
  • waste 12 to be treated is a mixture of wood flour and 150 mm under plastic fluff in a volume ratio of 1: 1, and a moisture content of 60% by weight or more. Prepared. In addition, it was formed on the die 19 in the dehydration and volume reduction solidification device 11. The inner diameter of the molding through hole 20 was set to 30 mm.
  • the moisture content was 35% by weight when the pressurizing condition by the piston-like member 15 was 100kg / cm 2 , and 30% at 200kg / cm 2.
  • weight 0/0, the 400 kg / cm 2 was a 21 weight 0/0.
  • Heating to 170 ° C in heating zone 16 while forming non-heating zones 21 and 22 and depressurization / volume reduction solidified product with a moisture content of 6% by weight were obtained when the pressure condition was 350 kg / cm 2 . .
  • FIG. 7 is a longitudinal sectional view showing a die 31 according to a preferred embodiment that can be used in place of the die 19 in the dehydrating / volume reducing and solidifying apparatus 11 shown in FIG.
  • FIG. 8 is an end view of the die 31 shown in FIG.
  • FIG. 9 is a sectional view taken along the spring AA in FIG.
  • the die 31 has a molding through-hole 32 through which the waste 12 (see FIGS. 3 to 6) passes.
  • the die 31 has an approach portion 34 having an inlet 33 for introducing the waste 12 into the through-hole 32 for forming, and an inner peripheral surface 35 for forming the waste 12 introduced through the approach portion 34.
  • a back release part 38 having an outlet 37 for discharging the waste 12 formed in the bearing part 36 as a dewatering-reducing volume solidified substance 29 in the molding through-hole 32. It is constructed sequentially from the upstream side to the downstream side in the direction of movement of waste 12.
  • a dewatering hole 39 that makes the molding through hole 32 and the atmosphere communicate with each other is provided in an intermediate portion in the axial direction of the bearing portion 36.
  • six dewatering holes 39 are provided so as to extend in the radial direction while being distributed at equal intervals in the circumferential direction of the bearing portion.
  • the approach portion 34 is formed with a tapered inner circumferential surface 40 force S having an inner diameter larger toward the inlet 33 side.
  • the tapered inner peripheral surface 40 is provided with a plurality of grooves 41 so as to extend in the axial direction of the forming through hole 32.
  • the six grooves 41 and the six dewatering holes 36 are provided corresponding to the positions in the circumferential direction.
  • each dewatering hole 39 is positioned so as to overlap the extended line of each of the six grooves 41.
  • the knock release portion 38 is formed with a tapered inner peripheral surface 42 whose inner diameter becomes larger toward the outlet 37 side.
  • a pressure buffering band 43 that defines an inner diameter larger than the inner diameter of the other part of the molding through hole 32 is provided.
  • the die 31 is made of die steel or carbon steel. Further, the overall dimensions of the die 31 and the dimensions of each part can be arbitrarily selected. As an example, the overall length dimension of the die 31 is about 150 to 600 mm. Further, the inner diameter of the molding through-hole 32 is set to about 8 to 40 mm, and the maximum inner diameter in the pressure buffer zone 43 is made larger than the inner diameter of other portions of the molding through-hole 32 by about! The inner diameter of the dewatering hole 39 is about 1 to 10 mm, and preferably 5 to 6 mm.
  • the position of the dewatering hole 39 in the axial direction of the die 31 is set to a position of 100 to 300 mm from the end face on the approach part 34 side or a position of 100 to 300 mm from the end face on the back release part 38 side.
  • the position of the pressure buffer zone 43 is selected to be 10 to 50 mm from the position of the dewatering hole 39 and shifted to the back release part 38 side.
  • the waste 12 in the heating zone is piston-like.
  • the cylinder 15 is pushed out through the die 31.
  • FIG. 3 is a cross-sectional view of the waste 12 for explaining a distribution state of moisture content on a cross section of the waste 12 that has passed through the broach part 34.
  • the uneven distribution of moisture in the waste 12 I'll be there. That is, since the groove facing portion 44 has a lower compression rate than the groove non-facing portion 45, the moisture content in the groove facing portion 44 is higher than the moisture content in the groove non-facing portion 45. According to an experimental example conducted under certain specific conditions, when the water content in the central portion 16 of the waste 12 is 0% by weight, the water content in the non-groove portion 45 is 12% by weight. On the other hand, the moisture content at the groove facing portion 44 was relatively high at 16% by weight. The uneven distribution of moisture as described above promotes the movement of moisture in the waste 12 and, as a result, acts to further reduce the residual moisture rate in the waste 12.
  • the waste 12 that has passed through the approach portion 34 is molded while contacting the inner peripheral surface 35 of the bearing portion 36 and reaches the position of the dewatering hole 39.
  • the groove 41 in the approach portion 34 is provided corresponding to the position of the dewatering hole 39, the high temperature water in the groove facing portion 44 having a higher moisture content as a result of uneven distribution of moisture.
  • the vapor rapidly escapes through the dewatering hole 39 while the waste 12 is being reduced in volume and solidified. This acts to lower the residual moisture rate in the finally obtained dehydrated / reduced solidified product 29.
  • the waste 12 may have a porous portion.
  • the waste 12 that has passed through the dewatering hole 39 then reaches the pressure buffer zone 43.
  • the compressed state of the waste 12 is once released in the pressure buffer zone 43.
  • the waste 12 is forced to become compressed again.
  • Such a force can obtain a further compressive effect on the waste 12 and can obtain a good volume reduction and solidification state for the porous portion of the waste 12 described above.
  • the present invention is not limited to the organic waste described above, and can also be applied to the case of dehydrating / reducing and solidifying organic matter that is difficult to be included in the concept of "waste" such as grass.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Engineering & Computer Science (AREA)
  • Treatment Of Sludge (AREA)
  • Processing Of Solid Wastes (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

This invention provides an apparatus for efficient dehydration/volume reduction solidification of a water-containing organic waste. A heating zone (6) which is heated to a temperature above 100°C is formed at an area which is a part within a pressure vessel (2) and on the terminating end side of operation toward a pressure volume reduction direction (4) in a piston-shaped member (5). A drainage passage (9) is provided in the pressure vessel (2) in its nonheating zone (8). When a waste (3) is heated in a heating zone (6) while operating the piston-shaped member (5), the internal pressure is raised in the heating zone (6). In this case, high-temperature water of a temperature above 100°C and steam are produced while causing a temperature rise in boiling point of the water, resulting in further increased internal pressure of the heating zone (6). This causes high-temperature water and steam flow into the nonheating zone (8), and water present in this place, together with high-temperature water and steam, is discharged, while being heated, through the drainage passage (9). Upon contact with the air, the water is instantly vaporized due to a lowering in boiling point.

