WO2008053752A1 - Heat source unit for refrigerating apparatus, and refrigerating apparatus - Google Patents

Heat source unit for refrigerating apparatus, and refrigerating apparatus Download PDF

Info

Publication number
WO2008053752A1
WO2008053752A1 PCT/JP2007/070655 JP2007070655W WO2008053752A1 WO 2008053752 A1 WO2008053752 A1 WO 2008053752A1 JP 2007070655 W JP2007070655 W JP 2007070655W WO 2008053752 A1 WO2008053752 A1 WO 2008053752A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
heat exchanger
port
gas
heat source
Prior art date
Application number
PCT/JP2007/070655
Other languages
French (fr)
Japanese (ja)
Inventor
Satoshi Kawano
Shinya Matsuoka
Osamu Tanaka
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to ES07830389.8T priority Critical patent/ES2574090T3/en
Priority to CN2007800394660A priority patent/CN101529169B/en
Priority to US12/446,253 priority patent/US20100319376A1/en
Priority to BRPI0716309-6A priority patent/BRPI0716309A2/en
Priority to EP07830389.8A priority patent/EP2078905B1/en
Priority to AU2007315521A priority patent/AU2007315521B2/en
Publication of WO2008053752A1 publication Critical patent/WO2008053752A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/021Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit
    • F25B2313/0215Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit the auxiliary heat exchanger being used parallel to the outdoor heat exchanger during heating operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02742Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two four-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02743Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using three four-way valves

Definitions

  • Refrigeration unit heat source unit and refrigeration unit
  • the present invention relates to a heat source unit of a refrigeration apparatus connected to a utilization unit via a communication pipe, and a refrigeration apparatus including the heat source unit.
  • a heat source unit of a refrigeration apparatus including a compressor and a heat source side heat exchanger is known.
  • the heat source unit constitutes a refrigeration system together with a utilization unit connected via a communication pipe. This type of heat source unit is described in Patent Document 1 and Patent Document 2.
  • Patent Document 1 discloses an outdoor unit of an air conditioner as this type of heat source unit.
  • This outdoor unit has one gas side port and one liquid side port.
  • the gas side port is connected to a four-way switching valve connected to the discharge side and the suction side of the compressor.
  • the liquid side port is connected to the liquid side end of the outdoor heat exchanger.
  • This air conditioner can switch between cooling operation and heating operation as an operating state by switching the four-way switching valve.
  • FIG. 3 of Patent Document 2 describes an outdoor unit provided with two gas side ports and one liquid side port.
  • one gas side port is always connected to the discharge side of the compressor via the discharge line
  • the other gas side port is always connected to the suction side of the compressor via the suction line.
  • the liquid side port is always connected to the liquid side of the outdoor heat exchanger.
  • the gas side end of the outdoor heat exchanger is connected to a four-way switching valve connected to the discharge side and suction side of the compressor.
  • Patent Document 2 describes an air conditioner to which the outdoor unit is applied.
  • This air conditioner includes a plurality of indoor units, each of which is provided with a BS unit for switching the operation state of the indoor units.
  • the BS unit switches the indoor unit's gas pipe between communicating with the discharge line and communicating with the suction line.
  • the heating operation in which the use side heat exchanger of the indoor unit becomes a condenser is performed. Done.
  • the BS unit communicates the gas pipe of the indoor unit with the suction line of the outdoor unit, the cooling operation is performed in which the use side heat exchanger of the indoor unit becomes an evaporator.
  • This air conditioner is a so-called cooling / heating-free air conditioner that can select whether to perform a cooling operation or a heating operation as an operation state for each indoor unit.
  • the refrigeration apparatus is provided with a switching mechanism (for example, a four-way switching valve) provided in the heat source unit as in Patent Document 1 for switching the operating state of the usage unit, or provided for each usage unit.
  • a switching mechanism for example, a four-way switching valve
  • Patent Document 2 in which the operating state of the utilization unit is switched by a switching mechanism housed in the unit. Since the heat source unit of Patent Document 1 has only gas side port power, it cannot be applied to the latter refrigeration apparatus. Further, the heat source unit of Patent Document 2 is provided with a switching mechanism for switching the operating state of the utilization unit in the heat source side circuit! /, NA! /, So it cannot be applied to the former refrigeration apparatus! / ,.
  • the heat source side circuit (12) of the heat source unit (10) of FIG. 13 is provided with two gas side ports (32, 33) and one liquid side port (34).
  • One gas side port (32) always communicates with the suction side of the compressor (14), and the other gas side port (33) communicates with either the discharge side or the suction side of the compressor (14).
  • the liquid side port (34) always communicates with the liquid side of the outdoor heat exchanger (15).
  • the gas side of the outdoor heat exchanger (15) is selectively in communication with either the discharge side or the suction side of the compressor (14).
  • the utilization unit (7) When the utilization unit (7) is connected to the heat source unit (10) as shown in FIG. 13 (A), the former refrigeration apparatus (5) is configured. When the utilization unit (7) is connected to the heat source unit (10) as shown in FIG. 13 (B), the latter refrigeration apparatus (5) is configured.
  • the use unit is used when a relatively large cooling capacity or heating capacity is required on the use unit side, for example, when the number of use units is large.
  • a sufficient heat exchange amount cannot be secured with only the heat source side heat exchanger of the heat source unit relative to the heat exchange amount in the side heat exchanger! /.
  • an appropriate refrigeration cycle cannot be performed and the coefficient of performance (COP) becomes relatively small. Therefore, an auxiliary unit that houses the auxiliary heat exchanger is connected to the refrigerant circuit. By doing so, such a problem can be solved. As shown in FIG.
  • the auxiliary unit (50) has an auxiliary heat exchanger (52) during heating operation when the required heating capacity on the unit (7, 7,%) Side is large. It is connected to become an evaporator together with the heat source side heat exchanger (15). Further, when the auxiliary unit (50) has a large required cooling capacity on the use unit (7, 7,%) Side, as shown in FIG. 15, the auxiliary heat exchanger (52) is installed during the cooling operation. It is connected to become a condenser together with the heat source side heat exchanger (15).
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2006-078087
  • Patent Document 2 JP-A-11 241844
  • the auxiliary unit is used so that the auxiliary unit can be used for both the heating operation and the cooling operation in the refrigeration apparatus to which the heat source unit is applied.
  • the auxiliary unit is provided corresponding to the heating operation, the refrigerant discharged from the compressor during the cooling operation cannot be supplied to the auxiliary heat exchanger of the auxiliary unit, so the auxiliary heat exchanger becomes a condenser. It ’s a great power.
  • the refrigerant evaporated by the auxiliary heat exchanger of the auxiliary unit during heating operation cannot be guided to the suction side of the compressor! /, So auxiliary heat exchange
  • the vessel has a power that is the same as the evaporator.
  • the present invention has been made in view of the power and the point, and an object of the present invention is to provide a refrigeration apparatus that switches the operation state of the utilization unit by a switching mechanism provided in the heat source unit, and the utilization unit.
  • a heat source unit that can be applied to any of the refrigeration systems that switch the operating state of the utilization unit by a switching mechanism housed in a unit provided for each unit, and a cooling unit that heats the auxiliary unit that houses the auxiliary heat exchanger It is to be configured so that it can be connected with both operation and connection.
  • the first invention is directed to a heat source unit (10) of a refrigeration apparatus including a heat source side circuit (12) to which a compressor (14) and a heat source side heat exchanger (15) are connected.
  • the heat source side circuit (12) of the heat source unit (10) is connected to the first gas line (25) that is always in communication with the discharge side of the compressor (14).
  • a second switching mechanism (18) for switching between a state communicating with the first gas line (25) and a state communicating with the second gas line (26) is provided.
  • the heat source unit (10) of the refrigeration apparatus (5) according to claim 1, and the pressure reducing mechanism (41) and the use side heat exchanger (40) are connected in this order from the liquid side end.
  • a use unit (7) having a connected use side circuit (8), a third gas side port (33) of the heat source side circuit (12) of the heat source unit (10) and the use side circuit (8 ) Is connected to the liquid side port (34) of the heat source side circuit (12) and the liquid side end of the use side circuit (8) is connected to the refrigerant side circuit (9)
  • a third invention is based on the second invention, wherein the auxiliary heat exchanger (52), the first connection port (56) always in communication with the liquid side end of the auxiliary heat exchanger (52), and the above
  • the second connection port (57) and the third connection port (58) that selectively communicate with the gas side end of the auxiliary heat exchanger (52) and the gas side end of the auxiliary heat exchanger (52) are connected to the second connection port (57).
  • An auxiliary unit (50) having an auxiliary switching mechanism (54) for switching between a state communicating with the connection port (57) and a state communicating with the third connection port (58), the refrigerant circuit (9)
  • the first connection port (56) is connected to the liquid side port of the heat source side circuit (12)
  • the second connection port (57) is connected to the first gas side port (31 of the heat source side circuit (12).
  • the third connection port (58) is connected to the second gas side port (32) of the heat source side circuit (12).
  • a fourth invention is the above-mentioned second or third invention, comprising a plurality of the use units (7).
  • the plurality of use-side circuits (8) are heat source-side circuits ( Connected in parallel to 12).
  • the fifth invention relates to the plurality of utilization units (7).
  • the heat source unit (10) includes a heat source side circuit (12) force, three gas side ports (31, 32, 33) and one liquid side port (34).
  • the first gas side port (31) always communicates with the discharge side of the compressor (14).
  • the second gas side port (32) always communicates with the suction side of the compressor (14).
  • the third gas side port (33) is switched between the state communicating with the first gas line (25) and the state communicating with the second gas line by switching the second switching mechanism (18).
  • the liquid side port (34) always communicates with the liquid side end of the heat source side heat exchanger (15).
  • the gas side end of the heat source side heat exchanger (15) communicates with the discharge side of the compressor (14) and communicates with the suction side of the compressor (14) by switching the first switching mechanism (17).
  • the heat source unit (10) includes a refrigeration apparatus (5) for switching the operating state of the utilization unit (7) by the switching mechanism (17) provided in the heat source unit (10), and the utilization unit (7). It can be applied to any of the refrigeration apparatus (5) for switching the operation state of the utilization unit (7) by the switching mechanism (63, 64) housed in the unit (60) provided in the unit, for example, FIG.
  • a first gas side port (31) always communicating with the discharge side of the compressor (14) is provided.
  • the third gas side port (33) of the heat source side circuit (12) of the heat source unit (10) and the usage side circuit (8) The gas side end of the heat source side circuit (12) and the liquid side port (34) of the heat source side circuit (12) are connected to the liquid side end of the use side circuit (8).
  • the switching unit (60) described later when the switching unit (60) described later is not provided, the first switching mechanism (17) and the second switching mechanism (18) switch the operating state of the utilization unit (7).
  • the first switching mechanism (17) communicates the gas side end of the heat source side heat exchanger (15) with the discharge side of the compressor (14), and the second switching mechanism (18) is connected to the third gas line ( When 27) is connected to the second gas line (26), a cooling operation is performed in which the heat source side heat exchanger (15) serves as a condenser and the use side heat exchanger (40) serves as an evaporator.
  • the first switching mechanism (17) communicates the gas side end of the heat source side heat exchanger (15) with the suction side of the compressor (14), and the second switching mechanism (18) is connected to the third gas line (27).
  • the refrigeration apparatus (5) includes the auxiliary unit (50).
  • the gas-side end of the auxiliary heat exchanger (52) communicates with the second connection port (57) and the third connection port (58).
  • the second connection port (57) is connected to the gas side end of the auxiliary heat exchanger (52) by switching the auxiliary switching mechanism (54).
  • the state communicating with the first gas side port (31) and the state communicating with the second gas side port (32) to which the third connection port (58) is connected are switched.
  • the refrigeration apparatus (5) includes a plurality of utilization units (7).
  • the usage side circuit (8) of the usage unit (7) is connected in parallel to the heat source side circuit (12)!
  • the gas side end of each usage unit (7) is connected to the third gas side port (33), and the liquid side end of each usage unit (7) is connected to the liquid side port (34).
  • the operating state switching mechanism (63, 64) of the switching unit (60) provided in each usage unit (7), the usage side circuit (8) of the usage unit (7) Switch between the state where the gas side end communicates with the second gas side port (32) and the state where it communicates with the third gas side port (33).
  • the operation state switching mechanism (63, 64) communicates the gas side end of the usage side circuit (8) with the second gas side port (32)
  • the usage side circuit (8) serves as an evaporator. Is done. Specifically, the refrigerant condensed in the heat source side heat exchanger (15) is introduced into the use side circuit (8) through the liquid side port (34).
  • the refrigerant introduced into the use side circuit (8) evaporates in the use side heat exchanger (40) and then returns to the suction side of the compressor (14) through the second gas side port (32).
  • the operating state switching mechanism (63, 64) connects the gas side end of the use side circuit (8) to the third gas side port (33)
  • the heating operation in which the use side circuit (8) becomes a condenser is performed. Done.
  • the refrigerant discharged from the compressor (14) is introduced into the use side circuit (8) through the third gas side port (33).
  • the refrigerant introduced into the use side circuit (8) is condensed in the use side heat exchanger (40) and then introduced into the heat source side heat exchanger (15) through the liquid side port (34), where it is evaporated and then the compressor. (14) Inhaled.
  • the heat source unit (10) of the first invention is used by the switching mechanism (63, 64) housed in the unit (60) provided for each usage unit (7). ) Applied to switching refrigeration equipment (5).
  • the heat source unit (10) includes a refrigeration apparatus (5) that switches the operating state of the usage unit (7) by the switching mechanism (17) provided in the heat source unit (10), and the usage unit ( 7)
  • a heat source that can be applied to any of the refrigeration apparatus (5) that switches the operation state of the utilization unit (7) by the switching mechanism (63, 64) housed in the unit (60) provided for each unit
  • the first gas side port (31) always communicating with the discharge side of the compressor (14) is provided.
  • the third gas side port (33) is connected to the compressor (14 ) From which the refrigerant discharged after compression flows out, and the liquid side port (34) becomes a port into which the condensed liquid refrigerant evaporated by the heat source side heat exchanger (15) flows, and the second gas The side port (32) serves as a port through which the evaporated refrigerant sucked by the compressor (14) flows.
  • the second switching mechanism (18) connects the third gas side port (33) to the second gas line (26)
  • the liquid side port (34) is condensed in the heat source side heat exchanger (15).
  • the second gas side port (32) becomes the port through which evaporated refrigerant sucked by the compressor (14) flows, and the first gas side port (31) becomes the compressor (14 ) From which the compressed refrigerant discharged from the outlet flows out.
  • the gas side end of the usage side circuit (8) is connected to the third gas side port (33), and the liquid side end of the usage side circuit (8) is connected to the liquid side port. (34) and the gas side end of the auxiliary heat exchanger (52) by connecting the liquid side end of the auxiliary heat exchanger (52) of the auxiliary unit (50) to the liquid side port (34).
  • the second switching mechanism (18) connects the third gas side port (33) to the first gas line (25 ), A high-pressure refrigerant discharged from the compressor (14) is supplied through the third gas side port (33), and a heating operation is performed in which the use side heat exchanger (40) serves as a condenser. . Then, when the refrigerant condensed in the use side heat exchanger (40) during the heating operation is introduced into the auxiliary heat exchanger (52), the introduced refrigerant evaporates in the auxiliary heat exchanger (52) and then the second gas side. It flows into the heat source side circuit (12) from the port (32) and is sucked into the compressor (14).
  • the second switching mechanism (18) connects the third gas side port (33) to the second gas line (26), the liquid refrigerant condensed in the heat source side heat exchanger (15) is transferred to the liquid side port. (34)
  • the use side heat exchanger (40) supplied through A cooling operation is performed. Then, when the refrigerant discharged from the compressor (14) through the first gas side port (31) during the cooling operation is introduced into the auxiliary heat exchanger (52), the introduced refrigerant is transferred to the auxiliary heat exchanger (52). After being condensed, it is introduced into the use side heat exchanger (40) together with the liquid refrigerant condensed in the heat source side heat exchanger (15).
  • the refrigerant introduced into the use side heat exchanger (40) evaporates in the use side heat exchanger (40), and the low-pressure refrigerant after evaporation flows into the heat source side circuit (12) from the third gas side port (33). And sucked into the compressor (14).
  • the gas side end of the auxiliary heat exchanger (52) of the auxiliary unit (50) is selectively connected to the first gas side port (31) and the second gas side port (32).
  • the low-pressure gas refrigerant from the auxiliary heat exchanger (52) serving as an evaporator can be introduced into the compressor (14) through the second gas side port (32).
  • high-pressure gas refrigerant can be supplied to the auxiliary heat exchanger (52) serving as a condenser through the first gas side port (31). Therefore, the auxiliary unit (50) can be used corresponding to both the cooling operation and the heating operation.
  • the heat source unit (10) of the present invention can connect the auxiliary unit (50) in response to both the cooling operation and the heating operation.
  • the gas side end of the auxiliary heat exchanger (52) is selectively connected to the first gas side port (31) and the second gas side port (32). . Therefore, as described above, during the heating operation, the low-pressure gas refrigerant from the auxiliary heat exchanger (52) serving as an evaporator is introduced into the compressor (14) through the second gas side port (32). In the cooling operation, high-pressure gas refrigerant can be introduced into the auxiliary heat exchanger (52) serving as a condenser through the first gas side port (31).
  • the auxiliary unit (50) of the third aspect of the invention can operate to supplement the heat exchange amount in the heat source side heat exchanger (15) with the auxiliary heat exchanger (52) in both the cooling operation and the heating operation. It can be connected to the refrigeration apparatus (5) as possible.
  • FIG. 1 is a schematic configuration diagram of an outdoor unit according to an embodiment.
