WO2008053977A1 - Antistatic core-sheath type ultrafine-denier false-twisted polyester yarn, process for production thereof, and antistatic water-repellent fabrics comprising the yarn - Google Patents

Antistatic core-sheath type ultrafine-denier false-twisted polyester yarn, process for production thereof, and antistatic water-repellent fabrics comprising the yarn Download PDF

Info

Publication number
WO2008053977A1
WO2008053977A1 PCT/JP2007/071351 JP2007071351W WO2008053977A1 WO 2008053977 A1 WO2008053977 A1 WO 2008053977A1 JP 2007071351 W JP2007071351 W JP 2007071351W WO 2008053977 A1 WO2008053977 A1 WO 2008053977A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester
core
antistatic
sheath
yarn
Prior art date
Application number
PCT/JP2007/071351
Other languages
French (fr)
Japanese (ja)
Inventor
Suguru Nakajima
Original Assignee
Teijin Fibers Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Limited filed Critical Teijin Fibers Limited
Priority to DE602007011096T priority Critical patent/DE602007011096D1/en
Priority to US12/446,527 priority patent/US20100313990A1/en
Priority to JP2008542187A priority patent/JP4896985B2/en
Priority to KR1020097010929A priority patent/KR101331636B1/en
Priority to AT07831085T priority patent/ATE491057T1/en
Priority to CN2007800409045A priority patent/CN101535539B/en
Priority to CA2668002A priority patent/CA2668002C/en
Priority to EP07831085A priority patent/EP2078771B1/en
Publication of WO2008053977A1 publication Critical patent/WO2008053977A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/02Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics by twisting, fixing the twist and backtwisting, i.e. by imparting false twist
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/09Addition of substances to the spinning solution or to the melt for making electroconductive or anti-static filaments
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/02Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics by twisting, fixing the twist and backtwisting, i.e. by imparting false twist
    • D02G1/0206Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics by twisting, fixing the twist and backtwisting, i.e. by imparting false twist by false-twisting
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made

Definitions

  • Patent application title Antistatic core-sheath type polyester extra fine false twisted yarn, production method thereof, and antistatic water-repellent woven fabric including the antistatic core-sheath type polyester extra fine false twisted yarn
  • the present invention relates to a core-sheath polyester ultrafine false twisted yarn having antistatic properties, a method for producing the same, and an antistatic fabric including the antistatic core-sheath polyester ultrafine false twisted yarn. More specifically, the present invention relates to a production method for stably obtaining a polyester extra fine false twisted yarn having a core-sheath structure having excellent durability and antistatic properties.
  • Polyester fibers are widely used for clothing and other applications due to their superior quality and stable physical properties.
  • polyester is inherently water-phobic, many attempts have been made to impart antistatic properties by imparting hydrophilicity to polyester in fields where antistatic properties are required.
  • Examples thereof include a method of blending a polyoxyalkylene polyether compound with polyester (Japanese Patent Publication No. 39-52 14), a polyoxyalkylene polyether compound that is substantially incompatible with polyester, and the like.
  • Method of blending organic / inorganic ionic compounds Japanese Patent Publication No. 44-3 1 8 28, Japanese Patent Publication No. 60-1 1 944, Japanese Patent Publication No. 5 3-8 04 97, Japanese Patent Publication No. 5 3-1 4 9 24 7, Japanese Patent Application Laid-Open No. 6-0-3 9 4 1 3, Japanese Patent Application Laid-Open No. 3-1 3 9 5 5 6, etc.
  • An object of the present invention is to obtain a polyester fabric having excellent antistatic performance while maintaining the soft texture, heat retention, water absorption, moisture absorption, etc. possessed by the ultra fine polyester false twisted yarn.
  • An object of the present invention is to provide a core-sheath type polyester extra fine false twisted yarn and a method for producing a core-sheath type polyester extra fine false twisted yarn which can be stably produced.
  • a core component comprising a polyester containing a polyoxyalkylene polyether compound and an organic ionic compound that are substantially incompatible with polyester. It has been found that the object of the present invention can be achieved when a core-sheath type polyester ultrafine composite fiber coated with a sheath component is melt-spun under specific conditions and then stretched false twisted.
  • a core-sheath type composite fiber subjected to false twisting wherein the core part of the core-sheath type composite fiber is used as an antistatic agent with respect to 100 parts by weight of the aromatic polyester.
  • the sheath is formed from the aromatic polyester composition B, and the core-sheath type composite
  • An antistatic core-sheath polyester extra fine false twisted yarn characterized in that the synthetic fiber simultaneously satisfies the following conditions (1) to (3):
  • the single yarn fineness of the false twisted yarn is 1.6 dte x or less.
  • the crimp rate of the false twisted yarn is 3 to 30%.
  • Ratio of core area S A and sheath area S B S A: S B is in the range of 5:95 to 80:20.
  • the core is as an antistatic agent with respect to 100 parts by weight of the aromatic polyester, (a) 0.2 to 30 parts by weight of a polyoxyalkylene polyether, and (b) substantially non-woven with the polyester.
  • Reactive organic ionic compounds 0.0 5 to 10 parts by weight
  • Fig. 1 is a schematic diagram of a drawing simultaneous false twisting machine for producing false twisted yarn used in the present invention, wherein 1 is a core-sheath type polyester undrawn yarn, 2 is a yarn guide, 3 and 3 'are Feed roller, 4 and 4 'are interlace nozzles, 5 is the first stage heater, 6 is the cooling plate, 7 is the false twister (3-axis friction disk unit), 8 is the first delivery roller, and 9 is the second Stage heater, 1 0 is the second delivery roller, 11 is the winding roller, and 12 is the polyester false twisted cheese.
  • FIG. 2 is a front view showing an embodiment of a false twisted disk unit used in the present invention.
  • 13 is a false twisted disk
  • 14 is a guide disk
  • 15 is a rotating shaft
  • 16 is a timing.
  • 17 is a drive belt.
  • the polyester referred to in the present invention is an aromatic polyester having an aromatic ring in a polymer chain unit, which is obtained by reacting a bifunctional aromatic carboxylic acid or an ester-forming derivative thereof with a diol or an ester-forming derivative thereof.
  • the obtained polymer is an object.
  • the difunctional aromatic carboxylic acids mentioned here include terephthalic acid, isophthalenoic acid, onolephthalic acid, 1,5-naphthalenediform norevonic acid, 2,5-naphthalenediform norevonic acid, 2,6-naphthalenedicanolepon Acid, 4, 4'-biphenyl dicarboxylic acid, 3, 3 '— biphenyl / residic power / levonic acid, 4, 4 — biphenylenoate / resicarboxylic acid, 4, 4'-biphenyleno methane dicanolevonic acid, 4 , A'-biphenylenoleshondikanolevonic acid, 4,4'-biphenylisopropylidenedicarboxylic acid, 1,2-bis (phenoxy) ethane-4,4'-dicarboxylic acid, 2,5-anthracenedicarpo Acid, 2,6-anthracene dicarboxy
  • difunctional aromatic carboxylic acids Two or more of these difunctional aromatic carboxylic acids may be used in combination. If the amount is small, these difunctional aromatic carboxylic acids and bifunctional aliphatic carboxylic acids such as adipic acid, azelaic acid, sebacic acid, and dodecanedioic acid rubonic acid, and bifunctional hexanedicarboxylic acid Use of one or more alicyclic carboxylic acids, 5-sodium sulfoisophthalic acid, etc. can do.
  • diol compound examples include ethylene glycol, propylene glycol, butylene glycol, hexylene glycol, neopentyl glycol, 2-methyl-1,3-propanediol, diethylene glycol, and trimethylene glycol.
  • Preferred examples include aliphatic diols, alicyclic diols such as 1,4-cyclohexanedimethanol, and mixtures thereof. If the amount is small, polyoxyalkylene glycol having both ends or one end unblocked can be copolymerized with these diol compounds.
  • polycarboxylic acids such as trimellitic acid and pyromellitic acid
  • poly'ols such as glycerin, trimethylolpronone and pentaerythritol
  • glycerin glycerin, trimethylolpronone and pentaerythritol
  • pentaerythritol can be used within the range in which the polyester is substantially linear.
  • aromatic polyesters include polyethylene terephthalate, polybutylene terephthalate, polyhexylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene-1,2 bis (phenoxy) ethane 1,4,4 '
  • copolyesters such as polyethylene isophthalate terephthalate, polybutylene terephthalate isophthalate, polybutylene terephthalate / decane dicarboxylate, and the like.
  • polyethylene terephthalate and polybutylene terephthalate having a good balance of mechanical properties and moldability are particularly preferred.
  • Such aromatic polyester is synthesized by any method.
  • terephthalic acid and ethylene glycol are directly esterified, or terephthalic acid, such as dimethyl terephthalate, is transesterified with ethylene glycol or terephthalic acid and ethylene.
  • terephthalic acid such as dimethyl terephthalate
  • the first stage reaction to form terephthalic acid dallicol ester and Z or its low polymer by reacting with oxside, and then heating the product under reduced pressure until the desired degree of polymerization is reached
  • the second stage of the polycondensation reaction And easily manufactured.
  • the polyoxyalkylene-based polyether (a) to be blended in the composition used in the present invention is a polyoxyalkylene comprising a single oxyalkylene unit as long as it is substantially insoluble in the polyester. It may be a non-glycolene or a copolymerized polyoxyalkylene glycol composed of two or more oxyalkylene units, and is a poxyethylene-based polyetherol represented by the following general formula (I): Also good. .
  • Z is an organic compound residue having 1 to 6 active hydrogen atoms
  • R 1 is an alkylene group or substituted alkylene group having 6 or more carbon atoms
  • R 2 is a hydrogen atom, or carbon atoms.
  • k is an integer of 1 to 6
  • n Is an integer satisfying n ⁇ 7 OZk
  • m is an integer of 1 or more.
  • polyoxyalkylene polyethers include polyoxyethylene dalycol having a molecular weight of 400 or more, polyoxypropylene dalycol having a molecular weight of 100 or more, polyoxytetramethylene glycol, Ethylene oxide with a molecular weight of 2 000 or more, propylene oxide copolymer, trimethylolpropane ethylene oxide adduct with a molecular weight of 4000 or more, nonino olefin ethylene oxide adduct with a molecular weight of 3000 or more, and these Examples include compounds in which a substituted ethylene oxide having 6 or more carbon atoms is added to the terminal OH group, and in particular, a polyoxyethylene glycol having a molecular weight of 100 to 1,000,000 and a molecular weight of 5 An alkyl group-substituted ethylene oxide having 8 to 40 carbon atoms at both ends of polyoxyethylene glycol of 0 0 0 to 1 6 0 0 0 Compound
  • the compounding amount of the polyoxyalkylene polyether compound is as follows: The range is 0.2 to 30 parts by weight per 100 parts by weight of the aromatic polyester. When the amount is less than 2 parts by weight, the hydrophilicity is insufficient and sufficient antistatic property cannot be exhibited. On the other hand, if the amount is more than 30 parts by weight, the antistatic effect is no longer recognized, and the mechanical properties of the resulting composition are deteriorated, and the polyether easily bleeds out. At the time of melt molding, the chip rudder's biting ability is lowered and the molding quality is also deteriorated.
  • an organic ionic compound is blended particularly for improving antistatic properties.
  • Preferred examples of the organic ionic compound include sulfonic acid metal salts and sulfonic acid quaternary phosphonium salts represented by the following general formulas (II) and (III). RSO, M together (II)
  • R represents an alkyl group having 3 to 30 carbon atoms or an aryl group having 7 to 40 carbon atoms
  • M represents an alkali metal or an alkaline earth metal.
  • R is an alkyl group having 3 to 30 carbon atoms or an aryl group having 7 to 40 carbon atoms
  • R 1 , R 2 , R 3 and R 4 are alkylene groups.
  • R when R is an alkyl group, the alkyl group may be linear or may have a branched side chain.
  • M is an alkali metal such as Na, K, Li or the like, or an alkaline earth metal such as Mg, Ca, among which Li, Na, K is preferable.
  • Such sulfonic acid metal salts may be used alone or in combination of two or more.
  • Preferred examples include sodium stearyl sulfonate, sodium octyl sulfonate, sodium dodecyl sulfonate, and the number of carbon atoms.
  • the sulfonic acid quaternary phosphonium salt in formula (III) may be used alone or in combination of two or more.
  • Preferable examples include tetrabutylphosphonium alkyl sulfonate having an average of 14 carbon atoms, tetraphenyl phosphonium alkyl sulfonate having an average of 14 carbon atoms, and an average of 14 carbon atoms.
  • organic ionic compounds may be used alone or in combination of two or more thereof, and the blending amount thereof is in the range of 0.05 to 10 parts by weight with respect to 100 parts by weight of the aromatic polyester. is required.
  • the amount of the organic ionic compound is less than 0.05 parts by weight, the effect of improving antistatic properties is small, and when it exceeds 10 parts by weight, the mechanical properties of the composition are impaired, and the ionic compound
  • Polyester B may be blended with a known matting agent, such as titanium dioxide, as long as the object of the present invention is not impaired. However, if the amount of the erasing agent exceeds 10 wt%, the spinnability of the undrawn yarn that becomes the parent yarn of the present invention deteriorates, and therefore the range is preferably set to 0.01 to 10 wt%.
  • a known matting agent such as titanium dioxide
  • the ultra fine false twisted yarn of the present invention needs to have a single yarn fineness of 1.6 dtex or less and a crimping rate of 3 to 30%, and by making it within this range, the soft feel is excellent.
  • a woven or knitted fabric is obtained. If the crimp rate is less than 3%, weave When a knitted fabric is used, a sufficient feeling of fluffiness cannot be obtained. On the other hand, if it exceeds 30%, the antistatic performance tends to decrease, which is not preferable.
  • the ratio S A: S B of the area S A of the core portion and the area S B of the sheath portion needs to be in the range of 5:95 to 80:20.
  • the area ratio is less than 5:95, the antistatic performance due to polyester A is insufficient, and when it is greater than 80:20, the Al force is reduced by 10% or more.
  • the antistatic polyester of the part elutes and the antistatic performance decreases, or the strength of the false twisted yarn decreases to 3.0 cNZd te X or less, and the strength when used as a fabric is insufficient. It is not suitable for applications that require strength, such as sports clothing, and is not preferable because the applications are limited.