Description

明 細 書  Specification
有機物の脱水'減容固化装置および方法ならびに有機物成形用ダイス 技術分野  Organic matter dehydration and volume-reduction solidification device and method, and organic material forming die
[0001] この発明は、有機物の脱水'減容固化装置および方法ならびに有機物成形用ダイ スに関するもので、特に、有機質廃棄物から固形燃料などを得るのに適用できる、有 機物の脱水'減容固化装置および方法、ならびにこの脱水'減容固化装置において 有利に用いられる有機物成形用ダイスに関するものである。  [0001] The present invention relates to an apparatus and method for dehydrating and reducing solidification of organic matter and an organic molding die, and in particular, to dehydrating and reducing organic matter applicable to obtaining solid fuel and the like from organic waste. The present invention relates to a solidification apparatus and method, and a die for forming an organic substance that is advantageously used in the dehydration and volume reduction solidification apparatus.
背景技術  Background art
[0002] RDFまたは RPFと呼ばれる固形燃料は、通常、有機質廃棄物を脱水 '減容固化し て得られるものである。固形燃料の原料となる廃棄物としては、たとえば、廃プラスチ ック、廃木材、生ごみ、古紙、紙屑、下水汚泥、家畜ふんなどがある。このような廃棄 物、特に産業廃棄物から得られる固形燃料は、近年の原油価格の高騰を受けて、化 石燃料の代替として注目されてレ、る。  [0002] Solid fuel called RDF or RPF is usually obtained by dehydrating and reducing the volume of organic waste. Examples of waste that can be used as a raw material for solid fuel include waste plastic, waste wood, garbage, waste paper, paper waste, sewage sludge, and livestock dung. Solid fuels obtained from such wastes, especially industrial wastes, are attracting attention as alternatives to fossil fuels due to the recent rise in crude oil prices.
[0003] 上述の固形燃料の成形方式としては、たとえば、フラットダイス方式、リングダイス方 式 (たとえば、特許文献 1参照)、スクリュ方式 (たとえば、特許文献 2参照)などがある  [0003] Examples of the solid fuel molding method include a flat die method, a ring die method (see, for example, Patent Document 1), a screw method (see, for example, Patent Document 2), and the like.
[0004] フラットダイス方式では、成形用貫通孔を設けた円盤状のダイスの上に処理される べき廃棄物を載せ、このダイス上で加圧ローラを回転させ、廃棄物を加圧ローラで破 砕しながら成形用貫通孔へと圧入することによって、固形燃料が圧縮 '押出し成形さ れる。 [0004] In the flat die method, the waste to be treated is placed on a disk-shaped die provided with a molding through hole, the pressure roller is rotated on the die, and the waste is broken by the pressure roller. The solid fuel is compressed and extruded by being pressed into the molding through-hole while being crushed.
[0005] リングダイス方式では、成形用貫通孔を設けたリング状のダイスの内面上で加圧口 ーラを回転させ、リング状のダイスの内側に投入された廃棄物を、加圧ローラによって 破砕しながら成形用貫通孔へと圧入することによって、固形燃料が圧縮 '押出し成形 される。  [0005] In the ring die method, a pressure roller is rotated on the inner surface of a ring-shaped die provided with a through-hole for molding, and the waste put inside the ring-shaped die is discharged by a pressure roller. Solid fuel is compressed and extruded by being pressed into the molding through-holes while being crushed.
[0006] スクリュ方式では、投入口から投入された廃棄物がスクリュによって前方へ送られな がら圧縮され、スクリュの先端に設けられたダイスの成形用貫通孔を通して、固形燃 料が成形される。 [0007] 上述した 3つの方式には、それぞれ、長所および短所がある力、共通する短所とし ては、処理されるべき廃棄物の大きさを、たとえば 50mmアンダーというように小さく する必要があり、そのため、処理すべき廃棄物を投入する前に、破砕処理を予め行 なわなければならないということがある。この破砕に当たっては、たとえば、 1次破砕、 2次破砕とレ、うように、複数段階の破砕を行なわなければならな!/、こともある。 [0006] In the screw method, the waste introduced from the insertion port is compressed while being sent forward by the screw, and the solid fuel is formed through a die forming through-hole provided at the tip of the screw. [0007] Each of the above three methods has advantages and disadvantages, and the common disadvantage is that the size of the waste to be treated needs to be reduced, for example, under 50 mm. Therefore, the crushing process must be performed before the waste to be processed is input. In this crushing, for example, primary crushing, secondary crushing and so on, it may be necessary to carry out multiple stages of crushing! /.
[0008] また、廃プラスチックを含む廃棄物を処理しょうとする場合、フラットダイス方式およ びリングダイス方式では、成形を円滑にするための加熱に際して、あまり温度を上げ ること力 Sできない。なぜなら、温度が高すぎると、廃プラスチックが溶融し、ダイス上で の移動を妨げるような溶着が生じるからである。  [0008] Also, when trying to process waste containing waste plastic, the flat die method and the ring die method cannot increase the temperature so much during heating for smooth molding. This is because if the temperature is too high, the waste plastic melts, resulting in welding that hinders movement on the die.
[0009] これに対して、スクリュ方式では、 150〜200°C程度にまで処理温度が高めることが できる力 水分を含む廃棄物を処理すると、スクリュを取り囲むハウジング内部で水蒸 気による爆発が起きる可能性があるため、その管理が非常に難しい。したがって、処 理されるべき廃棄物の含水率が大きな問題となり、そのため、得られた固形燃料の特 性に対しても大きな影響を及ぼす。  [0009] On the other hand, in the screw method, the processing temperature can be increased to about 150 to 200 ° C. When waste containing water is processed, an explosion due to water vapor occurs inside the housing surrounding the screw. It is very difficult to manage. Therefore, the moisture content of the waste to be treated becomes a big problem, and it has a big influence on the characteristics of the obtained solid fuel.
[0010] 以上の理由から、含水率の高い廃棄物については、事前に乾燥を行なうか、さらに は、成形後において、再度、乾燥を行なうことが必要となる。  [0010] For the reasons described above, it is necessary to dry waste with a high water content in advance, or to dry it again after molding.
[0011] また、前述した従来の 3つの方式のいずれによっても、得られた固形燃料の密度が 比較的低レ、と!/、う課題があり、より密度の高い固形燃料が得られることが望まれる。  [0011] In addition, according to any of the three conventional methods described above, there is a problem that the density of the obtained solid fuel is relatively low, and it is possible to obtain a solid fuel with a higher density. desired.
[0012] なお、脱水'減容固化といった操作は、単に有機質廃棄物に限らず、その他の有機 物に対しても適用され得る。 [0012] It should be noted that operations such as dehydration and volume reduction and solidification are not limited to organic waste but can be applied to other organic matters.
特許文献 1 :特開 2002— 285177号公報  Patent Document 1: Japanese Patent Laid-Open No. 2002-285177
特許文献 2 :特開 2000— 246212号公報  Patent Document 2: Japanese Patent Laid-Open No. 2000-246212
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0013] そこで、この発明の目的は、脱水'減容固化されるべき有機物に対して予め破砕処 理を行なっておく必要が特になぐ安全に処理温度を高めることができ、脱水効果が 高ぐかつ密度の高い減容固化状態が得られる、有機物の脱水'減容固化装置およ び方法を提供しょうとすることである。 [0014] この発明の他の目的は、上述した脱水.減容固化装置において、有機物の成形の ために有利に用いることができる、有機物成形用ダイスを提供しょうとすることである。 課題を解決するための手段 [0013] Therefore, an object of the present invention is to increase the treatment temperature safely and to enhance the dehydration effect, in particular, without the necessity of previously crushing the organic matter to be dehydrated and volume-reduced and solidified. An object is to provide an apparatus and method for dehydrating and reducing the volume of solidified organic matter, which can obtain a reduced volume and solidified state with high density. [0014] Another object of the present invention is to provide an organic material forming die that can be advantageously used for forming an organic material in the above-described dehydration and volume reduction solidification device. Means for solving the problem
[0015] この発明に係る有機物の脱水'減容固化装置は、水分を含む有機物を脱水'減容 固化するためのもので、上述した技術的課題を解決するため、有機物を収容するた めの圧力容器と、この圧力容器内に収容された有機物を加圧減容するように作動さ れるピストン状部材と、 100°Cを超える温度に加熱される加熱ゾーンを、圧力容器内 の一部であって、ピストン状部材の加圧減容方向への作動の終端側に形成するため の加熱手段とを備え、圧力容器の、上記加熱ゾーン以外の非加熱ゾーンおよび/ま たはピストン状部材には、圧力容器内の水分を抜くための水抜き通路が設けられる。  [0015] An organic matter dehydrating and volume-reducing solidification device according to the present invention is for dehydrating and volume-reducing and solidifying organic matter containing water. In order to solve the above-described technical problems, an organic matter is accommodated. A part of the pressure vessel includes a pressure vessel, a piston-like member that is actuated to depressurize and reduce the organic matter contained in the pressure vessel, and a heating zone that is heated to a temperature exceeding 100 ° C. Heating means for forming the piston-like member at the end of the operation in the direction of pressure reduction of the piston-like member, and a non-heating zone other than the heating zone and / or the piston-like member of the pressure vessel. Is provided with a drainage passage for draining moisture from the pressure vessel.
[0016] そして、この脱水 ·減容固化装置において、有機物を脱水'減容固化した脱水'減 容固化物を得るため、ピストン状部材が有機物を加圧減容することにより、有機物か ら出る水分が水抜き通路から排出されるば力、りでなぐピストン状部材が有機物を加 圧減容するように作動されながら、加熱手段により加熱ゾーンにある有機物が加熱さ れることにより、加熱ゾーンにおいて、内圧が上昇して、有機物に含まれる水分の沸 点が上昇しながらも、 100°Cを超える高温水および蒸気が生成し、生成した高温水 および蒸気によって、加熱ゾーンの内圧力 ピストン状部材の加圧による圧力を超え て上昇し、そのため、高温水および蒸気が非加熱ゾーンへと流動し、非加熱ゾーン に存在していた水分が、高温水および蒸気によって加熱されながら、高温水および 蒸気とともに、水抜き通路から排出されて大気と接触した瞬間、沸点低下により蒸気 となって気化するように構成されて!/、ることを特徴として!/、る。  [0016] Then, in this dehydration / volume reduction solidification device, the organic material is dehydrated to reduce the volume and solidified to obtain a dehydrated volume-reduced solidified product. When the moisture is discharged from the drainage passage, the piston-like member that is glued is operated to pressurize and reduce the organic matter, while the organic matter in the heating zone is heated by the heating means. While the internal pressure rises and the boiling point of the moisture contained in the organic matter rises, high-temperature water and steam exceeding 100 ° C are generated, and the generated high-temperature water and steam generate the internal pressure in the heating zone. As a result, the hot water and steam flow into the non-heated zone, and the water present in the non-heated zone is heated by the hot water and steam. It is configured to vaporize into vapor due to a drop in boiling point at the moment when it is discharged from the drainage passage with hot water and steam and comes into contact with the atmosphere!
[0017] この発明に係る脱水 ·減容固化装置においては、圧力容器は、所定の軸線を有す るシリンダ形状部分を備え、ピストン状部材は、シリンダ形状部分において軸線方向 に作動するように設けられ、加熱ゾーンは、シリンダ形状部分の軸線方向での一方端 部に形成されることが好ましい。そして、圧力容器は、シリンダ形状部分の上記一方 端側に設けられかつシリンダ形状部分の内径より小さい内径を有する成形用貫通孔 を規定するダイスをさらに備え、シリンダ形状部分の他方端部およびダイスが非加熱 ゾーンとされ、ピストン状部材に前記水抜き通路が設けられるとともに、ダイスの成形 用貫通孔が水抜き通路の一部とされ、ピストン状部材の加圧により、有機物は、シリン ダ形状部分力 ダイスを通って押し出され、有機物が大気と接触した瞬間、有機物に 含まれる水分が沸点低下により蒸気となって気化するように構成されることが好ましい In the dehydration / volume reduction solidification device according to the present invention, the pressure vessel includes a cylinder-shaped portion having a predetermined axis, and the piston-shaped member is provided so as to operate in the axial direction in the cylinder-shaped portion. The heating zone is preferably formed at one end of the cylinder-shaped portion in the axial direction. The pressure vessel further includes a die provided on the one end side of the cylinder-shaped portion and defining a molding through-hole having an inner diameter smaller than the inner diameter of the cylinder-shaped portion, and the other end portion of the cylinder-shaped portion and the die are It is a non-heating zone, and the drainage passage is provided in the piston-like member and the die is formed The organic through-hole is made part of the drainage passage, and when the piston-shaped member is pressurized, the organic matter is pushed out through the cylinder-shaped partial force die. It is preferable to be configured to vaporize as a boiling point drop.
[0018] 上述のダイスは、成形用貫通孔内に有機物を導入するための入口を有するァプロ ーチ部と、アプローチ部を通して導入された有機物を成形するための内周面を有す るベアリング部と、ベアリング部において成形された有機物を排出するための出口を 有するバックリリース部とを、成形用貫通孔内における有機物の移動方向で上流側 力、ら下流側に向かって順次構成しており、ベアリング部の軸線方向での中間部には 、成形用貫通孔と大気とを連通状態にする脱水孔が設けられていることが好ましい。 [0018] The above-described die includes an approach portion having an inlet for introducing an organic substance into a molding through-hole and a bearing portion having an inner peripheral surface for molding the organic substance introduced through the approach portion. And a back release portion having an outlet for discharging the organic matter molded in the bearing portion, in order, in the direction of movement of the organic matter in the through hole for molding, and sequentially configured from the upstream side toward the downstream side, It is preferable that a dewatering hole for communicating the forming through hole and the atmosphere is provided in an intermediate portion in the axial direction of the bearing portion.
[0019] この発明は、また、有機物の脱水'減容固化方法にも向けられる。 [0019] The present invention is also directed to a method for dehydrating and reducing the volume of organic matter.