  • FIG. 2 is a schematic configuration diagram of an air conditioner according to a first embodiment to which the outdoor unit according to the embodiment is applied.
  • FIG. 3 is a schematic configuration diagram showing an operation during a cooling operation in the air conditioner of the first embodiment to which the outdoor unit according to the embodiment is applied.
  • FIG. 4 is a schematic configuration diagram showing an operation during a heating operation in the air conditioner of the first embodiment to which the outdoor unit according to the embodiment is applied.
  • FIG. 5 is a schematic configuration diagram of an air conditioner of a second form to which the outdoor unit according to the embodiment is applied.
  • FIG. 6 is a schematic configuration diagram showing an operation during a cooling operation in the air conditioner of the second embodiment to which the outdoor unit according to the embodiment is applied.
  • FIG. 7 is a schematic configuration diagram showing an operation at the time of heating operation in the air conditioner of the second embodiment to which the outdoor unit according to the embodiment is applied.
  • FIG. 8 is a schematic configuration diagram of an air conditioner according to a third embodiment to which the outdoor unit according to the embodiment is applied.
  • FIG. 9 is a schematic configuration diagram showing an operation at the time of cooling operation in the air conditioner of the third embodiment to which the outdoor unit according to the embodiment is applied.
  • FIG. 10 is a schematic configuration diagram showing an operation at the time of heating operation in the air conditioner of the third embodiment to which the outdoor unit according to the embodiment is applied.
  • Fig. 11 is a schematic configuration diagram showing an operation at the time of air-conditioning operation in the air conditioner of the third embodiment to which the outdoor unit according to the embodiment is applied.
  • FIG. 12 is a schematic configuration diagram of an air-conditioning apparatus according to another embodiment.
  • FIG. 13 is a schematic configuration diagram of a refrigeration apparatus provided with a conventional heat source unit
  • (A) is a schematic configuration diagram when the former refrigeration apparatus described in the background art is configured
  • (B) is a schematic configuration diagram when the latter refrigeration apparatus described in the background technology is configured.
  • FIG. 14 is a schematic configuration diagram when an auxiliary unit is connected to a refrigeration apparatus to which a conventional heat source unit is applied in correspondence with a heating operation.
  • FIG. 15 is a schematic configuration diagram in the case where an auxiliary unit is connected to a refrigeration apparatus to which a conventional heat source unit is applied in correspondence with a cooling operation.
  • Outdoor unit (heat source unit)
  • the outdoor unit (10) constitutes a heat source unit of the refrigeration apparatus according to the present invention.
  • the outdoor unit (10) is connected to the utilization unit (7) through the gas side communication pipe (20) and the liquid side communication pipe (21).
  • the outdoor unit (10) accommodates an outdoor circuit (12) which is a heat source side circuit.
  • the outdoor circuit (12) includes a compressor (14), an outdoor heat exchanger (15), an outdoor expansion valve (16), a first four-way switching valve (17), and a second four-way switching valve (18). It is connected.
  • the first four-way switching valve (17) constitutes a first switching mechanism
  • the second four-way switching valve (18) constitutes a second switching mechanism.
  • the outdoor unit (10) is also provided with a first gas side port (31), a second gas side port (32), a third gas side port (33), and a liquid side port (34)! /
  • the compressor (14) is configured as a variable capacity compressor.
  • the discharge side of the compressor (14) is connected to the first gas side port (31) via the first gas line (25).
  • the first port of the first four-way selector valve (17) is connected to the first gas line (25).
  • the suction side of the compressor (14) is connected to the second gas side port (32) via the second gas line (26).
  • the second gas line (26) is connected to the third port of the first four-way selector valve (17)!
  • the outdoor heat exchanger (15) is a cross fin type fin-and-tube heat exchanger, and constitutes a heat source side heat exchanger.
  • the outdoor heat exchanger (15) has a liquid side end connected to the liquid side port (34) via a liquid line (28).
  • the outdoor heat exchanger (15) has a gas side end connected to the second port of the first four-way selector valve (17).
  • the fourth point of the first four-way selector valve (17) is sealed.
  • the outdoor expansion valve (16) is configured as an electronic expansion valve and is provided in the liquid line (28).
  • the second four-way selector valve (18) has a first port connected to the second gas line (26).
  • the second port of the second four-way selector valve (18) is sealed!
  • the third port of the second four-way selector valve (18) is connected to the first gas line (25).
  • the fourth port of the second four-way selector valve (18) is connected to the third gas side port (33) via the third gas line (27).
  • the first four-way switching valve (17) and the second four-way switching valve (18) are in a first state in which the first port and the second port communicate with each other and the third port and the fourth port communicate with each other. (The state shown by the solid line in Fig. 1) and the second state (the state shown by the broken line in Fig. 1) where the first port and the fourth port communicate with each other and the second port and the third port communicate with each other It is possible.
  • Each four The first switching mechanism (17) and the second switching mechanism (18) may be configured using a three-way switching valve instead of the path switching valve (17, 18). Further, the first switching mechanism (17) and the second switching mechanism (18) may be configured using two solenoid valves.
  • the refrigeration apparatus (5) of the first form is an air conditioner (5) capable of executing a cooling operation that is a cooling operation or a heating operation that is a heating operation.
  • a cooling operation that is a cooling operation or a heating operation that is a heating operation.
  • a plurality of indoor units (7a, 7lv) are provided in parallel to the outdoor unit (10).
  • the number of indoor units (7) may be one.
  • Each indoor unit (7) accommodates an indoor circuit (8).
  • the indoor circuit (8) is provided with an indoor heat exchanger (40) and an indoor expansion valve (41) in order from the gas side end.
  • the indoor heat exchanger (40) is configured as a cross-fin fin 'and' tube heat exchanger!
  • the indoor expansion valve (41) is configured as an electronic expansion valve!
  • each indoor circuit (8) is connected to the outdoor unit (10) through the gas side connecting pipe (20).
  • each indoor circuit (8) is connected to the liquid side port (34) of the outdoor unit (10) via the liquid side connecting pipe (21).
  • the outdoor circuit (12) and the indoor circuit (8a, 8l ⁇ ) are connected via the gas side connecting pipe (20) and the liquid side connecting pipe (21).
  • a refrigerant circuit (9) for performing a vapor compression refrigeration cycle is configured.
  • the first four-way selector valve (17) is set to the first state
  • the second four-way selector valve (18) is set to the second state.
  • the refrigerant discharged from the compressor (14) is condensed by exchanging heat with outdoor air in the outdoor heat exchanger (15).
  • the refrigerant condensed in the outdoor heat exchanger (15) is distributed to each indoor circuit (8a, 8lv).
  • the refrigerant flowing into the indoor circuit (8) is depressurized by the indoor expansion valve (41), and then evaporates by exchanging heat with indoor air in the indoor heat exchanger (40).
  • the refrigerant evaporated in the indoor heat exchanger (40) flows into the outdoor circuit (12), is sucked into the compressor (14), and is compressed.
  • the first four-way selector valve (17) is set to the second state
  • the second four-way selector valve (18) is set to the first state.
  • each indoor circuit (8) the refrigerant discharged from the compressor (14) is distributed to each indoor circuit (8a, 8lv).
  • the refrigerant flowing in is condensed by exchanging heat with indoor air in the indoor heat exchanger (40).
  • the refrigerant condensed in the indoor heat exchanger (40) flows into the outdoor circuit (12).
  • the refrigerant flowing into the outdoor circuit (12) is depressurized by the outdoor expansion valve (16) and then evaporates by exchanging heat with outdoor air in the outdoor heat exchanger (15).
  • the refrigerant evaporated in the outdoor heat exchanger (15) is sucked into the compressor (14) and compressed.
  • the air conditioner (5) of the second form is further provided with an auxiliary unit (50) in addition to the configuration of the air conditioner (5) of the first form.
  • the auxiliary unit (50) is installed outdoors together with the outdoor unit (10).
  • the number of auxiliary units (50) may be multiple.
  • the auxiliary unit (50) accommodates an auxiliary unit circuit (51).
  • the auxiliary unit (50) is provided with a first connection port (56), a second connection port (57), and a third connection port (58).
  • the auxiliary heat exchanger (52) is configured as a cross fin type fin 'and' tube type heat exchanger.
  • the auxiliary heat exchanger (52) has a liquid side end connected to the first connection port (56).
  • the gas side end of the auxiliary heat exchanger (52) is connected to the second port of the four-way selector valve (54).
  • the first port of the four-way selector valve (54) is connected to the third connection port (58).
  • the third port of the four-way selector valve (54) is connected to the second connection port (57).
  • the fourth port of the four-way selector valve (54) is sealed.
  • the expansion valve (53) is configured as an electronic expansion valve, and is provided between the auxiliary heat exchanger (52) and the first connection port (56).
  • the four-way selector valve (54) includes a first state (state indicated by a solid line in FIG. 5) in which the first port and the second port communicate with each other and the third port and the fourth port communicate with each other, It is possible to switch to the second state (state indicated by the broken line in Fig. 5) in which the 1st port and 4th port communicate with each other and the 2nd port and 3rd port communicate with each other.
  • the gas side end of the auxiliary heat exchanger (52) is in communication with the third connection port (58).
  • the gas side end of the auxiliary heat exchanger (52) is in communication with the second connection port (57).
  • the four-way selector valve (54) constitutes an auxiliary switching mechanism.
  • the auxiliary switching mechanism may be configured using a three-way switching valve instead of the four-way switching valve (54)! /, Or the auxiliary switching mechanism may be configured using two solenoid valves! /.
  • the first connection port (56) of the auxiliary unit (50) is connected to the liquid side communication pipe (21).
  • the second connection port (57) is connected to the first gas side port (31) of the outdoor unit (10).
  • the third connection port (58) is connected to the second gas side port (32) of the outdoor unit (10).
  • the air conditioner (5) according to the second embodiment will be described below.
  • the first four-way selector valve (17) and the second four-way selector valve (18) are in the cooling operation state, as in the air conditioner (5) of the first embodiment.
  • the first four-way selector valve (17) and the second four-way selector valve (18) are set to the heating operation state.
  • all indoor units (7) in operation are heated.
  • the first four-way selector valve (17) is set to the first state
  • the second four-way selector valve (18) is set to the second state.
  • the four-way selector valve (54) of the auxiliary unit (50) is in the second state when a relatively large cooling capacity is required, such as when the number of indoor units (7) that perform cooling operation is large. Set to. In this state, the auxiliary heat exchanger (52) of the auxiliary unit (50) becomes a condenser together with the outdoor heat exchanger (15). The four-way selector valve (54) of the auxiliary unit (50) is set to the first state when the required cooling capacity is relatively small. In this case, the expansion valve (53) is further set to a closed state. In this state, the refrigerant does not flow through the auxiliary heat exchanger (52) of the auxiliary unit (50).
  • This air conditioner (5) adjusts whether or not the auxiliary heat exchanger (52) of the auxiliary unit (50) is used or not, so that an appropriate refrigeration cycle is always provided for the required cooling capacity. Is possible.
  • the air conditioner (5) can always be operated with a high coefficient of performance (COP).
  • auxiliary unit circuit (51) a part of the refrigerant discharged from the compressor (14) flows into the auxiliary unit circuit (51).
  • the refrigerant that has flowed in is condensed by exchanging heat with outdoor air in the auxiliary heat exchanger (52).
  • the refrigerant condensed in the auxiliary heat exchanger (52) merges with the refrigerant condensed in the outdoor heat exchanger (15) and is distributed to each indoor circuit (8).
  • the first four-way selector valve (17) is set to the second state, and the second four-way selector valve (18) is set to the first state.
  • the compressor (14) is operated in this state, a vapor compression refrigeration cycle in which the indoor heat exchanger (40) serves as a condenser and the outdoor heat exchanger (15) serves as an evaporator in the refrigerant circuit (9).
  • the four-way selector valve (54) of the auxiliary unit (50) is in the first state when a relatively large heating capacity is required, such as when the number of indoor units (7) that perform heating operation is large. Set to.
  • the auxiliary heat exchanger (52) of the auxiliary unit (50) becomes an evaporator together with the outdoor heat exchanger (15).
  • the four-way selector valve (54) of the auxiliary unit (50) is set to the second state when the required cooling capacity is relatively small. In this case, the expansion valve (53) is further set to a closed state. In this state, the refrigerant does not flow through the auxiliary heat exchanger (52) of the auxiliary unit (50).
  • This air conditioner (5) adjusts whether or not the auxiliary heat exchanger (52) of the auxiliary unit (50) is used or not, so that a refrigeration cycle that is always appropriate for the required heating capacity is achieved. Is possible. Thus, the air conditioner (5) can always be operated with a high coefficient of performance (COP).
  • COP coefficient of performance
  • auxiliary unit circuit (51) a part of the refrigerant condensed in the indoor heat exchanger (40) flows into the auxiliary unit circuit (51).
  • the refrigerant flowing in is reduced in pressure by the expansion valve (53), and then evaporated by exchanging heat with outdoor air in the auxiliary heat exchanger (52).
  • the refrigerant evaporated in the auxiliary heat exchanger (52) flows into the outdoor circuit (12), merges with the refrigerant evaporated in the outdoor heat exchanger (15), and is sucked into the compressor (14).
  • the air conditioner (5) of the third form is a so-called cooling / heating-free air conditioner (5) that can select whether to perform the heating operation or the heating operation for each indoor unit (7a, 7l ⁇ ).
  • this air conditioner (5) as shown in FIG. 8, a plurality of indoor units (7a, 7l...) Are connected in parallel to the outdoor unit (10), and each indoor unit (7a, 7l. ⁇ ) BS unit (60a, 60b, ⁇ ) is provided for each!
  • descriptions of indoor units other than the first indoor unit (7a) and the second indoor unit (7b) are omitted.
  • Each BS unit (60) contains a liquid side circuit (61) and a gas side circuit (62), respectively. V, ru.
  • One end of the liquid side circuit (61) is connected to a liquid side communication pipe (21) extending from the liquid side port (34) of the outdoor unit (10).
  • the other end of the liquid side circuit (61) is connected to a refrigerant pipe connected to the liquid side end of the indoor circuit (8).
  • the gas side circuit (62) includes a first pipe provided with the first electromagnetic valve (63) and a second pipe provided with the second electromagnetic valve (64). One end of the first pipe and the second pipe are connected to each other. A refrigerant pipe extending from a connection portion between one end of the first pipe and one end of the second pipe is connected to the gas side end of the indoor circuit (8). The other end of the first pipe is connected to the first gas side connecting pipe (20a) extending from the third gas side port (33) of the outdoor unit (10). The other end of the second pipe is connected to a second gas side connecting pipe (20b) extending from the second gas side port (32) of the outdoor unit (10).
  • the first solenoid valve (63) and the second solenoid valve (64) constitute an operating state switching mechanism.
  • This air conditioner (5) is provided with the same auxiliary unit (50) as the air conditioner (5) of the second embodiment.
  • the first connection port (56) of the auxiliary unit (50) is connected to the liquid side communication pipe (21).
  • the second connection port (57) is connected to the first gas side port (31) of the outdoor unit (10).
  • the third connection port (58) is connected to the second gas side communication pipe (20b).
  • the air conditioner (5) in addition to the cooling operation and the heating operation, an air conditioning operation in which the indoor unit (7) performing the cooling operation and the indoor unit (7) performing the heating operation exist simultaneously is performed.
  • the second four-way selector valve (18) of the outdoor unit (10) is set to the second state.
  • the four-way selector valve (54) is set to the second state.
  • the first solenoid valve (63) is set to the closed state, and the second solenoid valve (64) is set to the open state.
  • the first four-way selector valve (17) of the outdoor unit (10) is provided with an indoor unit (7) that performs a cooling operation. If the required cooling capacity is large, such as when there are many units, the first state is set. In this state, the outdoor heat exchanger (15) becomes a condenser together with the auxiliary heat exchanger (52) of the auxiliary unit (50). The first four-way selector valve (17) is set to the second state when the required cooling capacity is small. In this case, the outdoor expansion valve (16) is further set to a closed state. In this state, the refrigerant does not flow through the outdoor heat exchanger (15).
  • This air conditioner (5) can always perform an appropriate refrigeration cycle for the required cooling capacity by adjusting whether the outdoor heat exchanger (15) is used or not. . As a result, the air conditioner (5) can always be operated with a high coefficient of performance (COP).
  • COP coefficient of performance
  • a part of the refrigerant discharged from the compressor (14) flows into the auxiliary unit circuit (51) from the second connection port (57) of the auxiliary unit (50).
  • the refrigerant flowing into the auxiliary unit circuit (51) is condensed by exchanging heat with outdoor air in the auxiliary heat exchanger (52).
  • the remaining part of the refrigerant discharged from the compressor (14) is condensed by exchanging heat with outdoor air in the outdoor heat exchanger (15).
  • the refrigerant condensed in the outdoor heat exchanger (15) merges with the refrigerant condensed in the auxiliary heat exchanger (52) of the auxiliary unit (50).
  • the condensed refrigerant after condensing is distributed to each indoor circuit (8).
  • the distributed refrigerant flows into the indoor circuit (8) through the liquid side circuit (61) of the BS unit (60).
  • the refrigerant flowing into the indoor circuit (8) is depressurized by the indoor expansion valve (41) and then evaporates by exchanging heat with the indoor air in the indoor heat exchanger (40).
  • the refrigerant evaporated in the indoor heat exchanger (40) flows into the outdoor circuit (12) through the second pipe of the gas side circuit (62) of the BS unit (60) and is absorbed by the compressor (14).
  • the second four-way selector valve (18) of the outdoor unit (10) is set to the first state.
  • the four-way selector valve (54) is set to the first state.