  • the polyester ultra-fine false twisted yarn of the present invention described above when melt spinning the undrawn yarn that is the parent yarn, the ratio of the discharge speed and the take-off speed during spinning (take-off speed Z discharge speed, hereinafter draft) Stable anti-static performance can be obtained by false twisting the undrawn yarn taken in the range of 150 or more and less than 800.
  • draft When the draft is less than 150, the antistatic performance due to polyester A is insufficient, and when the draft is 800 or more, the antistatic performance is exhibited, but the spinnability is lowered, which is not preferable. .
  • the nozzle discharge hole diameter and spinning speed should be set appropriately, but the discharge hole diameter should be ⁇ 0.1 to 0.3 mm, and the spinning speed 200 00 to 4 500 m / min.
  • melt spinning in the range of 2500-3500 m / min is preferable because it can be obtained easily and efficiently.
  • the birefringence of the unstretched multifilament is preferably in the range of 0.02 to 0.05.
  • the birefringence index exceeds 0.05, the yarn fluff is likely to occur and the process becomes unfavorable.
  • the false twisting method for the undrawn yarn is not particularly limited, but for example, the methods described below are used.
  • the air entanglement treatment may be performed in a separate process from the drawing false twisting process.
  • an interlace nozzle is installed in the drawing false twisting apparatus and is applied immediately before the drawing false twisting process. Is preferred. This suppresses the occurrence of fluff and has a positive effect on handling.Furthermore, by applying air entanglement to the yarn after heat-set false twisting, the mixed fiber entanglement is made uniform, and the effect in the yarn length direction is uniform. Therefore, it has anti-electric control and expresses a high-class feeling.
  • the undrawn yarn subjected to the entanglement process is subjected to a drawn false twisting machine equipped with a two-stage heater as shown in FIG. 1 to obtain a crimped polyester false twisted yarn. .
  • FIG. 1 the process of subjecting the polyester undrawn yarn (1) to an air entanglement process using an interlace nozzle (4, 4 ') installed between two pairs of feed rollers (3, 3') is shown.
  • the unstretched yarn that has been entangled here is rubbed with the rotating false twisting disk (7) while being drawn between the feed roller (3 ') and the first delivery roller (8). Is twisted.
  • it is heat-treated by the first stage heater (5), cooled by the cooling plate (6), passed through the false twist disk (7) and untwisted.
  • the running yarn is reheated as necessary by a second stage heater (9) installed between the first delivery roller (8) and the second delivery roller (10).
  • Air-entangled yarn (4,) is applied to the yarn after heat-set false twisting, and then wound as a cheese-like package (12) with a take-off roller (11) to produce a polyester false twisted yarn.
  • the first stage heater (5) and the second stage heater (9) are preferably non-contact type.
  • the second stage heater is not used in many cases, but it may be used if necessary, such as the texture.
  • the false twister (7) force S the triaxial friction disc type as shown in Fig. 2 and the lowermost disc material located at the untwisting portion is ceramic, and the running yarn and The contact length with the disk is 2.5 to 0.5 mm, and the disk has a diameter 9 of the disk immediately upstream.
  • 'It preferably has a diameter of 0-9 8%.
  • the false twisting tool (7) illustrated in Fig. 2 is of a three-axis friction disk type in which two false twisted disks (1 3) are attached to three rotating shafts (15), respectively.
  • each rotating shaft (15) is rotated at a predetermined speed by a timing belt (16) driven by a driving valve (17) to rotate each false twist disk (13).
  • at least one of the false twisted discs (1 3) is the lowermost disc (the lower disc attached to the left rotating shaft in the example of FIG. 2) located in the flame retardant part, and is made of ceramic.
  • the contact length between the ceramic disk and the running yarn is 2.5 to 0.5 mm.
  • the lowermost disk material is preferably ceramic from the viewpoint of wear resistance.
  • the twisting is finished.
  • the contact area when the compressed yarn enters the final untwisted portion is minimized, the resistance can be reduced, and as a result, the fluff is significantly reduced, resulting in an increase in strength, and
  • Setting the diameter of the disk within the range of 90 to 98% of the diameter of the disk just above reduces the resistance value when moving the yarn guide to the next step (specifically, the heat set) and makes it smooth. It was found that it was effective in moving to In particular, it was confirmed that setting the contact length between the running yarn and the disk to 2 : 5 to 0.5 mm significantly reduced the processed fluff and consequently improved the strength.
  • the false twisting temperature in the present invention is preferably a glass transition temperature (hereinafter referred to as TG) TG + 100 ° C to TG + 200 ° C, specifically 10 to 300 ° C. If this temperature is less than 1700 ° C, the crimping performance is low, the texture is hard, and if it exceeds 300 ° C, the processed yarn will become extremely flat and the fluff will be generated. It is not preferable.
  • Non-false twisting machine In the case of using an apparatus equipped with a contact heater, it is preferable to heat-treat the first stage non-contact heater at a set temperature of 170 to 300.
  • the proper heater temperature here is based on a commercially available false twisting machine (Teijin Seisakusho 2 1 6-storied HTS—15 V), which is a non-contact type 1.0 to 1.5 m long.
  • the yarn speed is assumed to be from 800 m min., So when using special heaters or processing at ultra high speeds, the set temperature should be adjusted appropriately. Of course.
  • the first heater in the twisted region is for improving the drawability and false twisting property (twistability) of the undrawn yarn, and this temperature is 1 7 0 in the case of a non-contact heater. If the temperature is less than ° C, the twistability is lowered, and the desired crimp of the present invention cannot be imparted, and the texture of the woven or knitted fabric becomes paper-like. In addition, yarn breakage and fluff are more likely to occur during drawing temporary machine processing, and crimped spots and dyed spots are more likely to occur during dyeing. On the other hand, when the temperature of the first heater exceeds 30 ° C.
  • the first stage heater may be divided into the first half and the second half, but in the method of the present invention, the first half and the second half of the first stage heater are the same. What is necessary is just to set to temperature.
  • the heat treatment time of the yarn in the first stage heater may be set as appropriate depending on the type of heater, its length, its temperature, etc., but if the heat treatment time is too short, the crimp rate tends to be insufficient. In addition, stretched false twisted yarn, fluff of preliminarily burned yarn, and knitting on knitted fabrics are likely to occur due to tension fluctuations. On the other hand, if the length is too long, the crimp rate tends to be too large. For this reason, when heat-treating with a non-contact type heater, a range of 0.04 to 0.12 seconds, particularly a range of 0.06 to 0.10 seconds is appropriate.
  • the draw ratio during processing is 1.4 to 2.4, which is the optimum zone. If the area is outside this range, surging, generation, Due to heat set spots due to this, on the high-magnification side, the processed yarn is flattened, and processed fluff is generated, which is not preferable.
  • the number of false twists is [(1 5 0 0 0 to 3 5 000) times 1/2 ] times when the fineness of the composite false twisted yarn is Y (dtex), more preferably [(2 0 0 0 0 to 3 00 00) Set ZY 1/2 ] times / m. If the false twist number is less than 1 500 000 / Y 1/2 times Zm, it becomes difficult to give fine and strong crimps, and the resulting fabric becomes paper-like, and the texture is hard. Become. If the number of false twists exceeds 3 5000 ZY 1/2 turns, the occurrence of yarn breakage and fluff will increase.
  • the ultra fine polyester false twisted yarn of the present invention thus obtained maintains the soft texture, heat retention, water absorption, hygroscopic properties, etc. of the conventional ultra fine polyester false twisted yarn.
  • a polyester fabric excellent in performance can be obtained.
  • each measured value shown in an Example is the value measured by the following method.
  • “parts” in the examples means parts by weight unless otherwise specified.
  • a polyester false twisted yarn sample was wound on a cassette frame with a tension of 0.044 c N / dtex to produce a cassette of about 3 300 dte X. Apply two loads of 0.0 1 7 7 c N no dte X and 0.1 77 c NZ dtex to one end of the case and measure the length SO (cm) after 1 minute. did. Next, with a load of 0.177 cN dtex removed, the substrate was treated in boiling water at 100 ° C. for 20 minutes.
  • the false twisted yarn of the present invention was used as a fabric, and was ranked into levels 1 to 3 as follows by a sensory test by an expert.
  • Level 3 A crisp or hard feel.
  • 0.041 parts of antimony trioxide 0.027 mol% with respect to dimethyl terephthalate was added to the reaction mixture, and at the same time, an excess of ethylene glycol was distilled off at 240 ° C.
  • the reaction mixture was then transferred to a polymerization reactor.
  • the water-insoluble polyoxyethylene polymer represented by the following formula was used. 4 parts of ether and 2 parts of sodium dodecylbenzenesulfonate were added under vacuum and allowed to undergo a polycondensation reaction for an additional 240 minutes, followed by 0.4 part of Iryganox 1 01 0 made by Chipapaigi Co., Ltd. as an antioxidant. And then a polycondensation reaction was carried out for another 30 minutes. In the polymerization reaction step, an antistatic agent was added, and the resulting polymer was formed into a chip by a conventional method.
  • the average value is a common value consisting of two or more kinds of oxchethylene units. Means the average number of oxyethylene units in polymerized polyoxyethylene polyether.
  • the obtained polymer had an intrinsic viscosity of 0.565 and a softening point of 258 ° C.
  • the obtained chip and a normal polyethylene terephthalate chip having an intrinsic viscosity of 0.65 containing 0.4% by weight of titanium oxide fine particles were dried by a conventional method, and then the chips were each subjected to a conventional method in a spinning facility. And then introduced into each composite fiber spin pack through a spin block.
  • the spinneret with 72 core-sheath compound circular discharge holes built in the spin pack was cooled and solidified with cooling air from a normal cross-flow type spinning cylinder, and the spinning oil was applied while being solidified.
  • This polyester unstretched yarn is applied to Teijin Seiki's 2 1 6-ply HT S—15 V, and as shown in (4, 4 ') in Fig. 1, at the front and rear stages, a compressed air blowout with a hole diameter of 1.8 mm Air is entangled so that the degree of entanglement is 5.0 at a flow rate of 60 n L / min while passing through an interlace nozzle with holes, stretching magnification 1.60, first heater (non-contact type) temperature 2 A urethane disk with a diameter of 60 mm and a thickness of 9 mm was set as a false twisted disk under the condition of 50 ° C, and the false twist number X (false twisted yarn fineness (dte X)) 1/2 was 26.
  • polyester false twisted yarns A cylindrical knitted fabric was manufactured using these polyester false twisted yarns, and the antistatic property was measured.
  • the friction false voltage of the obtained polyester false twisted yarn was 1200 V.
  • these polyester false twisted yarns were made into woven fabrics by a conventional method, and the quality of the polyester was evaluated by sensory evaluation.As a result, it had a very deep, high-class feeling and a soft feeling. there were. The results are shown in Table 1.
  • More than 97% of both ends can be obtained by reacting acrylonitrile with polyethylene dallicol in the presence of an alkaline catalyst, followed by a hydrogenation reaction.
  • Polyethylene glycol diamine (number average molecular weight 4 00 0) with amino group on top is synthesized, and this is a salt reaction with adipic acid by a conventional method to form a 45% aqueous solution of polyethylene glycol diammonium adipate. Obtained.
  • Capacity polyethylene glycol concentration can of the 4 5% 2m 3 Jian mode Niumuaji Bae over preparative aqueous 2 0 0 k g. 8 5% strength caprolactam solution 1 2 0 kg, 4 hexamethylene diammine monitor ⁇ 0% of the 16 kg of an aqueous solution of mysophthalate was added, heated for about 2 hours at normal pressure until the internal temperature reached 110 ° C, and concentrated to 80% concentration. Subsequently, the concentrated solution was transferred to a polymerization vessel having a capacity of 80 &, and heating was started while flowing nitrogen at a rate of 2.51 / min.
  • Pellet made of the above-mentioned block polyetheramide yarn and a composite is 1.4 weight. /.
  • 8 4 A polyester false twisted yarn having a core-sheath ratio of dte xZ 72 filament (average single yarn fineness of 1.1 7 dte X) of 70:30 was obtained.
  • the fabric made of this fiber showed a soft and excellent texture similar to that of Example 1, but the frictional voltage was very poor at 3400 V. The results are summarized in Table 1.
  • Example 1 Except for changing the polymer discharge rate, the same procedure as in Example 1 was performed, and 5 6 dte xZ7 2 filaments (average single yarn fineness 0.78 dte X) and A core-sheath-type composite polyester false twisted yarn having a core-sheath ratio of 1 1 1 dte 7 2 filament (average single yarn fineness of 1.54 dtex) of 70:30 was obtained. Fabrics made from these yarns were excellent in both friction withstand voltage and texture. The results are summarized in Table 1.
  • Example 1 Except for increasing the polymer discharge rate, the same procedure as in Example 1 was carried out, and the core-sheath ratio of 1 3 3 dte xZ 7 2 filaments (average single yarn fineness 1.85 5 dtex). Ratio 7 0: 30 core sheath A mold composite polyester false twisted yarn was obtained. The fabrics made from these yarns had excellent frictional voltage as in Example 1, but had a hard feeling and were not suitable for practical use. The results are summarized in Table 1.
  • Example 1 Except for changing the base to 3 6 holes, the same procedure as in Example 1 was performed, and the core sheath ratio of 8 4 dte xZ 3 6 filament (average single yarn fineness 2.3 3 dtex) was 70:30 A mold composite polyester false twisted yarn was obtained. Fabrics made from these yarns were excellent in frictional voltage as in Example 1, but had a firm feel and were not suitable for practical use. The results are summarized in Table 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Multicomponent Fibers (AREA)
  • Woven Fabrics (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Laminated Bodies (AREA)