[0020] この発明に係る脱水'減容固化方法は、内圧を上昇させるための加圧手段を含み かつ水抜き通路を有する、圧力容器を用意する、第 1工程と、水分を含む、脱水-減 容固化されるべき有機物を上記圧力容器に収容する、第 2工程と、圧力容器内の一 部を、 100°Cを超える温度に加熱して、圧力容器内に加熱ゾーンを形成するとともに 、上記加圧手段によって圧力容器内の有機物を加圧減容する、第 3工程とを備えて いる。 [0020] The dehydration and volume-reduction solidification method according to the present invention comprises a first step of preparing a pressure vessel including a pressurizing means for increasing the internal pressure and having a water drainage passage, and dehydration including water. The organic material to be reduced and solidified is contained in the pressure vessel, the second step, and a part of the pressure vessel is heated to a temperature exceeding 100 ° C to form a heating zone in the pressure vessel. A third step of pressurizing and reducing the organic matter in the pressure vessel by the pressurizing means.
[0021] そして、上記第 3工程を実施したとき、加熱ゾーンにおいて、内圧が上昇して、有機 物に含まれる水分の沸点が上昇しながらも、 100°Cを超える高温水および蒸気が生 成し、生成した高温水および蒸気によって、加熱ゾーンの内圧力 加圧手段の加圧 による圧力を超えて上昇することによって、高温水および蒸気が圧力容器内の非加 熱ゾーンへと流動し、非加熱ゾーンに存在していた水分力 高温水および蒸気によ つて加熱されながら、高温水および蒸気とともに、水抜き通路力 排出されて大気と 接触した瞬間、沸点低下により蒸気となって気化するように、当該第 3工程での温度 および圧力条件が設定されることを特徴としている。  [0021] When the third step is performed, high-temperature water and steam exceeding 100 ° C are generated while the internal pressure increases in the heating zone and the boiling point of the water contained in the organic matter increases. The generated high-temperature water and steam rise above the pressure generated by the internal pressure of the heating zone and the pressure applied by the pressurizing means, so that the high-temperature water and steam flow into the non-heated zone in the pressure vessel. Moisture force that existed in the heating zone While being heated by high-temperature water and steam, the drainage passage force is discharged together with the high-temperature water and steam, and as soon as it comes into contact with the atmosphere, it is vaporized as the boiling point drops. The temperature and pressure conditions in the third step are set.
[0022] この発明は、さらに、 100°Cを超える温度に加熱された、水分を含む有機物を、加 圧減容しながら棒状に成形するために用いられる、有機物成形用ダイスにも向けら れる。 [0023] この発明に係る有機物成形用ダイスは、有機物を通す成形用貫通孔を有し、かつ 、成形用貫通孔内に有機物を導入するための入口を有するアプローチ部と、ァプロ 一チ部を通して導入された有機物を成形するための内周面を有するベアリング部と、 ベアリング部において成形された有機物を排出するための出口を有するバックリリー ス部とを、成形用貫通孔内における有機物の移動方向で上流側から下流側に向か つて順次構成しており、ベアリング部の軸線方向での中間部には、成形用貫通孔と 大気とを連通状態にする脱水孔が設けられていることを特徴としている。 [0022] The present invention is also directed to an organic material forming die used for forming a water-containing organic material heated to a temperature exceeding 100 ° C into a rod shape while reducing the pressure. . [0023] An organic material molding die according to the present invention has a molding through-hole through which an organic material passes, and an approach portion having an inlet for introducing the organic material into the molding through-hole, and an approach portion. The bearing part having an inner peripheral surface for molding the introduced organic substance and the back release part having an outlet for discharging the organic substance molded in the bearing part are moved in the direction of movement of the organic substance in the molding through-hole. The bearings are constructed sequentially from the upstream side to the downstream side, and a dewatering hole is provided in the intermediate part in the axial direction of the bearing part to connect the molding through hole and the atmosphere. It is said.
[0024] この発明に係る有機物成形用ダイスにおいて、複数の脱水孔がベアリング部の周 方向に分布するように設けられ、アプローチ部には、入口側に向かって内径がより大 きくなるテーパ状内周面が形成され、テーパ状内周面には、複数の溝が、複数の脱 水孔の各々の周方向での位置に対応しかつ成形用貫通孔の軸線方向に延びるよう に設けられて!/、ることが好ましレ、。  [0024] In the organic material forming die according to the present invention, a plurality of dewatering holes are provided so as to be distributed in the circumferential direction of the bearing portion, and the approach portion has a tapered inner shape whose inner diameter becomes larger toward the inlet side. A circumferential surface is formed, and a plurality of grooves are provided on the tapered inner circumferential surface so as to correspond to the positions in the circumferential direction of the plurality of dewatering holes and to extend in the axial direction of the through hole for molding. ! /
[0025] また、この発明に係る有機物成形用ダイスは、ベアリング部において、脱水孔の下 流側に設けられる、成形用貫通孔の他の部分の内径に比べて大きい内径を規定す る圧力緩衝帯を備えることが好ましレ、。  [0025] Further, the organic material molding die according to the present invention provides a pressure buffer that defines a larger inner diameter than the inner diameter of the other part of the molding through-hole provided on the downstream side of the dewatering hole in the bearing portion. It is preferable to have a belt.
発明の効果  The invention's effect
[0026] この発明では、水の沸点が、低圧下では低下し、他方、高圧下では上昇するという 現象が利用される。この発明によれば、圧力容器内において有機物に含まれて存在 する水分は、有機物の加圧減容とともに、加熱ゾーンでの加熱により、 100°Cを超え る高温水および蒸気となる。この高温水および蒸気は、加熱ゾーンの内圧をさらに上 昇させる加圧助長手段として作用し、非加熱ゾーンへと流動することによって、非加 熱ゾーンに存在していた水分を加熱し、これを上記高温水および蒸気とともに水抜き 通路から排出する。この水抜き通路から排出されようとする水分は、未だ大気圧より 高い圧力状態となっているが、大気と接触した瞬間、沸点低下により直ちに蒸気とな つて気化する。したがって、有機物を脱水 '減容固化して脱水 ·減容固化物を得るに 当たって、高い脱水効果が得られる。  [0026] In the present invention, a phenomenon is used in which the boiling point of water decreases under a low pressure and increases under a high pressure. According to the present invention, the water contained in the organic substance in the pressure vessel becomes high-temperature water and steam exceeding 100 ° C. by heating in the heating zone together with the pressure reduction of the organic substance. The high-temperature water and steam act as a pressurizing and promoting means for further increasing the internal pressure of the heating zone, and flow into the non-heating zone to heat the moisture existing in the non-heating zone, It is discharged from the drainage passage along with the hot water and steam. Moisture that is about to be discharged from the drainage passage is still in a pressure state higher than atmospheric pressure, but at the moment when it comes into contact with the atmosphere, it immediately vaporizes as a drop in boiling point. Therefore, a high dehydration effect can be obtained when dehydrating and reducing the volume of organic matter to obtain a dehydrated and reduced volume solidified product.
[0027] また、上述した加熱ゾーンにおいて生成される 100°Cを超える高温水は、潤滑剤と して作用し、圧力容器内の有機物の移動を円滑なものとする。その結果、有機物を 脱水'減容固化して得られた脱水'減容固化物の減容固化状態を密度の高いものと すること力 Sでさる。 [0027] Further, the high-temperature water exceeding 100 ° C generated in the heating zone described above acts as a lubricant, and smooth movement of the organic matter in the pressure vessel. As a result, organic matter The force S to reduce the volume of the dehydrated volume-reduced solidified product obtained by dehydration and volume-reduction solidification is high.
[0028] また、この発明に係る脱水'減容固化装置は、構造がそれほど複雑ではないため、 装置コストが比較的低ぐまた、ランニングコストも比較的低く抑えることができる。また 、この発明に係る脱水'減容固化装置は、その構造上、たとえば 150〜200mmアン ダ一の寸法の有機物であれば、予め破砕処理を施すことなぐこれを受け入れること ができる。  [0028] Further, since the dehydration and volume reduction solidification device according to the present invention is not so complicated in structure, the device cost is relatively low and the running cost can be kept relatively low. In addition, the dehydration and volume reduction and solidification device according to the present invention can accept an organic material having a size of, for example, 150 to 200 mm, without being subjected to crushing treatment in advance.
[0029] また、圧力容器内の加熱ゾーンで生成された蒸気は、非加熱ゾーンへと流動したと き、液体としての水となり、水抜き通路力も排出されるので、たとえば水蒸気爆発とい つた事故が生じにくぐ安全性の高いものとすることができる。  [0029] Further, when the steam generated in the heating zone in the pressure vessel flows into the non-heating zone, it becomes water as a liquid and drainage passage force is also discharged, so that an accident such as a steam explosion occurs. It can be made highly safe and difficult to occur.
[0030] この発明に係る脱水 ·減容固化装置において、ピストン状部材カ 圧力容器のシリ ンダ形状部分において軸線方向に作動するように設けられ、加熱ゾーン力 シリンダ 形状部分の軸線方向での一方端部に形成され、圧力容器が、シリンダ形状部分の 一方端側に設けられかつシリンダ形状部分の内径より小さい内径を有する成形用貫 通孔を規定するダイスをさらに備え、シリンダ形状部分の他方端部およびダイスが非 加熱ゾーンとされ、ピストン状部材に水抜き通路が設けられるとともに、成形用貫通孔 が水抜き通路の一部とされ、ピストン状部材の加圧により、有機物が、シリンダ形状部 分からダイスを通って押し出され、有機物が大気と接触した瞬間、有機物に含まれる 水分が沸点低下により蒸気となって気化するように構成されると、有機物の脱水'減 容固化処理を半連続的に実施することができる。また、ダイスの成形用貫通孔を水抜 き通路として排出される水分は、ダイスと有機物との間で潤滑効果を発揮するので、 成形用貫通孔を通しての有機物の押し出しを円滑に行なうことができる。  [0030] In the dehydration / volume reduction solidification device according to the present invention, the piston-shaped member is provided so as to operate in the axial direction in the cylinder-shaped portion of the pressure vessel, and the heating zone force is one end in the axial direction of the cylinder-shaped portion. And a pressure vessel is provided on one end side of the cylinder-shaped portion and further includes a die for defining a molding through-hole having an inner diameter smaller than the inner diameter of the cylinder-shaped portion, and the other end portion of the cylinder-shaped portion The die is set as a non-heated zone, and the drainage passage is provided in the piston-like member, and the molding through-hole is made a part of the drainage passage. Extruded through a die, the moment when the organic matter comes into contact with the atmosphere, the water contained in the organic matter is vaporized as the boiling point decreases. Once, it is possible to carry out dehydration 'compaction solidification of organic semi-continuously. In addition, the water discharged through the die forming through hole as a drainage passage exhibits a lubricating effect between the die and the organic substance, so that the organic substance can be smoothly pushed out through the forming through hole.
[0031] この発明に係る有機物成形用ダイスによれば、ベアリング部の中間部に、成形用貫 通孔と大気とを連通状態にする脱水孔が設けられているので、成形途中の有機物が 脱水孔を通して大気と接触することになる。そして、有機物が大気と接触した瞬間、 有機物に含まれる高温水および蒸気は、沸点低下により、脱水孔を通して急激に抜 ける。そのため、成形後の有機物での水分残存率をより低くすることができる。  [0031] According to the organic material molding die according to the present invention, since the dewatering hole for connecting the molding through hole and the atmosphere is provided in the intermediate portion of the bearing portion, the organic material during molding is dehydrated. It will come into contact with the atmosphere through the hole. At the moment when the organic material comes into contact with the atmosphere, the high-temperature water and steam contained in the organic material are rapidly extracted through the dehydration holes due to the lowering of the boiling point. Therefore, the moisture residual rate in the organic substance after molding can be further reduced.
[0032] この発明に係る有機物成形用ダイスのアプローチ部にテーパ状内周面が形成され 、このテーパ状内周面に複数の溝が、成形用貫通孔の軸線方向に延びるように設け られていると、有機物がアプローチ部を通過したとき、溝が設けられた部分とそうでな い部分との間での圧縮差により、有機物内において水分の偏在力あたらされる。この ような水分の偏在は、有機物内での水分の移動を促進し、結果として、有機物内での 水分残存率をより低下させるように作用する。また、この発明に係るダイスにおいて、 複数の脱水孔がベアリング部の周方向に分布するように設けられ、上述の複数の溝 力 Sこれら脱水孔の位置に対応して設けられていると、上述した水分の偏在でより高い 含水率となって!/、る溝に対向する部分での高温水および蒸気を、脱水孔を通して効 果的に抜くことができる。 [0032] A tapered inner peripheral surface is formed in the approach portion of the organic material forming die according to the present invention. When a plurality of grooves are provided on the tapered inner peripheral surface so as to extend in the axial direction of the through hole for molding, when the organic substance passes through the approach portion, the portion where the grooves are provided is not. Due to the difference in compression between the portions, moisture is unevenly distributed in the organic matter. Such uneven distribution of moisture promotes the movement of moisture in the organic matter, and as a result, acts to further reduce the residual moisture rate in the organic matter. Further, in the die according to the present invention, the plurality of dewatering holes are provided so as to be distributed in the circumferential direction of the bearing portion, and the plurality of groove forces S described above are provided corresponding to the positions of these dewatering holes. Due to the uneven distribution of moisture, the water content becomes higher! /, High-temperature water and steam in the part facing the groove can be effectively removed through the dewatering holes.