  • the first solenoid valve (63) is set in the open state, and the second solenoid valve (64) is set in the closed state.
  • the first four-way selector valve (17) of the outdoor unit (10) is in the second state when the required heating capacity is large, such as when the number of indoor units (7) that perform heating operation is large. Set to. In this state, the outdoor heat exchanger (15) becomes an evaporator together with the auxiliary heat exchanger (52) of the auxiliary unit (50). The first four-way selector valve (17) is set to the first state when the required heating capacity is small. In this case, the outdoor expansion valve (16) is set in a closed state. In this state, the refrigerant does not flow through the outdoor heat exchanger (15).
  • the air conditioner (5) can always perform an appropriate refrigeration cycle for the required heating capacity by using or not using the outdoor heat exchanger (15). Thus, the air conditioner (5) can always be operated with a high coefficient of performance (COP).
  • the refrigerant discharged from the compressor (14) is distributed to each indoor circuit (8).
  • the distributed refrigerant flows into the indoor circuit (8) through the first pipe of the gas side circuit (62) of the BS unit (60).
  • the refrigerant flowing into the indoor circuit (8) is condensed by exchanging heat with indoor air in the indoor heat exchanger (40).
  • the refrigerant flowing into the auxiliary unit circuit (51) is depressurized by the expansion valve (53), and then evaporates by exchanging heat with outdoor air in the auxiliary heat exchanger (52).
  • the remaining part of the refrigerant condensed in the indoor heat exchanger (40) flows into the outdoor circuit (12).
  • the refrigerant flowing into the outdoor circuit (12) is depressurized by the outdoor expansion valve (16), and then evaporates by exchanging heat with outdoor air in the outdoor heat exchanger (15).
  • the refrigerant evaporated in the outdoor heat exchanger (15) merges with the refrigerant evaporated in the auxiliary heat exchanger (52) of the auxiliary unit (50), and is sucked into the compressor (14).
  • the second four-way selector valve (18) of the outdoor unit (10) is set to the first state.
  • the first solenoid valve ( 63b) is set to the closed state
  • the second solenoid valve (64b) is set to the open state.
  • the first solenoid valve (631 ⁇ ⁇ ) is set to the open state and the second solenoid valve (641 ⁇ ⁇ ) is set to the closed state.
  • the indoor heat exchangers (40b, ⁇ ) of the indoor units (7b, ⁇ ) other than the first indoor unit (7a) As a condenser, a vapor compression refrigeration cycle is performed in which the indoor heat exchanger (40a) of the first indoor unit (7a) is an evaporator.
  • the outdoor heat exchanger (15) is in a state where it becomes a condenser, a state where it becomes an evaporator, and a state where no refrigerant flows by the first four-way switching valve (17) or the outdoor expansion valve (16). It is adjusted to either. Specifically, when the outdoor expansion valve (16) is set to the open state and the first four-way switching valve (17) is set to the first state, the outdoor heat exchanger (15) becomes a condenser. When the outdoor expansion valve (16) is set to the open state and the first four-way selector valve (17) is set to the second state, the outdoor heat exchanger (15) becomes an evaporator. When the outdoor expansion valve (16) is set to the closed state, the outdoor heat exchanger (15) is in a state where no refrigerant flows.
  • the auxiliary heat exchanger (52) of the auxiliary unit (50) includes the expansion valve (53) and the four-way switching valve (54), which are in a condenser state, an evaporator state, and a refrigerant. It is adjusted to one of the states where the product does not circulate. Specifically, when the expansion valve (53) is set to the open state and the four-way switching valve (54) is set to the second state, the auxiliary heat exchanger (52) becomes a condenser. When the expansion valve (53) is set to the open state and the four-way selector valve (54) is set to the first state, the auxiliary heat exchanger (52) becomes an evaporator. When the expansion valve (53) is set in the closed state, the auxiliary heat exchanger (52) is in a state where no refrigerant flows.
  • this air conditioner (5) the four-way switching of the first four-way switching valve (17), the outdoor expansion valve (16), and the auxiliary unit (50) according to the required cooling capacity and heating capacity.
  • the valve (54) and the expansion valve (53) the usage state of the outdoor heat exchanger (15) and the auxiliary heat exchanger (52) of the auxiliary unit (50) is adjusted.
  • the air conditioner (5) can always maintain a high coefficient of performance (COP) by performing an appropriate refrigeration cycle.
  • COP coefficient of performance
  • the refrigerant discharged from the compressor (14) is discharged from the first indoor unit (7a). It is distributed to the indoor circuit (81 ⁇ ⁇ ) other than the indoor circuit (8a). In each indoor circuit (81 ⁇ ⁇ ), the refrigerant that has flowed in is condensed by exchanging heat with room air in the indoor heat exchanger (4 (3 ⁇ 4, ⁇ ). The refrigerant condensed in flexible is distributed to the outdoor circuit (12), the auxiliary unit circuit (51), and the indoor circuit (8a) of the first indoor unit (7a).
  • the refrigerant flowing into the outdoor circuit (12) is depressurized by the outdoor expansion valve (16), and then evaporates by exchanging heat with the outdoor air by the outdoor heat exchanger (15).
  • the refrigerant flowing into the auxiliary unit circuit (51) is depressurized by the expansion valve (53), and then evaporates by exchanging heat with outdoor air in the auxiliary heat exchanger (52).
  • the refrigerant flowing into the indoor circuit (8a) of the first indoor unit (7a) is depressurized by the indoor expansion valve (41a) and then evaporates by exchanging heat with indoor air in the indoor heat exchanger (40a).
  • the refrigerant evaporated in the outdoor heat exchanger (15), the refrigerant evaporated in the auxiliary heat exchanger (52) of the auxiliary unit (50), and the indoor heat exchanger (40a) of the first indoor unit (7a) The evaporated refrigerant joins and is sucked into the force compressor (14).
  • the outdoor unit (10) includes a refrigeration apparatus (5) for switching the operating state of the usage unit (7) by a switching mechanism (17) provided in the heat source unit (10), and each usage unit (7).
  • the heat source unit (10) applicable to any of the refrigeration system (5) for switching the operating state of the utilization unit (7) by the switching mechanism (63, 64) housed in the unit (60) provided in )
  • the switching mechanism (63, 64) housed in the unit (60) provided in )
  • the first gas side port (31) always communicating with the discharge side of the compressor (14).
  • the introduced refrigerant evaporates in the auxiliary heat exchanger (52). It flows into the outdoor circuit (12) from the second gas side port (32) and is sucked into the compressor (14).
  • the second switching mechanism (18) connects the third gas side port (33) to the second gas line (26)
  • the liquid refrigerant condensed in the outdoor heat exchanger (15)
  • the cooling operation is performed in which the indoor heat exchanger (40) supplied through (34) serves as an evaporator.
  • the introduced refrigerant becomes the auxiliary heat exchanger (52) during the cooling operation
  • the introduced refrigerant becomes the auxiliary heat exchanger (52).
  • the refrigerant introduced into the indoor heat exchanger (40) evaporates in the indoor heat exchanger (40), and the low-pressure refrigerant after evaporation flows into the outdoor circuit (12) from the third gas side port (33) and is compressed. Inhaled into the machine (14).
  • the gas side end of the auxiliary heat exchanger (52) of the auxiliary unit (50) is selectively connected to the first gas side port (31) and the second gas side port (32).
  • the low-pressure gas refrigerant from the auxiliary heat exchanger (52) serving as an evaporator can be introduced into the compressor (14) through the second gas side port (32).
  • high-pressure gas refrigerant can be supplied to the auxiliary heat exchanger (52) serving as a condenser through the first gas side port (31). Therefore, the auxiliary unit (50) can be used corresponding to both the cooling operation and the heating operation.
  • the outdoor unit (10) of the present embodiment can be connected to the auxiliary unit (50) in correspondence with both the cooling operation and the heating operation.
  • the auxiliary unit (50) of the present embodiment is configured so that the heat exchange amount in the outdoor heat exchanger (15) can be supplemented by the auxiliary heat exchanger (52) in both the cooling operation and the heating operation. Being! /
  • the air conditioner (5) may be constituted by a plurality of outdoor units (10, 10,%) Connected in parallel to each other! /.
  • the present invention is useful for a heat source unit of a refrigeration apparatus connected to a utilization unit via a communication pipe, and a refrigeration apparatus including the heat source unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

A heat source side circuit (12) is provided with a first gas side port (31) which constantly communicates with the outlet side of a compressor (14); a second gas side port (32) which constantly communicates with the inlet side of the compressor (14); a third gas side port (33) which selectively communicates with a first gas line (25) or a second gas line (26); a liquid side port (34) which constantly communicates with the liquid side end of a heat source side heat exchanger (15); a first switching mechanism (17) for switching the communication status of the gas side end of the heat source side heat exchanger (15); and a second switching mechanism (18) for switching the communication status of the third gas line (27).

Description

明 細 書  Specification
冷凍装置の熱源ユニット、及び冷凍装置  Refrigeration unit heat source unit and refrigeration unit
技術分野  Technical field
[0001] 本発明は、利用ユニットに連絡配管を介して接続される冷凍装置の熱源ユニット、 及びその熱源ユニットを備える冷凍装置に関するものである。  [0001] The present invention relates to a heat source unit of a refrigeration apparatus connected to a utilization unit via a communication pipe, and a refrigeration apparatus including the heat source unit.
背景技術  Background art
[0002] 従来より、圧縮機や熱源側熱交換器を備える冷凍装置の熱源ユニットが知られて いる。熱源ユニットは、連絡配管を介して接続される利用ユニットと共に冷凍装置を構 成する。この種の熱源ユニットが特許文献 1及び特許文献 2に記載されている。  Conventionally, a heat source unit of a refrigeration apparatus including a compressor and a heat source side heat exchanger is known. The heat source unit constitutes a refrigeration system together with a utilization unit connected via a communication pipe. This type of heat source unit is described in Patent Document 1 and Patent Document 2.
[0003] 具体的に、特許文献 1には、この種の熱源ユニットとして空調機の室外ユニットが開 示されている。この室外ユニットには、ガス側ポートと液側ポートとが 1つずつ設けられ ている。ガス側ポートは、圧縮機の吐出側と吸入側とにそれぞれ接続された四路切 換弁に接続されている。液側ポートは室外熱交換器の液側端に接続されている。こ の空調機は、四路切換弁を切り換えることによって運転状態として冷房運転と暖房運 転とを切り換えること力 Sできる。  Specifically, Patent Document 1 discloses an outdoor unit of an air conditioner as this type of heat source unit. This outdoor unit has one gas side port and one liquid side port. The gas side port is connected to a four-way switching valve connected to the discharge side and the suction side of the compressor. The liquid side port is connected to the liquid side end of the outdoor heat exchanger. This air conditioner can switch between cooling operation and heating operation as an operating state by switching the four-way switching valve.
[0004] また、特許文献 2の図 3には、 2つのガス側ポートと、 1つの液側ポートとが設けられ た室外ユニットが記載されている。この室外ユニットでは、片方のガス側ポートが吐出 ラインを介して常に圧縮機の吐出側に接続され、もう片方のガス側ポートが吸入ライ ンを介して常に圧縮機の吸入側に接続されている。また、液側ポートは常に室外熱 交換器の液側に接続されている。室外熱交換器のガス側端は、圧縮機の吐出側と吸 入側とにそれぞれ接続された四路切換弁に接続されている。  [0004] FIG. 3 of Patent Document 2 describes an outdoor unit provided with two gas side ports and one liquid side port. In this outdoor unit, one gas side port is always connected to the discharge side of the compressor via the discharge line, and the other gas side port is always connected to the suction side of the compressor via the suction line. . The liquid side port is always connected to the liquid side of the outdoor heat exchanger. The gas side end of the outdoor heat exchanger is connected to a four-way switching valve connected to the discharge side and suction side of the compressor.
[0005] そして、特許文献 2には、この室外ユニットが適用された空気調和装置が記載され ている。この空気調和装置は、複数の室内ユニットを備え、それぞれに室内ユニット の運転状態を切り換えるための BSユニットが設けられている。 BSユニットは、室内ュ ニットのガス管を吐出ラインと連通する状態と吸入ラインと連通する状態とに切り換え る。この空気調和装置では、 BSユニットが室内ユニットのガス管を室外ユニットの吐 出ラインと連通させると、室内ユニットの利用側熱交換器が凝縮器になる暖房運転が 行われる。 BSユニットが室内ユニットのガス管を室外ユニットの吸入ラインと連通させ ると、室内ユニットの利用側熱交換器が蒸発器になる冷房運転が行われる。この空気 調和装置は、室内ユニット毎に運転状態として冷房運転を行うか暖房運転を行うかを 選択できる、いわゆる冷暖フリーの空気調和装置である。 [0005] Patent Document 2 describes an air conditioner to which the outdoor unit is applied. This air conditioner includes a plurality of indoor units, each of which is provided with a BS unit for switching the operation state of the indoor units. The BS unit switches the indoor unit's gas pipe between communicating with the discharge line and communicating with the suction line. In this air conditioner, when the BS unit communicates the gas pipe of the indoor unit with the discharge line of the outdoor unit, the heating operation in which the use side heat exchanger of the indoor unit becomes a condenser is performed. Done. When the BS unit communicates the gas pipe of the indoor unit with the suction line of the outdoor unit, the cooling operation is performed in which the use side heat exchanger of the indoor unit becomes an evaporator. This air conditioner is a so-called cooling / heating-free air conditioner that can select whether to perform a cooling operation or a heating operation as an operation state for each indoor unit.
[0006] ところで、冷凍装置には、熱源ユニットに設けられた切換機構 (例えば四路切換弁) によって利用ユニットの運転状態の切り換える特許文献 1のようなものや、利用ュニッ ト毎に設けられたユニットに収容された切換機構によって利用ユニットの運転状態の 切り換える特許文献 2のようなものがある。特許文献 1の熱源ユニットは、ガス側ポート 力 つしかないので、後者の冷凍装置には適用できない。また、特許文献 2の熱源ュ ニットは、熱源側回路に利用ユニットの運転状態を切り換えるための切換機構が設け られて!/、な!/、ので、前者の冷凍装置には適用できな!/、。 [0006] By the way, the refrigeration apparatus is provided with a switching mechanism (for example, a four-way switching valve) provided in the heat source unit as in Patent Document 1 for switching the operating state of the usage unit, or provided for each usage unit. There is one such as Patent Document 2 in which the operating state of the utilization unit is switched by a switching mechanism housed in the unit. Since the heat source unit of Patent Document 1 has only gas side port power, it cannot be applied to the latter refrigeration apparatus. Further, the heat source unit of Patent Document 2 is provided with a switching mechanism for switching the operating state of the utilization unit in the heat source side circuit! /, NA! /, So it cannot be applied to the former refrigeration apparatus! / ,.
[0007] そして、前者の冷凍装置と後者の冷凍装置との何れにも適用することができるように 熱源ユニットを構成すると、例えば図 13のような構成になる。この図 13の熱源ユニット (10)の熱源側回路(12)には、 2つのガス側ポート(32,33)と、 1つの液側ポート(34)と が設けられている。片方のガス側ポート(32)は常に圧縮機(14)の吸入側と連通し、も う片方のガス側ポート(33)は圧縮機(14)の吐出側と吸入側との何れか一方と選択的 に連通している。また、液側ポート(34)は常に室外熱交換器(15)の液側に連通して いる。室外熱交換器(15)のガス側は、圧縮機(14)の吐出側と吸入側との何れか一 方と選択的に連通している。この熱源ユニット(10)に対して利用ユニット(7)を図 13 ( A)のように接続すると、前者の冷凍装置(5)が構成される。また、この熱源ユニット(1 0)に対して利用ユニット(7)を図 13 (B)のように接続すると、後者の冷凍装置(5)が 構成される。 [0007] When the heat source unit is configured so that it can be applied to both the former refrigeration apparatus and the latter refrigeration apparatus, for example, a configuration as shown in FIG. 13 is obtained. The heat source side circuit (12) of the heat source unit (10) of FIG. 13 is provided with two gas side ports (32, 33) and one liquid side port (34). One gas side port (32) always communicates with the suction side of the compressor (14), and the other gas side port (33) communicates with either the discharge side or the suction side of the compressor (14). Selective communication. The liquid side port (34) always communicates with the liquid side of the outdoor heat exchanger (15). The gas side of the outdoor heat exchanger (15) is selectively in communication with either the discharge side or the suction side of the compressor (14). When the utilization unit (7) is connected to the heat source unit (10) as shown in FIG. 13 (A), the former refrigeration apparatus (5) is configured. When the utilization unit (7) is connected to the heat source unit (10) as shown in FIG. 13 (B), the latter refrigeration apparatus (5) is configured.