Abstract

Since the false-twisted polyester yarn of the invention contains an antistatic component in a state enveloped in a sheath, the antistatic component is little deformed by false twisting. Therefore, the yarn little fluffs in false twisting and can give a polyester fabric which is improved in antistatic properties while retaining the soft hand, hot insulation, and water- and moisture-absorbing properties inherent in conventional ultrafine-denier false-twisted polyester yarn. The antistatic component of the yarn of the invention is excellent in heat resistance as compared with conventional polyether amide antistatic agents, so that the fabric is excellent in washing durability in a state dyed by the high-pressure method and thus useful as antistatic fabric for student's wear, uniform, dust protective wear, and so on.

Description

明 細 書 制電性芯鞘型ポリエステル極細仮撚加工糸及ぴその製造方法並びに該制 電性芯鞘型ポリエステル極細仮撚加工糸を含む制電撥水性織物 技術分野  Patent application title: Antistatic core-sheath type polyester extra fine false twisted yarn, production method thereof, and antistatic water-repellent woven fabric including the antistatic core-sheath type polyester extra fine false twisted yarn
本発明は、 制電性を有する芯鞘型ポリエステル極細仮撚加工糸及びそ の製造方法並びに該制電性芯鞘型ポリエステル極細仮撚加工糸を含む制 電性織物に関するものである。 さらに詳しくは、 本発明は耐久性に優れ た制電性を有する芯鞘構造のポリエステル極細仮撚加工糸を安定して得 られる製造方法に関するものである。 背景技術  The present invention relates to a core-sheath polyester ultrafine false twisted yarn having antistatic properties, a method for producing the same, and an antistatic fabric including the antistatic core-sheath polyester ultrafine false twisted yarn. More specifically, the present invention relates to a production method for stably obtaining a polyester extra fine false twisted yarn having a core-sheath structure having excellent durability and antistatic properties. Background art
ポリエステル繊維は、 優れた品位と安定した物性により、 衣料用途を はじめ、 幅広く使われている。 しかしながら、 本来、 ポリエステルは疎 水性であるため、 制電性が要求される分野では、 ポリエステルに親水性 を付与して制電性を発現させようとする試みが数多く提案されている。 その例としては、 例えばポリエステルにポリォキシアルキレン系ポリ エーテル化合物を配合せしめる方法 (特公昭 3 9— 5 2 14号公報) 、 ポリエステルに実質的に非相溶性のポリオキシアルキレン系ポリエーテ ル化合物と有機 ·無機のイオン性化合物とを配合せしめる方法 (特公昭 44 - 3 1 8 28号公報、 特公昭 60— 1 1 944号公報、 特開昭 5 3 - 8 04 9 7号公報、 特開昭 5 3— 1 4 9 24 7号公報、 特開昭 6 0— 3 9 4 1 3号公報、 特開平 3— 1 3 9 5 5 6号公報等) などが知られて いる。  Polyester fibers are widely used for clothing and other applications due to their superior quality and stable physical properties. However, since polyester is inherently water-phobic, many attempts have been made to impart antistatic properties by imparting hydrophilicity to polyester in fields where antistatic properties are required. Examples thereof include a method of blending a polyoxyalkylene polyether compound with polyester (Japanese Patent Publication No. 39-52 14), a polyoxyalkylene polyether compound that is substantially incompatible with polyester, and the like. Method of blending organic / inorganic ionic compounds (Japanese Patent Publication No. 44-3 1 8 28, Japanese Patent Publication No. 60-1 1 944, Japanese Patent Publication No. 5 3-8 04 97, Japanese Patent Publication No. 5 3-1 4 9 24 7, Japanese Patent Application Laid-Open No. 6-0-3 9 4 1 3, Japanese Patent Application Laid-Open No. 3-1 3 9 5 5 6, etc.) are known.
しかしながら、 上記方法においては、 通常の延伸糸 (FOY) の場合 は良好な制電性が発現するものの、 仮撚加工糸の場合、 仮撚りの変形に より毛羽が発生する為、 良好な制電性が得られないという問題があった。 また、 特に近年、 織編物の風合い、 肌触り、 外観等に関する要求がま すます高まってきており、 単糸繊度が 1 . 6 d t e x以下の、 極細繊度 のポリエステル仮撚加工糸を用いて柔らかな風合を有する布帛が製造さ れているが、 ポリエステル仮撚加工糸の場合、 極細繊度化が進むにつれ て静電気の発生を充分に抑えることが極めて困難になり、 これまで、 ス ポーッ衣料、 ユニフォーム、 防塵衣、 等の用途、 あるいは、 肌に直接触 れることの多いプラウス屋ゃシャツなどの用途においても、 充分な制電 性を有する布帛は皆無に等しいといっても過言ではないのが現状であつ た。 , 発明の開示 However, in the above method, although good antistatic properties are exhibited in the case of ordinary drawn yarn (FOY), in the case of false twisted yarn, fluff is generated due to deformation of false twist. There was a problem that sex could not be obtained. In particular, in recent years, there has been a demand for texture, texture, appearance, etc. Fabrics with a soft texture are produced using polyester fine yarn with ultrafine fineness with a single yarn fineness of 1.6 dtex or less. In this case, it becomes extremely difficult to sufficiently suppress the generation of static electricity as the fineness becomes finer. So far, it has been used for sports clothing, uniforms, dust-proof clothing, etc. Even in applications such as shirts, it is no exaggeration to say that there are no fabrics with sufficient antistatic properties. Disclosure of the invention
本発明の目的は、 極細ポリエステル仮撚加工糸が持つ、 柔らかな風合、 保温性、 吸水、 吸湿性などの性能を維持しつつ、 制電性能にも優れたポ' リエステル布帛を得ることができる芯鞘型ポリエステル極細仮撚加工糸 及ぴそれを安定して製造することができる芯鞘型ポリエステル極細仮撚 加工糸の製造方法を提供することにある。  An object of the present invention is to obtain a polyester fabric having excellent antistatic performance while maintaining the soft texture, heat retention, water absorption, moisture absorption, etc. possessed by the ultra fine polyester false twisted yarn. An object of the present invention is to provide a core-sheath type polyester extra fine false twisted yarn and a method for producing a core-sheath type polyester extra fine false twisted yarn which can be stably produced.
本発明者らは、 上記目的を達成すべく鋭意検討した結果、 ポリエステ ルに実質的に非相溶性のポリオキシアルキレン系ポリエーテル化合物と 有機イオン性化合物とを含有させたポリエステルからなる芯成分を、 鞘 成分で被覆した芯鞘型ポリエステル極細複合繊維を特定の条件下で溶融 紡糸した後、 延伸仮撚加工するとき、 本発明の目的が達成できることを 見出した。  As a result of diligent investigations to achieve the above object, the present inventors have found that a core component comprising a polyester containing a polyoxyalkylene polyether compound and an organic ionic compound that are substantially incompatible with polyester. It has been found that the object of the present invention can be achieved when a core-sheath type polyester ultrafine composite fiber coated with a sheath component is melt-spun under specific conditions and then stretched false twisted.
すなわち、 本発明によれば、  That is, according to the present invention,
①仮撚加ェされた芯鞘型複合繊維であって、 該芯鞘型複合繊維の芯部が、 芳香族ポリエステル 1 0 0重量部に対して、 制電剤として (1) A core-sheath type composite fiber subjected to false twisting, wherein the core part of the core-sheath type composite fiber is used as an antistatic agent with respect to 100 parts by weight of the aromatic polyester.
( a ) ポリォキシアルキレン系ポリエーテル 0 . 2〜3 0重量部、 及び (a) a polyoxyalkylene-based polyether 0.2 to 30 parts by weight, and
( b ) 該ポリエステルと実質的に非反応性の有機イオン性化合物 0 . ひ 5〜 1 0重量部 . (b) an organic ionic compound that is substantially non-reactive with the polyester, from 5 to 10 parts by weight;
を含有してなる制電性ポリエステル組成物 Aから形成され、 他方、 鞘部 が、 芳香族ポリエステル組成物 Bから形成されており、 且つ該芯鞘型複 合繊維が下記 (1) 〜 (3) の条件を同時に満足することを特徴とする 制電性芯鞘型ポリエステル極細仮撚加工糸。 On the other hand, the sheath is formed from the aromatic polyester composition B, and the core-sheath type composite An antistatic core-sheath polyester extra fine false twisted yarn characterized in that the synthetic fiber simultaneously satisfies the following conditions (1) to (3):
(1 ) 仮撚加工糸の単糸繊度が 1. 6 d t e X以下である。  (1) The single yarn fineness of the false twisted yarn is 1.6 dte x or less.
(2) 仮撚加工糸の捲縮率が 3〜 3 0 %である。  (2) The crimp rate of the false twisted yarn is 3 to 30%.
(3) 芯部の面積 S Aと鞘部の面積 S Bとの比 S A: S Bが 5 : 9 5〜 80 : 20の範囲にある。  (3) Ratio of core area S A and sheath area S B S A: S B is in the range of 5:95 to 80:20.
及び、 as well as,
②芯部が、 芳香族ポリエステル 1 0 0重量部に対して、 制電剤として (a) ポリオキシアルキレン系ポリエーテル 0. 2〜3 0重量部、 及び (b) 該ポリエステルと実質的に非反応性の有機イオン性化合物 0. 0 5〜 1 0重量部  (2) The core is as an antistatic agent with respect to 100 parts by weight of the aromatic polyester, (a) 0.2 to 30 parts by weight of a polyoxyalkylene polyether, and (b) substantially non-woven with the polyester. Reactive organic ionic compounds 0.0 5 to 10 parts by weight
を含有してなる制電性ポリエステル組成物 Aから形成され、 他方、 鞘部 力 芳香族ポリエステル組成物 Bから形成された芯鞘型複合繊維を溶融 紡糸するに際し、 紡出時の吐出速度と引取り速度の比 (引取り速度 吐 出速度、 以後ドラフ ト倍率と略すことがある) を 1 5 0以上、 8 0 0未 満の範囲で引き取った後、 仮撚加工することを特徵とする制電性芯鞘型 ポリエステル極細仮撚加工糸の製造方法。 On the other hand, when melt-spinning the core-sheath type composite fiber formed from the antistatic polyester composition A and containing the sheath force aromatic polyester composition B, the discharge speed and the drawing speed during spinning are reduced. A special feature is to take a false twist ratio after taking the ratio of take-off speed (take-off speed, discharge speed, hereinafter abbreviated as draft ratio) in the range of 150 or more and less than 800. Electrical core-sheath type Polyester extra fine false twisted yarn manufacturing method.
並びに、 And
③芯鞘型ポリエステル仮撚加工糸を含む織物であって、 該芯鞘型ポリェ ステル仮撚加工糸が上記①記載の制電性芯鞘型ポリエステル極細仮撚加 ェ糸であることを特徴とする制電性織物。  (3) A woven fabric including a core-sheath type polyester false twisted yarn, wherein the core-sheath type polyester false twisted yarn is the antistatic core-sheath type polyester extra fine false twisted yarn described in (1) above. Anti-static fabric.
が提供される。 図面の簡単な説明 Is provided. Brief Description of Drawings
図 1は本発明で使用する、 仮撚加工糸を製造する延伸同時仮撚加工機 の'概略図であり、 1は芯鞘型ポリエステル未延伸糸、 2は糸ガイ ド、 3、 3 ' はフィー ドローラー、 4、 4' はインターレースノズル、 5は第 1 段ヒーター、 6は冷却プレート、 7は仮撚具 (3軸フリクションデイス クユニット) 、 8は第 1デリべリーローラー、 9は第 2段ヒーター、 1 0は第 2デリべリーローラー、 1 1は巻取ローラー、 1 2はポリエステ ル仮撚加工糸チーズである。 Fig. 1 is a schematic diagram of a drawing simultaneous false twisting machine for producing false twisted yarn used in the present invention, wherein 1 is a core-sheath type polyester undrawn yarn, 2 is a yarn guide, 3 and 3 'are Feed roller, 4 and 4 'are interlace nozzles, 5 is the first stage heater, 6 is the cooling plate, 7 is the false twister (3-axis friction disk unit), 8 is the first delivery roller, and 9 is the second Stage heater, 1 0 is the second delivery roller, 11 is the winding roller, and 12 is the polyester false twisted cheese.
また、 図 2は本発明で使用する仮撚ディスクュニットの一実施態様を 示す正面図であり、 1 3は仮撚ディスク、 1 4はガイ ドディスク、 1 5 は回転軸、 1 6はタイミングベルト、 1 7は駆動ベルトである。 発明を実施するための最良の形態  FIG. 2 is a front view showing an embodiment of a false twisted disk unit used in the present invention. 13 is a false twisted disk, 14 is a guide disk, 15 is a rotating shaft, and 16 is a timing. Belt, 17 is a drive belt. BEST MODE FOR CARRYING OUT THE INVENTION
以下本発明の実施形態につ 、て詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail.
本発明でいうポリエステルは、 芳香環を重合体 連鎖単位に有する芳 香族ポリエステルであって、 二官能性芳香族カルボン酸またはそのエス テル形成性誘導体とジオールまたはそのエステル形成性誘導体との反応 により得られる重合体を対象とする。  The polyester referred to in the present invention is an aromatic polyester having an aromatic ring in a polymer chain unit, which is obtained by reacting a bifunctional aromatic carboxylic acid or an ester-forming derivative thereof with a diol or an ester-forming derivative thereof. The obtained polymer is an object.
ここでいう二官能性芳香族カルボン酸としてはテレフタル酸、 イソフ タノレ酸、 ォノレトフタル酸、 1, 5—ナフタレンジ力ノレボン酸、 2 , 5— ナフタレンジ力ノレボン酸、 2, 6—ナフタレンジカノレポン酸、 4, 4' ービフエニルジカルボン酸、 3, 3' —ビフエ二/レジ力/レボン酸、 4, 4 —ビフエニノレエーテ/レジカルボン酸、 4 , 4' ービフエ二ノレメタン ジカノレボン酸、 4, A' ービフエニノレスノレホンジカノレボン酸、 4, 4 ' ービフエニルイソプロピリデンジカルボン酸、 1 , 2—ビス (フエノキ シ) エタンー 4, 4' ージカルボン酸、 2 , 5—アントラセンジカルポ ン酸、 2, 6—アントラセンジカルボン酸、 4 , 4' 一 p—フエ-レン ジカルボン酸、 2, 5—ピリジンジカノレボン酸、 j3—ヒ ドロキシェ トキ シ安息香酸、 p—ォキシ安息香酸等をあげることができ、 特にテレフタ ル酸が好ましい。  The difunctional aromatic carboxylic acids mentioned here include terephthalic acid, isophthalenoic acid, onolephthalic acid, 1,5-naphthalenediform norevonic acid, 2,5-naphthalenediform norevonic acid, 2,6-naphthalenedicanolepon Acid, 4, 4'-biphenyl dicarboxylic acid, 3, 3 '— biphenyl / residic power / levonic acid, 4, 4 — biphenylenoate / resicarboxylic acid, 4, 4'-biphenyleno methane dicanolevonic acid, 4 , A'-biphenylenoleshondikanolevonic acid, 4,4'-biphenylisopropylidenedicarboxylic acid, 1,2-bis (phenoxy) ethane-4,4'-dicarboxylic acid, 2,5-anthracenedicarpo Acid, 2,6-anthracene dicarboxylic acid, 4,4'-p-phenylene dicarboxylic acid, 2,5-pyridinedicanolevonic acid, j3-hydroxyloxybenzoic acid, p-oxybenzoic acid, etc. In particular, terephthalic acid is preferable.