[0033] この発明に係る有機物成形用ダイスのベアリング部において、脱水孔の下流側に 圧力緩衝帯が設けられていると、ベアリング部を通過する有機物の圧縮状態が、圧 力緩衝帯において一旦解かれた後、再び圧縮状態となるように強いられるので、一 層の圧縮効果を得ることができる。したがって、脱水孔を通して高温水および蒸気が 急激に抜けた結果もたらされた有機物におけるポーラスな部分についても、良好な 減容固化状態を得ることができる。 [0033] In the bearing portion of the organic material molding die according to the present invention, if a pressure buffering zone is provided on the downstream side of the dewatering hole, the compressed state of the organic matter passing through the bearing portion is once resolved in the pressure buffering zone. After that, it is forced to be in a compressed state again, so that a layer of compression effect can be obtained. Therefore, a good volume-reduction and solidified state can be obtained even for the porous portion in the organic matter resulting from the rapid escape of high-temperature water and steam through the dehydration holes.
図面の簡単な説明  Brief Description of Drawings
[0034] [図 1]この発明の第 1の実施形態による脱水'減容固化装置 1を示す断面図である。  FIG. 1 is a cross-sectional view showing a dehydration and volume reduction solidification device 1 according to a first embodiment of the present invention.
[図 2]この発明の第 2実施形態による脱水 ·減容固化装置 11を示す断面図である。  FIG. 2 is a cross-sectional view showing a dehydration / volume reduction solidification device 11 according to a second embodiment of the present invention.
[図 3]図 2に示した脱水 ·減容固化装置を用レ、て脱水 ·減容固化を実施するため、有 機質廃棄物 12を投入し、シリンダ形状部分 18にこれを充填しょうとする工程を示す 図である。  [Fig. 3] In order to carry out dehydration and volume reduction solidification using the dehydration and volume reduction solidification device shown in Fig. 2, organic waste 12 is introduced and the cylinder-shaped part 18 is filled with this. It is a figure which shows the process to perform.
[図 4]図 2に示した脱水 ·減容固化装置 11を用いて脱水 ·減容固化を実施するため、 図 3に示した工程の後、ピストン状部材 15によって、有機質廃棄物 12を加圧減容し ようとする工程を示す図である。  [Fig. 4] In order to carry out dehydration / volume reduction solidification using the dehydration / volume reduction solidification device 11 shown in FIG. 2, after the process shown in FIG. It is a figure which shows the process which is going to carry out pressure reduction.
[図 5]図 2に示した脱水 ·減容固化装置 11を用!/、て脱水 ·減容固化を実施するため、 図 4に示した工程の後、さらにピストン状部材 15を作動させて、ダイス 19から脱水 '減 容固化物 29を押し出している状態を示す図である。  [Fig. 5] Using the dehydration / volume reduction solidification device 11 shown in Fig. 2! / In order to carry out dehydration / volume reduction solidification, the piston-like member 15 is further operated after the step shown in Fig. 4. FIG. 6 is a view showing a state where a dehydrated and volume-reduced solidified material 29 is extruded from a die 19.
[図 6]図 2に示した脱水 ·減容固化装置 11を用いて脱水 ·減容固化を実施するため、 図 5に示した工程の後、ピストン状部材 15を始端位置に戻した状態を示す図である。 園 7]図 2に示した脱水 ·減容固化装置 11において、ダイス 19に代えて用いられ得る 、好ましい実施形態によるダイス 31を示す縦断面図である。 [Fig. 6] In order to carry out dehydration and volume reduction solidification using the dehydration and volume reduction solidification device 11 shown in Fig. 2, FIG. 6 is a view showing a state in which the piston-like member 15 is returned to the starting end position after the step shown in FIG. 7] A longitudinal sectional view showing a die 31 according to a preferred embodiment that can be used in place of the die 19 in the dewatering / volume reducing and solidifying apparatus 11 shown in FIG.
[図 8]図 7に示したダイス 31の端面図である。 FIG. 8 is an end view of the die 31 shown in FIG.
[図 9]図 7の泉 A— Aに沿う断面図である。 FIG. 9 is a sectional view taken along the spring AA in FIG.
[図 10]図 7に示したダイス 31を用いて減容固化プロセスを実施した場合のアプローチ 部 34を通過した有機質廃棄物 12の断面上での含水率の分布状態を説明するため の有機質廃棄物 12の断面図である。  [Fig. 10] Approach when volume reduction solidification process is performed using the die 31 shown in Fig. 7 Organic waste for explaining the distribution of moisture content on the cross section of the organic waste 12 that has passed through the part 34 FIG.
符号の説明 Explanation of symbols
1 , 11 脱水 ·減容固化装置  1, 11 Dehydration / Volume reduction solidification equipment
2, 13 圧力容器  2, 13 Pressure vessel
3, 12 有機質廃棄物  3, 12 Organic waste
5, 15 ピストン状部材  5, 15 Piston-like member
6, 16 加熱ゾーン  6, 16 Heating zone
7, 17 ヒータ  7, 17 Heater
8, 21 , 22 非加熱ゾーン  8, 21, 22 Unheated zone
9, 23, 39 脱水孔  9, 23, 39 Dewatering hole
10 多孔質材  10 Porous material
18 シリンダ形状部分  18 Cylinder shape part
19, 31 ダイス  19, 31 dice
20, 32 成形用貫通孔  20, 32 Through hole for molding
24 投入口  24 slot
33 人口  33 Population
34 アプローチ部  34 Approach section
35 内周面  35 Inner surface
36 ベアリング部  36 Bearing part
37 出口  37 Exit
38 バックリリース部 40, 42 テーパ状内周面 38 Back release 40, 42 Tapered inner peripheral surface
41 溝  41 groove
43 圧力緩衝帯  43 Pressure buffer zone
44 溝対向部分  44 Groove facing part
45 溝非対向部分  45 Non-opposing part of groove
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0036] 図 1は、この発明の第 1の実施形態による脱水'減容固化装置 1を示す断面図であ FIG. 1 is a cross-sectional view showing a dehydration and volume reduction solidification device 1 according to a first embodiment of the present invention.
[0037] 脱水 ·減容固化装置 1は、圧力容器 2を備えている。圧力容器 2には、脱水 ·減容固 化されるべき有機質廃棄物 3が収容される。廃棄物 3は、たとえば 10重量%以上の 含水率をもって水分を含む有機物である。この発明に係る脱水 ·減容固化装置 1にあ つては、廃棄物 3の含水率がたとえば 35重量%以上、あるいは 45重量%以上という ように高くても、後述する動作原理により、これを問題なく脱水'減容固化処理するこ と力できる。廃棄物 3は、産業廃棄物であっても、一般廃棄物であってもよぐその材 料としては、廃プラスチック、廃木材、ダム等に溜まる流木、生ごみ、古紙、紙屑、下 水汚泥、家畜ふんなど、いずれであってもよぐまた、その形態としては、粉体、バル ク、フラフ、泥状など、いずれであってもよい。 The dehydration / volume reduction and solidification device 1 includes a pressure vessel 2. The pressure vessel 2 contains organic waste 3 to be dehydrated and reduced in volume. Waste 3 is an organic substance containing moisture with a moisture content of 10% by weight or more, for example. In the dehydration / volume reduction solidification device 1 according to the present invention, even if the moisture content of the waste 3 is high, for example, 35% by weight or more, or 45% by weight or more, this is a problem due to the operation principle described later. Without dehydration and volume reduction. Waste 3 can be industrial waste or general waste. Materials such as waste plastic, waste wood, driftwood accumulated in dams, garbage, waste paper, paper waste, sewage sludge It may be any of livestock dung, etc. The form may be any of powder, bulk, fluff, mud and the like.
[0038] 脱水 ·減容固化装置 1は、圧力容器 2内に収容された廃棄物 3を、矢印 4で示すよう に、加圧減容するように作動されるピストン状部材 5を備えている。また、脱水'減容 固化装置 1は、 100°Cを超える温度に加熱される加熱ゾーン 6を、圧力容器 2内の一 部であって、ピストン状部材 5の加圧減容方向 4の作動の終端側に形成するための 加熱手段としてのヒータ 7を備えている。圧力容器 2の、加熱ゾーン 6以外の非加熱ゾ ーン 8には、圧力容器 2内の水分を抜くための水抜き通路となる複数の脱水孔 9が設 けられ、脱水孔 9が設けられた部分の外周を覆うように多孔質材 10が配置される。  [0038] The dehydration / volume reduction solidification device 1 includes a piston-like member 5 that is operated to pressurize and reduce the waste 3 contained in the pressure vessel 2 as indicated by an arrow 4 in FIG. . In addition, the dehydration and volume reduction solidification device 1 operates a heating zone 6 heated to a temperature exceeding 100 ° C. in a part of the pressure vessel 2 and operates in the pressure reduction direction 4 of the piston-like member 5. A heater 7 is provided as a heating means for forming on the end side of the. The non-heating zone 8 of the pressure vessel 2 other than the heating zone 6 is provided with a plurality of dewatering holes 9 serving as drainage passages for draining the water in the pressure vessel 2, and the dewatering holes 9 are provided. The porous material 10 is disposed so as to cover the outer periphery of the portion.
[0039] このような脱水'減容固化装置 1を用いて、廃棄物 3を脱水'減容固化した脱水'減 容固化物を得るため、廃棄物 3が圧力容器 2内に投入され、ヒータ 7によって加熱ゾ ーン 6が圧力容器 2内の一部に形成された状態で、ピストン状部材 5が矢印 4方向へ 作動される。これによつて、まず、廃棄物 3が加圧減容され、廃棄物 3から絞り出され る水分が脱水孔 9および多孔質材 10を通して排出される。これは、通常の圧縮乾燥 によるものである。 [0039] In order to obtain a dehydrated and reduced solidified product obtained by dehydrating and reducing and solidifying the waste 3 using such a dehydrating and volume reducing and solidifying device 1, the waste 3 is introduced into the pressure vessel 2 and heated. With the heating zone 6 formed in a part of the pressure vessel 2 by 7, the piston-like member 5 is operated in the direction of arrow 4. As a result, first, waste 3 is reduced in pressure and squeezed out from waste 3. Water is discharged through the dewatering holes 9 and the porous material 10. This is due to normal compression drying.
[0040] 上述のように、廃棄物 3が加圧減容されるように、ピストン状部材 5が矢印 4方向に 作動された状態で、加熱ゾーン 6にある廃棄物 3が加熱されることにより、加熱ゾーン 6において、内圧が上昇して、廃棄物 3に含まれる水分の沸点が上昇しながらも、 10 0°Cを超える高温水および蒸気が生成する。この高温水および蒸気は、加熱ゾーン 6 の内圧を、ピストン状部材 5の加圧による圧力を超えて上昇させるように作用する。  [0040] As described above, the waste 3 in the heating zone 6 is heated while the piston-like member 5 is operated in the direction of the arrow 4 so that the waste 3 is pressurized and reduced. In the heating zone 6, the internal pressure rises and the boiling point of the water contained in the waste 3 rises, but high-temperature water and steam exceeding 100 ° C. are generated. The high-temperature water and steam act to increase the internal pressure of the heating zone 6 beyond the pressure due to pressurization of the piston-like member 5.
[0041] その結果、上述の高温水および蒸気が非加熱ゾーン 8へと流動し、非加熱ゾーン に存在していた水分を、これら高温水および蒸気によって加熱する。そして、非加熱 ゾーン 8に存在していた水分は、これら高温水および蒸気とともに、脱水孔 9および多 孔質材 10を通って排出される。この排出されようとする水分は、大気圧より高い圧力 状態にあるが、大気と接触した瞬間、沸点低下が生じ、それによつて、急激に蒸気と なって気化する。  [0041] As a result, the high temperature water and steam described above flow into the non-heating zone 8, and the water present in the non-heating zone is heated by these high temperature water and steam. The water present in the non-heated zone 8 is discharged through the dewatering holes 9 and the porous material 10 together with the high-temperature water and steam. The moisture to be discharged is in a state of pressure higher than atmospheric pressure, but when it comes into contact with the atmosphere, the boiling point decreases, and as a result, it rapidly vaporizes and vaporizes.
[0042] 以上のような動作原理に従った処理を終えたとき、圧力容器 2内には、廃棄物 3を 脱水 '減容固化した脱水 ·減容固化物が生成されている。なお、上記のような処理を 終えた後、ピストン状部材 5を矢印 4とは逆の方向へ作動させると、圧力容器 2の内圧 がー気に下がり、残留水分は瞬時に気化する。そのため、脱水率がより高められる。 また、脱水'減容固化処理の間、ピストン状部材 5による圧縮圧力が加えられていた ため、得られた脱水 ·減容固化物は密度の高い減容固化状態となっている。  [0042] When the processing in accordance with the operation principle as described above is completed, a dehydrated / reduced volume solidified product is generated in the pressure vessel 2 by dehydrating and reducing the volume of the waste 3. When the piston-like member 5 is operated in the direction opposite to the arrow 4 after the above processing is completed, the internal pressure of the pressure vessel 2 is reduced and the residual moisture is instantly vaporized. Therefore, the dehydration rate is further increased. In addition, during the dehydration and volume reduction solidification process, the compression pressure applied by the piston-like member 5 was applied, so that the obtained dehydration and volume reduction solidified product was in a high-density volume reduction and solidification state.
[0043] 図 2は、この発明の第 2の実施形態による脱水'減容固化装置 11を示す断面図で ある。また、図 3ないし図 6は、図 2に示した脱水 ·減容固化装置 1の動作を説明する ための断面図である。  FIG. 2 is a cross-sectional view showing a dehydration / volume reduction solidification device 11 according to a second embodiment of the present invention. 3 to 6 are cross-sectional views for explaining the operation of the dehydrating / volume reducing and solidifying apparatus 1 shown in FIG.
[0044] 図 1に示した脱水'減容固化装置 1は、いわゆるバッチ式のものであった力 S、図 2に 示した脱水 ·減容固化装置 11は、半連続的に脱水 ·減容固化処理を行なおうとする ものである。  [0044] The dehydration and volume reduction and solidification device 1 shown in Fig. 1 is a force S, which was a so-called batch type, and the dehydration and volume reduction and solidification device 11 shown in Fig. 2 is semi-continuous. It is intended to solidify.
[0045] 脱水 ·減容固化装置 11は、前述した脱水 ·減容固化装置 1の場合と同様、廃棄物 1 [0045] The dehydration / volume reduction solidification device 11 is a waste 1 as in the case of the dehydration / volume reduction solidification device 1 described above.