[0008] ここで、この熱源ユニットを適用した冷凍装置では、例えば利用ユニットの台数が多 い場合など利用ユニット側で比較的大きな冷却能力又は加熱能力が必要になる場 合に、利用ユニットの利用側熱交換器における熱交換量に対して熱源ユニットの熱 源側熱交換器だけでは十分な熱交換量を確保することができな!/、場合がある。この ような場合は、適切な冷凍サイクルを行うことができずに成績係数 (COP)が比較的 小さくなつてしまう。そこで、補助熱交換器を収容する補助ユニットを冷媒回路に接続 することで、このような問題を解消することができる。補助ユニット(50)は、利用ュニッ ト(7,7,· · ·)側における必要加熱能力が大きい場合には、図 14に示すように、加熱運 転中に補助熱交換器 (52)が熱源側熱交換器(15)と共に蒸発器となるように接続さ れる。また、補助ユニット(50)は、利用ユニット(7,7,· · ·)側における必要冷却能力が 大きい場合には、図 15に示すように、冷却運転中に補助熱交換器 (52)が熱源側熱 交換器(15)と共に凝縮器となるように接続される。 [0008] Here, in the refrigeration apparatus to which the heat source unit is applied, the use unit is used when a relatively large cooling capacity or heating capacity is required on the use unit side, for example, when the number of use units is large. There may be a case where a sufficient heat exchange amount cannot be secured with only the heat source side heat exchanger of the heat source unit relative to the heat exchange amount in the side heat exchanger! /. In such a case, an appropriate refrigeration cycle cannot be performed and the coefficient of performance (COP) becomes relatively small. Therefore, an auxiliary unit that houses the auxiliary heat exchanger is connected to the refrigerant circuit. By doing so, such a problem can be solved. As shown in FIG. 14, the auxiliary unit (50) has an auxiliary heat exchanger (52) during heating operation when the required heating capacity on the unit (7, 7,...) Side is large. It is connected to become an evaporator together with the heat source side heat exchanger (15). Further, when the auxiliary unit (50) has a large required cooling capacity on the use unit (7, 7,...) Side, as shown in FIG. 15, the auxiliary heat exchanger (52) is installed during the cooling operation. It is connected to become a condenser together with the heat source side heat exchanger (15).
特許文献 1 :特開 2006— 078087号公報  Patent Document 1: Japanese Unexamined Patent Application Publication No. 2006-078087
特許文献 2:特開平 11 241844号公報  Patent Document 2: JP-A-11 241844
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] しかし、従来の熱源ユニットでは、該熱源ユニットが適用された冷凍装置にお!/、て 補助ユニットを加熱運転と冷却運転との両方に使用することができるように、補助ュニ ットを接続することができな力 た。具体的に、加熱運転に対応させて補助ユニットを 設けると、冷却運転時に圧縮機力 吐出された冷媒を補助ユニットの補助熱交換器 に供給することができないので、補助熱交換器が凝縮器にはならな力、つた。また、冷 却運転に対応させて補助ユニットを設けると、加熱運転時に補助ユニットの補助熱交 換器で蒸発した冷媒を圧縮機の吸入側へ導くことができな!/、ので、補助熱交換器が 蒸発器にはならな力、つた。 However, in the conventional heat source unit, the auxiliary unit is used so that the auxiliary unit can be used for both the heating operation and the cooling operation in the refrigeration apparatus to which the heat source unit is applied. The power that could not be connected. Specifically, if an auxiliary unit is provided corresponding to the heating operation, the refrigerant discharged from the compressor during the cooling operation cannot be supplied to the auxiliary heat exchanger of the auxiliary unit, so the auxiliary heat exchanger becomes a condenser. It ’s a great power. Also, if an auxiliary unit is provided for cooling operation, the refrigerant evaporated by the auxiliary heat exchanger of the auxiliary unit during heating operation cannot be guided to the suction side of the compressor! /, So auxiliary heat exchange The vessel has a power that is the same as the evaporator.
[0010] 本発明は、力、かる点に鑑みてなされたものであり、その目的とするところは、熱源ュ ニットに設けられた切換機構によって利用ユニットの運転状態を切り換える冷凍装置 と、利用ユニット毎に設けられたユニットに収容された切換機構によって利用ユニット の運転状態を切り換える冷凍装置との何れにも適用することができる熱源ユニットを、 補助熱交換器を収容する補助ユニットを冷却運転と加熱運転との両方に対応させて 接続することカでさるように構成することにある。 [0010] The present invention has been made in view of the power and the point, and an object of the present invention is to provide a refrigeration apparatus that switches the operation state of the utilization unit by a switching mechanism provided in the heat source unit, and the utilization unit. A heat source unit that can be applied to any of the refrigeration systems that switch the operating state of the utilization unit by a switching mechanism housed in a unit provided for each unit, and a cooling unit that heats the auxiliary unit that houses the auxiliary heat exchanger It is to be configured so that it can be connected with both operation and connection.
課題を解決するための手段  Means for solving the problem
[0011] 第 1の発明は、圧縮機(14)と熱源側熱交換器(15)とが接続された熱源側回路(12) を備える冷凍装置の熱源ユニット(10)を対象とする。そして、この熱源ユニット(10)の 熱源側回路(12)には、上記圧縮機(14)の吐出側と常に連通する第 1ガスライン (25) の端部となる第 1ガス側ポート(31)と、上記圧縮機(14)の吸入側と常に連通する第 2 ガスライン (26)の端部となる第 2ガス側ポート(32)と、上記第 1ガスライン (25)と第 2ガ スライン (26)との何れか一方と選択的に連通する第 3ガスライン (27)の端部となる第 3ガス側ポート(33)と、上記熱源側熱交換器(15)の液側端と常に連通する液ライン( 28)の端部となる液側ポート(34)と、上記熱源側熱交換器(15)のガス側端を上記圧 縮機(14)の吐出側と連通する状態と該圧縮機(14)の吸入側と連通する状態とに切り 換えるための第 1切換機構(17)と、上記第 3ガスライン (27)を上記第 1ガスライン(25) と連通する状態と上記第 2ガスライン (26)と連通する状態とに切り換えるための第 2切 換機構(18)とが設けられて!/、る。 The first invention is directed to a heat source unit (10) of a refrigeration apparatus including a heat source side circuit (12) to which a compressor (14) and a heat source side heat exchanger (15) are connected. The heat source side circuit (12) of the heat source unit (10) is connected to the first gas line (25) that is always in communication with the discharge side of the compressor (14). A first gas side port (31) serving as an end of the second gas side port (32) serving as an end of a second gas line (26) always communicating with the suction side of the compressor (14), A third gas side port (33) serving as an end of a third gas line (27) that selectively communicates with either the first gas line (25) or the second gas line (26); The liquid side port (34) that is the end of the liquid line (28) that always communicates with the liquid side end of the heat source side heat exchanger (15) and the gas side end of the heat source side heat exchanger (15) A first switching mechanism (17) for switching between a state communicating with the discharge side of the compressor (14) and a state communicating with the suction side of the compressor (14); and the third gas line (27) A second switching mechanism (18) for switching between a state communicating with the first gas line (25) and a state communicating with the second gas line (26) is provided.
[0012] 第 2の発明は、請求項 1に記載の冷凍装置(5)の熱源ユニット(10)と、液側端から 順に減圧機構 (41)と利用側熱交換器 (40)とが接続された利用側回路 (8)を有する 利用ユニット (7)とを備え、上記熱源ユニット(10)の熱源側回路(12)の第 3ガス側ポ ート(33)と上記利用側回路 (8)のガス側端とが接続されて、該熱源側回路(12)の液 側ポート(34)と該利用側回路 (8)の液側端とが接続されて構成された冷媒回路 (9) にお!/、て蒸気圧縮冷凍サイクルを行う冷凍装置(5)である。  [0012] In the second invention, the heat source unit (10) of the refrigeration apparatus (5) according to claim 1, and the pressure reducing mechanism (41) and the use side heat exchanger (40) are connected in this order from the liquid side end. A use unit (7) having a connected use side circuit (8), a third gas side port (33) of the heat source side circuit (12) of the heat source unit (10) and the use side circuit (8 ) Is connected to the liquid side port (34) of the heat source side circuit (12) and the liquid side end of the use side circuit (8) is connected to the refrigerant side circuit (9) This is a refrigeration system (5) that performs a vapor compression refrigeration cycle.
[0013] 第 3の発明は、上記 2の発明において、補助熱交換器 (52)と、上記補助熱交換器( 52)の液側端と常に連通する第 1接続ポート (56)と、上記補助熱交換器 (52)のガス 側端が選択的に連通する第 2接続ポート (57)及び第 3接続ポート (58)と、上記補助 熱交換器 (52)のガス側端を上記第 2接続ポート (57)と連通する状態と上記第 3接続 ポート(58)と連通する状態とに切り換えるための補助切換機構(54)とを有する補助 ユニット(50)を備え、上記冷媒回路 (9)では、上記第 1接続ポート(56)が上記熱源側 回路(12)の液側ポートに接続され、上記第 2接続ポート(57)が上記熱源側回路(12) の第 1ガス側ポート(31)に接続され、上記第 3接続ポート(58)が上記熱源側回路(12 )の第 2ガス側ポート(32)に接続されて!/、る。  [0013] A third invention is based on the second invention, wherein the auxiliary heat exchanger (52), the first connection port (56) always in communication with the liquid side end of the auxiliary heat exchanger (52), and the above The second connection port (57) and the third connection port (58) that selectively communicate with the gas side end of the auxiliary heat exchanger (52) and the gas side end of the auxiliary heat exchanger (52) are connected to the second connection port (57). An auxiliary unit (50) having an auxiliary switching mechanism (54) for switching between a state communicating with the connection port (57) and a state communicating with the third connection port (58), the refrigerant circuit (9) The first connection port (56) is connected to the liquid side port of the heat source side circuit (12), and the second connection port (57) is connected to the first gas side port (31 of the heat source side circuit (12). And the third connection port (58) is connected to the second gas side port (32) of the heat source side circuit (12).
[0014] 第 4の発明は、上記第 2又は第 3の発明において、上記利用ユニット(7)を複数備え 、上記冷媒回路 (9)では、複数の利用側回路 (8)が熱源側回路(12)に対して並列に 接続されている。  [0014] A fourth invention is the above-mentioned second or third invention, comprising a plurality of the use units (7). In the refrigerant circuit (9), the plurality of use-side circuits (8) are heat source-side circuits ( Connected in parallel to 12).
[0015] 第 5の発明は、上記第 4の発明において、上記複数の利用ユニット(7)に対してそ れぞれ設けられて、各利用ユニット(7)の利用側回路 (8)のガス側端を上記第 2ガス 側ポート(32)と連通する状態と上記第 3ガス側ポート(33)と連通する状態とに切り換 えるための運転状態切換機構(63,64)を有する切換ユニット(60)を備えて!/、る。 [0015] In a fifth aspect based on the fourth aspect, the fifth invention relates to the plurality of utilization units (7). A state in which the gas side end of the usage side circuit (8) of each usage unit (7) communicates with the second gas side port (32) and the third gas side port (33). A switching unit (60) having an operation state switching mechanism (63, 64) for switching to a state to be operated.
[0016] 一作用 [0016] One action
第 1の発明では、熱源ユニット(10)の熱源側回路(12)力 3つのガス側ポート(31,3 2,33)と 1つの液側ポート(34)とを備えている。第 1ガス側ポート(31)は、常に圧縮機( 14)の吐出側に連通している。第 2ガス側ポート(32)は、常に圧縮機(14)の吸入側に 連通している。第 3ガス側ポート(33)は、第 2切換機構(18)の切り換えによって第 1ガ スライン (25)と連通する状態と第 2ガスラインと連通する状態とが切り換えられる。液 側ポート (34)は、常に熱源側熱交換器(15)の液側端に連通して!/、る。熱源側熱交 換器(15)のガス側端は、第 1切換機構(17)の切り換えによって圧縮機(14)の吐出側 と連通する状態と圧縮機(14)の吸入側と連通する状態とが切り換えられる。つまり、こ の熱源ユニット(10)は、熱源ユニット(10)に設けられた切換機構(17)によって利用ュ ニット(7)の運転状態を切り換える冷凍装置(5)と、利用ユニット (7)毎に設けられたュ ニット (60)に収容された切換機構 (63,64)によって利用ユニット(7)の運転状態を切り 換える冷凍装置(5)との何れにも適用することができる例えば図 13の熱源ユニット(1 0)の構成に加えて、常に圧縮機(14)の吐出側と連通する第 1ガス側ポート(31)を備 えている。  In the first invention, the heat source unit (10) includes a heat source side circuit (12) force, three gas side ports (31, 32, 33) and one liquid side port (34). The first gas side port (31) always communicates with the discharge side of the compressor (14). The second gas side port (32) always communicates with the suction side of the compressor (14). The third gas side port (33) is switched between the state communicating with the first gas line (25) and the state communicating with the second gas line by switching the second switching mechanism (18). The liquid side port (34) always communicates with the liquid side end of the heat source side heat exchanger (15). The gas side end of the heat source side heat exchanger (15) communicates with the discharge side of the compressor (14) and communicates with the suction side of the compressor (14) by switching the first switching mechanism (17). And are switched. In other words, the heat source unit (10) includes a refrigeration apparatus (5) for switching the operating state of the utilization unit (7) by the switching mechanism (17) provided in the heat source unit (10), and the utilization unit (7). It can be applied to any of the refrigeration apparatus (5) for switching the operation state of the utilization unit (7) by the switching mechanism (63, 64) housed in the unit (60) provided in the unit, for example, FIG. In addition to the configuration of the heat source unit (10), a first gas side port (31) always communicating with the discharge side of the compressor (14) is provided.
[0017] 第 2の発明では、冷凍装置(5)の冷媒回路 (9)において、熱源ユニット(10)の熱源 側回路(12)の第 3ガス側ポート(33)と利用側回路 (8)のガス側端とが接続され、熱源 側回路(12)の液側ポート(34)と利用側回路 (8)の液側端とが接続されて!/、る。この 冷凍装置(5)では、後述する切換ユニット (60)を設けない場合は、第 1切換機構(17) 及び第 2切換機構(18)が利用ユニット(7)の運転状態を切り換える。具体的に、第 1 切換機構(17)が熱源側熱交換器(15)のガス側端を圧縮機(14)の吐出側と連通させ 、第 2切換機構(18)が第 3ガスライン (27)を第 2ガスライン (26)と連通させると、熱源 側熱交換器(15)が凝縮器となって利用側熱交換器 (40)が蒸発器となる冷却運転が 行われる。また、第 1切換機構(17)が熱源側熱交換器(15)のガス側端を圧縮機(14) の吸入側と連通させ、第 2切換機構(18)が第 3ガスライン (27)を第 1ガスライン (25)と 連通させると、利用側熱交換器 (40)が凝縮器となって熱源側熱交換器(15)が蒸発 器となる加熱運転が行われる。 In the second invention, in the refrigerant circuit (9) of the refrigeration apparatus (5), the third gas side port (33) of the heat source side circuit (12) of the heat source unit (10) and the usage side circuit (8) The gas side end of the heat source side circuit (12) and the liquid side port (34) of the heat source side circuit (12) are connected to the liquid side end of the use side circuit (8). In this refrigeration apparatus (5), when the switching unit (60) described later is not provided, the first switching mechanism (17) and the second switching mechanism (18) switch the operating state of the utilization unit (7). Specifically, the first switching mechanism (17) communicates the gas side end of the heat source side heat exchanger (15) with the discharge side of the compressor (14), and the second switching mechanism (18) is connected to the third gas line ( When 27) is connected to the second gas line (26), a cooling operation is performed in which the heat source side heat exchanger (15) serves as a condenser and the use side heat exchanger (40) serves as an evaporator. The first switching mechanism (17) communicates the gas side end of the heat source side heat exchanger (15) with the suction side of the compressor (14), and the second switching mechanism (18) is connected to the third gas line (27). The first gas line (25) and When connected, a heating operation is performed in which the use side heat exchanger (40) becomes a condenser and the heat source side heat exchanger (15) becomes an evaporator.
[0018] 第 3の発明では、冷凍装置(5)が補助ユニット(50)を備えている。補助ユニット(50) では、補助切換機構(54)の切り換えによって補助熱交換器 (52)のガス側端が第 2接 続ポート(57)と連通する状態と第 3接続ポート(58)と連通する状態とに切り換えられ る。従って、この第 3の発明の冷凍装置(5)では、補助切換機構(54)の切り換えによ つて補助熱交換器 (52)のガス側端が、第 2接続ポート(57)が接続される第 1ガス側ポ ート(31)と連通する状態と、第 3接続ポート (58)が接続される第 2ガス側ポート(32)と 連通する状態とが切り換えられる。  [0018] In the third invention, the refrigeration apparatus (5) includes the auxiliary unit (50). In the auxiliary unit (50), when the auxiliary switching mechanism (54) is switched, the gas-side end of the auxiliary heat exchanger (52) communicates with the second connection port (57) and the third connection port (58). You can switch to Therefore, in the refrigeration apparatus (5) of the third aspect of the invention, the second connection port (57) is connected to the gas side end of the auxiliary heat exchanger (52) by switching the auxiliary switching mechanism (54). The state communicating with the first gas side port (31) and the state communicating with the second gas side port (32) to which the third connection port (58) is connected are switched.
[0019] 第 4の発明では、冷凍装置(5)が複数の利用ユニット(7)を備えている。利用ュニッ ト(7)の利用側回路 (8)は、熱源側回路(12)に対して並列に接続されて!/、る。各利用 ユニット(7)のガス側端は第 3ガス側ポート(33)に接続され、各利用ユニット(7)の液 側端は液側ポート(34)に接続されて!/、る。  In the fourth invention, the refrigeration apparatus (5) includes a plurality of utilization units (7). The usage side circuit (8) of the usage unit (7) is connected in parallel to the heat source side circuit (12)! The gas side end of each usage unit (7) is connected to the third gas side port (33), and the liquid side end of each usage unit (7) is connected to the liquid side port (34).