これらの二官能性芳香族カルボン酸は 2種以上併用してもよい。 なお、 少量であればこれらの二官能性芳香族カルボン酸とともにアジピン酸、 ァゼライン酸、 セバシン酸、 ドデカンジオン酸の如き二官能性脂肪族力 ルボン酸、 シク口へキサンジカルボン酸の如き二官能性脂環族カルボン 酸、 5—ナトリ ゥムスルホイソフタル酸等を 1種または 2種以上併用 することができる。 Two or more of these difunctional aromatic carboxylic acids may be used in combination. If the amount is small, these difunctional aromatic carboxylic acids and bifunctional aliphatic carboxylic acids such as adipic acid, azelaic acid, sebacic acid, and dodecanedioic acid rubonic acid, and bifunctional hexanedicarboxylic acid Use of one or more alicyclic carboxylic acids, 5-sodium sulfoisophthalic acid, etc. can do.
また、 ジオール化合物としてはエチレングリコール、 プロピレンダリ コーノレ、 プチレングリコーノレ、 へキシレングリコーレ、 ネオペンチルグ リ コール、 2—メチル一 1 , 3—プロパンジォーノレ、 ジエチレングリ コール、 トリメチレングリコールの如き脂肪族ジオール、 1 , 4ーシク 口へキサンジメタノ一ルの如き脂環族ジオール等およびそれらの混合物 等を好ましくあげることができる。 また、 少量であればこれらのジォ一 ' ル化合物と共に両末端または片末端が未封鎖のポリォキシアルキレング リコールを共重合することができる。  Examples of the diol compound include ethylene glycol, propylene glycol, butylene glycol, hexylene glycol, neopentyl glycol, 2-methyl-1,3-propanediol, diethylene glycol, and trimethylene glycol. Preferred examples include aliphatic diols, alicyclic diols such as 1,4-cyclohexanedimethanol, and mixtures thereof. If the amount is small, polyoxyalkylene glycol having both ends or one end unblocked can be copolymerized with these diol compounds.
更に、 ポリエステルが実質的に線状である範囲でトリメリッ ト酸、 ピ ロメ リ ッ ト酸の如きポリカルボン酸、 グリセリン、 トリメチロールプロ ノ ン、 ペンタエリスリ トールの如きポリ 'オールを使用することができる。 具体的な好ましい芳香族ポリエステルとしてはポリエチレンテレフタ レート、 ポリプチレンテレフタレート、 ポリへキシレンテレフタレート、 ポリエチレンナフタレート、 ポリブチレンナフタレート、 ポリエチレン - 1, 2 一ビス (フエノキシ) エタン一 4 , 4 ' 一ジカルボキシレート 等のほか、 ポリエチレンイソフタレート . テレフタレート、 ポリブチレ ンテレフタレート ' イソフタレート、 ポリブチレンテレフタレート ·デ カンジカルボキシレート等のような共重合ポリエステルをあげることが できる。 なかでも機械的性質、 成形性等のバランスのとれたポリェチレ ンテレフタレートおよびポリブチレンテレフタレートが特に好ましい。 かかる芳香族ポリエステルは任意の方法によって合成される。 例えば ポリエチレンテレフタレートついて説明すれば、 テレフタル酸とェチレ ングリコールとを直接エステル化反応させるか、 テレフタル酸ジメチル の如きテレフタル酸の低級アルキノレエステルとエチレングリコールとを エステル交換反応させるかまたはテレフタル酸とエチレンォキサイ ドと を反応させるかして、 テレフタル酸のダリコールエステルおよび Zまた はその低重合体を生成させる第 1段反応、 次いでその生成物を減圧下加 熱して所望の重合度になるまで重縮合反応させる第 2段の反応とによつ て容易に製造される。 Furthermore, polycarboxylic acids such as trimellitic acid and pyromellitic acid, and poly'ols such as glycerin, trimethylolpronone and pentaerythritol can be used within the range in which the polyester is substantially linear. . Specific preferred aromatic polyesters include polyethylene terephthalate, polybutylene terephthalate, polyhexylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene-1,2 bis (phenoxy) ethane 1,4,4 ' In addition to carboxylates, there may be mentioned copolyesters such as polyethylene isophthalate terephthalate, polybutylene terephthalate isophthalate, polybutylene terephthalate / decane dicarboxylate, and the like. Of these, polyethylene terephthalate and polybutylene terephthalate having a good balance of mechanical properties and moldability are particularly preferred. Such aromatic polyester is synthesized by any method. For example, when describing polyethylene terephthalate, terephthalic acid and ethylene glycol are directly esterified, or terephthalic acid, such as dimethyl terephthalate, is transesterified with ethylene glycol or terephthalic acid and ethylene. The first stage reaction to form terephthalic acid dallicol ester and Z or its low polymer by reacting with oxside, and then heating the product under reduced pressure until the desired degree of polymerization is reached The second stage of the polycondensation reaction And easily manufactured.
本発明で使用する組成物に配合するポリオキシアルキレン系ポリエー テル (a) は、 ポリエステルに実質的に不溶性のものであれば、 単一の ォキシァノレキレン単位からなるポリォキシァノレキレングリコーノレであつ ても、 二種以上のォキシアルキレン単位からなる共重合ポリオキシアル キレングリコールであってもよく、 また、 下記一般式 ( I ) で表わされ るポオキシエチレン系ポリエーテノレであってもよい。 .  The polyoxyalkylene-based polyether (a) to be blended in the composition used in the present invention is a polyoxyalkylene comprising a single oxyalkylene unit as long as it is substantially insoluble in the polyester. It may be a non-glycolene or a copolymerized polyoxyalkylene glycol composed of two or more oxyalkylene units, and is a poxyethylene-based polyetherol represented by the following general formula (I): Also good. .
Z +《CH2 C H , 0> 一 (R 1 O) 一 - R 2 - ( I ) Z + << CH 2 CH, 0> One (R 1 O) One-R 2- (I)
(上記式 ( I ) 中、 Zは 1〜 6個の活性水素原子を有する有機化合物残 基、 R1は炭素原子数 6以上のアルキレン基又は置換アルキレン基、 R 2は水素原子、 炭素原子数 1〜40の一価の炭化水素基、 炭素原子数 2 〜4 0の一価のヒ ドロキシ炭化水素又は炭素原子数 2〜40の一価のァ シル基、 kは 1〜6の整数、 nは n≥ 7 OZkを満足する整数、 mは 1以上の整数を示す。 ) (In the above formula (I), Z is an organic compound residue having 1 to 6 active hydrogen atoms, R 1 is an alkylene group or substituted alkylene group having 6 or more carbon atoms, R 2 is a hydrogen atom, or carbon atoms. A monovalent hydrocarbon group having 1 to 40 carbon atoms, a monovalent hydroxy hydrocarbon group having 2 to 40 carbon atoms, or a monovalent acyl group having 2 to 40 carbon atoms, k is an integer of 1 to 6, n Is an integer satisfying n≥ 7 OZk, and m is an integer of 1 or more.
かかるポリオキシアルキレン系ポリエーテルの具体例としては、 分子 量が 4 0 0 0以上のポリオキシエチレンダリコール、 分子量が 1 0 0 0 以上のポリォキシプロピレンダリコール、 ポリオキシテトラメチレング リコール、 分子量が 2 000以上のエチレンオキサイ ド、 プロピレンォ キサイ ド共重合体、 分子量 4000以上のトリメチロールプロパンェチ レンオキサイ ド付加物、 分子量 3000以上のノニノレフエノールェチレ ンォキサイ ド付加物、 並びにこれらの末端〇H基に炭素数が 6以上の置 換エチレンォキサイ ドが付加した化合物があげられ、 なかでも分子量が 1 0 0 0 0〜 1 000 00のポリォキシエチレングコール、 及び分子量 が 5 0 0 0〜 1 6 0 0 0の、 ポリォキシエチレングリコールの両末端に 炭素数が 8〜40のアルキル基置換エチレンォキサイ ドが付加した化合 物が好ましい。  Specific examples of such polyoxyalkylene polyethers include polyoxyethylene dalycol having a molecular weight of 400 or more, polyoxypropylene dalycol having a molecular weight of 100 or more, polyoxytetramethylene glycol, Ethylene oxide with a molecular weight of 2 000 or more, propylene oxide copolymer, trimethylolpropane ethylene oxide adduct with a molecular weight of 4000 or more, nonino olefin ethylene oxide adduct with a molecular weight of 3000 or more, and these Examples include compounds in which a substituted ethylene oxide having 6 or more carbon atoms is added to the terminal OH group, and in particular, a polyoxyethylene glycol having a molecular weight of 100 to 1,000,000 and a molecular weight of 5 An alkyl group-substituted ethylene oxide having 8 to 40 carbon atoms at both ends of polyoxyethylene glycol of 0 0 0 to 1 6 0 0 0 Compound but with the addition is preferred.
かかるポリオキシアルキレン系ポリエーテル化合物の配合量は、 前記 芳香族ポリエステル 1 00重量部に対して 0. 2〜3 0重量部の範囲で ある。 0. 2重量部より少ないときは親水性が不足して充分な制電性を 呈することができない。 一方 3 0重量部より多く しても最早制電性の向 上効果は認められず、 かえって得られる組成物の機械的性質を損うよう になる上、 該ポリエーテルがブリードアウトし易くなるため溶融成形時 チップのルーダ一^ ·のかみこみ性が低下して、 成形^定性も悪化するよ うになる。 The compounding amount of the polyoxyalkylene polyether compound is as follows: The range is 0.2 to 30 parts by weight per 100 parts by weight of the aromatic polyester. When the amount is less than 2 parts by weight, the hydrophilicity is insufficient and sufficient antistatic property cannot be exhibited. On the other hand, if the amount is more than 30 parts by weight, the antistatic effect is no longer recognized, and the mechanical properties of the resulting composition are deteriorated, and the polyether easily bleeds out. At the time of melt molding, the chip rudder's biting ability is lowered and the molding quality is also deteriorated.
本発明のポリエステル組成物には、 特に制電性を向上させるために有 機イオン性化合物を配合する。 有機イオン性化合物としては、 例えば下 記一般式 (II) 、 (III) で示されるスルホン酸金属塩及びスルホン酸 第 4級ホスホニゥム塩を好ましいものとしてあげることができる。 RSO, M …… (II)  In the polyester composition of the present invention, an organic ionic compound is blended particularly for improving antistatic properties. Preferred examples of the organic ionic compound include sulfonic acid metal salts and sulfonic acid quaternary phosphonium salts represented by the following general formulas (II) and (III). RSO, M ...... (II)
^  ^
(上記式 (II) 中、 Rは炭素原子数 3〜 3 0のアルキル基又は炭素原子 数 7〜40のァリール基、 Mはアル力リ金属又はアル力リ土類金属を示 す。 )  (In the above formula (II), R represents an alkyl group having 3 to 30 carbon atoms or an aryl group having 7 to 40 carbon atoms, and M represents an alkali metal or an alkaline earth metal.)
RS 03 P R1 R2 R3 R4 …… (III) RS 0 3 PR 1 R 2 R 3 R 4 …… (III)
(上記式 (III) 中、 Rは炭素原子数 3〜 3 0のアルキル基又は炭素原 子数 7〜 4 0のァリール基であり、 R1, R2, R3及び R4は、 アルキ ノレ基又はァリーノレ基で、 中でも低級アルキル基、 フエニル基又はべンジ ル基が好ましい。. ) (In the above formula (III), R is an alkyl group having 3 to 30 carbon atoms or an aryl group having 7 to 40 carbon atoms, and R 1 , R 2 , R 3 and R 4 are alkylene groups. A lower alkyl group, a phenyl group, or a benzyl group.
上記式 (II) において Rがアルキル基のときはアルキル基は直鎖状で あっても又は.分岐した側鎖を有していてもよい。 Mは N a, K, L i等 のアルカリ金属又は Mg, C a等のアルカリ土類金属であり、 なかでも L i , N a , Kが好ましい。 かかるスルホン酸金属塩は 1種のみを単独 で用いても 2種以上を混合して使用してもよい。  In the above formula (II), when R is an alkyl group, the alkyl group may be linear or may have a branched side chain. M is an alkali metal such as Na, K, Li or the like, or an alkaline earth metal such as Mg, Ca, among which Li, Na, K is preferable. Such sulfonic acid metal salts may be used alone or in combination of two or more.
好ましい具体例としてはステアリルスルホン酸ナトリ ゥム、 ォクチル スルホン酸ナト リ ウム、 ドデシルスルホン酸ナト リ ウム、 炭素原子数の 平均が 1 4であるアルキルスルホン酸ナトリ ゥム混合物、 ドデシルペン ゼンスルホン酸ナトリゥム混合物、 ドデシルベンゼンスルホン酸ナトリ ゥム (ハード型、 ソフト型) 、 ドデシルベンゼンスルホン酸リチウム (ハード型、 ソフ ト型) 、 ドデシルベンゼンスルホン酸マグネシウム (ハード型、 ソフト型) 等をあげることができる。 Preferred examples include sodium stearyl sulfonate, sodium octyl sulfonate, sodium dodecyl sulfonate, and the number of carbon atoms. Sodium alkyl sulfonate mixture with an average of 14, sodium dodecyl benzene sulfonate mixture, sodium dodecyl benzene sulfonate (hard type, soft type), lithium dodecyl benzene sulfonate (hard type, soft type), dodecyl Examples thereof include magnesium benzenesulfonate (hard type and soft type).
また、 式 (III) におけるスルホン酸第 4級ホスホニゥム塩は 1種の みを単独で用いても 2種以上を混合して使用してもよい。 好ましい具体 例としては炭素原子数の平均が 1 4であるアルキルスルホン酸テトラブ チルホスホニゥム、 炭素原子数の平均が 1 4であるアルキルスルホン酸 テトラフェニルホスホニゥム、 炭素原子数の平均が 1 4であるァノレキル スノレホン酸プチノレトリフエ二ノレホスホニゥム、 ドデシノレベンゼンスノレホ ン酸テトラブチルホスホニゥム (ハード型、 ソフト型) 、 ドデシルペン ゼンスルホン酸テトラフェニルホスホニゥム (ハード型、 ソフト型) 、 ドデシルベンゼンスルホン酸べンジルトリ フエニルホスホニゥム (ハー ド型、 ソフ ト型) 等をあげることができる。 '  In addition, the sulfonic acid quaternary phosphonium salt in formula (III) may be used alone or in combination of two or more. Preferable examples include tetrabutylphosphonium alkyl sulfonate having an average of 14 carbon atoms, tetraphenyl phosphonium alkyl sulfonate having an average of 14 carbon atoms, and an average of 14 carbon atoms. Anolequil senorephonic acid pentinotriphenyl phenorephosphonium, dodecinorebenzene sulphonate tetrabutylphosphonium (hard type, soft type), dodecyl benzene tetraphenylphosphonium sulphonate (hard type, soft type), dodecylbenzene sulfonic acid benziltri Examples thereof include phenylphosphonium (hard type, soft type) and the like. '
かかる有機イオン性化合物は 1種でも、 2種以上併用してもよく、 そ の配合量は、 芳香族ポリエステル 1 0 0重量部に対して 0 . 0 5〜1 0 重量部の範囲であることが必要である。 有機イオン性化合物の配合量が 0 . 0 5重量部未満では制電性向上の効果が小さく、 1 0重量部を越え ると組成物の機械的性 を損なうようになる上、 該イオン性化合物もブ リードァゥ トし易くなるため、 溶融成形時のチップのルーダーかみこみ 性が低下して、 成形安定性も悪化するようになる。  These organic ionic compounds may be used alone or in combination of two or more thereof, and the blending amount thereof is in the range of 0.05 to 10 parts by weight with respect to 100 parts by weight of the aromatic polyester. is required. When the amount of the organic ionic compound is less than 0.05 parts by weight, the effect of improving antistatic properties is small, and when it exceeds 10 parts by weight, the mechanical properties of the composition are impaired, and the ionic compound However, it is easy to bleed out, so that the chip rudder bite at the time of melt molding is lowered and the molding stability is also deteriorated.