2を収容するための圧力容器 13と、圧力容器 13内に収容された廃棄物 12を加圧減 容するように矢印 14 (図 4参照)方向に作動されるピストン状部材 15と、 100°Cを超え る温度に加熱される加熱ゾーン 16を、圧力容器 13内の一部であって、ピストン状部 材 15の加圧減容方向 14への作動の終端側に形成するための加熱手段としてのヒー タ 17とを備えている。 A pressure vessel 13 for accommodating 2, a piston-like member 15 actuated in the direction of arrow 14 (see FIG. 4) to pressurize and reduce the waste 12 contained in the pressure vessel 13, and 100 ° Over C The heating zone 16 heated to a certain temperature is a part of the pressure vessel 13 and is formed as a heating means as a heating means for forming the piston-like member 15 on the terminal side of the operation in the pressure reducing direction 14. 17 and so on.
[0046] この実施形態では、圧力容器 13は、所定の軸線を有するシリンダ形状部分 18を有 し、ピストン状部材 15は、シリンダ形状部分 18において、図 2に実線と破線とで示す ように、軸線方向に作動するように設けられる。加熱ゾーン 16は、シリンダ形状部分 1 8の軸線方向での一方端部に形成される。  [0046] In this embodiment, the pressure vessel 13 has a cylinder-shaped portion 18 having a predetermined axis, and the piston-shaped member 15 in the cylinder-shaped portion 18 as shown by a solid line and a broken line in FIG. It is provided to operate in the axial direction. The heating zone 16 is formed at one end of the cylinder-shaped portion 18 in the axial direction.
[0047] 圧力容器 13は、シリンダ形状部分 18の上記一方端側に設けられるダイス 19をさら に備えている。ダイス 19には、シリンダ形状部分 18の内径より小さい内径を有する成 形用貫通孔 20が設けられている。この脱水 ·減容固化装置 11においては、シリンダ 形状部分 18の他方端部に非加熱ゾーン 21が形成されるとともに、ダイス 19によって も非加熱ゾーン 22が形成される。  The pressure vessel 13 further includes a die 19 provided on the one end side of the cylinder-shaped portion 18. The die 19 is provided with a forming through hole 20 having an inner diameter smaller than the inner diameter of the cylinder-shaped portion 18. In the dewatering / volume reduction solidifying device 11, a non-heating zone 21 is formed at the other end of the cylinder-shaped portion 18, and a non-heating zone 22 is also formed by the die 19.
[0048] ピストン状部材 15には、水抜き通路としての複数の脱水孔 23が設けられる。脱水 孔 23に代えて、水抜き通路となる隙間がピストン状部材 15とシリンダ形状部分 18と の間に形成されてもよい。また、成形用貫通孔 20は、水抜き通路の一部とされる。  [0048] The piston-like member 15 is provided with a plurality of dewatering holes 23 as drainage passages. Instead of the dewatering hole 23, a gap serving as a drainage passage may be formed between the piston-shaped member 15 and the cylinder-shaped portion 18. Further, the molding through hole 20 is a part of the drainage passage.
[0049] シリンダ形状部分 18の他方端部には、圧力容器 13内に廃棄物 12を投入するため の投入口 24が設けられる。投入口 24は、たとえば 150mmアンダーの大きさの廃棄 物 12であれば、これを投入できるような大きさとされること力 S好ましい。  [0049] At the other end of the cylinder-shaped portion 18, an inlet 24 for introducing the waste 12 into the pressure vessel 13 is provided. For example, if the input port 24 is a waste 12 having a size of 150 mm or less, it should be sized so that it can be input.
[0050] 以上のような脱水'減容固化装置を用いて、廃棄物 12を脱水'減容固化した脱水- 減容固化物 29 (図 5および図 6参照)を得るための工程について、図 3ないし図 6を順 次参照して説明する。  [0050] The process for obtaining the dehydrated-volume-reduced solidified material 29 (see Fig. 5 and Fig. 6) obtained by dehydrating 'volume-reducing and solidifying the waste 12 using the dehydrating' volume-reducing solidification device as described above This will be described with reference to FIGS.
[0051] まず、図 3に示すように、投入口 24から、脱水 ·減容固化されるべき廃棄物 12が圧 力容器 13内に投入される。投入された廃棄物 12は、両方向矢印 25で示すように、ピ ストン状部材 15が往復作動されることにより、シリンダ形状部分 18内に充填される。 投入口 24からの廃棄物 12の投入およびピストン状部材 15の往復作動は、図 4に示 すように、廃棄物 12が投入口 24付近に達するまで繰り返される。このとき、廃棄物 12 は、ある程度圧縮された状態となっている。また、ヒータ 17はオン状態とされていて、 加熱ゾーン 16では 100°Cを超える温度にまで加熱されている。 [0052] 図 4に示すように、廃棄物 12が投入口 24付近にまで充填された時点において、ピ ストン状部材 15には圧力力 Sかかり始め、加熱ゾーン 16では水分の蒸気化が進み、矢 印 26で示すように、ダイス 19の成形用貫通孔 20を通して蒸気の噴出が起こる。他方 、非加熱ゾーン 21における余剰水分は、ピストン状部材 15の脱水孔 23を通して、矢 印 27で示すように抜け始める。このとき、加熱ゾーン 16において発生した蒸気によつ て非加熱ゾーン 21が加圧されるので、上述の脱水孔 23を通しての水分の抜けが促 進される。 First, as shown in FIG. 3, waste 12 to be dehydrated / volume-reduced and solidified is introduced into the pressure vessel 13 from the inlet 24. The input waste 12 is filled into the cylinder-shaped portion 18 by reciprocating the piston-like member 15 as indicated by a double arrow 25. The introduction of the waste 12 from the inlet 24 and the reciprocating operation of the piston-like member 15 are repeated until the waste 12 reaches the vicinity of the inlet 24 as shown in FIG. At this time, the waste 12 is compressed to some extent. Further, the heater 17 is turned on, and the heating zone 16 is heated to a temperature exceeding 100 ° C. [0052] As shown in FIG. 4, when the waste 12 is filled to the vicinity of the inlet 24, the piston-like member 15 starts to be subjected to a pressure force S, and in the heating zone 16, the vaporization of moisture proceeds. As indicated by an arrow 26, steam is ejected through the forming through hole 20 of the die 19. On the other hand, excess water in the non-heating zone 21 begins to escape through the dewatering hole 23 of the piston-like member 15 as indicated by an arrow 27. At this time, the non-heated zone 21 is pressurized by the steam generated in the heating zone 16, so that the moisture escape through the dehydration hole 23 is promoted.
[0053] 上述したように、ピストン状部材 15に圧力力 Sかかり始めたことを確認した後、ピストン 状部材 15は、図 4から図 5に示すように、廃棄物 12を加圧減容するように、矢印 14方 向に作動される。このとき、加熱ゾーン 16にある廃棄物 12が加熱されることにより、加 熱ゾーン 16において、内圧が上昇して、廃棄物 12に含まれる水分の沸点が上昇し ながらも、 100°Cを超える高温水および蒸気が生成する。この生成した高温水および 蒸気によって、加熱ゾーン 16の内圧力 ピストン状部材 15の加圧による圧力を超え て上昇する。そのため、上述の高温水および蒸気が非加熱ゾーン 21へと流動し、非 加熱ゾーン 21に存在していた水分力 S、これら高温水および蒸気によって加熱されな がら、高温水および蒸気とともに、脱水孔 23から、矢印 27で示すように排出される。 この脱水孔 23から排出される前の水分は大気圧より高い圧力状態にあるため、 100 °Cを超える沸点を示す状態となって!/、る力 脱水孔 23から排出されて大気と接触し た瞬間、沸点低下が生じ、瞬時に蒸気となって気化し、矢印 27で示すように排出さ れることになる。  [0053] As described above, after confirming that the pressure force S has started to be applied to the piston-like member 15, the piston-like member 15 pressurizes and reduces the waste 12 as shown in Figs. Actuated in the direction of arrow 14 as shown. At this time, the waste 12 in the heating zone 16 is heated, so that the internal pressure rises in the heating zone 16 and the boiling point of the water contained in the waste 12 rises, but exceeds 100 ° C. Hot water and steam are generated. Due to the generated high-temperature water and steam, the internal pressure in the heating zone 16 rises above the pressure due to pressurization of the piston-like member 15. Therefore, the above-described high-temperature water and steam flow to the non-heated zone 21 and the water force S existing in the non-heated zone 21 is heated by these high-temperature water and steam. From 23, it is discharged as shown by arrow 27. Since the water before being discharged from the dewatering hole 23 is in a pressure state higher than the atmospheric pressure, it has a boiling point exceeding 100 ° C! /, And the force is discharged from the dewatering hole 23 and comes into contact with the atmosphere. At the moment, the boiling point drops, vaporizes instantly, and is discharged as shown by arrow 27.
[0054] 他方、加熱ゾーン 16にある廃棄物 12は、ピストン状部材 15の加圧により、シリンダ 形状部分 18からダイス 19を通って押し出される。このとき、廃棄物 12に含まれる水分 は、ダイス 19と廃棄物 12との間で潤滑効果を発揮し、廃棄物 12の押し出しを円滑な ものとするように作用する。上述のように、廃棄物 12がダイス 19を通って押し出され、 大気と接触した瞬間、廃棄物 12に含まれる水分は、その沸点低下により、矢印 28で 示すように、瞬時に蒸気となって気化する。このようにして、廃棄物 12がシリンダ形状 部分 18内において加圧、圧縮され、ダイス 19から押し出されることによって、棒状に 成形された脱水 ·減容固化物 29となる。このとき、加熱ゾーン 16において発生した蒸 気は、廃棄物 12の押し出しをより推進するように作用する。 On the other hand, the waste 12 in the heating zone 16 is pushed out from the cylinder-shaped portion 18 through the die 19 by the pressurization of the piston-like member 15. At this time, the moisture contained in the waste 12 exerts a lubricating effect between the die 19 and the waste 12 and acts to smoothly push out the waste 12. As described above, as soon as the waste 12 is pushed out through the dice 19 and comes into contact with the atmosphere, the moisture contained in the waste 12 instantly becomes steam as shown by the arrow 28 due to the lowering of its boiling point. Vaporize. In this way, the waste 12 is pressurized and compressed in the cylinder-shaped portion 18 and is pushed out of the die 19 to become a dehydrated / volume-reduced solidified material 29 formed into a rod shape. At this time, steam generated in the heating zone 16 Qi acts to further push out the waste 12.
[0055] ピストン状部材 15は、図 5に示すように、そのストロークの最終端に達した後、図 6に 示すように、始端位置に戻される。これによつて、シリンダ形状部分 18の内圧が一気 に下がり、廃棄物 12における残留水分は、矢印 30で示すように蒸気化する。そのた め、シリンダ形状部分 18内に残された廃棄物 12は、この位置で脱水'減容固化され た状態となる。 As shown in FIG. 5, the piston-like member 15 is returned to the starting end position as shown in FIG. 6 after reaching the final end of its stroke. As a result, the internal pressure of the cylinder-shaped portion 18 decreases at a stroke, and the residual moisture in the waste 12 is vaporized as indicated by an arrow 30. Therefore, the waste 12 left in the cylinder-shaped portion 18 is dehydrated and reduced in volume at this position.
[0056] 以上のような工程を終えた後、再び図 3に示した工程に戻り、新たに廃棄物 12が投 入されるが、上述のように既に減容固化された廃棄物 12は、ほとんど吸水しないため 、新たに投入された廃棄物 12に含まれる水分が、既に減容固化された廃棄物 12に 再び浸透することはほとんどない。なお、シリンダ形状部分 18内で脱水 ·減容固化さ れた廃棄物 12は、加熱ゾーン 16において加熱されている限り、塑性変形が可能で あり、ダイス 19からの押し出しが可能である。特に、廃棄物 12が廃プラスチックを含 む場合には、プラスチックが加熱ゾーン 16において溶融状態となっているので、ダイ ス 19を通って円滑に押し出されることができる。  [0056] After the above process is completed, the process returns to the process shown in Fig. 3 again, and the waste 12 is newly input. However, the waste 12 already reduced in volume as described above is Since water is hardly absorbed, the water contained in the newly input waste 12 hardly penetrates again into the waste 12 already reduced in volume. The waste 12 dehydrated and volume-reduced and solidified in the cylinder-shaped portion 18 can be plastically deformed as long as it is heated in the heating zone 16 and can be extruded from the die 19. In particular, when the waste 12 includes waste plastic, the plastic is melted in the heating zone 16 and can be smoothly extruded through the die 19.
[0057] 脱水 ·減容固化装置 11を稼動するに当たって、加熱ゾーン 16での温度条件およ びピストン状部材 15による加圧の圧力条件は、処理されるべき廃棄物 12の材料によ つて異なる。温度条件について言えば、廃棄物 12の主成分が廃プラスチックである 場合には、 120〜200°Cの温度が付与され、廃木材である場合には、それより高い 温度が付与される。また、圧力条件について言えば、廃棄物 12の主成分がたとえば 紙である場合には、 150kg/cm2以上の圧力が付与され、廃プラスチックである場合 に (ま、 300〜350kg/cm2の圧力カ付与され、廃木材の場合に (ま、 400〜420kg/ cm2が付与され、特に主成分となるものがなぐ種々の異物が混ざっている場合には 、 150〜450kg/cm2の範囲の圧力から経験的に好ましい圧力が選択される。 [0057] In operating the dehydration / volume reduction solidification device 11, the temperature conditions in the heating zone 16 and the pressure conditions of the pressure applied by the piston-like member 15 differ depending on the material of the waste 12 to be treated. . In terms of temperature conditions, when the main component of the waste 12 is waste plastic, a temperature of 120 to 200 ° C. is given, and when it is waste wood, a higher temperature is given. As for the pressure condition, if the main component of waste 12 is, for example, paper, a pressure of 150 kg / cm 2 or more is applied, and if it is waste plastic (or 300-350 kg / cm 2 In the case of waste wood (approx. 400-420 kg / cm 2 is applied, especially when various foreign substances mixed with the main component are mixed, the range is 150-450 kg / cm 2 From these pressures, a empirically preferred pressure is selected.
[0058] 次に、図 2ないし図 6を参照して説明した脱水 ·減容固化装置 11を用いて、この発 明による効果を確認するために実施した実験例について説明する。  [0058] Next, a description will be given of an experimental example carried out in order to confirm the effect of the present invention using the dehydration / volume reduction solidification apparatus 11 described with reference to Figs.
[0059] この実験例において、処理されるべき廃棄物 12として、木材粉と 150mmアンダー のプラスチックフラフとを 1: 1の体積比で混合したものであって、含水率 60重量%以 上のものを用意した。なお、脱水 ·減容固化装置 11におけるダイス 19に形成された 成形用貫通孔 20の内径を 30mmとした。 [0059] In this experimental example, waste 12 to be treated is a mixture of wood flour and 150 mm under plastic fluff in a volume ratio of 1: 1, and a moisture content of 60% by weight or more. Prepared. In addition, it was formed on the die 19 in the dehydration and volume reduction solidification device 11. The inner diameter of the molding through hole 20 was set to 30 mm.