[0020] 第 5の発明では、各利用ユニット(7)に設けられた切換ユニット (60)の運転状態切 換機構 (63,64) 、該利用ユニット(7)の利用側回路 (8)のガス側端を第 2ガス側ポー ト(32)と連通する状態と第 3ガス側ポート(33)と連通する状態とに切り換える。運転状 態切換機構 (63,64)が利用側回路 (8)のガス側端を第 2ガス側ポート(32)と連通させ ると、該利用側回路 (8)が蒸発器となる冷却運転が行われる。具体的に、利用側回路 (8)には熱源側熱交換器(15)で凝縮した冷媒が液側ポート (34)を通じて導入される 。利用側回路 (8)に導入された冷媒は、利用側熱交換器 (40)で蒸発した後に第 2ガ ス側ポート(32)を通じて圧縮機(14)の吸入側へ戻される。運転状態切換機構 (63,64 )が利用側回路 (8)のガス側端を第 3ガス側ポート(33)と連通させると、該利用側回 路 (8)が凝縮器となる加熱運転が行われる。具体的に、利用側回路 (8)には圧縮機( 14)から吐出された冷媒が第 3ガス側ポート(33)を通じて導入される。利用側回路 (8) に導入された冷媒は、利用側熱交換器 (40)で凝縮した後に液側ポート(34)を通じて 熱源側熱交換器(15)に導入され、そこで蒸発した後に圧縮機(14)に吸入される。こ の第 5の発明では、第 1の発明の熱源ユニット(10)が、利用ユニット(7)毎に設けられ たユニット (60)に収容された切換機構 (63,64)によって利用ユニット(7)の運転状態を 切り換える冷凍装置(5)に適用されている。 [0020] In the fifth invention, the operating state switching mechanism (63, 64) of the switching unit (60) provided in each usage unit (7), the usage side circuit (8) of the usage unit (7) Switch between the state where the gas side end communicates with the second gas side port (32) and the state where it communicates with the third gas side port (33). When the operation state switching mechanism (63, 64) communicates the gas side end of the usage side circuit (8) with the second gas side port (32), the usage side circuit (8) serves as an evaporator. Is done. Specifically, the refrigerant condensed in the heat source side heat exchanger (15) is introduced into the use side circuit (8) through the liquid side port (34). The refrigerant introduced into the use side circuit (8) evaporates in the use side heat exchanger (40) and then returns to the suction side of the compressor (14) through the second gas side port (32). When the operating state switching mechanism (63, 64) connects the gas side end of the use side circuit (8) to the third gas side port (33), the heating operation in which the use side circuit (8) becomes a condenser is performed. Done. Specifically, the refrigerant discharged from the compressor (14) is introduced into the use side circuit (8) through the third gas side port (33). The refrigerant introduced into the use side circuit (8) is condensed in the use side heat exchanger (40) and then introduced into the heat source side heat exchanger (15) through the liquid side port (34), where it is evaporated and then the compressor. (14) Inhaled. In the fifth invention, the heat source unit (10) of the first invention is used by the switching mechanism (63, 64) housed in the unit (60) provided for each usage unit (7). ) Applied to switching refrigeration equipment (5).
発明の効果  The invention's effect
[0021] 本発明では、熱源ユニット(10)が、熱源ユニット(10)に設けられた切換機構(17)に よって利用ユニット(7)の運転状態を切り換える冷凍装置(5)と、利用ユニット (7)毎に 設けられたユニット(60)に収容された切換機構(63,64)によって利用ユニット(7)の運 転状態を切り換える冷凍装置(5)との何れにも適用することができる熱源ユニット(10) の構成に加えて、常に圧縮機(14)の吐出側と連通する第 1ガス側ポート(31)を備え ている。この熱源ユニット(10)では、第 2切換機構(18)が第 3ガス側ポート(33)を第 1 ガスライン (25)と連通させると、第 3ガス側ポート(33)が圧縮機(14)から吐出された圧 縮後の冷媒が流出するポートになり、液側ポート (34)が熱源側熱交換器(15)で蒸発 させる凝縮後の液冷媒が流入するポートになり、第 2ガス側ポート(32)が圧縮機(14) が吸入する蒸発後の冷媒が流入するポートになる。一方、第 2切換機構(18)が第 3 ガス側ポート(33)を第 2ガスライン (26)と連通させると、液側ポート (34)が熱源側熱交 換器(15)で凝縮した液冷媒が流出するポートになり、第 2ガス側ポート(32)が圧縮機 (14)が吸入する蒸発後の冷媒が流入するポートになり、第 1ガス側ポート(31)が圧縮 機(14)から吐出された圧縮後の冷媒が流出するポートになる。  In the present invention, the heat source unit (10) includes a refrigeration apparatus (5) that switches the operating state of the usage unit (7) by the switching mechanism (17) provided in the heat source unit (10), and the usage unit ( 7) A heat source that can be applied to any of the refrigeration apparatus (5) that switches the operation state of the utilization unit (7) by the switching mechanism (63, 64) housed in the unit (60) provided for each unit In addition to the structure of the unit (10), the first gas side port (31) always communicating with the discharge side of the compressor (14) is provided. In this heat source unit (10), when the second switching mechanism (18) connects the third gas side port (33) to the first gas line (25), the third gas side port (33) is connected to the compressor (14 ) From which the refrigerant discharged after compression flows out, and the liquid side port (34) becomes a port into which the condensed liquid refrigerant evaporated by the heat source side heat exchanger (15) flows, and the second gas The side port (32) serves as a port through which the evaporated refrigerant sucked by the compressor (14) flows. On the other hand, when the second switching mechanism (18) connects the third gas side port (33) to the second gas line (26), the liquid side port (34) is condensed in the heat source side heat exchanger (15). The liquid refrigerant flows out, the second gas side port (32) becomes the port through which evaporated refrigerant sucked by the compressor (14) flows, and the first gas side port (31) becomes the compressor (14 ) From which the compressed refrigerant discharged from the outlet flows out.
[0022] そして、例えば図 5に示すように、利用側回路 (8)のガス側端を第 3ガス側ポート(33 )に接続して利用側回路 (8)の液側端を液側ポート (34)に接続すると共に、補助ュニ ット (50)の補助熱交換器 (52)の液側端を液側ポート (34)に接続して補助熱交換器 ( 52)のガス側端を第 1ガス側ポート(31)と第 2ガス側ポート(32)とに選択的に接続する と、第 2切換機構(18)が第 3ガス側ポート(33)を第 1ガスライン (25)と連通させる状態 では、圧縮機(14)から吐出された高圧の冷媒が第 3ガス側ポート(33)を通じて供給 される利用側熱交換器 (40)が凝縮器となる加熱運転が行われる。そして、その加熱 運転中に利用側熱交換器 (40)で凝縮した冷媒を補助熱交換器 (52)へ導入すると、 導入した冷媒が補助熱交換器 (52)で蒸発した後に第 2ガス側ポート (32)から熱源側 回路(12)に流入して圧縮機(14)に吸入される。また、第 2切換機構(18)が第 3ガス 側ポート(33)を第 2ガスライン (26)と連通させる状態では、熱源側熱交換器(15)で凝 縮した液冷媒が液側ポート (34)を通じて供給される利用側熱交換器 (40)が蒸発器と なる冷却運転が行われる。そして、その冷却運転中に第 1ガス側ポート(31)を通じて 圧縮機(14)から吐出された冷媒を補助熱交換器 (52)へ導入すると、導入した冷媒 が補助熱交換器 (52)で凝縮した後に熱源側熱交換器(15)で凝縮した液冷媒と共に 利用側熱交換器 (40)へ導入される。利用側熱交換器 (40)へ導入された冷媒は利用 側熱交換器 (40)で蒸発し、蒸発後の低圧の冷媒が第 3ガス側ポート (33)から熱源側 回路(12)に流入して圧縮機(14)に吸入される。 Then, for example, as shown in FIG. 5, the gas side end of the usage side circuit (8) is connected to the third gas side port (33), and the liquid side end of the usage side circuit (8) is connected to the liquid side port. (34) and the gas side end of the auxiliary heat exchanger (52) by connecting the liquid side end of the auxiliary heat exchanger (52) of the auxiliary unit (50) to the liquid side port (34). Is selectively connected to the first gas side port (31) and the second gas side port (32), the second switching mechanism (18) connects the third gas side port (33) to the first gas line (25 ), A high-pressure refrigerant discharged from the compressor (14) is supplied through the third gas side port (33), and a heating operation is performed in which the use side heat exchanger (40) serves as a condenser. . Then, when the refrigerant condensed in the use side heat exchanger (40) during the heating operation is introduced into the auxiliary heat exchanger (52), the introduced refrigerant evaporates in the auxiliary heat exchanger (52) and then the second gas side. It flows into the heat source side circuit (12) from the port (32) and is sucked into the compressor (14). When the second switching mechanism (18) connects the third gas side port (33) to the second gas line (26), the liquid refrigerant condensed in the heat source side heat exchanger (15) is transferred to the liquid side port. (34) The use side heat exchanger (40) supplied through A cooling operation is performed. Then, when the refrigerant discharged from the compressor (14) through the first gas side port (31) during the cooling operation is introduced into the auxiliary heat exchanger (52), the introduced refrigerant is transferred to the auxiliary heat exchanger (52). After being condensed, it is introduced into the use side heat exchanger (40) together with the liquid refrigerant condensed in the heat source side heat exchanger (15). The refrigerant introduced into the use side heat exchanger (40) evaporates in the use side heat exchanger (40), and the low-pressure refrigerant after evaporation flows into the heat source side circuit (12) from the third gas side port (33). And sucked into the compressor (14).
[0023] このように、補助ユニット(50)の補助熱交換器 (52)のガス側端を第 1ガス側ポート(3 1)と第 2ガス側ポート(32)とに選択的に接続することで、加熱運転の際には蒸発器と なる補助熱交換器 (52)からの低圧のガス冷媒を第 2ガス側ポート(32)を通じて圧縮 機(14)に導入することができ、冷却運転の際には凝縮器となる補助熱交換器 (52)に 第 1ガス側ポート(31)を通じて高圧のガス冷媒を供給することができる。従って、補助 ユニット(50)を冷却運転と加熱運転との両方に対応させて使用することができる。つ まり、本発明の熱源ユニット(10)は、冷却運転と加熱運転との両方に対応させて補助 ユニット(50)を接続すること力 Sできる。  [0023] In this way, the gas side end of the auxiliary heat exchanger (52) of the auxiliary unit (50) is selectively connected to the first gas side port (31) and the second gas side port (32). Thus, during the heating operation, the low-pressure gas refrigerant from the auxiliary heat exchanger (52) serving as an evaporator can be introduced into the compressor (14) through the second gas side port (32). In this case, high-pressure gas refrigerant can be supplied to the auxiliary heat exchanger (52) serving as a condenser through the first gas side port (31). Therefore, the auxiliary unit (50) can be used corresponding to both the cooling operation and the heating operation. In other words, the heat source unit (10) of the present invention can connect the auxiliary unit (50) in response to both the cooling operation and the heating operation.
[0024] また、上記第 3の発明では、補助熱交換器 (52)のガス側端が第 1ガス側ポート(31) と第 2ガス側ポート(32)とに選択的に接続されている。従って、上述したように、加熱 運転の際には蒸発器となる補助熱交換器 (52)からの低圧のガス冷媒を第 2ガス側ポ ート(32)を通じて圧縮機(14)に導入することができ、冷却運転の際には高圧のガス 冷媒を第 1ガス側ポート (31)を通じて凝縮器となる補助熱交換器 (52)へ導入すること ができる。この第 3の発明の補助ユニット(50)は、冷却運転と加熱運転との何れにお いても熱源側熱交換器(15)における熱交換量を補助熱交換器 (52)で補う動作がで きるように冷凍装置(5)に接続可能である。  In the third aspect of the invention, the gas side end of the auxiliary heat exchanger (52) is selectively connected to the first gas side port (31) and the second gas side port (32). . Therefore, as described above, during the heating operation, the low-pressure gas refrigerant from the auxiliary heat exchanger (52) serving as an evaporator is introduced into the compressor (14) through the second gas side port (32). In the cooling operation, high-pressure gas refrigerant can be introduced into the auxiliary heat exchanger (52) serving as a condenser through the first gas side port (31). The auxiliary unit (50) of the third aspect of the invention can operate to supplement the heat exchange amount in the heat source side heat exchanger (15) with the auxiliary heat exchanger (52) in both the cooling operation and the heating operation. It can be connected to the refrigeration apparatus (5) as possible.
図面の簡単な説明  Brief Description of Drawings
[0025] [図 1]図 1は、実施形態に係る室外ユニットの概略構成図である。  FIG. 1 is a schematic configuration diagram of an outdoor unit according to an embodiment.
[図 2]図 2は、実施形態に係る室外ユニットを適用した第 1形態の空気調和装置の概 略構成図である。  FIG. 2 is a schematic configuration diagram of an air conditioner according to a first embodiment to which the outdoor unit according to the embodiment is applied.
[図 3]図 3は、実施形態に係る室外ユニットを適用した第 1形態の空気調和装置にお ける冷房運転時の動作を示す概略構成図である。 [図 4]図 4は、実施形態に係る室外ユニットを適用した第 1形態の空気調和装置にお ける暖房運転時の動作を示す概略構成図である。 FIG. 3 is a schematic configuration diagram showing an operation during a cooling operation in the air conditioner of the first embodiment to which the outdoor unit according to the embodiment is applied. FIG. 4 is a schematic configuration diagram showing an operation during a heating operation in the air conditioner of the first embodiment to which the outdoor unit according to the embodiment is applied.
[図 5]図 5は、実施形態に係る室外ユニットを適用した第 2形態の空気調和装置の概 略構成図である。  FIG. 5 is a schematic configuration diagram of an air conditioner of a second form to which the outdoor unit according to the embodiment is applied.
[図 6]図 6は、実施形態に係る室外ユニットを適用した第 2形態の空気調和装置にお ける冷房運転時の動作を示す概略構成図である。  FIG. 6 is a schematic configuration diagram showing an operation during a cooling operation in the air conditioner of the second embodiment to which the outdoor unit according to the embodiment is applied.
[図 7]図 7は、実施形態に係る室外ユニットを適用した第 2形態の空気調和装置にお ける暖房運転時の動作を示す概略構成図である。  FIG. 7 is a schematic configuration diagram showing an operation at the time of heating operation in the air conditioner of the second embodiment to which the outdoor unit according to the embodiment is applied.
[図 8]図 8は、実施形態に係る室外ユニットを適用した第 3形態の空気調和装置の概 略構成図である。  FIG. 8 is a schematic configuration diagram of an air conditioner according to a third embodiment to which the outdoor unit according to the embodiment is applied.
[図 9]図 9は、実施形態に係る室外ユニットを適用した第 3形態の空気調和装置にお ける冷房運転時の動作を示す概略構成図である。  FIG. 9 is a schematic configuration diagram showing an operation at the time of cooling operation in the air conditioner of the third embodiment to which the outdoor unit according to the embodiment is applied.
[図 10]図 10は、実施形態に係る室外ユニットを適用した第 3形態の空気調和装置に おける暖房運転時の動作を示す概略構成図である。  FIG. 10 is a schematic configuration diagram showing an operation at the time of heating operation in the air conditioner of the third embodiment to which the outdoor unit according to the embodiment is applied.
[図 11]図 11は、実施形態に係る室外ユニットを適用した第 3形態の空気調和装置に おける冷暖房運転時の動作を示す概略構成図である。  [Fig. 11] Fig. 11 is a schematic configuration diagram showing an operation at the time of air-conditioning operation in the air conditioner of the third embodiment to which the outdoor unit according to the embodiment is applied.
[図 12]図 12は、その他の実施形態に係る空気調和装置の概略構成図である。  FIG. 12 is a schematic configuration diagram of an air-conditioning apparatus according to another embodiment.
[図 13]図 13は、従来の熱源ユニットを備える冷凍装置の概略構成図であり、(A)は 背景技術の記載の前者の冷凍装置を構成した場合の概略構成図であり、 (B)は背 景技術の記載の後者の冷凍装置を構成した場合の概略構成図である。 FIG. 13 is a schematic configuration diagram of a refrigeration apparatus provided with a conventional heat source unit, (A) is a schematic configuration diagram when the former refrigeration apparatus described in the background art is configured, and (B) FIG. 6 is a schematic configuration diagram when the latter refrigeration apparatus described in the background technology is configured.
[図 14]図 14は、従来の熱源ユニットを適用した冷凍装置に、加熱運転に対応させて 補助ユニットを接続した場合の概略構成図である。 FIG. 14 is a schematic configuration diagram when an auxiliary unit is connected to a refrigeration apparatus to which a conventional heat source unit is applied in correspondence with a heating operation.
[図 15]図 15は、従来の熱源ユニットを適用した冷凍装置に、冷却運転に対応させて 補助ユニットを接続した場合の概略構成図である。  FIG. 15 is a schematic configuration diagram in the case where an auxiliary unit is connected to a refrigeration apparatus to which a conventional heat source unit is applied in correspondence with a cooling operation.