なお、 ポリエステル Bには、 本発明の目的を阻害しない範囲で、 公知 の艷消剤、 例えば二酸化チタンなどを配合しても良い。 但し、 艷消し剤 が 1 0 w t %を超えると本発明の親糸となる未延伸糸の紡糸性が悪化す るので、 その範囲は 0 . 0 1〜 1 0 w t %とするのが好ましい。  Polyester B may be blended with a known matting agent, such as titanium dioxide, as long as the object of the present invention is not impaired. However, if the amount of the erasing agent exceeds 10 wt%, the spinnability of the undrawn yarn that becomes the parent yarn of the present invention deteriorates, and therefore the range is preferably set to 0.01 to 10 wt%.
また、 本発明の極細仮撚加工糸は単糸繊度 1 . 6 d t e x以下、 捲縮 率 3〜 3 0 %であることが必要であり、 この範囲とすることにより、 ソ フ ト風合に優れる織編物が得られる。 捲縮率が 3 %耒満の場合には、 織 編物とした際に十分なフクラミ感が得られず、 一方、 3 0%を超える場 合には、 制電性能が低下する傾向にあり、 好ましくない。 In addition, the ultra fine false twisted yarn of the present invention needs to have a single yarn fineness of 1.6 dtex or less and a crimping rate of 3 to 30%, and by making it within this range, the soft feel is excellent. A woven or knitted fabric is obtained. If the crimp rate is less than 3%, weave When a knitted fabric is used, a sufficient feeling of fluffiness cannot be obtained. On the other hand, if it exceeds 30%, the antistatic performance tends to decrease, which is not preferable.
更に、 芯部の面積 S Aと鞘部の面積 S Bとの比 S A: S Bが 5 : 9 5 〜 8 0 : 20の範囲にする必要がある。 面積比が 5 : 9 5より小さい場 合にはポリエステル Aによる制電性能の発現が不十分になり、 80 : 2 0よりも大きくなる場合は、 1 0%以上のアル力リ減量を施した場合に、 部の制電性ポリエステルが溶出し、 制電性能が低下する、 又は仮撚 加工糸の強度が低下し、 3. 0 cNZd t e X以下となり、 布帛にした 場合の強度が不足する為、 スポーツ衣料等、 強度を必要とする用途には 適さず、 用途が限られたものとなるので好ましくない。  Furthermore, the ratio S A: S B of the area S A of the core portion and the area S B of the sheath portion needs to be in the range of 5:95 to 80:20. When the area ratio is less than 5:95, the antistatic performance due to polyester A is insufficient, and when it is greater than 80:20, the Al force is reduced by 10% or more. In some cases, the antistatic polyester of the part elutes and the antistatic performance decreases, or the strength of the false twisted yarn decreases to 3.0 cNZd te X or less, and the strength when used as a fabric is insufficient. It is not suitable for applications that require strength, such as sports clothing, and is not preferable because the applications are limited.
以上に説明した本発明のポリエステル極細仮撚加工糸は、 その親糸と なる未延伸糸を溶融紡糸するに際して、 紡出時の吐出速度と引き取り速 度の比 (引き取り速度 Z吐出速度、 以降ドラフトと記す) を 1 50以上、 8 0 0未満の範囲で引き取った未 ®伸糸を仮撚加工することで安定した 制電性能が得られる。 ドラフトが 1 50未満の場合はポリエステル Aに よる制電性能の発現が不十分になり、 ドラフトが 8 0 0以上の場合には 制電性能は発現するものの、 紡糸性が低下する為、 好ましくない。  The polyester ultra-fine false twisted yarn of the present invention described above, when melt spinning the undrawn yarn that is the parent yarn, the ratio of the discharge speed and the take-off speed during spinning (take-off speed Z discharge speed, hereinafter draft) Stable anti-static performance can be obtained by false twisting the undrawn yarn taken in the range of 150 or more and less than 800. When the draft is less than 150, the antistatic performance due to polyester A is insufficient, and when the draft is 800 or more, the antistatic performance is exhibited, but the spinnability is lowered, which is not preferable. .
ドラフトを上記範囲に設定するには、 口金吐出孔径、 紡糸速度を適宜 設定すれば.よいが、 吐出孔径を Φ 0. 1〜0. 3 mm、 紡糸速度 20 00〜 4 5 0 0 m/m i n、 特に 2 500〜 3 50 0 m/m i nの範囲 で溶融紡糸すると、 容易にかつ効率よく得られるので好ましい。  In order to set the draft within the above range, the nozzle discharge hole diameter and spinning speed should be set appropriately, but the discharge hole diameter should be Φ 0.1 to 0.3 mm, and the spinning speed 200 00 to 4 500 m / min. In particular, melt spinning in the range of 2500-3500 m / min is preferable because it can be obtained easily and efficiently.
その際の未延伸マルチフィラメントの複屈折率は 0. 0 2〜 0. 0 5 の範囲であることが好ましい。 該複屈折率が 0. 0 2未満の場合、 仮撚 加工時の張力が低く、 サージング発生を起こし易く、 糸揺れの為、 熱 セッ ト斑が起こり、 染斑不良、 加工倍率アップで弱糸となる為、 好まし くない。 一方、 複屈折率が 0. 05を超える場合、 原糸毛羽が発生しや すくなり、 工程不調となり、 好ましくない。  At that time, the birefringence of the unstretched multifilament is preferably in the range of 0.02 to 0.05. When the birefringence is less than 0.02, the tension during false twisting is low, and surging is likely to occur, and due to yarn swaying, heat set spots occur, defective dyeing, and weaker threads due to increased processing magnification. Therefore, it is not preferable. On the other hand, when the birefringence index exceeds 0.05, the yarn fluff is likely to occur and the process becomes unfavorable.
該未延伸糸の仮撚加工法については特に限定する必要は無いが、 例え ば下記に記載されるような方法が用いられる。 0 先ず、 空気交絡処理は延伸仮撚加工と別の工程で行ってもよいが、 図 1に示すように、 延伸仮撚加工装置にィンターレースノズルを設置して 延伸仮撚加工直前に施すのが好ましい。 このことにより毛羽発生を抑制 し取り扱い性に好影響をもたらす物であり、 更に、 熱セット仮撚後糸条 に空気交絡を施すことで完璧に混繊交絡を均一化、 糸長方向均一効果か ら、 制電制を有し且つ高級感を発現させるものである。 The false twisting method for the undrawn yarn is not particularly limited, but for example, the methods described below are used. 0 First, the air entanglement treatment may be performed in a separate process from the drawing false twisting process. However, as shown in FIG. 1, an interlace nozzle is installed in the drawing false twisting apparatus and is applied immediately before the drawing false twisting process. Is preferred. This suppresses the occurrence of fluff and has a positive effect on handling.Furthermore, by applying air entanglement to the yarn after heat-set false twisting, the mixed fiber entanglement is made uniform, and the effect in the yarn length direction is uniform. Therefore, it has anti-electric control and expresses a high-class feeling.
次に、 交絡処理が施された未延伸糸は、 例えば図 1に示すような 2段 式ヒーターを備えた延伸仮撚加工機に掛けて、 捲縮を有するポリエステ ル仮撚加工糸とする。 .  Next, the undrawn yarn subjected to the entanglement process is subjected to a drawn false twisting machine equipped with a two-stage heater as shown in FIG. 1 to obtain a crimped polyester false twisted yarn. .
なお図 1においては、 前述のポリエステル未延伸糸 (1) を、 2対の フィードローラー (3、 3 ' ) の間に設置されたインターレースノズル (4、 4 ' ) により、 空気交絡処理する工程が記載されている。. ここで 交絡処理された未延伸糸は、 フィードローラー (3 ' ) と第 1デリべ リーローラー (8) との間で延伸されながら、 回転している仮撚デイス ク (7) との摩擦により加撚される。 この間、 1段目ヒーター (5) で 熱処理され、 冷却プレート (6) で冷却され、 仮撚ディスク (7) を通 過し解撚される。 さらに、 走行糸条は第 1デリべリーローラー (8) と 第 2デリべリーローラー ( 1 0) との間に設置された 2段目ヒーター (9) で必用に応じ再熱処理され、 更に、 熱セット仮撚後糸条に空気交 絡を (4, ) 施した後、 卷取ローラー ( 1 1 ) でチーズ状パッケージ (1 2) として巻き取られ、 ポリエステル仮撚加工糸が製造される。 高速での延伸仮燃加工を考慮し、 1段目ヒーター (5) および 2段目 ヒーター (9) は非接触式とするのが好ましい。 特に 2段目ヒーターは 使用しないことが、 多いが、 風合等必用に応じて、 使用してもかまわな い。  In FIG. 1, the process of subjecting the polyester undrawn yarn (1) to an air entanglement process using an interlace nozzle (4, 4 ') installed between two pairs of feed rollers (3, 3') is shown. Are listed. The unstretched yarn that has been entangled here is rubbed with the rotating false twisting disk (7) while being drawn between the feed roller (3 ') and the first delivery roller (8). Is twisted. During this time, it is heat-treated by the first stage heater (5), cooled by the cooling plate (6), passed through the false twist disk (7) and untwisted. Furthermore, the running yarn is reheated as necessary by a second stage heater (9) installed between the first delivery roller (8) and the second delivery roller (10). Air-entangled yarn (4,) is applied to the yarn after heat-set false twisting, and then wound as a cheese-like package (12) with a take-off roller (11) to produce a polyester false twisted yarn. In consideration of high-speed stretch calcining, the first stage heater (5) and the second stage heater (9) are preferably non-contact type. In particular, the second stage heater is not used in many cases, but it may be used if necessary, such as the texture.
本発明においては、 仮撚具 (7) 力 S、 図 2に示すような 3軸フリク ションディスクタイプで解撚部に位置する最下段のディスク材質がセラ ミックであり、 かつ、 走行糸条と該ディスクとの接触長を 2. 5〜0. 5 mmとし、 さらに、 該ディスクが、 そのすぐ上流のディスクの直径 9 ' 0〜9 8%の直径を有することが好ましい。 In the present invention, the false twister (7) force S, the triaxial friction disc type as shown in Fig. 2 and the lowermost disc material located at the untwisting portion is ceramic, and the running yarn and The contact length with the disk is 2.5 to 0.5 mm, and the disk has a diameter 9 of the disk immediately upstream. 'It preferably has a diameter of 0-9 8%.
すなわち、 図 2に例示する仮撚具 (7) は、 3本の回転軸 (15) に それぞれ 2個ずっ仮撚ディスク (1 3) が取り付けられた 3軸フリ ク シヨンディスクタイプのものであって、 各回転軸 (1 5) は駆動べノレト (1 7) で駆動されるタイミングベルト (16) により所定速度で回転 し、 それぞれの仮撚ディスク (1 3) を回転させるようにしている。 本 発明の方法では、 仮撚ディスク (1 3) のうち少なく とも解燃部に位置 する最下段のディスク (図 2の例では左側の回転軸に取り付けた下方の ディスク) をセラミック製とし、 かつ、 そのディスクの直径がすぐ上流 側のディスク (図 2の例では中央の回転軸に取り付けた下方のデイス ク) の直径の 90〜 98 %であるものを使用する。 そして、 該セラミッ ク製ディスクと走行糸条との接触長は 2. 5〜0. 5 mmとする。  That is, the false twisting tool (7) illustrated in Fig. 2 is of a three-axis friction disk type in which two false twisted disks (1 3) are attached to three rotating shafts (15), respectively. Thus, each rotating shaft (15) is rotated at a predetermined speed by a timing belt (16) driven by a driving valve (17) to rotate each false twist disk (13). In the method of the present invention, at least one of the false twisted discs (1 3) is the lowermost disc (the lower disc attached to the left rotating shaft in the example of FIG. 2) located in the flame retardant part, and is made of ceramic. Use a disk whose diameter is 90 to 98% of the diameter of the disk immediately upstream (the lower disk attached to the central rotating shaft in the example in Fig. 2). The contact length between the ceramic disk and the running yarn is 2.5 to 0.5 mm.
この際、 最下段のディスク材質はセラミックが耐摩耗の観点から好ま しい。 本発明者らの研究によれば、 本発明による複合仮撚加工において は、 走行糸条と該ディスクとの接触長を 2. 5〜0. 5mmとすること で、 加撚が終了して捲縮状態の糸条が最後の解撚部に入る際の接触面積 を極力少なく、 抵抗を少なくすることができ、 その結果、 毛羽が著しぐ 減少し、 結果として強度が向上すること、 そして、 該ディスクの径を直 上のディスク径の 90〜98%の範囲にすることが、 糸導を次のステツ プ (具体的には熱セッ ト) へ移動する際の、 抵抗値が少なくなりスムー スに移動する上で効果的であること、 等が判明した。 中でも、 行糸条と 上記ディスクとの接触長を 2: 5〜0. 5 mmとすることが加工毛羽を 著しく減少し、 結果として強度を向上させる上で特に有効であることが 確認された。 At this time, the lowermost disk material is preferably ceramic from the viewpoint of wear resistance. According to the studies by the present inventors, in the composite false twisting process according to the present invention, when the contact length between the running yarn and the disk is set to 2.5 to 0.5 mm, the twisting is finished. The contact area when the compressed yarn enters the final untwisted portion is minimized, the resistance can be reduced, and as a result, the fluff is significantly reduced, resulting in an increase in strength, and Setting the diameter of the disk within the range of 90 to 98% of the diameter of the disk just above reduces the resistance value when moving the yarn guide to the next step (specifically, the heat set) and makes it smooth. It was found that it was effective in moving to In particular, it was confirmed that setting the contact length between the running yarn and the disk to 2 : 5 to 0.5 mm significantly reduced the processed fluff and consequently improved the strength.