[0060] (1)比較例 1  [0060] (1) Comparative Example 1
まず、ヒータ 17による加熱を行なわず、廃棄物 12を処理した結果、ピストン状部材 1 5による加圧条件が 100kg/cm2では、含水率が 35重量%となり、 200kg/cm2で は、 30重量0 /0となり、 400kg/cm2では、 21重量0 /0となった。このように、ヒータ 17に よる加熱を行なわない場合には、加圧条件を高めても、十分な含水率の低下が認め られず、また、廃棄物 12について良好な減容固化状態が得られな力、つた。 First, as a result of treating the waste 12 without heating by the heater 17, the moisture content was 35% by weight when the pressurizing condition by the piston-like member 15 was 100kg / cm 2 , and 30% at 200kg / cm 2. weight 0/0, the 400 kg / cm 2, was a 21 weight 0/0. Thus, when heating by the heater 17 is not performed, even if the pressurization conditions are increased, a sufficient decrease in moisture content is not observed, and a good volume reduction and solidification state of the waste 12 is obtained. A powerful force.
[0061] (2)比較例 2  [0061] (2) Comparative Example 2
圧力容器 13の全域において加熱した場合、加熱温度が 100°Cであり、加圧条件が 350kg/cm2であるとき、処理された廃棄物 12の含水率が 21重量%となり、十分な 減容固化状態が得られな力、つた。次に、加熱温度を 150°Cとし、加圧条件を 150kg /cm2としたとき、ダイス 19を通して蒸気が勢いよく噴出し、爆発の可能性が認めら れ、また、廃棄物 12にあっては、ほとんど減容固化状態とならな力 た。 When heated in the entire area of the pressure vessel 13, when the heating temperature is 100 ° C and the pressurizing condition is 350 kg / cm 2 , the water content of the treated waste 12 is 21% by weight, and the volume is reduced sufficiently. The force that solidified state is not obtained. Next, when the heating temperature is 150 ° C and the pressurizing condition is 150 kg / cm 2 , steam is expelled through the die 19 and the possibility of explosion is recognized. The power was almost the same as the volume reduction and solidification state.
[0062] (3)実施例  [0062] (3) Examples
非加熱ゾーン 21および 22を形成しながら、加熱ゾーン 16において 170°Cに加熱し 、加圧条件を 350kg/cm2としたとき、含水率 6重量%の脱水 ·減容固化物が得られ た。 Heating to 170 ° C in heating zone 16 while forming non-heating zones 21 and 22 and depressurization / volume reduction solidified product with a moisture content of 6% by weight were obtained when the pressure condition was 350 kg / cm 2 . .
[0063] 以上のことから、圧力容器 13での部分加熱が重要であることがわかる。  [0063] From the above, it can be seen that partial heating in the pressure vessel 13 is important.
[0064] 図 7は、図 2に示した脱水 ·減容固化装置 11において、ダイス 19に代えて用いられ 得る、好ましい実施形態によるダイス 31を示す縦断面図である。図 8は、図 7に示した ダイス 31の端面図である。図 9は、図 7の泉 A— Aに沿う断面図である。 FIG. 7 is a longitudinal sectional view showing a die 31 according to a preferred embodiment that can be used in place of the die 19 in the dehydrating / volume reducing and solidifying apparatus 11 shown in FIG. FIG. 8 is an end view of the die 31 shown in FIG. FIG. 9 is a sectional view taken along the spring AA in FIG.
[0065] ダイス 31は、廃棄物 12 (図 3〜図 6参照)を通す成形用貫通孔 32を有している。ダ イス 31は、成形用貫通孔 32内に廃棄物 12を導入するための入口 33を有するァプロ ーチ部 34と、アプローチ部 34を通して導入された廃棄物 12を成形するための内周 面 35を有するベアリング部 36と、ベアリング部 36において成形された廃棄物 12を脱 水-減容固化物 29として排出するための出口 37を有するバックリリース部 38とを、成 形用貫通孔 32内における廃棄物 12の移動方向での上流側から下流側に向かって 順次構成している。 [0066] このようなダイス 31において、ベアリング部 36の軸線方向での中間部には、成形用 貫通孔 32と大気とを連通状態にする脱水孔 39が設けられている。図 9によく示され ているように、この実施形態では、 6つの脱水孔 39がベアリング部 36の周方向に関し て等間隔に分布しながら放射方向に延びるように設けられている。 The die 31 has a molding through-hole 32 through which the waste 12 (see FIGS. 3 to 6) passes. The die 31 has an approach portion 34 having an inlet 33 for introducing the waste 12 into the through-hole 32 for forming, and an inner peripheral surface 35 for forming the waste 12 introduced through the approach portion 34. And a back release part 38 having an outlet 37 for discharging the waste 12 formed in the bearing part 36 as a dewatering-reducing volume solidified substance 29 in the molding through-hole 32. It is constructed sequentially from the upstream side to the downstream side in the direction of movement of waste 12. In such a die 31, a dewatering hole 39 that makes the molding through hole 32 and the atmosphere communicate with each other is provided in an intermediate portion in the axial direction of the bearing portion 36. As well shown in FIG. 9, in this embodiment, six dewatering holes 39 are provided so as to extend in the radial direction while being distributed at equal intervals in the circumferential direction of the bearing portion.
[0067] アプローチ部 34には、入口 33側に向かって内径がより大きくなるテーパ状内周面 40力 S形成される。そして、このテーパ状内周面 40には、複数の溝 41が、成形用貫通 孔 32の軸線方向に延びるように設けられている。図 8および図 9をともに参照すれば わかるように、この実施形態では、 6つの溝 41力 6つの脱水孔 36の各々の周方向 での位置に対応して設けられている。言い換えると、 6つの溝 41の各々の延長線上 に重なるように各脱水孔 39が位置して!/、る。  [0067] The approach portion 34 is formed with a tapered inner circumferential surface 40 force S having an inner diameter larger toward the inlet 33 side. The tapered inner peripheral surface 40 is provided with a plurality of grooves 41 so as to extend in the axial direction of the forming through hole 32. As can be seen by referring to FIGS. 8 and 9, in this embodiment, the six grooves 41 and the six dewatering holes 36 are provided corresponding to the positions in the circumferential direction. In other words, each dewatering hole 39 is positioned so as to overlap the extended line of each of the six grooves 41.
[0068] ノ ックリリース部 38には、出口 37側に向かって内径がより大きくなるテーパ状内周 面 42が形成されている。  [0068] The knock release portion 38 is formed with a tapered inner peripheral surface 42 whose inner diameter becomes larger toward the outlet 37 side.
[0069] ベアリング部 36であって、脱水孔 39の下流側には、成形用貫通孔 32の他の部分 の内径に比べて大きい内径を規定する圧力緩衝帯 43が設けられている。  [0069] In the bearing portion 36, on the downstream side of the dewatering hole 39, a pressure buffering band 43 that defines an inner diameter larger than the inner diameter of the other part of the molding through hole 32 is provided.
[0070] ダイス 31は、ダイス鋼ないし炭素鋼から構成される。また、ダイス 31の全体の寸法 および各部分の寸法については任意に選ぶことができる。一例として、ダイス 31の全 体の長さ方向寸法は、 150〜600mm程度とされる。また、成形用貫通孔 32の内径 は 8〜40mm程度とされ、圧力緩衝帯 43での最大内径は成形用貫通孔 32の他の部 分の内径より;!〜 2mm程度大きくされる。脱水孔 39の内径は 1〜; 10mm程度とされ、 好ましくは、 5〜6mmに選ばれる。また、ダイス 31の軸線方向での脱水孔 39の位置 は、アプローチ部 34側の端面から 100〜300mmの位置、あるいはバックリリース部 3 8側の端面から 100〜300mmの位置とされる。圧力緩衝帯 43の位置は、脱水孔 39 の位置より 10〜50mm、バックリリース部 38側にずれた位置に選ばれる。  [0070] The die 31 is made of die steel or carbon steel. Further, the overall dimensions of the die 31 and the dimensions of each part can be arbitrarily selected. As an example, the overall length dimension of the die 31 is about 150 to 600 mm. Further, the inner diameter of the molding through-hole 32 is set to about 8 to 40 mm, and the maximum inner diameter in the pressure buffer zone 43 is made larger than the inner diameter of other portions of the molding through-hole 32 by about! The inner diameter of the dewatering hole 39 is about 1 to 10 mm, and preferably 5 to 6 mm. Further, the position of the dewatering hole 39 in the axial direction of the die 31 is set to a position of 100 to 300 mm from the end face on the approach part 34 side or a position of 100 to 300 mm from the end face on the back release part 38 side. The position of the pressure buffer zone 43 is selected to be 10 to 50 mm from the position of the dewatering hole 39 and shifted to the back release part 38 side.
[0071] 以上のようなダイス 31を図 2に示した脱水 ·減容固化装置 11において用い、図 4か ら図 5に示す工程を実施したとき、加熱ゾーンにある廃棄物 12は、ピストン状部材 15 の加圧により、シリンダ形状部分 18からダイス 31を通って押し出される。  [0071] When the above-described die 31 is used in the dehydrating / volume-reducing solidifying device 11 shown in Fig. 2 and the steps shown in Figs. 4 to 5 are performed, the waste 12 in the heating zone is piston-like. By pressing the member 15, the cylinder 15 is pushed out through the die 31.
[0072] このとき、まず、ダイス 31のアプローチ部 34において廃棄物 12に対する減容固化 プロセスが始まる。図 10は、ダイス 31を用いて減容固化プロセスを実施した場合のァ ブローチ部 34を通過した廃棄物 12の断面上での含水率の分布状態を説明するた めの廃棄物 12の断面図である。 [0072] At this time, first, the volume reduction and solidification process for the waste 12 is started in the approach portion 34 of the die 31. Figure 10 shows the case where the volume reduction and solidification process was performed using the die 31. FIG. 3 is a cross-sectional view of the waste 12 for explaining a distribution state of moisture content on a cross section of the waste 12 that has passed through the broach part 34.
[0073] 廃棄物 12がアプローチ部 34を通過したとき、溝 41に対向する溝対向部分 44とそう でない溝非対向部分 45との間での圧縮差により、廃棄物 12内において水分の偏在 力あたらされる。すなわち、溝対向部分 44は溝非対向部分 45に比べて圧縮率が低 いため、溝対向部分 44での含水率は、溝非対向部分 45での含水率より高くなる。あ る特定的な条件で実施した実験例によれば、廃棄物 12の中心部分 16での含水率 力 0重量%であった場合において、溝非対向部分 45での含水率は 12重量%であ つたのに対し、溝対向部分 44での含水率は 16重量%と比較的高くなつた。上述のよ うな水分の偏在は、廃棄物 12内での水分の移動を促進し、結果として、廃棄物 12内 での水分残存率をより低下させるように作用する。  [0073] When the waste 12 passes through the approach portion 34, due to a compression difference between the groove facing portion 44 facing the groove 41 and the non-groove facing portion 45 that is not, the uneven distribution of moisture in the waste 12 I'll be there. That is, since the groove facing portion 44 has a lower compression rate than the groove non-facing portion 45, the moisture content in the groove facing portion 44 is higher than the moisture content in the groove non-facing portion 45. According to an experimental example conducted under certain specific conditions, when the water content in the central portion 16 of the waste 12 is 0% by weight, the water content in the non-groove portion 45 is 12% by weight. On the other hand, the moisture content at the groove facing portion 44 was relatively high at 16% by weight. The uneven distribution of moisture as described above promotes the movement of moisture in the waste 12 and, as a result, acts to further reduce the residual moisture rate in the waste 12.
[0074] アプローチ部 34を通過した廃棄物 12は、ベアリング部 36の内周面 35に接触しな がら成形され、脱水孔 39の位置に達する。前述したように、アプローチ部 34における 溝 41は脱水孔 39の位置に対応して設けられているので、水分の偏在の結果、より高 い含水率となっている溝対向部分 44での高温水および蒸気は、廃棄物 12の減容固 化途中で、脱水孔 39を通して急激に抜ける。このことは、最終的に得られる脱水'減 容固化物 29における水分残存率をより低くするように作用する。  The waste 12 that has passed through the approach portion 34 is molded while contacting the inner peripheral surface 35 of the bearing portion 36 and reaches the position of the dewatering hole 39. As described above, since the groove 41 in the approach portion 34 is provided corresponding to the position of the dewatering hole 39, the high temperature water in the groove facing portion 44 having a higher moisture content as a result of uneven distribution of moisture. In addition, the vapor rapidly escapes through the dewatering hole 39 while the waste 12 is being reduced in volume and solidified. This acts to lower the residual moisture rate in the finally obtained dehydrated / reduced solidified product 29.
[0075] 脱水孔 39において高温水および蒸気が急激に抜けた結果、廃棄物 12にはポーラ スな部分が生じ得る。脱水孔 39を通過した廃棄物 12は、次いで、圧力緩衝帯 43に 至る。廃棄物 12の圧縮状態は、圧力緩衝帯 43において一旦解かれる。そして、ベア リング部 36の残りの部分を通過するとき、廃棄物 12は再び圧縮状態となるように強い られる。このようなこと力 、廃棄物 12に対して一層の圧縮効果を得ることができ、廃 棄物 12における前述したポーラスな部分についても、良好な減容固化状態を得るこ と力 Sできる。  [0075] As a result of the rapid removal of high-temperature water and steam in the dewatering holes 39, the waste 12 may have a porous portion. The waste 12 that has passed through the dewatering hole 39 then reaches the pressure buffer zone 43. The compressed state of the waste 12 is once released in the pressure buffer zone 43. Then, as it passes through the remaining part of the bearing part 36, the waste 12 is forced to become compressed again. Such a force can obtain a further compressive effect on the waste 12 and can obtain a good volume reduction and solidification state for the porous portion of the waste 12 described above.
[0076] 以上のように、ダイス 31を用いれば、廃棄物 12に対して、より完全な脱水'減容固 化処理を達成することができる。  [0076] As described above, if the dice 31 is used, a more complete dehydration and volume reduction solidification process can be achieved for the waste 12.
[0077] この発明は、上述した有機質廃棄物に限らず、たとえば牧草のような「廃棄物」とい つた概念に含まれにくい有機物を、脱水 ·減容固化する場合にも適用することができ [0077] The present invention is not limited to the organic waste described above, and can also be applied to the case of dehydrating / reducing and solidifying organic matter that is difficult to be included in the concept of "waste" such as grass.
ZUO/LOOZdT/lDd L V Z6S9S0/800Z OAV ZUO / LOOZdT / lDd L V Z6S9S0 / 800Z OAV