符号の説明 Explanation of symbols
5 空気調和装置 (冷凍装置)  5 Air conditioning equipment (refrigeration equipment)
7 室内ユニット (利用ユニット)  7 Indoor unit (Usage unit)
8 室内回路 (利用側回路) 9 冷媒回路 8 Indoor circuit (use side circuit) 9 Refrigerant circuit
10 室外ユニット(熱源ユニット)  10 Outdoor unit (heat source unit)
12 室外回路 (熱源側回路)  12 Outdoor circuit (heat source side circuit)
14 圧縮機  14 Compressor
15 室外熱交換器 (熱源側熱交換器)  15 Outdoor heat exchanger (heat source side heat exchanger)
17 第 1四路切換弁 (第 1切換機構)  17 1st four way switching valve (1st switching mechanism)
18 第 2四路切換弁 (第 2切換機構)  18 Second four-way switching valve (second switching mechanism)
25 第 1ガスライン  25 1st gas line
26 第 2ガスライン  26 Second gas line
27 第 3ガスライン  27 3rd gas line
28 液ライン  28 liquid lines
31 第 1ガス側ポート  31 1st gas side port
32 第 2ガス側ポート  32 Second gas side port
33 第 2ガス側ポート  33 Second gas side port
34 液側ポート  34 Liquid port
40 室内熱交換器 (利用側熱交換器)  40 Indoor heat exchanger (use side heat exchanger)
41 減圧機構 (室内膨張弁)  41 Pressure reducing mechanism (indoor expansion valve)
50 補助ユニット  50 Auxiliary unit
52 補助熱交換器  52 Auxiliary heat exchanger
54 補助切換機構  54 Auxiliary switching mechanism
56 第 1接続ポート  56 First connection port
57 第 2接続ポート  57 Second connection port
58 第 3接続ポート  58 Third connection port
63 第 1電磁弁 (運転状態切換機構)  63 1st solenoid valve (operating state switching mechanism)
64 第 2電磁弁 (運転状態切換機構)  64 2nd solenoid valve (operating state switching mechanism)
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0027] 以下、本発明の実施形態を図面に基づいて詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0028] 《室外ユニットの構成》 本実施形態に係る室外ユニット(10)は、本発明に係る冷凍装置の熱源ユニットを構 成して!/、る。この室外ユニット(10)は、ガス側連絡配管(20)及び液側連絡配管(21) を介して利用ユニット(7)に接続される。 [0028] <Configuration of outdoor unit> The outdoor unit (10) according to this embodiment constitutes a heat source unit of the refrigeration apparatus according to the present invention. The outdoor unit (10) is connected to the utilization unit (7) through the gas side communication pipe (20) and the liquid side communication pipe (21).
[0029] 図 1に示すように、室外ユニット(10)は、熱源側回路である室外回路(12)を収容し ている。室外回路(12)には、圧縮機(14)、室外熱交換器(15)、室外膨張弁(16)、第 1四路切換弁(17)、及び第 2四路切換弁(18)が接続されている。第 1四路切換弁(1 7)は第 1切換機構を構成し、第 2四路切換弁(18)は第 2切換機構を構成している。ま た、室外ユニット(10)には、第 1ガス側ポート(31)、第 2ガス側ポート(32)、第 3ガス側 ポート(33)、及び液側ポート (34)が設けられて!/、る。  [0029] As shown in FIG. 1, the outdoor unit (10) accommodates an outdoor circuit (12) which is a heat source side circuit. The outdoor circuit (12) includes a compressor (14), an outdoor heat exchanger (15), an outdoor expansion valve (16), a first four-way switching valve (17), and a second four-way switching valve (18). It is connected. The first four-way switching valve (17) constitutes a first switching mechanism, and the second four-way switching valve (18) constitutes a second switching mechanism. The outdoor unit (10) is also provided with a first gas side port (31), a second gas side port (32), a third gas side port (33), and a liquid side port (34)! /
[0030] 圧縮機(14)は、容量可変の圧縮機として構成されている。圧縮機(14)の吐出側は 、第 1ガスライン (25)を介して第 1ガス側ポート(31)に接続されている。第 1ガスライン (25)には、第 1四路切換弁(17)の第 1ポートが接続されている。圧縮機(14)の吸入 側は、第 2ガスライン(26)を介して第 2ガス側ポート(32)に接続されている。第 2ガスラ イン (26)には、第 1四路切換弁(17)の第 3ポートが接続されて!/、る。  [0030] The compressor (14) is configured as a variable capacity compressor. The discharge side of the compressor (14) is connected to the first gas side port (31) via the first gas line (25). The first port of the first four-way selector valve (17) is connected to the first gas line (25). The suction side of the compressor (14) is connected to the second gas side port (32) via the second gas line (26). The second gas line (26) is connected to the third port of the first four-way selector valve (17)!
[0031] 室外熱交換器(15)は、クロスフィン式のフィン.アンド ' ·チューブ型熱交換器であつ て、熱源側熱交換器を構成している。室外熱交換器(15)は、液側端が液ライン (28) を介して液側ポート(34)に接続されている。室外熱交換器(15)は、ガス側端が第 1 四路切換弁(17)の第 2ポートに接続されている。なお、第 1四路切換弁(17)の第 4ポ 一トは封止されている。また、室外膨張弁(16)は、電子膨張弁として構成され、液ライ ン(28)に設けられている。  [0031] The outdoor heat exchanger (15) is a cross fin type fin-and-tube heat exchanger, and constitutes a heat source side heat exchanger. The outdoor heat exchanger (15) has a liquid side end connected to the liquid side port (34) via a liquid line (28). The outdoor heat exchanger (15) has a gas side end connected to the second port of the first four-way selector valve (17). The fourth point of the first four-way selector valve (17) is sealed. The outdoor expansion valve (16) is configured as an electronic expansion valve and is provided in the liquid line (28).
[0032] 第 2四路切換弁(18)は、第 1ポートが第 2ガスライン (26)に接続されている。第 2四 路切換弁(18)の第 2ポートは封止されて!/、る。第 2四路切換弁(18)の第 3ポートは、 第 1ガスライン (25)に接続されている。第 2四路切換弁(18)の第 4ポートは、第 3ガス ライン (27)を介して第 3ガス側ポート(33)に接続されて!/、る。  [0032] The second four-way selector valve (18) has a first port connected to the second gas line (26). The second port of the second four-way selector valve (18) is sealed! The third port of the second four-way selector valve (18) is connected to the first gas line (25). The fourth port of the second four-way selector valve (18) is connected to the third gas side port (33) via the third gas line (27).
[0033] 第 1四路切換弁(17)及び第 2四路切換弁(18)は、第 1ポートと第 2ポートが互いに 連通して第 3ポートと第 4ポートが互いに連通する第 1状態(図 1に実線で示す状態) と、第 1ポートと第 4ポートが互いに連通して第 2ポートと第 3ポートが互いに連通する 第 2状態(図 1に破線で示す状態)とにそれぞれ切換可能となっている。なお、各四 路切換弁(17, 18)の代わりに三路切換弁を用いて第 1切換機構(17)や第 2切換機構 (18)を構成してもよい。また、 2つの電磁弁を用いて第 1切換機構(17)や第 2切換機 構(18)を構成してもよい。 [0033] The first four-way switching valve (17) and the second four-way switching valve (18) are in a first state in which the first port and the second port communicate with each other and the third port and the fourth port communicate with each other. (The state shown by the solid line in Fig. 1) and the second state (the state shown by the broken line in Fig. 1) where the first port and the fourth port communicate with each other and the second port and the third port communicate with each other It is possible. Each four The first switching mechanism (17) and the second switching mechanism (18) may be configured using a three-way switching valve instead of the path switching valve (17, 18). Further, the first switching mechanism (17) and the second switching mechanism (18) may be configured using two solenoid valves.
[0034] 〈冷凍装置の構成及び動作〉  <Configuration and operation of refrigeration apparatus>
以下に、本発明に係る室外ユニット(10)を適用した 3つの形態の冷凍装置(5)につ いて、その構成及び運転動作をそれぞれ説明する。  Hereinafter, the configuration and operation of the three types of refrigeration apparatus (5) to which the outdoor unit (10) according to the present invention is applied will be described.
[0035] 《第 1形態の冷凍装置》  [0035] <First refrigeration apparatus>
第 1形態の冷凍装置(5)は、冷却運転である冷房運転、又は加熱運転である暖房 運転が実行可能な空気調和装置(5)である。この空気調和装置(5)では、図 2に示 すように、室外ユニット(10)に対して複数台の室内ユニット(7a,7lv )が互いに並列 に設けられている。なお、室内ユニット(7)の台数は 1台であってもよい。  The refrigeration apparatus (5) of the first form is an air conditioner (5) capable of executing a cooling operation that is a cooling operation or a heating operation that is a heating operation. In the air conditioner (5), as shown in FIG. 2, a plurality of indoor units (7a, 7lv) are provided in parallel to the outdoor unit (10). The number of indoor units (7) may be one.
[0036] 各室内ユニット(7)には、室内回路 (8)がそれぞれ収容されている。室内回路 (8)に は、ガス側端から順に室内熱交換器 (40)と室内膨張弁(41)とが設けられている。室 内熱交換器 (40)は、クロスフィン式のフィン 'アンド '·チューブ型熱交換器として構成 されて!/、る。室内膨張弁(41)は電子膨張弁として構成されて!/、る。  [0036] Each indoor unit (7) accommodates an indoor circuit (8). The indoor circuit (8) is provided with an indoor heat exchanger (40) and an indoor expansion valve (41) in order from the gas side end. The indoor heat exchanger (40) is configured as a cross-fin fin 'and' tube heat exchanger! The indoor expansion valve (41) is configured as an electronic expansion valve!
[0037] 各室内回路 (8)のガス側端は、ガス側連絡配管(20)を介して室外ユニット(10)の第  [0037] The gas side end of each indoor circuit (8) is connected to the outdoor unit (10) through the gas side connecting pipe (20).
3ガス側ポート(33)に接続されている。各室内回路 (8)の液側端は、液側連絡配管(2 1)を介して室外ユニット(10)の液側ポート(34)に接続されている。この空気調和装置 (5)では、室外回路(12)と室内回路 (8a,8l · ·)とがガス側連絡配管(20)及び液側連 絡配管(21)を介して接続されることによって、蒸気圧縮冷凍サイクルを行う冷媒回路 (9)が構成されている。  3 Connected to the gas port (33). The liquid side end of each indoor circuit (8) is connected to the liquid side port (34) of the outdoor unit (10) via the liquid side connecting pipe (21). In this air conditioner (5), the outdoor circuit (12) and the indoor circuit (8a, 8l ···) are connected via the gas side connecting pipe (20) and the liquid side connecting pipe (21). A refrigerant circuit (9) for performing a vapor compression refrigeration cycle is configured.
[0038] 運転動作  [0038] Driving action
以下に、第 1形態の空気調和装置 (5)の運転動作について説明する。なお、この空 気調和装置(5)では、冷房運転を行うか暖房運転を行うかが室外ユニット(10)の第 1 四路切換弁(17)及び第 2四路切換弁(18)で調節される。第 1四路切換弁(17)及び 第 2四路切換弁(18)が冷房運転の状態に設定されると、運転中の全ての室内ュニッ ト(7)で冷房運転が行われ、第 1四路切換弁(17)及び第 2四路切換弁(18)が暖房運 転の状態に設定されると運転中の全ての室内ユニット(7)で暖房運転が行われる。 [0039] く冷房運転〉 The operation of the air conditioner (5) according to the first embodiment will be described below. In this air conditioner (5), whether the cooling operation or the heating operation is performed is adjusted by the first four-way switching valve (17) and the second four-way switching valve (18) of the outdoor unit (10). Is done. When the first four-way selector valve (17) and the second four-way selector valve (18) are set to the cooling operation state, the cooling operation is performed in all the indoor units (7) that are in operation. When the four-way selector valve (17) and the second four-way selector valve (18) are set to the heating operation state, the heating operation is performed in all the indoor units (7) in operation. [0039] Cooling operation>
冷房運転では、図 3に示すように、第 1四路切換弁(17)が第 1状態に設定され、第 2四路切換弁(18)が第 2状態に設定される。そして、この状態で圧縮機(14)を運転 すると、冷媒回路 (9)では室外熱交換器(15)が凝縮器となって室内熱交換器 (40)が 蒸発器となる蒸気圧縮冷凍サイクルが行われる。  In the cooling operation, as shown in FIG. 3, the first four-way selector valve (17) is set to the first state, and the second four-way selector valve (18) is set to the second state. When the compressor (14) is operated in this state, a vapor compression refrigeration cycle in which the outdoor heat exchanger (15) serves as a condenser and the indoor heat exchanger (40) serves as an evaporator in the refrigerant circuit (9). Done.
[0040] 具体的に、圧縮機(14)から吐出された冷媒は、室外熱交換器(15)で室外空気と熱 交換して凝縮する。室外熱交換器(15)で凝縮した冷媒は、各室内回路 (8a,8lv )に 分配される。室内回路 (8)に流入した冷媒は、室内膨張弁 (41)で減圧された後に室 内熱交換器 (40)で室内空気と熱交換して蒸発する。室内熱交換器 (40)で蒸発した 冷媒は、室外回路(12)に流入し、圧縮機(14)へ吸入されて圧縮される。  [0040] Specifically, the refrigerant discharged from the compressor (14) is condensed by exchanging heat with outdoor air in the outdoor heat exchanger (15). The refrigerant condensed in the outdoor heat exchanger (15) is distributed to each indoor circuit (8a, 8lv). The refrigerant flowing into the indoor circuit (8) is depressurized by the indoor expansion valve (41), and then evaporates by exchanging heat with indoor air in the indoor heat exchanger (40). The refrigerant evaporated in the indoor heat exchanger (40) flows into the outdoor circuit (12), is sucked into the compressor (14), and is compressed.
[0041] く暖房運転〉  [0041] Heating operation>
暖房運転では、図 4に示すように、第 1四路切換弁(17)が第 2状態に設定され、第 2四路切換弁(18)が第 1状態に設定される。そして、この状態で圧縮機(14)を運転 すると、冷媒回路 (9)では室内熱交換器 (40)が凝縮器となって室外熱交換器(15)が 蒸発器となる蒸気圧縮冷凍サイクルが行われる。  In the heating operation, as shown in FIG. 4, the first four-way selector valve (17) is set to the second state, and the second four-way selector valve (18) is set to the first state. When the compressor (14) is operated in this state, a vapor compression refrigeration cycle in which the indoor heat exchanger (40) serves as a condenser and the outdoor heat exchanger (15) serves as an evaporator in the refrigerant circuit (9). Done.
[0042] 具体的に、圧縮機(14)から吐出された冷媒は、各室内回路 (8a,8lv )に分配され る。各室内回路 (8)では、流入した冷媒が、室内熱交換器 (40)で室内空気と熱交換 して凝縮する。室内熱交換器 (40)で凝縮した冷媒は、室外回路(12)に流入する。室 外回路(12)に流入した冷媒は、室外膨張弁(16)で減圧された後に室外熱交換器(1 5)で室外空気と熱交換して蒸発する。室外熱交換器(15)で蒸発した冷媒は、圧縮 機(14)へ吸入されて圧縮される。  Specifically, the refrigerant discharged from the compressor (14) is distributed to each indoor circuit (8a, 8lv). In each indoor circuit (8), the refrigerant flowing in is condensed by exchanging heat with indoor air in the indoor heat exchanger (40). The refrigerant condensed in the indoor heat exchanger (40) flows into the outdoor circuit (12). The refrigerant flowing into the outdoor circuit (12) is depressurized by the outdoor expansion valve (16) and then evaporates by exchanging heat with outdoor air in the outdoor heat exchanger (15). The refrigerant evaporated in the outdoor heat exchanger (15) is sucked into the compressor (14) and compressed.
[0043] 《第 2形態の冷凍装置》  [0043] <Second form of refrigeration apparatus>
第 2形態の空気調和装置 (5)は、図 5に示すように、上記第 1形態の空気調和装置 (5)の構成に加えて、更に補助ユニット(50)が設けられている。補助ユニット(50)は、 室外ユニット(10)と共に室外に設置されている。なお、補助ユニット(50)の台数は複 数台であってもよい。  As shown in FIG. 5, the air conditioner (5) of the second form is further provided with an auxiliary unit (50) in addition to the configuration of the air conditioner (5) of the first form. The auxiliary unit (50) is installed outdoors together with the outdoor unit (10). The number of auxiliary units (50) may be multiple.
[0044] 補助ユニット(50)には、補助ユニット回路(51)が収容されている。補助ユニット回路  The auxiliary unit (50) accommodates an auxiliary unit circuit (51). Auxiliary unit circuit
(51)には、補助熱交換器 (52)、膨張弁(53)、及び四路切換弁(54)が設けられて!/ヽ る。また、補助ユニット(50)には、第 1接続ポート(56)、第 2接続ポート(57)、及び第 3 接続ポート (58)が設けられて!/、る。 (51) is provided with an auxiliary heat exchanger (52), an expansion valve (53), and a four-way selector valve (54). The The auxiliary unit (50) is provided with a first connection port (56), a second connection port (57), and a third connection port (58).
[0045] 補助熱交換器 (52)は、クロスフィン式のフィン 'アンド ' ·チューブ型熱交換器として構 成されている。補助熱交換器 (52)は、液側端が第 1接続ポート(56)に接続されてい る。補助熱交換器 (52)のガス側端は、四路切換弁(54)の第 2ポートに接続されてい る。また、四路切換弁(54)の第 1ポートは、第 3接続ポート(58)に接続されている。四 路切換弁(54)の第 3ポートは、第 2接続ポート(57)に接続されている。四路切換弁(5 4)の第 4ポートは封止されている。膨張弁(53)は、電子膨張弁として構成され、補助 熱交換器 (52)と第 1接続ポート (56)との間に設けられている。  [0045] The auxiliary heat exchanger (52) is configured as a cross fin type fin 'and' tube type heat exchanger. The auxiliary heat exchanger (52) has a liquid side end connected to the first connection port (56). The gas side end of the auxiliary heat exchanger (52) is connected to the second port of the four-way selector valve (54). The first port of the four-way selector valve (54) is connected to the third connection port (58). The third port of the four-way selector valve (54) is connected to the second connection port (57). The fourth port of the four-way selector valve (54) is sealed. The expansion valve (53) is configured as an electronic expansion valve, and is provided between the auxiliary heat exchanger (52) and the first connection port (56).