本発明における仮撚加工温度はガラス転移温度 (以下 TGと称する) TG + 1 00°C〜TG+ 200°C、 具体的には 1 0〜 300°Cとする ことが好ましい。 この温度が 1 70°C未満では、 捲縮性能が低く、 風合 いが硬く、 300°Cを超える場合は、 極端に、 加工糸の扁平が進み、 加 ェ毛羽が発生するようになるので、 好ましくない。 仮撚加工機として非 接触式のヒーターを備えた装置を使用する場合は、 第 1段非接触式ヒー ターの設定温度を 1 7 0〜 3 0 0 として熱処理するのが好ましい。 な お、 ここでいう適正ヒーター温度は、 市販の仮撚加工機 (帝人製機製 2 1 6錘建 H T S— 1 5 V) によるもので、 非接触式の 1 . 0〜 1 . 5 m 長のもの、 糸速として 8 0 0 m 分〜などの仕様のものを想定しており、 従って、'特殊なヒーターを用いたり、 超高速度で加工する場合などは設 定温度を適宜調整すべきは、 もちろんのことである。 The false twisting temperature in the present invention is preferably a glass transition temperature (hereinafter referred to as TG) TG + 100 ° C to TG + 200 ° C, specifically 10 to 300 ° C. If this temperature is less than 1700 ° C, the crimping performance is low, the texture is hard, and if it exceeds 300 ° C, the processed yarn will become extremely flat and the fluff will be generated. It is not preferable. Non-false twisting machine In the case of using an apparatus equipped with a contact heater, it is preferable to heat-treat the first stage non-contact heater at a set temperature of 170 to 300. The proper heater temperature here is based on a commercially available false twisting machine (Teijin Seisakusho 2 1 6-storied HTS—15 V), which is a non-contact type 1.0 to 1.5 m long. The yarn speed is assumed to be from 800 m min., So when using special heaters or processing at ultra high speeds, the set temperature should be adjusted appropriately. Of course.
ここで加撚領域の第 1ヒーターは、 未延伸糸条の延伸性及び仮撚加工 性 (撚り掛け性) を向上させるためのものであり、 この温度が、 非接触 ヒーターの場合では 1 7 0 °C未満の温度では、 撚り掛け性が低下して本 発明の目的とする捲縮を付与することができなくなり、 織編物にした際 の風合がペーパーライクとなる。 また、 延伸仮機加工時の断糸及び毛羽 の発生が多くなり、 捲縮斑や染色時の染色斑も発生しやすくなるので好 ましくない。 一方、 第 1 ヒーターの温度が 3 0, 0 °Cを超えると、 延伸仮 撚加工時、 単糸切れが発生しやすくなり、 特に高伸度側の未延伸糸条 ( B ' ) に単糸切れが発生しやすく、 得られるポリエステル複合仮撚加 ェ糸は毛羽の多いものとなるので好ましくない。 なお、 延伸仮撚加工機 のタイプによっては、 第 1段ヒーターが前半部と後半部に分割されてい る場合があるが、 本発明方法においては第 1段ヒーターの前半部と後半 部とは同一温度に設定すればよい。  Here, the first heater in the twisted region is for improving the drawability and false twisting property (twistability) of the undrawn yarn, and this temperature is 1 7 0 in the case of a non-contact heater. If the temperature is less than ° C, the twistability is lowered, and the desired crimp of the present invention cannot be imparted, and the texture of the woven or knitted fabric becomes paper-like. In addition, yarn breakage and fluff are more likely to occur during drawing temporary machine processing, and crimped spots and dyed spots are more likely to occur during dyeing. On the other hand, when the temperature of the first heater exceeds 30 ° C. and 0 ° C., single yarn breakage is likely to occur during drawing false twisting, and in particular, the single yarn on the undrawn yarn (B ′) on the high elongation side. The polyester composite false twisted yarn obtained is prone to breakage and has a lot of fluff. Depending on the type of drawing false twisting machine, the first stage heater may be divided into the first half and the second half, but in the method of the present invention, the first half and the second half of the first stage heater are the same. What is necessary is just to set to temperature.
なお、 第 1段ヒーターにおける糸条の熱処理時間は、 ヒーターの種類、 その長さ及びその温度等により適宜設定すればよいが、 熱処理時間が短 すぎると捲縮率が不十分なものとなりやすく、 また、 張力変動に起因す る延伸仮撚断糸、 仮燃加工糸の毛羽、 織編物での染斑が発生しやすくな り、 一方、 長すぎると捲縮率が大きくなりすぎる傾向にある。 このた め非接触式ヒーターで熱処理する場合は、 通常、 0 . 0 4〜0 . 1 2秒 の範囲、 特に 0 . 0 6〜0 . 1 0秒の範囲が適当である。  The heat treatment time of the yarn in the first stage heater may be set as appropriate depending on the type of heater, its length, its temperature, etc., but if the heat treatment time is too short, the crimp rate tends to be insufficient. In addition, stretched false twisted yarn, fluff of preliminarily burned yarn, and knitting on knitted fabrics are likely to occur due to tension fluctuations. On the other hand, if the length is too long, the crimp rate tends to be too large. For this reason, when heat-treating with a non-contact type heater, a range of 0.04 to 0.12 seconds, particularly a range of 0.06 to 0.10 seconds is appropriate.
さらに、 加工時の延伸倍率についても、 1 . 4〜2 . 4が最適ゾーン であり、 この領域を外れると、 低倍率側では、 サージング、 発生、 糸揺 れによる熱セット斑、 高倍率側では、 加工糸の扁平が進み、 加工毛羽が 発生するようになるので、 好ましくない。 Furthermore, the draw ratio during processing is 1.4 to 2.4, which is the optimum zone. If the area is outside this range, surging, generation, Due to heat set spots due to this, on the high-magnification side, the processed yarn is flattened, and processed fluff is generated, which is not preferable.
' 仮撚数は、 複合仮撚加工糸の繊度を Y ( d t e x) としたとき、 [ ( 1 5 0 0 0〜 3 5 000) ノ¥1/2]回ノ^、 より好ましくは [ (2 0 0 0 0〜 3 00 00) ZY 1/2]回 /m、 の範囲に設定する。 仮撚数 が 1 5 0 0 0/Y1/2回 Zm未満の場合には、 微細で強固な捲縮を付与 するのが難しくなって得られる布帛がペーパーライクになり、 風合が硬 くなる。 仮撚数が 3 5000ZY1/2回ノ mを超える'場合は、 断糸及び 毛羽の発生が多くなる。 'The number of false twists is [(1 5 0 0 0 to 3 5 000) times 1/2 ] times when the fineness of the composite false twisted yarn is Y (dtex), more preferably [(2 0 0 0 0 to 3 00 00) Set ZY 1/2 ] times / m. If the false twist number is less than 1 500 000 / Y 1/2 times Zm, it becomes difficult to give fine and strong crimps, and the resulting fabric becomes paper-like, and the texture is hard. Become. If the number of false twists exceeds 3 5000 ZY 1/2 turns, the occurrence of yarn breakage and fluff will increase.
このようにして得られる本発明の極細ポリエステル仮撚加工糸は、 従 来の極細ポリエステル仮撚加工糸が持つ、 柔らかな風合、 保温性、 吸水、 吸湿性などの性能も維持し、 制電性能にも優れたポリエステル布帛を得 ることができる。  The ultra fine polyester false twisted yarn of the present invention thus obtained maintains the soft texture, heat retention, water absorption, hygroscopic properties, etc. of the conventional ultra fine polyester false twisted yarn. A polyester fabric excellent in performance can be obtained.
実施例 Example
以下、 実施例及び比較例により、 本発明をさらに具体的に説明する。 なお、 実施例中に示す各測定値は次の方法で測定した値である。 また、 例中において単に 「部」 とあるは、 特に断らない限り重量部を意味する。  Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. In addition, each measured value shown in an Example is the value measured by the following method. In addition, “parts” in the examples means parts by weight unless otherwise specified.
(1 ) 固有粘度  (1) Intrinsic viscosity
ォルソークロルフエノールに溶解し、 ウベローデ粘度管を用い、 3 5 °Cで測定した。  It was dissolved in olsochlorphenol and measured at 35 ° C using an Ubbelohde viscometer.
(2) 走行角  (2) Travel angle
仮撚ディスク1上を走行している糸条を写真撮影し、 各仮撚ディスク円 盤上の糸条の走行角度 0 を写真の上で実測して、 それらの測定値の平 均値を走行角とした。 Take a picture of the yarn running on false twisting disc 1 , measure the running angle 0 of the yarn on each false twisting disc on the photo, and run the average of those measured values It was a corner.
(3) 捲縮率 '  (3) Crimp rate ''
ポリエステル仮撚加工糸サンプルに 0. 044 c N/d t e xの張力 を掛けてカセ枠に巻き取り、 約 3 3 00 d t e Xのカセを作成した。 該 カセの一端に、 0. 0 1 7 7 c Nノ d t e Xおよび 0. 1 77 c NZ d t e xの 2個の荷重を負荷し、 1分間経過後の長さ S O (cm) を測定 した。 次いで、 0. 1 77 c N d t e xの荷重を除去した状態で、 1 00°Cの沸水中にて 2 0分間処理した。 沸水処理後 0. 0 1 77 c N/ d t e xの荷重を除去し、 24時間自由な状態で自然乾燥し、 再び 0. 0 1 7 7 c N/d t e xおよび 0. 1 77 c NZd t e xの荷重を負荷 し、 1分間経過後の長さを測定し S 1 (cm) とした。 次いで、 0. 1 7 7 c N/d t e Xの荷重を除去し、 1分間経過後の長さを測定し S 2 とし、 次の算式で捲縮率を算出し、 1 0回の測定値の平均値で表した。 捲縮率 (%) = [ (S 1 -S 2) ZS 0] X 100 A polyester false twisted yarn sample was wound on a cassette frame with a tension of 0.044 c N / dtex to produce a cassette of about 3 300 dte X. Apply two loads of 0.0 1 7 7 c N no dte X and 0.1 77 c NZ dtex to one end of the case and measure the length SO (cm) after 1 minute. did. Next, with a load of 0.177 cN dtex removed, the substrate was treated in boiling water at 100 ° C. for 20 minutes. After the boiling water treatment, remove the load of 0.0 1 77 c N / dtex, let it air dry 24 hours free, and then re-load the load of 0.0 1 7 7 c N / dtex and 0.1 77 c NZd tex again After loading, the length after 1 minute was measured and defined as S 1 (cm). Next, remove the 0.1 7 7 c N / dte X load, measure the length after 1 minute and set it as S 2, calculate the crimp rate by the following formula, Expressed as an average value. Crimp rate (%) = [(S 1 -S 2) ZS 0] X 100
(4) 風合い  (4) Texture
本発明の仮撚加工糸を布帛とし、 専門家による官能検査で以下のとお りレベル 1〜 3にランク分けした。  The false twisted yarn of the present invention was used as a fabric, and was ranked into levels 1 to 3 as follows by a sensory test by an expert.
(ソフ ト感)  (Soft feeling)
レベル 1 : ソフ トでしなやかな感触がある  Level 1: Soft and supple feel
レベル 2 :ややソフ ト感が乏しいが反撥性は感じられる  Level 2: Slightly soft but feels repellent
レベル 3 :カサカサした触感あるいは硬い触感である。  Level 3: A crisp or hard feel.
(5) 毛羽個数  (5) Number of fuzz
東レ (株) 製 DT— 1 04型毛羽カウンター装置を用いて、 ポリエス テル仮撚加工糸サンプルを 50 OmZm i nの速度で 20分間連続測定 して発生毛羽数を計測し、 サンプル長 1万 m当たりの個数で表した。  Using a DT-1 04 type fluff counter manufactured by Toray Industries, Inc., a polyester false twisted yarn sample was continuously measured at a speed of 50 OmZmin for 20 minutes, and the number of fluffs was measured. It was expressed by the number of
(6) 帯電性試験方法 '  (6) Chargeability test method ''
(摩擦帯,電圧測定法) ' 試験片を回転させながら摩擦布で摩擦し、 発生した帯電圧を測定する。 L 10 94帯電性試験方法 B法 (摩擦帯電圧測定法) に順ずる。 制電効 果については、 摩擦帯電圧が、 約 2000 V以下 (好ましくは 1 500 V以下) であれば、 制電効果が奏される。  (Friction band, voltage measurement method) 'While rotating the test piece, rub with a friction cloth and measure the generated voltage. Follow L 10 94 Charging Test Method B (Friction Band Voltage Measurement Method). Regarding the antistatic effect, if the frictional voltage is about 2000 V or less (preferably 1 500 V or less), the antistatic effect is exhibited.
実施例 1  Example 1
テレフタル酸ジメチル 100部、 エチレングリ コール 60部、 酢酸力 ルシゥム 1水塩 0. 0 6部 (テレフタル酸ジメチルに対して 0. 06 6 モル0 /0) および整色剤として酢酸コバルト 4水塩 0. 0 1 3部 (テレフ タル酸ジメチルに対して 0. 01モル0 /0) をエステル交換反応缶に仕込 み、 この反応物を窒素ガス雰囲気下で 4時間かけて 140°Cから 220 °Cまで昇温し、 反応缶中に生成するメタノールを系外に留去しながらェ ステル交換反応させた。 100 parts of dimethyl terephthalate, 60 parts of ethylene glycol, acetic force Rushiumu monohydrate 0.0 6 parts of cobalt acetate as Seiirozai tetrahydrate (0.06 6 mol 0/0 for dimethyl terephthalate) 0 . 0 1 3 parts (Telefu See charged against barrel dimethyl 0.01 mole 0/0) to an ester exchange reaction can, heated the reaction over a period of 4 hours under a nitrogen gas atmosphere from 140 ° C to 220 ° C, reactor The ester exchange reaction was carried out while distilling off the methanol produced inside.
エステル交換反応終了後、 反応混合物に安定剤としてリン酸トリメチ ル 0. 058部 (テレフタル酸ジメチルに対して 0. 080モル0 /0) 、 および消泡剤としてジメチルポリシロキサンを 0. 024部加えた。 次 に、 1 0分後に、 反応混合物に三酸化アンチモン 0. 041部 (テレフ タル酸ジメチルに対して 0. 027モル%) を添加し、 同時に過剰のェ チレングリコールを留去しながら 240°Cまで昇温し、 その後、 反応混 合物を重合反応缶に移した。 次いで 1時間 40分かけて 76 OmmH g から 1 mmH gまで減圧するとともに 240°Cから 28 0°Cまで昇温し て重縮合反応せしめた後、 下記式で表される水不溶性ポリォキシェチレ ン系ポリエーテルを 4部及びドデシルベンゼンスルホン酸ナトリウムを 2部、 真空下で添加し、 さらに 240分間重縮合反応せしめ、 次いで酸 化防止剤としてチパカイギ一社製ィルガノックス 1 01 0を 0. 4部真 空下で添加し、 その後さらに 30分間重縮合反応を行なった。 重合反応 工程で、 制電剤を添加し、 得られたポリマーは常法にてチップとなした。 After transesterification completion, trimethylene phosphate Le 0.058 parts as a stabilizer to the reaction mixture (0.080 mol 0/0 for dimethyl terephthalate), and dimethyl polysiloxane was added 0.024 parts of a defoamer It was. Next, after 10 minutes, 0.041 parts of antimony trioxide (0.027 mol% with respect to dimethyl terephthalate) was added to the reaction mixture, and at the same time, an excess of ethylene glycol was distilled off at 240 ° C. The reaction mixture was then transferred to a polymerization reactor. Next, after reducing the pressure from 76 OmmHg to 1 mmHg over 1 hour and 40 minutes and raising the temperature from 240 ° C to 280 ° C to cause the polycondensation reaction, the water-insoluble polyoxyethylene polymer represented by the following formula was used. 4 parts of ether and 2 parts of sodium dodecylbenzenesulfonate were added under vacuum and allowed to undergo a polycondensation reaction for an additional 240 minutes, followed by 0.4 part of Iryganox 1 01 0 made by Chipapaigi Co., Ltd. as an antioxidant. And then a polycondensation reaction was carried out for another 30 minutes. In the polymerization reaction step, an antistatic agent was added, and the resulting polymer was formed into a chip by a conventional method.
C J Ht I+I C J H t I + I
- C H. C H O  -C H. C H O
i . c j H2 in i .cj H 2 in