Claims

請求の範囲 The scope of the claims
[1] 水分を含む、脱水 '減容固化されるべき有機物を収容するための圧力容器と、 前記圧力容器内に収容された前記有機物を加圧減容するように作動されるピストン 状部材と、  [1] A pressure vessel for containing organic matter to be dehydrated and volume-reduced and containing moisture, and a piston-like member operated to pressurize and reduce the organic matter contained in the pressure vessel; ,
100°Cを超える温度に加熱される加熱ゾーンを、前記圧力容器内の一部であって A heating zone heated to a temperature above 100 ° C, part of the pressure vessel,
、前記ピストン状部材の加圧減容方向への作動の終端側に形成するための加熱手 段と Heating means for forming the piston-like member on the terminal side of the operation in the direction of pressure reduction.
を備え、  With
前記圧力容器の、前記加熱ゾーン以外の非加熱ゾーンおよび/または前記ピスト ン状部材には、前記圧力容器内の水分を抜くための水抜き通路が設けられ、 前記有機物を脱水 ·減容固化した脱水 ·減容固化物を得るため、  A non-heating zone other than the heating zone and / or the piston-like member of the pressure vessel is provided with a water drain passage for draining water in the pressure vessel, and the organic matter is dehydrated and volume-reduced and solidified. Dehydration
前記ピストン状部材が前記有機物を加圧減容することにより、前記有機物から出 る水分が前記水抜き通路から排出されるば力、りでなぐ  When the piston-like member depressurizes and reduces the organic matter, the water that comes out of the organic matter is discharged by the drainage passage.
前記ピストン状部材が前記有機物を加圧減容するように作動されながら、前記加 熱手段により前記加熱ゾーンにある前記有機物が加熱されることにより、前記加熱ゾ ーンにおいて、内圧が上昇して、前記有機物に含まれる水分の沸点が上昇しながら も、 100°Cを超える高温水および蒸気が生成し、生成した前記高温水および蒸気に よって、前記加熱ゾーンの内圧が、前記ピストン状部材の加圧による圧力を超えて上 昇し、そのため、前記高温水および蒸気が前記非加熱ゾーンへと流動し、前記非加 熱ゾーンに存在していた水分力 前記高温水および蒸気によって加熱されながら、 前記高温水および蒸気とともに、前記水抜き通路から排出されて大気と接触した瞬 間、沸点低下により蒸気となって気化するように構成された、  While the piston-like member is operated to pressurize and reduce the organic matter, the organic matter in the heating zone is heated by the heating means, whereby the internal pressure is increased in the heating zone. While the boiling point of the moisture contained in the organic substance is increased, high-temperature water and steam exceeding 100 ° C. are generated, and the generated high-temperature water and steam cause the internal pressure of the heating zone to be lower than that of the piston-shaped member. As the pressure rises above the pressure due to pressurization, the high-temperature water and steam flow into the non-heating zone, and the water force existing in the non-heating zone is heated by the high-temperature water and steam. Along with the high-temperature water and steam, it is configured to vaporize as steam due to a drop in boiling point during the moment when it is discharged from the drainage passage and comes into contact with the atmosphere.
有機物の脱水 ·減容固化装置。  Organic dehydration · Volume reduction and solidification equipment.
[2] 前記圧力容器は、所定の軸線を有するシリンダ形状部分を備え、前記ピストン状部 材は、前記シリンダ形状部分において軸線方向に作動するように設けられ、前記加 熱ゾーンは、前記シリンダ形状部分の軸線方向での一方端部に形成され、前記圧力 容器は、前記シリンダ形状部分の前記一方端側に設けられかつ前記シリンダ形状部 分の内径より小さい内径を有する成形用貫通孔を規定するダイスをさらに備え、前記 シリンダ形状部分の他方端部および前記ダイスが前記非加熱ゾーンとされ、前記ビス トン状部材に前記水抜き通路が設けられるとともに、前記ダイスの成形用貫通孔が前 記水抜き通路の一部とされ、前記ピストン状部材の加圧により、前記有機物は、前記 シリンダ形状部分から前記ダイスを通って押し出され、前記有機物が大気と接触した 瞬間、前記有機物に含まれる水分が沸点低下により蒸気となって気化するように構 成された、請求項 1に記載の有機物の脱水'減容固化装置。 [2] The pressure vessel includes a cylinder-shaped portion having a predetermined axis, the piston-shaped member is provided so as to operate in an axial direction in the cylinder-shaped portion, and the heating zone includes the cylinder-shaped portion. The pressure vessel is formed at one end in the axial direction of the part, and the pressure vessel defines a through-hole for molding which is provided on the one end side of the cylinder-shaped part and has an inner diameter smaller than the inner diameter of the cylinder-shaped part. Further comprising a die, The other end of the cylinder-shaped portion and the die are used as the non-heating zone, the drainage passage is provided in the piston-shaped member, and the through hole for forming the die is a part of the drainage passage. When the piston-shaped member is pressurized, the organic matter is pushed out from the cylinder-shaped portion through the die, and at the moment when the organic matter comes into contact with the atmosphere, the moisture contained in the organic matter becomes vapor due to a decrease in boiling point. 2. The organic matter dehydrating and volume-reducing solidification device according to claim 1, which is configured to vaporize.
[3] 前記ダイスは、前記成形用貫通孔内に前記有機物を導入するための入口を有する アプローチ部と、前記アプローチ部を通して導入された前記有機物を成形するため の内周面を有するベアリング部と、前記ベアリング部において成形された前記有機物 を排出するための出口を有するバックリリース部とを、前記成形用貫通孔内における 前記有機物の移動方向で上流側から下流側に向かつて順次構成しており、前記べ ァリング部の軸線方向での中間部には、前記成形用貫通孔と大気とを連通状態にす る脱水孔が設けられている、請求項 2に記載の有機物の脱水'減容固化装置。  [3] The die includes an approach portion having an inlet for introducing the organic substance into the molding through-hole, and a bearing portion having an inner peripheral surface for molding the organic substance introduced through the approach portion. And a back release portion having an outlet for discharging the organic matter molded in the bearing portion, and sequentially configured from the upstream side to the downstream side in the moving direction of the organic matter in the molding through-hole. 3. The dehydration of organic matter according to claim 2, wherein a dehydration hole is provided in an intermediate portion in the axial direction of the bearing portion to bring the forming through-hole into communication with the atmosphere. apparatus.
[4] 前記有機物は、有機質廃棄物を含む、請求項 1ないし 3のいずれかに記載の有機 物の脱水 ·減容固化装置。  [4] The organic matter dehydration / volume-reduction solidification device according to any one of claims 1 to 3, wherein the organic matter includes organic waste.
[5] 内圧を上昇させるための加圧手段を含みかつ水抜き通路を有する、圧力容器を用 意する、第 1工程と、  [5] A first step of providing a pressure vessel including a pressurizing means for increasing the internal pressure and having a drainage passage;
水分を含む、脱水 '減容固化されるべき有機物を前記圧力容器に収容する、第 2ェ 程と、  A second step of containing organic matter to be dehydrated and volume-reduced and solidified in the pressure vessel, including moisture; and
前記圧力容器内の一部を、 100°Cを超える温度に加熱して、前記圧力容器内に加 熱ゾーンを形成するとともに、前記加圧手段によって前記圧力容器内の前記有機物 を加圧減容する、第 3工程と  A part of the pressure vessel is heated to a temperature exceeding 100 ° C. to form a heating zone in the pressure vessel, and the organic substance in the pressure vessel is pressurized and reduced by the pressurizing means. And the third step
を備え、  With
前記第 3工程を実施したとき、前記加熱ゾーンにおいて、内圧が上昇して、前記有 機物に含まれる水分の沸点が上昇しながらも、 100°Cを超える高温水および蒸気が 生成し、生成した前記高温水および蒸気によって、前記加熱ゾーンの内圧が、前記 加圧手段の加圧による圧力を超えて上昇することによって、前記高温水および蒸気 が前記圧力容器内の非加熱ゾーンへと流動し、前記非加熱ゾーンに存在していた 水分が、前記高温水および蒸気によって加熱されながら、前記高温水および蒸気と ともに、前記水抜き通路から排出されて大気と接触した瞬間、沸点低下により蒸気と なって気化するように、当該第 3工程での温度および圧力条件が設定された、 有機物の脱水 ·減容固化方法。 When the third step is performed, in the heating zone, the internal pressure rises and the boiling point of the water contained in the organic matter rises, but high-temperature water and steam exceeding 100 ° C are produced and produced. Due to the high temperature water and steam, the internal pressure of the heating zone rises above the pressure due to pressurization of the pressurizing means, so that the high temperature water and steam flow to the non-heating zone in the pressure vessel. Was present in the non-heated zone As the water is heated by the high-temperature water and steam, the third water is vaporized as a result of a drop in boiling point as soon as the high-temperature water and steam are discharged from the drainage passage and contacted with the atmosphere. Organic dehydration and volume reduction solidification method with temperature and pressure conditions set in the process.
[6] 前記有機物は、有機質廃棄物を含む、請求項 5に記載の有機物の脱水 ·減容固化 方法。 [6] The method for dehydrating / reducing and solidifying an organic substance according to claim 5, wherein the organic substance includes an organic waste.
[7] 100°Cを超える温度に加熱された、水分を含む有機物を、加圧減容しながら棒状 に成形するために用いられる、有機物成形用ダイスであって、  [7] An organic material forming die used for forming a water-containing organic material heated to a temperature exceeding 100 ° C into a rod shape while reducing the pressure.
前記有機物を通す成形用貫通孔を有し、かつ、前記成形用貫通孔内に前記有機 物を導入するための入口を有するアプローチ部と、前記アプローチ部を通して導入さ れた前記有機物を成形するための内周面を有するベアリング部と、前記ベアリング部 において成形された前記有機物を排出するための出口を有するバックリリース部とを 、前記成形用貫通孔内における前記有機物の移動方向で上流側から下流側に向か つて順次構成しており、前記ベアリング部の軸線方向での中間部には、前記成形用 貫通孔と大気とを連通状態にする脱水孔が設けられている、有機物成形用ダイス。  In order to mold the organic matter introduced through the approach portion, an approach portion having a molding through-hole through which the organic matter passes and an inlet for introducing the organic matter into the molding through-hole. A bearing part having an inner peripheral surface and a back release part having an outlet for discharging the organic substance molded in the bearing part from the upstream side in the moving direction of the organic substance in the molding through-hole. An organic material forming die, which is configured sequentially toward the side, and is provided with a dewatering hole in an intermediate portion in the axial direction of the bearing portion to bring the forming through hole into communication with the atmosphere.
[8] 複数の前記脱水孔が前記ベアリング部の周方向に分布するように設けられ、前記 アプローチ部には、前記入口側に向かって内径がより大きくなるテーパ状内周面が 形成され、前記テーパ状内周面には、複数の溝が、複数の前記脱水孔の各々の周 方向での位置に対応しかつ前記成形用貫通孔の軸線方向に延びるように設けられ ている、請求項 7に記載の有機物成形用ダイス。  [8] The plurality of dewatering holes are provided so as to be distributed in a circumferential direction of the bearing portion, and the approach portion is formed with a tapered inner peripheral surface having an inner diameter larger toward the inlet side, The taper-shaped inner peripheral surface is provided with a plurality of grooves so as to correspond to the positions in the circumferential direction of the plurality of dewatering holes and to extend in the axial direction of the molding through-hole. A die for forming an organic material as described in 1.
[9] 前記ベアリング部にお!/、て、前記脱水孔の下流側に、前記成形用貫通孔の他の部 分の内径に比べて大きい内径を規定する圧力緩衝帯が設けられている、請求項 7ま たは 8に記載の有機物成形用ダイス。 [9] A pressure buffering band that defines an inner diameter larger than the inner diameter of the other part of the through hole for molding is provided downstream of the dewatering hole in the bearing part. 9. A die for forming an organic material according to claim 7 or 8.
PCT/JP2007/071291 2006-11-07 2007-11-01 Apparatus and method for dehydration/volume reduction solidification of organic material, and die for organic material molding WO2008056592A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008543046A JPWO2008056592A1 (en) 2006-11-07 2007-11-01 Organic matter dehydration and volume reduction solidification device and organic matter molding dies