[0046] 四路切換弁(54)は、第 1ポートと第 2ポートが互いに連通して第 3ポートと第 4ポート が互いに連通する第 1状態(図 5に実線で示す状態)と、第 1ポートと第 4ポートが互 いに連通して第 2ポートと第 3ポートが互いに連通する第 2状態(図 5に破線で示す状 態)とに切換可能となっている。四路切換弁(54)が第 1状態に設定されると、補助熱 交換器 (52)のガス側端が第 3接続ポート(58)と連通する状態になる。四路切換弁(5 4)が第 2状態に設定されると、補助熱交換器 (52)のガス側端が第 2接続ポート(57)と 連通する状態になる。このように、四路切換弁(54)は、補助切換機構を構成している 。なお、四路切換弁(54)の代わりに三路切換弁を用いて補助切換機構を構成しても よ!/、し、 2つの電磁弁を用いて補助切換機構を構成してもよ!/、。  [0046] The four-way selector valve (54) includes a first state (state indicated by a solid line in FIG. 5) in which the first port and the second port communicate with each other and the third port and the fourth port communicate with each other, It is possible to switch to the second state (state indicated by the broken line in Fig. 5) in which the 1st port and 4th port communicate with each other and the 2nd port and 3rd port communicate with each other. When the four-way selector valve (54) is set to the first state, the gas side end of the auxiliary heat exchanger (52) is in communication with the third connection port (58). When the four-way selector valve (54) is set to the second state, the gas side end of the auxiliary heat exchanger (52) is in communication with the second connection port (57). Thus, the four-way selector valve (54) constitutes an auxiliary switching mechanism. The auxiliary switching mechanism may be configured using a three-way switching valve instead of the four-way switching valve (54)! /, Or the auxiliary switching mechanism may be configured using two solenoid valves! /.
[0047] 補助ユニット(50)の第 1接続ポート(56)は、液側連絡配管(21)に接続されて!/、る。  [0047] The first connection port (56) of the auxiliary unit (50) is connected to the liquid side communication pipe (21).
第 2接続ポート(57)は、室外ユニット(10)の第 1ガス側ポート(31)に接続されている。 第 3接続ポート(58)は、室外ユニット(10)の第 2ガス側ポート(32)に接続されて!/、る。  The second connection port (57) is connected to the first gas side port (31) of the outdoor unit (10). The third connection port (58) is connected to the second gas side port (32) of the outdoor unit (10).
[0048] 運転動作  [0048] Driving operation
以下に、第 2形態の空気調和装置 (5)の運転動作について説明する。この空気調 和装置 (5)では、上記第 1形態の空気調和装置 (5)と同様に、第 1四路切換弁(17) 及び第 2四路切換弁(18)が冷房運転の状態に設定されると、運転中の全ての室内 ユニット(7)で冷房運転が行われ、第 1四路切換弁( 17)及び第 2四路切換弁( 18)が 暖房運転の状態に設定されると運転中の全ての室内ユニット(7)で暖房運転が行わ れる。 [0049] く冷房運転〉 The operation of the air conditioner (5) according to the second embodiment will be described below. In this air conditioner (5), the first four-way selector valve (17) and the second four-way selector valve (18) are in the cooling operation state, as in the air conditioner (5) of the first embodiment. When set, all the indoor units (7) in operation are cooled, and the first four-way selector valve (17) and the second four-way selector valve (18) are set to the heating operation state. And all indoor units (7) in operation are heated. [0049] Cooling operation>
冷房運転では、図 6に示すように、第 1四路切換弁(17)が第 1状態に設定され、第 2四路切換弁(18)が第 2状態に設定される。そして、この状態で圧縮機(14)を運転 すると、冷媒回路 (9)では室外熱交換器(15)が凝縮器となって室内熱交換器 (40)が 蒸発器となる蒸気圧縮冷凍サイクルが行われる。  In the cooling operation, as shown in FIG. 6, the first four-way selector valve (17) is set to the first state, and the second four-way selector valve (18) is set to the second state. When the compressor (14) is operated in this state, a vapor compression refrigeration cycle in which the outdoor heat exchanger (15) serves as a condenser and the indoor heat exchanger (40) serves as an evaporator in the refrigerant circuit (9). Done.
[0050] なお、補助ユニット(50)の四路切換弁(54)は、冷房運転を行う室内ユニット(7)の 台数が多い場合など比較的大きな冷房能力が必要となる場合には第 2状態に設定さ れる。この状態では、補助ユニット(50)の補助熱交換器 (52)が室外熱交換器(15)と 共に凝縮器となる。補助ユニット(50)の四路切換弁(54)は、必要となる冷房能力が 比較的小さい場合には第 1状態に設定される。この場合は、さらに膨張弁(53)が閉 状態に設定される。この状態では、補助ユニット (50)の補助熱交換器 (52)に冷媒が 流通しない。この空気調和装置(5)は、補助ユニット(50)の補助熱交換器 (52)を使 用したり使用しなかったり調節することで、必要となる冷房能力に対して常に適切な 冷凍サイクルを行うことが可能である。これにより、この空気調和装置(5)は、常に成 績係数 (COP)が高い状態で運転を行うことができる。  [0050] The four-way selector valve (54) of the auxiliary unit (50) is in the second state when a relatively large cooling capacity is required, such as when the number of indoor units (7) that perform cooling operation is large. Set to. In this state, the auxiliary heat exchanger (52) of the auxiliary unit (50) becomes a condenser together with the outdoor heat exchanger (15). The four-way selector valve (54) of the auxiliary unit (50) is set to the first state when the required cooling capacity is relatively small. In this case, the expansion valve (53) is further set to a closed state. In this state, the refrigerant does not flow through the auxiliary heat exchanger (52) of the auxiliary unit (50). This air conditioner (5) adjusts whether or not the auxiliary heat exchanger (52) of the auxiliary unit (50) is used or not, so that an appropriate refrigeration cycle is always provided for the required cooling capacity. Is possible. Thus, the air conditioner (5) can always be operated with a high coefficient of performance (COP).
[0051] 以下では、補助ユニット(50)の補助熱交換器 (52)を凝縮器として使用する場合の 冷媒の流れについて説明する。なお、室外ユニット(10)及び室内ユニット(7)におけ る冷媒の流れは、上記第 1形態の空気調和装置 (5)の冷房運転と同じであるため省 略する。  [0051] Hereinafter, the flow of the refrigerant when the auxiliary heat exchanger (52) of the auxiliary unit (50) is used as a condenser will be described. Note that the flow of the refrigerant in the outdoor unit (10) and the indoor unit (7) is the same as that in the cooling operation of the air conditioner (5) of the first embodiment, and is omitted.
[0052] この冷房運転では、圧縮機(14)から吐出された冷媒の一部が、補助ユニット回路( 51)に流入する。補助ユニット回路(51)では、流入した冷媒が、補助熱交換器 (52)で 室外空気と熱交換して凝縮する。補助熱交換器 (52)で凝縮した冷媒は、室外熱交 換器(15)で凝縮した冷媒と合流して各室内回路 (8)へ分配される。  [0052] In this cooling operation, a part of the refrigerant discharged from the compressor (14) flows into the auxiliary unit circuit (51). In the auxiliary unit circuit (51), the refrigerant that has flowed in is condensed by exchanging heat with outdoor air in the auxiliary heat exchanger (52). The refrigerant condensed in the auxiliary heat exchanger (52) merges with the refrigerant condensed in the outdoor heat exchanger (15) and is distributed to each indoor circuit (8).
[0053] く暖房運転〉  [0053] Heating operation>
暖房運転では、図 7に示すように、第 1四路切換弁(17)が第 2状態に設定され、第 2四路切換弁(18)が第 1状態に設定される。そして、この状態で圧縮機(14)を運転 すると、冷媒回路 (9)では室内熱交換器 (40)が凝縮器となって室外熱交換器(15)が 蒸発器となる蒸気圧縮冷凍サイクルが行われる。 [0054] なお、補助ユニット(50)の四路切換弁(54)は、暖房運転を行う室内ユニット(7)の 台数が多い場合など比較的大きな暖房能力が必要となる場合には第 1状態に設定さ れる。この状態では、補助ユニット(50)の補助熱交換器 (52)が室外熱交換器(15)と 共に蒸発器となる。補助ユニット(50)の四路切換弁(54)は、必要となる冷房能力が 比較的小さい場合には第 2状態に設定される。この場合は、さらに膨張弁(53)が閉 状態に設定される。この状態では、補助ユニット (50)の補助熱交換器 (52)に冷媒が 流通しない。この空気調和装置(5)は、補助ユニット(50)の補助熱交換器 (52)を使 用したり使用しなかったり調節することで、必要となる暖房能力に対して常に適切な 冷凍サイクルを行うことが可能である。これにより、この空気調和装置(5)は、常に成 績係数 (COP)が高い状態で運転を行うことができる。 In the heating operation, as shown in FIG. 7, the first four-way selector valve (17) is set to the second state, and the second four-way selector valve (18) is set to the first state. When the compressor (14) is operated in this state, a vapor compression refrigeration cycle in which the indoor heat exchanger (40) serves as a condenser and the outdoor heat exchanger (15) serves as an evaporator in the refrigerant circuit (9). Done. [0054] Note that the four-way selector valve (54) of the auxiliary unit (50) is in the first state when a relatively large heating capacity is required, such as when the number of indoor units (7) that perform heating operation is large. Set to. In this state, the auxiliary heat exchanger (52) of the auxiliary unit (50) becomes an evaporator together with the outdoor heat exchanger (15). The four-way selector valve (54) of the auxiliary unit (50) is set to the second state when the required cooling capacity is relatively small. In this case, the expansion valve (53) is further set to a closed state. In this state, the refrigerant does not flow through the auxiliary heat exchanger (52) of the auxiliary unit (50). This air conditioner (5) adjusts whether or not the auxiliary heat exchanger (52) of the auxiliary unit (50) is used or not, so that a refrigeration cycle that is always appropriate for the required heating capacity is achieved. Is possible. Thus, the air conditioner (5) can always be operated with a high coefficient of performance (COP).
[0055] 以下では、補助ユニット(50)の補助熱交換器 (52)を蒸発器として使用する場合の 冷媒の流れについて説明する。なお、室外ユニット(10)及び室内ユニット(7)におけ る冷媒の流れは、上記第 1形態の空気調和装置(5)の暖房運転と同じであるため省 略する。  [0055] Hereinafter, the flow of the refrigerant when the auxiliary heat exchanger (52) of the auxiliary unit (50) is used as an evaporator will be described. Note that the flow of refrigerant in the outdoor unit (10) and the indoor unit (7) is the same as that in the heating operation of the air conditioner (5) of the first embodiment, and is omitted.
[0056] この暖房運転では、室内熱交換器 (40)で凝縮した冷媒の一部が、補助ユニット回 路(51)に流入する。補助ユニット回路(51)では、流入した冷媒が、膨張弁(53)で減 圧された後に補助熱交換器 (52)で室外空気と熱交換して蒸発する。補助熱交換器 ( 52)で蒸発した冷媒は、室外回路(12)に流入し、室外熱交換器(15)で蒸発した冷媒 と合流して圧縮機(14)へ吸入される。  [0056] In this heating operation, a part of the refrigerant condensed in the indoor heat exchanger (40) flows into the auxiliary unit circuit (51). In the auxiliary unit circuit (51), the refrigerant flowing in is reduced in pressure by the expansion valve (53), and then evaporated by exchanging heat with outdoor air in the auxiliary heat exchanger (52). The refrigerant evaporated in the auxiliary heat exchanger (52) flows into the outdoor circuit (12), merges with the refrigerant evaporated in the outdoor heat exchanger (15), and is sucked into the compressor (14).
[0057] 《第 3形態の冷凍装置》  [0057] Refrigeration apparatus of third form
第 3形態の空気調和装置(5)は、各室内ユニット(7a,7l · ·)毎に暖房運転を行うか 暖房運転を行うかを選択できる、いわゆる冷暖フリーの空気調和装置(5)である。こ の空気調和装置(5)では、図 8に示すように、室外ユニット(10)に対して複数の室内 ユニット(7a,7l · ·)が互いに並列に接続され、各室内ユニット(7a,7l · ·)毎に BSュニ ット(60a,60b, ·· ·)が設けられて!/、る。各 BSユニット(60a,60b, · · ·)«、切換ユニットを構 成している。なお、図 8では、第 1室内ユニット(7a)と第 2室内ユニット(7b)以外の室 内ユニットの記載は省略する。  The air conditioner (5) of the third form is a so-called cooling / heating-free air conditioner (5) that can select whether to perform the heating operation or the heating operation for each indoor unit (7a, 7l ···). . In this air conditioner (5), as shown in FIG. 8, a plurality of indoor units (7a, 7l...) Are connected in parallel to the outdoor unit (10), and each indoor unit (7a, 7l. ···) BS unit (60a, 60b, ···) is provided for each! Each BS unit (60a, 60b, ...) «constitutes a switching unit. In FIG. 8, descriptions of indoor units other than the first indoor unit (7a) and the second indoor unit (7b) are omitted.
[0058] 各 BSユニット (60)には、液側回路 (61)とガス側回路 (62)とがそれぞれ収容されて V、る。液側回路(61)の一端には、室外ユニット(10)の液側ポート(34)から延びる液 側連絡配管(21)が接続されている。液側回路 (61)の他端には、室内回路 (8)の液 側端に接続された冷媒配管が接続されている。 [0058] Each BS unit (60) contains a liquid side circuit (61) and a gas side circuit (62), respectively. V, ru. One end of the liquid side circuit (61) is connected to a liquid side communication pipe (21) extending from the liquid side port (34) of the outdoor unit (10). The other end of the liquid side circuit (61) is connected to a refrigerant pipe connected to the liquid side end of the indoor circuit (8).
[0059] ガス側回路 (62)は、第 1電磁弁 (63)が設けられた第 1配管と、第 2電磁弁 (64)が設 けられた第 2配管とを備えている。第 1配管と第 2配管とは、一端同士が互いに接続さ れている。第 1配管の一端と第 2配管の一端との接続部から延びる冷媒配管は、室内 回路 (8)のガス側端に接続されている。第 1配管の他端には、室外ユニット(10)の第 3ガス側ポート(33)から延びる第 1ガス側連絡配管(20a)が接続されて!/、る。第 2配管 の他端には、室外ユニット(10)の第 2ガス側ポート(32)から延びる第 2ガス側連絡配 管(20b)が接続されている。第 1電磁弁 (63)及び第 2電磁弁 (64)は、運転状態切換 機構を構成している。 [0059] The gas side circuit (62) includes a first pipe provided with the first electromagnetic valve (63) and a second pipe provided with the second electromagnetic valve (64). One end of the first pipe and the second pipe are connected to each other. A refrigerant pipe extending from a connection portion between one end of the first pipe and one end of the second pipe is connected to the gas side end of the indoor circuit (8). The other end of the first pipe is connected to the first gas side connecting pipe (20a) extending from the third gas side port (33) of the outdoor unit (10). The other end of the second pipe is connected to a second gas side connecting pipe (20b) extending from the second gas side port (32) of the outdoor unit (10). The first solenoid valve (63) and the second solenoid valve (64) constitute an operating state switching mechanism.
[0060] この空気調和装置 (5)には、上記第 2形態の空気調和装置 (5)と同じ補助ユニット( 50)が設けられている。補助ユニット(50)の第 1接続ポート(56)は、液側連絡配管(21 )に接続されている。第 2接続ポート(57)は、室外ユニット(10)の第 1ガス側ポート(31 )に接続されて!、る。第 3接続ポート (58)は、第 2ガス側連絡配管(20b)に接続されて いる。  [0060] This air conditioner (5) is provided with the same auxiliary unit (50) as the air conditioner (5) of the second embodiment. The first connection port (56) of the auxiliary unit (50) is connected to the liquid side communication pipe (21). The second connection port (57) is connected to the first gas side port (31) of the outdoor unit (10). The third connection port (58) is connected to the second gas side communication pipe (20b).
[0061] 運転動作  [0061] Driving operation
以下に、第 3形態の空気調和装置 (5)の運転動作について説明する。この空気調 和装置(5)では、冷房運転、暖房運転に加えて、冷房運転を行う室内ユニット(7)と 暖房運転を行う室内ユニット (7)とが同時に存在する冷暖房運転が行われる。  The operation of the air conditioner (5) according to the third embodiment will be described below. In the air conditioner (5), in addition to the cooling operation and the heating operation, an air conditioning operation in which the indoor unit (7) performing the cooling operation and the indoor unit (7) performing the heating operation exist simultaneously is performed.
[0062] く冷房運転〉  [0062] Cooling operation>
冷房運転では、図 9に示すように、室外ユニット(10)の第 2四路切換弁(18)が第 2 状態に設定される。補助ユニット(50)では、四路切換弁(54)が第 2状態に設定される 。また、各 BSユニット (60)では、第 1電磁弁(63)が閉状態に設定され、第 2電磁弁(6 4)が開状態に設定される。そして、この状態で圧縮機(14)を運転すると、冷媒回路( 9)では補助ユニット(50)の補助熱交換器 (52)が凝縮器となって室内熱交換器 (40) が蒸発器となる蒸気圧縮冷凍サイクルが行われる。  In the cooling operation, as shown in FIG. 9, the second four-way selector valve (18) of the outdoor unit (10) is set to the second state. In the auxiliary unit (50), the four-way selector valve (54) is set to the second state. In each BS unit (60), the first solenoid valve (63) is set to the closed state, and the second solenoid valve (64) is set to the open state. When the compressor (14) is operated in this state, in the refrigerant circuit (9), the auxiliary heat exchanger (52) of the auxiliary unit (50) becomes a condenser and the indoor heat exchanger (40) becomes an evaporator. A vapor compression refrigeration cycle is performed.