(ただし、 j は 1 8〜28の整数で平均 2 1、 Pは平均値として 1 00、 mは平均値 して 5である。 とこで平均値とは 2種以上のォキシェチレ ン単位からなる共重合ポリオキシエチレン系ポリエーテルにおけるォキ シエチレン単位の数の平均値を意味する。 ) (However, j is an integer between 18 and 28, average 2 1, P is 100 as an average value, and m is 5 as an average value. Here, the average value is a common value consisting of two or more kinds of oxchethylene units. Means the average number of oxyethylene units in polymerized polyoxyethylene polyether.)
得られたポリマーの固有粘度は 0. 657、 軟化点 2 58°Cであった。 得られたチップ、 ならびに、 酸化チタン微粒子を 0. 4重量%含む、 固有粘度 0. 6 5の通常のポリエチレンテレフタレートチップを常法に' より乾燥した後、 該チップを紡糸設備にて各々常法で溶融し、 スピンブ ロックを通して、 おのおの複合繊維用スピンパックに導入した。 該スピ ンパックに組み込まれた芯鞘型複合円形吐出孔を 72個穿設した紡糸口 金から、 通常のクロスフロー型紡糸筒からの冷却風で冷却 ' 固化し、 紡 糸油剤を付与しつつ一つの糸条として集束し、 3 0 00 m/m i nの速 度 (ドラフ ト倍率: 2 00) で引き取り、 1 40 d t e x/7 2フイラ メントの芯/鞘の面積比率が 70 : 3 0であるポリエステル芯鞘型複合 未延伸糸を得た。 The obtained polymer had an intrinsic viscosity of 0.565 and a softening point of 258 ° C. The obtained chip and a normal polyethylene terephthalate chip having an intrinsic viscosity of 0.65 containing 0.4% by weight of titanium oxide fine particles were dried by a conventional method, and then the chips were each subjected to a conventional method in a spinning facility. And then introduced into each composite fiber spin pack through a spin block. The spinneret with 72 core-sheath compound circular discharge holes built in the spin pack was cooled and solidified with cooling air from a normal cross-flow type spinning cylinder, and the spinning oil was applied while being solidified. Polyester that is bundled as two yarns, taken up at a speed of 300 m / min (draft magnification: 200), and the core / sheath area ratio of 140 dtex / 7 2 filament is 70:30 A core-sheath type composite undrawn yarn was obtained.
該ポリエステル未延伸糸を、 帝人製機製 2 1 6錘建 HT S— 1 5 Vに 掛け、 図 1の (4、 4 ' ) の如く、 前段、 後段とで、 孔径 1. 8 mmの 圧空吹き出し孔を有するインターレースノズルを通過させつつ 6 0 n L /m i nの流量で交絡度が 5.0個 となるように空気交絡を施し、 延 伸倍率 1. 6 0、 第 1 ヒーター (非接触タイプ) 温度 2 50°Cの条件に 設定し、 直径 6 0mm、 厚み 9 mmのウレタンディスクを仮撚ディスク として、 走行角 4 3度で仮撚数 X (仮撚糸繊度 (d t e X ) ) 1/2が 2 6、 0 0 0近傍となるように延伸仮撚を行い、 速度 8 0 0 m/m i nで チーズ形状に巻き取り、 84 d t e Xノ 7 2フィラメント (平均単糸繊 度 1. 1 7. d t e X) の芯鞘比率が 70 : 3 0であるポリエステル仮撚 加工糸を得た。 This polyester unstretched yarn is applied to Teijin Seiki's 2 1 6-ply HT S—15 V, and as shown in (4, 4 ') in Fig. 1, at the front and rear stages, a compressed air blowout with a hole diameter of 1.8 mm Air is entangled so that the degree of entanglement is 5.0 at a flow rate of 60 n L / min while passing through an interlace nozzle with holes, stretching magnification 1.60, first heater (non-contact type) temperature 2 A urethane disk with a diameter of 60 mm and a thickness of 9 mm was set as a false twisted disk under the condition of 50 ° C, and the false twist number X (false twisted yarn fineness (dte X)) 1/2 was 26. , Stretched false twist to be close to 0 0 0, wound into cheese shape at a speed of 800 m / min, 84 dte X 7 7 filament (average single yarn fineness 1. 1 7. dte X) A polyester false twisted yarn having a core-sheath ratio of 70:30 was obtained.
これらのポリエステル仮撚加工糸を用いて筒編地を製造し、 制電性を 測定した。 得られたポリエステル仮撚加工糸の摩擦帯電圧は 1 2 00 V であった。 また、 これらのポリエステル仮撚加工糸を常法により織物と なし、 その品位を官能評価した'ところ、 非常に深みのある、 且つ高級感 を有し、 ソフ ト感を呈した風合のものであった。 その結果を表 1に示す。  A cylindrical knitted fabric was manufactured using these polyester false twisted yarns, and the antistatic property was measured. The friction false voltage of the obtained polyester false twisted yarn was 1200 V. In addition, these polyester false twisted yarns were made into woven fabrics by a conventional method, and the quality of the polyester was evaluated by sensory evaluation.As a result, it had a very deep, high-class feeling and a soft feeling. there were. The results are shown in Table 1.
比較例 1  Comparative Example 1
ポリエチレンダリコールにアル力リ触媒の存在下でァクリロ二トリル を反応させ、 さらに水素添加反応を行うことでにより両末端の 9 7%以 上がアミノ基であるポリエチレングリコールジアミン (数平均分子量 4 0 0 0) を合成し、 これとアジピン酸を定法で塩反応させることにより ポリエチレングリコールジアンモニゥムアジぺートの 4 5 %の水溶液を 得た。 More than 97% of both ends can be obtained by reacting acrylonitrile with polyethylene dallicol in the presence of an alkaline catalyst, followed by a hydrogenation reaction. Polyethylene glycol diamine (number average molecular weight 4 00 0) with amino group on top is synthesized, and this is a salt reaction with adipic acid by a conventional method to form a 45% aqueous solution of polyethylene glycol diammonium adipate. Obtained.
容量 2m3の濃縮缶に上記 4 5 %のポリエチレングリコールジアンモ ニゥムアジぺート水溶液を 2 0 0 k g. 8 5 %力プロラクタム水溶液を 1 2 0 k g、 4 0 %のへキサメチレンジアンモニゥムィソフタレート水 溶液を 1 6 k g投入し、 常圧で内温が 1 1 0°Cになるまで、 約 2時間加 熱し、 8 0 %濃度に濃縮した。 続いて、 容量 8 0 0& の重合缶に上記濃 縮液を移行し、 重合缶内に 2. 5 1 /m i nで窒素を流しながら加熱を 開始した。 Capacity polyethylene glycol concentration can of the 4 5% 2m 3 Jian mode Niumuaji Bae over preparative aqueous 2 0 0 k g. 8 5% strength caprolactam solution 1 2 0 kg, 4 hexamethylene diammine monitor © 0% of the 16 kg of an aqueous solution of mysophthalate was added, heated for about 2 hours at normal pressure until the internal temperature reached 110 ° C, and concentrated to 80% concentration. Subsequently, the concentrated solution was transferred to a polymerization vessel having a capacity of 80 &, and heating was started while flowing nitrogen at a rate of 2.51 / min.
内温が 1 2 0°Cになった時点でドデシルベンゼンスルホン酸ソーダを 5. 2 k g (2. 5重量0 /0) と 1 , 5, 5 トリメチルー 2, 4 , 6—ト . リ ( 3 , 5ジ tert—ブチル 4—ヒ ドロキシベンゼン) ベンゼン (TTB) 5. 2 k g ( 2. 5重量%) を添加し、 攪拌を開始して内温が 2 4 5°C になるまで、 1 8時間加熱し重合を完結させた。 重量終了後、 通常方法 でペレタイズしすることで、 プロックポリエーテルアミ ド組成物からな るペレツ トを得た。 Sodium dodecylbenzenesulfonate When the internal temperature becomes 1 2 0 ° C 5. 2 kg and (2.5 wt 0/0) 1, 5, 5 trimethyl-2, 4, 6 and. Li (3 , 5 di tert-butyl 4-hydroxybenzene) Add benzene (TTB) 5.2 kg (2.5 wt%) and start stirring until the internal temperature reaches 2 45 ° C. The polymerization was completed by heating for 8 hours. After the completion of weighting, pelletization was carried out by a conventional method to obtain pellets comprising a block polyether amide composition.
上記ブロックポリエーテルァミ ド糸且成物からなるペレッ トを 1. 4重 量。 /。となるように、 固有粘度 0. 6 5の通常の酸化チタンを含まないポ リエチレン f レフタレ一トチップにブレンドし、 これを芯成分とする以 外は、 実施例 1 と同様に実施し、 8 4 d t e xZ 7 2フィラメント (平 均単糸繊度 1. 1 7 d t e X) の芯鞘比率が 7 0 : 3 0であるポリエス テル仮撚加工糸を得た。 この繊維からなる布帛は、 実施例 1と同様な、 柔らかい優れた風合いを示すものの、 摩擦帯電圧が 3 4 0 0 Vと大変悪 いものであった。 結果をまとめて表 1に記す。  Pellet made of the above-mentioned block polyetheramide yarn and a composite is 1.4 weight. /. In the same manner as in Example 1 except that it was blended with a polyethylene f-phthalate chip having an intrinsic viscosity of 0.65, which does not contain titanium oxide, and this was used as the core component, 8 4 A polyester false twisted yarn having a core-sheath ratio of dte xZ 72 filament (average single yarn fineness of 1.1 7 dte X) of 70:30 was obtained. The fabric made of this fiber showed a soft and excellent texture similar to that of Example 1, but the frictional voltage was very poor at 3400 V. The results are summarized in Table 1.
実施例 2〜 3  Examples 2-3
ポリマー吐出量を変更する以外は、 実施例 1 と同様に実施し、 5 6 d t e xZ7 2フィラメント (平均単糸繊度 0. 7 8 d t e X) ならびに、 1 1 1 d t e 7 2フィラメント (平均単糸繊度 1. 54 d t e x) の芯鞘比率 7 0 : 3 0の芯鞘型複合ポリエステル仮撚加工糸を得た。 こ れらの糸からつくつた布帛は摩擦耐電圧 ·風合いともに優れたもので あった。 結果を表 1にまとめて記す。 Except for changing the polymer discharge rate, the same procedure as in Example 1 was performed, and 5 6 dte xZ7 2 filaments (average single yarn fineness 0.78 dte X) and A core-sheath-type composite polyester false twisted yarn having a core-sheath ratio of 1 1 1 dte 7 2 filament (average single yarn fineness of 1.54 dtex) of 70:30 was obtained. Fabrics made from these yarns were excellent in both friction withstand voltage and texture. The results are summarized in Table 1.
比較例 2〜 3  Comparative Examples 2-3
ポリマー吐出量を変更する以外は、 比較例 1 と同様に実施し、 5 6 d t e xZ7 2フィラメント (平均単糸繊度 0. 7 8 d t e x) ならびに、 1 l i d t e xノ 7 2フィラメント (平均単糸繊度 1. 5 4 d t e x) の芯鞘比率 7 0 : 3 0の芯鞘型複合ポリエステル仮撚加工糸を得た。 こ れらの糸からつくつた布帛は、 風合いは実施例 1 と同様に優れるものの、 摩擦帯電圧が高く、 実用に適さないものであった。 結果を表 1にまとめ て記す。  Except for changing the polymer discharge rate, the same procedure as in Comparative Example 1 was carried out, and 5 6 dte xZ7 2 filaments (average single yarn fineness 0.78 dtex) and 1 lidtex no 7 2 filaments (average single yarn fineness 1. A core / sheath type composite polyester false twisted yarn having a core / sheath ratio of 5 4 dtex) of 70:30 was obtained. Fabrics made from these yarns were excellent in texture as in Example 1, but had a high frictional voltage and were not suitable for practical use. The results are summarized in Table 1.
比較例 4  Comparative Example 4
ポリマー吐出量を増やす以外は、 実施例 1 と同様に実施し、 1 3 3 d t e xZ 7 2フィラメント (平均単糸繊度 1. 8 5 d t e x) の芯鞘比. 率 7 0 : 3 0の芯鞘型複合ポリエステル仮撚加工糸を得た。 これらの糸 からつくった布帛は、 摩擦帯電圧は実施例 1 と同様に優れるもの 、 風 '合いが硬く、 実用に適さないものであった。 結果を表 1にまとめて記す。  Except for increasing the polymer discharge rate, the same procedure as in Example 1 was carried out, and the core-sheath ratio of 1 3 3 dte xZ 7 2 filaments (average single yarn fineness 1.85 5 dtex). Ratio 7 0: 30 core sheath A mold composite polyester false twisted yarn was obtained. The fabrics made from these yarns had excellent frictional voltage as in Example 1, but had a hard feeling and were not suitable for practical use. The results are summarized in Table 1.
比較例 5  Comparative Example 5
口金を 3 6ホールに変える以外は、 実施例 1 と同様に実施し、 8 4 d t e xZ 3 6フィラメント (平均単糸繊度 2. 3 3 d t e x) の芯鞘比 率 7 0 : 3 0の芯鞘型複合ポリエステル仮撚加工糸を得た。 これらの糸 からつくった布帛は、 摩擦帯電圧は実施例 1 と同様に優れるものの、 風 合いが硬く、 実用に適さないものであった。 結果を表 1にまとめて記す。  Except for changing the base to 3 6 holes, the same procedure as in Example 1 was performed, and the core sheath ratio of 8 4 dte xZ 3 6 filament (average single yarn fineness 2.3 3 dtex) was 70:30 A mold composite polyester false twisted yarn was obtained. Fabrics made from these yarns were excellent in frictional voltage as in Example 1, but had a firm feel and were not suitable for practical use. The results are summarized in Table 1.
比較例 6  Comparative Example 6
ポリマー吐出量を増やす以外は、 比較例 1と同様に実施し、 1 3 3 d t e xZ7 2フィラメント (平均単糸繊度 1. 8 5 d t e X ) の芯鞘比 率 7 0 : 3 0の芯鞘型複合ポリエステル仮撚加工糸を得た。 これらの糸 からつくつた布帛は、 摩擦帯電圧は比較例 1対比向上しているもののま 9 だ十分ではく、 加えて、 風合いも硬く、 実用に適さないものであった。 結果を表 1にまとめて記す。 Except for increasing the polymer discharge rate, the same procedure as in Comparative Example 1 was carried out, and the core-sheath ratio of 1 3 3 dte xZ7 2 filaments (average single yarn fineness 1.85 5 dte X) of 70:30 A composite polyester false twisted yarn was obtained. The fabric made from these yarns has an improved frictional voltage compared to that of Comparative Example 1. 9 In addition, it was not enough for practical use. The results are summarized in Table 1.
比較例 7  Comparative Example 7
口金を 3 6ホールに変える以外は、 比較例 1 と同様に実施し、 8 4 d t e xZ3 6フィラメント (平均単糸繊度 2. 3 3 d t e x) の芯鞘比 率 7 0 : 3 0の芯鞘型複合ポリエステル仮撚加工糸を得た。 これらの糸 からつくつた布帛は、 摩擦帯電圧は比較例 1よりも向上するもののまだ 十分ではなく、 加えて、 風合いが硬く、 実用に適さないものであった。 結果を表 1にまとめて記す。 Except for changing the base to 3 6 holes, the same procedure as in Comparative Example 1 was carried out, and the core sheath ratio of 8 4 dte xZ3 6 filament (average single yarn fineness 2.3 3 dtex) was 70:30 A composite polyester false twisted yarn was obtained. Fabrics made from these yarns, although improved in frictional voltage than Comparative Example 1, were still not sufficient, and in addition, the texture was hard and unsuitable for practical use. The results are summarized in Table 1.
表 1 table 1
Figure imgf000022_0001
Figure imgf000022_0001
* PEG (分子量 2 0 0 0 0 ) ドデシルベンゼンスルホン酸ナトリ ウム  * PEG (molecular weight 2 0 0 0 0) sodium dodecylbenzenesulfonate