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006301155 2006-11-07
JP2006-301155 2006-11-07
JP2006-329015 2006-12-06
JP2006329015 2006-12-06

Publications (1)

Publication Number Publication Date
WO2008056592A1 true WO2008056592A1 (en) 2008-05-15

Family

ID=39364410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/071291 WO2008056592A1 (en) 2006-11-07 2007-11-01 Apparatus and method for dehydration/volume reduction solidification of organic material, and die for organic material molding

Country Status (2)

Country Link
JP (1) JPWO2008056592A1 (en)
WO (1) WO2008056592A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153810A (en) * 2010-01-27 2011-08-11 Washino Kiko Kk Method and device for drying liquid-containing waste
JP2013193104A (en) * 2012-03-19 2013-09-30 Kyb Co Ltd Extracting device
CN108312389A (en) * 2018-01-30 2018-07-24 重庆市天宇电线电缆制造有限公司 Cable insulation recycles processing unit (plant)
JP2020111634A (en) * 2019-01-08 2020-07-27 日鉄エンジニアリング株式会社 Production method and production device of coke raw material
JP2020110937A (en) * 2019-01-08 2020-07-27 日鉄エンジニアリング株式会社 Coke raw material manufacturing method
JP2020195990A (en) * 2019-06-04 2020-12-10 广州金智医療器械有限公司 Home-use biotransformation device for organic refuse
CN116973204A (en) * 2023-09-20 2023-10-31 北京庆丰万兴食品科技研发有限公司 Meat stuffing water content detects uses processingequipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182879A (en) * 1984-09-28 1986-04-26 Fuji Denki Sousetsu Kk Compacting solidification apparatus of waste containing waste plastic
JPS61182694U (en) * 1985-05-04 1986-11-14
JPH0760749A (en) * 1993-08-25 1995-03-07 Fuji Electric Co Ltd Volume reduction setting device for plastics waste
JPH0872121A (en) * 1994-09-06 1996-03-19 Ishikawajima Harima Heavy Ind Co Ltd Extruding machine
JPH09248825A (en) * 1996-03-18 1997-09-22 Seki Shoten:Kk Method and apparatus for volume reduction treatment of waste plastic
JP2005297507A (en) * 2004-04-16 2005-10-27 Placo Co Ltd Refuse forming method and its device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182879A (en) * 1984-09-28 1986-04-26 Fuji Denki Sousetsu Kk Compacting solidification apparatus of waste containing waste plastic
JPS61182694U (en) * 1985-05-04 1986-11-14
JPH0760749A (en) * 1993-08-25 1995-03-07 Fuji Electric Co Ltd Volume reduction setting device for plastics waste
JPH0872121A (en) * 1994-09-06 1996-03-19 Ishikawajima Harima Heavy Ind Co Ltd Extruding machine
JPH09248825A (en) * 1996-03-18 1997-09-22 Seki Shoten:Kk Method and apparatus for volume reduction treatment of waste plastic
JP2005297507A (en) * 2004-04-16 2005-10-27 Placo Co Ltd Refuse forming method and its device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153810A (en) * 2010-01-27 2011-08-11 Washino Kiko Kk Method and device for drying liquid-containing waste
JP2013193104A (en) * 2012-03-19 2013-09-30 Kyb Co Ltd Extracting device
CN108312389A (en) * 2018-01-30 2018-07-24 重庆市天宇电线电缆制造有限公司 Cable insulation recycles processing unit (plant)
CN108312389B (en) * 2018-01-30 2019-12-03 重庆市天宇电线电缆制造有限公司 Cable insulation recycles processing unit (plant)
JP2020111634A (en) * 2019-01-08 2020-07-27 日鉄エンジニアリング株式会社 Production method and production device of coke raw material
JP2020110937A (en) * 2019-01-08 2020-07-27 日鉄エンジニアリング株式会社 Coke raw material manufacturing method
JP7146336B2 (en) 2019-01-08 2022-10-04 日鉄エンジニアリング株式会社 Coke raw material manufacturing method
JP7178909B2 (en) 2019-01-08 2022-11-28 日鉄エンジニアリング株式会社 Coke raw material manufacturing method and manufacturing apparatus
JP2020195990A (en) * 2019-06-04 2020-12-10 广州金智医療器械有限公司 Home-use biotransformation device for organic refuse
CN116973204A (en) * 2023-09-20 2023-10-31 北京庆丰万兴食品科技研发有限公司 Meat stuffing water content detects uses processingequipment
CN116973204B (en) * 2023-09-20 2023-11-28 北京庆丰万兴食品科技研发有限公司 Meat stuffing water content detects uses processingequipment

Also Published As

Publication number Publication date
JPWO2008056592A1 (en) 2010-02-25

Similar Documents

Publication Publication Date Title
WO2008056592A1 (en) Apparatus and method for dehydration/volume reduction solidification of organic material, and die for organic material molding
US5685218A (en) Method for treating oil-bearing material
JP3842819B2 (en) Screw press
Khan et al. Expression of oil from oilseeds—a review
US4702745A (en) Process for dewatering high moisture, porous organic solid
CA2944385C (en) A method and apparatus for pressing oilseed to extract oil therefrom
DE102008035291B4 (en) Method, apparatus and solvent extractor for removing one or more solvents from a pomace
EP0166537B1 (en) A system for preparing vegetable oil seed meal for solvent extraction
JP5731733B2 (en) Sludge treatment method
US20090008312A1 (en) Waste treatment system
US20060283799A1 (en) Method and device for pressing
KR20090029385A (en) Manufacturing apparatus and manufacturing method of solid fuel for the fry-drying organic sludge using the by-product waste of bio-diesel oil or fat oil of animal and plant or fuel oil or oil wastes
US3520411A (en) Screenings press
WO1996010064A1 (en) Method and device for reducing the water content of water-containing brown coal
US8079304B2 (en) Method and device for pressing
JPWO2018020726A1 (en) Biomass pretreatment method and biomass fuel production method
JP4872533B2 (en) Solid fuel production method and apparatus, and solid fuel produced by the method
Voges et al. Gas assisted oilseed pressing
DE102012002009A1 (en) Apparatus and process for the production of non-porous profiles from separation residues by means of extrusion
JP2008274111A (en) Method for producing biocoke and the production product
WO2013051319A1 (en) Oil heat dehydration processing method
US3607391A (en) Extraction
JPH07278581A (en) Production of solid fuel from waste
CA2838475C (en) Process and apparatus for continuous production of densified charcoal
RU1819214C (en) Method for manufacturing wood plastics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07831025

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008543046

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07831025

Country of ref document: EP

Kind code of ref document: A1