Claims

請求の範囲 The scope of the claims
1. 仮撚加工された芯鞘型複合繊維であって、 該芯鞘型複合繊維の芯部 、 芳香族ポリエステル 1 00重量部に対して、 制電剤として 1. a false-twisted core-sheath type composite fiber, wherein the core part of the core-sheath type composite fiber is 100 parts by weight of an aromatic polyester as an antistatic agent.
(a) ポリオキシアルキレン系ポリエーテル 0. 2〜3 0重量部、 及び (b) 該ポリエステルと実質的に非反応性の有機イオン性化合物 0. 0 5〜 1 0重量部  (a) 0.2 to 30 parts by weight of a polyoxyalkylene-based polyether, and (b) an organic ionic compound that is substantially non-reactive with the polyester 0.05 to 10 parts by weight
を含有してなる制電性ポリエステル組成物 Aから形成され、 他方、 鞘部 、 芳香族ポリエステル組成物 Bから形成されており、 且つ該芯鞘型複 合繊維が下記 (1) 〜 (3) の条件を同時に満足することを特徴とする 制電性芯鞘型ポリエステル極細仮撚加ェ糸。  Formed from the antistatic polyester composition A containing the sheath, the sheath, and the aromatic polyester composition B, and the core-sheath type composite fiber is the following (1) to (3) An antistatic core-sheath type polyester extra fine false twisted yarn characterized by satisfying the above conditions simultaneously.
( 1 ) 仮撚加工糸の単糸繊度が 1. 6 d t e x以下である。  (1) The single yarn fineness of the false twisted yarn is 1.6 dtex or less.
■ (2) 仮撚加工糸の捲縮率が 3〜3 0%である。 ■ (2) The crimp rate of false twisted yarn is 3-30%.
( 3) 芯部の面積 S Aと鞘部の面積 S Bとの比 S A: S Bが 5 : 9 5〜 8 0 : 20の範囲にある。  (3) Ratio of core area S A and sheath area S B S A: S B is in the range of 5:95 to 80:20.
2. 芳香族ポリエステル組成物 Bが、 芳香族ポリエステル 1 00重量部 に対して、 艷消剤を 0. 0 1〜 1 0重量。/。含むポリエステル組成物であ る請求項 1記載の制電性芯鞘型ポリエステル極細仮撚加工糸。  2. The aromatic polyester composition B contains 0.01 to 10 weights of a disinfectant with respect to 100 parts by weight of the aromatic polyester. /. 2. The antistatic core-sheath polyester extra fine false twisted yarn according to claim 1, wherein the yarn is a polyester composition.
3. 艷消剤が二酸化チタンであることを特徴とする請求項 1記載の制電 性芯鞘型ポリエステル極細仮撚加工糸。  3. The anticorrosive core-sheath polyester extra fine false twisted yarn according to claim 1, wherein the disinfectant is titanium dioxide.
4. 芯部が、 芳香族ポリエステル 1 00重量部に対して、 制電剤として 4. The core part is 100 parts by weight of aromatic polyester.
( a ) ポリオキシアルキレン系ポリエーテル 0. 2〜 3 0重量部、 及び(a) 0.2 to 30 parts by weight of a polyoxyalkylene polyether, and
(b) 該ポリエステルと実質的に非反応性の有機イオン性化合物 0. 0 5〜 1 0重量部 (b) Organic ionic compound substantially non-reactive with the polyester 0.05 to 10 parts by weight
を含有してなる制電性ポリエステル組成物 Aから形成され、 他方、 鞘部 、 芳香族ポリエステル組成物 Bから形成された芯鞘型複合繊維を溶融 紡糸するに際し、 紡出時の吐出速度と引取り速度の比 (弓 I取り速度 Z吐 出速度、 以後ドラフ ト倍率と略すことがある) を 1 5 0以上、 8 00未 満の範囲で引き取った後、 仮撚加工することを特徴とする制電性芯鞘型 ポリエステル極細仮撚加工糸の製造方法。 On the other hand, when melt-spinning the core-sheath type composite fiber formed from the antistatic polyester composition A containing the sheath, and from the sheath part, the aromatic polyester composition B, the discharge speed and the pulling speed during spinning are reduced. It is characterized by false twisting after taking the ratio of the take-off speed (bow I take-off speed Z discharge speed, which may be abbreviated as draft magnification hereinafter) in the range of 150 to less than 800. Antistatic core-sheath type A method for producing polyester extra fine false twisted yarn.
5 . 芳香族ポリエステル組成物 Bが、 芳香族ポリエステル 1 0 0重量部 に対して、 艷消剤を 0 . 0 1〜 1 0重量%含むポリエステル組成物であ る請求項 4記載の制電性芯鞘型ポリエステル極細仮撚加工糸の製造方法。 5. The antistatic property according to claim 4, wherein the aromatic polyester composition B is a polyester composition containing 0.01 to 10% by weight of a disinfectant with respect to 100 parts by weight of the aromatic polyester. A method for producing a core-sheath polyester extra fine false twisted yarn.
6 . 艷消剤が二酸化チタンである請求項 4記載の制電性芯鞘型ポリエス テル極細仮撚加工糸の製造方法。 6. The method for producing an antistatic core-sheath polyester extra fine false twisted yarn according to claim 4, wherein the disinfectant is titanium dioxide.
7 . 芯鞘型ポリエステル仮撚加工糸を含む織物に撥水加工が施された撥 水織物であって、 該芯鞘型ポリエステル仮撚加工糸が請求項 1〜 3のい ずれか 1項に記載の制電性芯鞘型ポリエステル極細仮撚加工糸であるこ とを特徴とする制電撥水性織物。  7. A water-repellent fabric in which a fabric including a core-sheath type polyester false twisted yarn is subjected to a water-repellent finish, the core-sheath type polyester false twisted yarn according to any one of claims 1 to 3 An antistatic water-repellent woven fabric characterized by being the antistatic core-sheath polyester extra fine false twisted yarn described above.
PCT/JP2007/071351 2006-10-30 2007-10-26 Antistatic core-sheath type ultrafine-denier false-twisted polyester yarn, process for production thereof, and antistatic water-repellent fabrics comprising the yarn WO2008053977A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE602007011096T DE602007011096D1 (en) 2006-10-30 2007-10-26 ANTISTATICALLY EQUIPPED ULTRA-INTELLIGENT WRINKLE POLYESTER YARN OF THE CORE COATING TYPE, METHOD OF MANUFACTURING THEREOF, AND TEXTILE SURFACES CONTAINING IT WITH ANTISTATIC AND WATER-DISPOSING CHARACTERISTICS
US12/446,527 US20100313990A1 (en) 2006-10-30 2007-10-26 Antistatic core-sheath type polyester ultrafine false-twist textured yarn and method for producing the same, and antistatic water-repellent woven fabric containing the antistatic core-sheath type polyester ultrafine false-twist textured yarn
JP2008542187A JP4896985B2 (en) 2006-10-30 2007-10-26 Antistatic core-sheath type polyester extra fine false twisted yarn, method for producing the same, and antistatic water-repellent fabric including the antistatic core-sheath type polyester extra fine false twisted yarn
KR1020097010929A KR101331636B1 (en) 2006-10-30 2007-10-26 Antistatic core-sheath type ultrafine-denier false-twisted polyester yarn, process for production thereof, and antistatic water-repellent fabrics comprising the yarn
AT07831085T ATE491057T1 (en) 2006-10-30 2007-10-26 ANTISTATIC ULTRA-FINE TITRIC FALSE-WIRE POLYESTER YARN OF THE CORE-SHEATH TYPE, PRODUCTION PROCESS THEREOF AND TEXTILE SURFACES CONTAINING IT WITH ANTISTATIC AND WATER-REPELLENT PROPERTIES
CN2007800409045A CN101535539B (en) 2006-10-30 2007-10-26 Antistatic core-sheath type ultrafine-denier false-twisted polyester yarn, process for production thereof, and antistatic water-repellent fabrics comprising the yarn
CA2668002A CA2668002C (en) 2006-10-30 2007-10-26 Antistatic core-sheath type polyester ultrafine false-twist textured yarn, uses of and method for producing the same
EP07831085A EP2078771B1 (en) 2006-10-30 2007-10-26 Antistatic core-sheath type ultrafine-denier false-twisted polyester yarn, process for production thereof, and antistatic water-repellent fabrics comprising the yarn

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-294097 2006-10-30
JP2006294097 2006-10-30
JP2007074764 2007-03-22
JP2007-074764 2007-03-22

Publications (1)

Publication Number Publication Date
WO2008053977A1 true WO2008053977A1 (en) 2008-05-08

Family

ID=39344318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/071351 WO2008053977A1 (en) 2006-10-30 2007-10-26 Antistatic core-sheath type ultrafine-denier false-twisted polyester yarn, process for production thereof, and antistatic water-repellent fabrics comprising the yarn

Country Status (9)

Country Link
US (1) US20100313990A1 (en)
EP (1) EP2078771B1 (en)
JP (1) JP4896985B2 (en)
KR (1) KR101331636B1 (en)
AT (1) ATE491057T1 (en)
CA (1) CA2668002C (en)
DE (1) DE602007011096D1 (en)
TW (1) TWI431174B (en)
WO (1) WO2008053977A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010007201A (en) * 2008-06-26 2010-01-14 Teijin Fibers Ltd Fabric and textile product
JP2010111961A (en) * 2008-11-05 2010-05-20 Teijin Fibers Ltd Extra fine false twist yarn having antistatic property and method for producing the same
CN101845676A (en) * 2010-05-18 2010-09-29 北京航空航天大学 Multifunctional composite fiber and preparation method thereof
JP2012012748A (en) * 2010-07-05 2012-01-19 Teijin Fibers Ltd Ultra fine combined filament yarn and fabric having antistaticity
US20120114940A1 (en) * 2008-11-27 2012-05-10 Teijin Fibers Limited Antistatic ultrafine fiber and method for producing the same
WO2021025339A1 (en) * 2019-08-02 2021-02-11 도레이첨단소재 주식회사 Core sheath-type composite false-twist textured yarn and method for manufacturing same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101437782B1 (en) * 2013-05-27 2014-09-04 김인효 Highly elastic polyester fabric and method for fabricating the same
EP3006614B1 (en) * 2013-05-29 2018-02-28 Toray Industries, Inc. Fibrous structure
KR101656782B1 (en) * 2016-03-28 2016-09-12 주식회사 여주티앤씨 Process of producing polyester latent crimp false-twist yarn having excellent bulkiness
WO2020261914A1 (en) * 2019-06-27 2020-12-30 株式会社クラレ Electroconductive composite fibers and fiber structure using same
CN116024713A (en) * 2022-12-20 2023-04-28 桐乡市恒富包复丝有限公司 Full-dull polyester spandex covered multifilament
DE102022004932A1 (en) * 2022-12-24 2024-06-27 Oerlikon Textile Gmbh & Co. Kg False twist device for texturing a synthetic thread

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5380497A (en) 1976-12-27 1978-07-15 Toray Ind Inc Preparation of block polyetheramide composition
JPS53149247A (en) 1977-06-01 1978-12-26 Teijin Ltd Antistatic polyester composition
JPS6039413A (en) 1983-08-08 1985-03-01 Asahi Chem Ind Co Ltd Antistatic polyester fiber
JPS6011944B2 (en) 1977-06-01 1985-03-29 帝人株式会社 Antistatic polyester composition
JPH01168925A (en) * 1987-12-23 1989-07-04 Teijin Ltd False-twist textured combined filament yarn having level dyeing property
JPH03139556A (en) 1989-10-24 1991-06-13 Teijin Ltd Antistatic polyester composition and fiber
JP2005023442A (en) * 2003-06-30 2005-01-27 Unitica Fibers Ltd Antistatic composite processed yarn and woven or knitted fabric

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4035441A (en) * 1973-06-26 1977-07-12 Toray Industries, Inc. Polyester filament having excellent antistatic properties and process for preparing the same
WO2001053573A1 (en) * 2000-01-20 2001-07-26 E.I. Du Pont De Nemours And Company Method for high-speed spinning of bicomponent fibers
JP3545749B2 (en) * 2002-05-02 2004-07-21 帝人ファイバー株式会社 Worsted-like fabric and method for producing the same
TW200819569A (en) * 2006-07-14 2008-05-01 Teijin Fibers Ltd Antistatic polyester false twist yarn, process for producing the same, and antistatic special composite false twist yarn including the antistatic polyester false twist yarn

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5380497A (en) 1976-12-27 1978-07-15 Toray Ind Inc Preparation of block polyetheramide composition
JPS53149247A (en) 1977-06-01 1978-12-26 Teijin Ltd Antistatic polyester composition
JPS6011944B2 (en) 1977-06-01 1985-03-29 帝人株式会社 Antistatic polyester composition
JPS6039413A (en) 1983-08-08 1985-03-01 Asahi Chem Ind Co Ltd Antistatic polyester fiber
JPH01168925A (en) * 1987-12-23 1989-07-04 Teijin Ltd False-twist textured combined filament yarn having level dyeing property
JPH03139556A (en) 1989-10-24 1991-06-13 Teijin Ltd Antistatic polyester composition and fiber
JP2005023442A (en) * 2003-06-30 2005-01-27 Unitica Fibers Ltd Antistatic composite processed yarn and woven or knitted fabric

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010007201A (en) * 2008-06-26 2010-01-14 Teijin Fibers Ltd Fabric and textile product
JP2010111961A (en) * 2008-11-05 2010-05-20 Teijin Fibers Ltd Extra fine false twist yarn having antistatic property and method for producing the same
US20120114940A1 (en) * 2008-11-27 2012-05-10 Teijin Fibers Limited Antistatic ultrafine fiber and method for producing the same
CN101845676A (en) * 2010-05-18 2010-09-29 北京航空航天大学 Multifunctional composite fiber and preparation method thereof
CN101845676B (en) * 2010-05-18 2012-05-23 北京航空航天大学 Multifunctional composite fiber and preparation method thereof
JP2012012748A (en) * 2010-07-05 2012-01-19 Teijin Fibers Ltd Ultra fine combined filament yarn and fabric having antistaticity
WO2021025339A1 (en) * 2019-08-02 2021-02-11 도레이첨단소재 주식회사 Core sheath-type composite false-twist textured yarn and method for manufacturing same

Also Published As

Publication number Publication date
TW200831726A (en) 2008-08-01
DE602007011096D1 (en) 2011-01-20
JP4896985B2 (en) 2012-03-14
KR20090076995A (en) 2009-07-13
US20100313990A1 (en) 2010-12-16
CA2668002A1 (en) 2008-05-08
ATE491057T1 (en) 2010-12-15
TWI431174B (en) 2014-03-21
KR101331636B1 (en) 2013-11-20
CA2668002C (en) 2014-07-29
EP2078771B1 (en) 2010-12-08
JPWO2008053977A1 (en) 2010-02-25
EP2078771A4 (en) 2009-12-23
EP2078771A1 (en) 2009-07-15

Similar Documents

Publication Publication Date Title
WO2008053977A1 (en) Antistatic core-sheath type ultrafine-denier false-twisted polyester yarn, process for production thereof, and antistatic water-repellent fabrics comprising the yarn
WO2010061594A1 (en) Antistatic ultrafine fibers and method for producing the same
JP2011162907A (en) Crimped yarn and fibrous structure
WO2008007803A1 (en) Antistatic polyester false twist yarn, process for producing the same, and antistatic special composite false twist yarn including the antistatic polyester false twist yarn
JP4818004B2 (en) Antistatic polyester false twisted yarn and method for producing the same
JP4720014B2 (en) Polyester composite yarn having latent crimp expression, method for producing the same, and package
JP2008223148A (en) Method for producing ultra fine false-twisted yarn dyeable with cation dye at atmospheric pressure
JP2010007191A (en) Ultrafine drawn fiber having antistatic property and normal-pressure cation-dyeable property, and method for producing the same
JP3249097B2 (en) Polyester fiber suitable for false twisting and manufacturing method
JP5262514B2 (en) Polyester composite fiber
JP4818068B2 (en) Antistatic water repellent fabric and clothing
JP4818007B2 (en) Special composite false twisted yarn having antistatic properties and method for producing the same
CN101535539B (en) Antistatic core-sheath type ultrafine-denier false-twisted polyester yarn, process for production thereof, and antistatic water-repellent fabrics comprising the yarn
JP2009209478A (en) Ultrafine drawn yarn having antistatic property and method for producing the same
JP2010126837A (en) Antistatic ultrafine textured yarn having uv-blocking effect and method for producing the same
JP5262059B2 (en) Manufacturing method of composite fiber
JP2010090516A (en) Polyester multifilament
JP2012012748A (en) Ultra fine combined filament yarn and fabric having antistaticity
JP2010196179A (en) Antistatic polyester blended yarn having excellent wrinkle recovery
JP2012012747A (en) Polyester combined filament yarn excellent in antistaticity and wrinkle recovery
WO2024185439A1 (en) Polyester composite fiber, polyester false-twist textured yarn, and production methods therefor
JP2010159521A (en) Antistatic combined-filament false twist polyester yarn and method for producing the same
JP2010196178A (en) Ultrafine blended yarn having antistaticity and method for producing the same
JP2020063536A (en) Splittable type core-sheath composite fiber
JP2024082716A (en) Polytrimethylene terephthalate composite yarn, manufacturing method thereof, and fabric

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780040904.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07831085

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008542187

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12446527

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2668002

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007831085

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020097010929

Country of ref document: KR