[0063] なお、室外ユニット(10)の第 1四路切換弁(17)は、冷房運転を行う室内ユニット(7) の台数が多い場合など必要となる冷房能力が大きい場合には第 1状態に設定される 。この状態では、室外熱交換器(15)が補助ユニット(50)の補助熱交換器 (52)と共に 凝縮器となる。第 1四路切換弁(17)は、必要となる冷房能力が小さい場合には第 2状 態に設定される。この場合は、更に室外膨張弁(16)は閉状態に設定される。この状 態では、室外熱交換器(15)に冷媒が流通しない。この空気調和装置 (5)は、室外熱 交換器(15)を使用したり使用しなかったり調節することで、必要となる冷房能力に対 して常に適切な冷凍サイクルを行うことが可能である。これにより、この空気調和装置 (5)は、常に成績係数 (COP)が高い状態で運転を行うことができる。 [0063] The first four-way selector valve (17) of the outdoor unit (10) is provided with an indoor unit (7) that performs a cooling operation. If the required cooling capacity is large, such as when there are many units, the first state is set. In this state, the outdoor heat exchanger (15) becomes a condenser together with the auxiliary heat exchanger (52) of the auxiliary unit (50). The first four-way selector valve (17) is set to the second state when the required cooling capacity is small. In this case, the outdoor expansion valve (16) is further set to a closed state. In this state, the refrigerant does not flow through the outdoor heat exchanger (15). This air conditioner (5) can always perform an appropriate refrigeration cycle for the required cooling capacity by adjusting whether the outdoor heat exchanger (15) is used or not. . As a result, the air conditioner (5) can always be operated with a high coefficient of performance (COP).
[0064] 以下では、室外熱交換器(15)を凝縮器として使用する場合の冷媒の流れについて 説明する。 [0064] Hereinafter, the flow of the refrigerant when the outdoor heat exchanger (15) is used as a condenser will be described.
[0065] この冷房運転では、圧縮機(14)から吐出された冷媒の一部が、補助ユニット(50) の第 2接続ポート(57)から補助ユニット回路(51)へ流入する。補助ユニット回路(51) に流入した冷媒は、補助熱交換器 (52)で室外空気と熱交換して凝縮する。また、圧 縮機(14)から吐出された冷媒の残りの一部は、室外熱交換器(15)で室外空気と熱 交換して凝縮する。室外熱交換器(15)で凝縮した冷媒は、補助ユニット(50)の補助 熱交換器 (52)で凝縮した冷媒と合流する。  In this cooling operation, a part of the refrigerant discharged from the compressor (14) flows into the auxiliary unit circuit (51) from the second connection port (57) of the auxiliary unit (50). The refrigerant flowing into the auxiliary unit circuit (51) is condensed by exchanging heat with outdoor air in the auxiliary heat exchanger (52). The remaining part of the refrigerant discharged from the compressor (14) is condensed by exchanging heat with outdoor air in the outdoor heat exchanger (15). The refrigerant condensed in the outdoor heat exchanger (15) merges with the refrigerant condensed in the auxiliary heat exchanger (52) of the auxiliary unit (50).
[0066] 合流した凝縮後の冷媒は、各室内回路 (8)に対して分配される。分配された冷媒は 、 BSユニット(60)の液側回路(61)を通って、室内回路(8)へ流入する。室内回路(8) に流入した冷媒は、室内膨張弁 (41)で減圧された後に室内熱交換器 (40)で室内空 気と熱交換して蒸発する。室内熱交換器 (40)で蒸発した冷媒は、 BSユニット(60)の ガス側回路 (62)の第 2配管等を通じて室外回路(12)に流入して、圧縮機(14)に吸 人される。  [0066] The condensed refrigerant after condensing is distributed to each indoor circuit (8). The distributed refrigerant flows into the indoor circuit (8) through the liquid side circuit (61) of the BS unit (60). The refrigerant flowing into the indoor circuit (8) is depressurized by the indoor expansion valve (41) and then evaporates by exchanging heat with the indoor air in the indoor heat exchanger (40). The refrigerant evaporated in the indoor heat exchanger (40) flows into the outdoor circuit (12) through the second pipe of the gas side circuit (62) of the BS unit (60) and is absorbed by the compressor (14). The
[0067] く暖房運転〉  [0067] Heating operation>
暖房運転では、図 10に示すように、室外ユニット(10)の第 2四路切換弁(18)が第 1 状態に設定される。補助ユニット(50)では、四路切換弁(54)が第 1状態に設定される 。また、各 BSユニット (60)では、第 1電磁弁(63)が開状態に設定され、第 2電磁弁(6 4)が閉状態に設定される。そして、この状態で圧縮機(14)を運転すると、冷媒回路( 9)では室内熱交換器 (40)が凝縮器となって補助ユニット(50)の補助熱交換器 (52) が蒸発器となる蒸気圧縮冷凍サイクルが行われる。 In the heating operation, as shown in FIG. 10, the second four-way selector valve (18) of the outdoor unit (10) is set to the first state. In the auxiliary unit (50), the four-way selector valve (54) is set to the first state. In each BS unit (60), the first solenoid valve (63) is set in the open state, and the second solenoid valve (64) is set in the closed state. When the compressor (14) is operated in this state, the indoor heat exchanger (40) becomes a condenser in the refrigerant circuit (9), and the auxiliary heat exchanger (52) of the auxiliary unit (50). A vapor compression refrigeration cycle in which becomes an evaporator is performed.
[0068] なお、室外ユニット(10)の第 1四路切換弁(17)は、暖房運転を行う室内ユニット(7) の台数が多い場合など必要となる暖房能力が大きい場合には第 2状態に設定される 。この状態では、室外熱交換器(15)が補助ユニット(50)の補助熱交換器 (52)と共に 蒸発器となる。第 1四路切換弁(17)は、必要となる暖房能力が小さい場合には第 1状 態に設定される。この場合、室外膨張弁(16)は閉状態に設定される。この状態では、 室外熱交換器(15)に冷媒が流通しない。この空気調和装置 (5)は、室外熱交換器( 15)を使用したり使用しなかったりすることで、必要となる暖房能力に対して常に適切 な冷凍サイクルを行うことが可能である。これにより、この空気調和装置(5)は、常に 成績係数 (COP)が高い状態で運転を行うことができる。  [0068] The first four-way selector valve (17) of the outdoor unit (10) is in the second state when the required heating capacity is large, such as when the number of indoor units (7) that perform heating operation is large. Set to. In this state, the outdoor heat exchanger (15) becomes an evaporator together with the auxiliary heat exchanger (52) of the auxiliary unit (50). The first four-way selector valve (17) is set to the first state when the required heating capacity is small. In this case, the outdoor expansion valve (16) is set in a closed state. In this state, the refrigerant does not flow through the outdoor heat exchanger (15). The air conditioner (5) can always perform an appropriate refrigeration cycle for the required heating capacity by using or not using the outdoor heat exchanger (15). Thus, the air conditioner (5) can always be operated with a high coefficient of performance (COP).
[0069] 以下では、室外熱交換器(15)を蒸発器として使用する場合の冷媒の流れについて 説明する。  [0069] Hereinafter, the flow of the refrigerant when the outdoor heat exchanger (15) is used as an evaporator will be described.
[0070] この暖房運転では、圧縮機(14)から吐出された冷媒が、各室内回路 (8)に対して 分配される。分配された冷媒は、 BSユニット(60)のガス側回路 (62)の第 1配管を通 つて、室内回路 (8)へ流入する。室内回路 (8)に流入した冷媒は、室内熱交換器 (40 )で室内空気と熱交換して凝縮する。  [0070] In this heating operation, the refrigerant discharged from the compressor (14) is distributed to each indoor circuit (8). The distributed refrigerant flows into the indoor circuit (8) through the first pipe of the gas side circuit (62) of the BS unit (60). The refrigerant flowing into the indoor circuit (8) is condensed by exchanging heat with indoor air in the indoor heat exchanger (40).
[0071] 室内熱交換器 (40)で凝縮した冷媒の一部は、補助ユニット回路(51)へ流入する。  [0071] A part of the refrigerant condensed in the indoor heat exchanger (40) flows into the auxiliary unit circuit (51).
補助ユニット回路 (51)に流入した冷媒は、膨張弁(53)で減圧された後に補助熱交 換器 (52)で室外空気と熱交換して蒸発する。また、室内熱交換器 (40)で凝縮した冷 媒の残りの一部は、室外回路(12)に流入する。室外回路(12)に流入した冷媒は、室 外膨張弁(16)で減圧された後に室外熱交換器(15)で室外空気と熱交換して蒸発す る。室外熱交換器(15)で蒸発した冷媒は、補助ユニット(50)の補助熱交換器 (52)で 蒸発した冷媒と合流して、圧縮機(14)に吸入される。  The refrigerant flowing into the auxiliary unit circuit (51) is depressurized by the expansion valve (53), and then evaporates by exchanging heat with outdoor air in the auxiliary heat exchanger (52). The remaining part of the refrigerant condensed in the indoor heat exchanger (40) flows into the outdoor circuit (12). The refrigerant flowing into the outdoor circuit (12) is depressurized by the outdoor expansion valve (16), and then evaporates by exchanging heat with outdoor air in the outdoor heat exchanger (15). The refrigerant evaporated in the outdoor heat exchanger (15) merges with the refrigerant evaporated in the auxiliary heat exchanger (52) of the auxiliary unit (50), and is sucked into the compressor (14).
[0072] く冷暖房運転〉  [0072] Air-conditioning operation>
冷暖房運転について説明する。なお、ここでは、第 1室内ユニット(7a)のみ冷房運 転を行!/、他の室内ユニット(7b,- · ·)で暖房運転を行う場合につ!/、て説明する。この冷 暖房運転では、図 11に示すように、室外ユニット(10)の第 2四路切換弁(18)が第 1 状態に設定される。また、第 1室内ユニット(7a)の BSユニット(60a)では、第 1電磁弁( 63b)が閉状態に設定され、第 2電磁弁(64b)が開状態に設定される。第 1室内ュニッ ト(7a)以外の BSユニット(601ν· ·)では、第 1電磁弁(631ν· ·)が開状態に設定され、 第 2電磁弁 (641ν··)が閉状態に設定される。そして、この状態で圧縮機(14)を運転 すると、冷媒回路 (9)では第 1室内ユニット(7a)以外の室内ユニット (7b, · · ·)の室内熱 交換器 (40b, · · ·)が凝縮器となって、第 1室内ユニット(7a)の室内熱交換器 (40a)が蒸 発器となる蒸気圧縮冷凍サイクルが行われる。 The air conditioning operation will be described. Here, only the first indoor unit (7a) will be cooled and operated, and the other indoor units (7b,...) Will be heated! In this air conditioning operation, as shown in FIG. 11, the second four-way selector valve (18) of the outdoor unit (10) is set to the first state. In the BS unit (60a) of the first indoor unit (7a), the first solenoid valve ( 63b) is set to the closed state, and the second solenoid valve (64b) is set to the open state. In the BS unit (601ν ··) other than the first indoor unit (7a), the first solenoid valve (631ν ··) is set to the open state and the second solenoid valve (641ν ··) is set to the closed state. The When the compressor (14) is operated in this state, in the refrigerant circuit (9), the indoor heat exchangers (40b, ···) of the indoor units (7b, ···) other than the first indoor unit (7a) As a condenser, a vapor compression refrigeration cycle is performed in which the indoor heat exchanger (40a) of the first indoor unit (7a) is an evaporator.
[0073] なお、室外熱交換器(15)は、第 1四路切換弁(17)や室外膨張弁(16)により、凝縮 器になる状態、蒸発器になる状態、及び冷媒が流通しない状態の何れかに調節され る。具体的に、室外膨張弁(16)が開状態に設定され第 1四路切換弁(17)が第 1状態 に設定されると、室外熱交換器(15)は凝縮器となる。室外膨張弁(16)が開状態に設 定され第 1四路切換弁(17)が第 2状態に設定されると室外熱交換器(15)は蒸発器と なる。室外膨張弁(16)が閉状態に設定されると室外熱交換器(15)は冷媒が流通し ない状態になる。 [0073] The outdoor heat exchanger (15) is in a state where it becomes a condenser, a state where it becomes an evaporator, and a state where no refrigerant flows by the first four-way switching valve (17) or the outdoor expansion valve (16). It is adjusted to either. Specifically, when the outdoor expansion valve (16) is set to the open state and the first four-way switching valve (17) is set to the first state, the outdoor heat exchanger (15) becomes a condenser. When the outdoor expansion valve (16) is set to the open state and the first four-way selector valve (17) is set to the second state, the outdoor heat exchanger (15) becomes an evaporator. When the outdoor expansion valve (16) is set to the closed state, the outdoor heat exchanger (15) is in a state where no refrigerant flows.
[0074] また、補助ユニット(50)の補助熱交換器 (52)は、膨張弁(53)ゃ四路切換弁(54)に より、凝縮器になる状態、蒸発器になる状態、及び冷媒が流通しない状態の何れか に調節される。具体的に、膨張弁(53)が開状態に設定され四路切換弁(54)が第 2状 態に設定されると、補助熱交換器 (52)は凝縮器となる。膨張弁 (53)が開状態に設定 され四路切換弁(54)が第 1状態に設定されると補助熱交換器 (52)は蒸発器となる。 膨張弁 (53)が閉状態に設定されると補助熱交換器 (52)は冷媒が流通しない状態に なる。  [0074] Further, the auxiliary heat exchanger (52) of the auxiliary unit (50) includes the expansion valve (53) and the four-way switching valve (54), which are in a condenser state, an evaporator state, and a refrigerant. It is adjusted to one of the states where the product does not circulate. Specifically, when the expansion valve (53) is set to the open state and the four-way switching valve (54) is set to the second state, the auxiliary heat exchanger (52) becomes a condenser. When the expansion valve (53) is set to the open state and the four-way selector valve (54) is set to the first state, the auxiliary heat exchanger (52) becomes an evaporator. When the expansion valve (53) is set in the closed state, the auxiliary heat exchanger (52) is in a state where no refrigerant flows.
[0075] この空気調和装置(5)では、必要となる冷房能力及び暖房能力に応じて、第 1四路 切換弁(17)、室外膨張弁(16)、補助ユニット (50)の四路切換弁(54)、及び膨張弁( 53)を適宜調節することで、室外熱交換器(15)及び補助ユニット(50)の補助熱交換 器 (52)の使用状態が調節される。これにより、この空気調和装置(5)は、常に適切な 冷凍サイクルを行って成績係数 (COP)が高い状態を維持することができる。  [0075] In this air conditioner (5), the four-way switching of the first four-way switching valve (17), the outdoor expansion valve (16), and the auxiliary unit (50) according to the required cooling capacity and heating capacity. By appropriately adjusting the valve (54) and the expansion valve (53), the usage state of the outdoor heat exchanger (15) and the auxiliary heat exchanger (52) of the auxiliary unit (50) is adjusted. As a result, the air conditioner (5) can always maintain a high coefficient of performance (COP) by performing an appropriate refrigeration cycle.
[0076] 以下では、室外熱交換器(15)及び補助ユニット(50)の補助熱交換器 (52)が凝縮 器となる場合の冷媒の流れにつ!/、て説明する。  [0076] Hereinafter, the refrigerant flow when the outdoor heat exchanger (15) and the auxiliary heat exchanger (52) of the auxiliary unit (50) serve as a condenser will be described.
[0077] この冷暖房運転では、圧縮機(14)から吐出された冷媒は、第 1室内ユニット(7a)の 室内回路 (8a)以外の室内回路 (81ν··)に分配される。各室内回路 (81ν··)では、流 入した冷媒が室内熱交換器 (4(¾,· · ·)で室内空気と熱交換して凝縮する。室内熱交 換器 (4(¾,· · ·)で凝縮した冷媒は、室外回路(12)と補助ユニット回路 (51)と第 1室内 ユニット(7a)の室内回路 (8a)とに分配される。 [0077] In this cooling / heating operation, the refrigerant discharged from the compressor (14) is discharged from the first indoor unit (7a). It is distributed to the indoor circuit (81ν ··) other than the indoor circuit (8a). In each indoor circuit (81ν ··), the refrigerant that has flowed in is condensed by exchanging heat with room air in the indoor heat exchanger (4 (¾, ···). The refrigerant condensed in (...) is distributed to the outdoor circuit (12), the auxiliary unit circuit (51), and the indoor circuit (8a) of the first indoor unit (7a).
[0078] 室外回路(12)に流入した冷媒は、室外膨張弁(16)で減圧された後に室外熱交換 器(15)で室外空気と熱交換して蒸発する。補助ユニット回路 (51)に流入した冷媒は 、膨張弁(53)で減圧された後に補助熱交換器 (52)で室外空気と熱交換して蒸発す る。第 1室内ユニット(7a)の室内回路 (8a)に流入した冷媒は、室内膨張弁(41a)で減 圧された後に室内熱交換器 (40a)で室内空気と熱交換して蒸発する。そして、室外 熱交換器(15)で蒸発した冷媒と、補助ユニット (50)の補助熱交換器 (52)で蒸発した 冷媒と、第 1室内ユニット(7a)の室内熱交換器 (40a)で蒸発した冷媒とは、合流して 力 圧縮機(14)に吸入される。  [0078] The refrigerant flowing into the outdoor circuit (12) is depressurized by the outdoor expansion valve (16), and then evaporates by exchanging heat with the outdoor air by the outdoor heat exchanger (15). The refrigerant flowing into the auxiliary unit circuit (51) is depressurized by the expansion valve (53), and then evaporates by exchanging heat with outdoor air in the auxiliary heat exchanger (52). The refrigerant flowing into the indoor circuit (8a) of the first indoor unit (7a) is depressurized by the indoor expansion valve (41a) and then evaporates by exchanging heat with indoor air in the indoor heat exchanger (40a). The refrigerant evaporated in the outdoor heat exchanger (15), the refrigerant evaporated in the auxiliary heat exchanger (52) of the auxiliary unit (50), and the indoor heat exchanger (40a) of the first indoor unit (7a) The evaporated refrigerant joins and is sucked into the force compressor (14).
[0079] 一実施形態の効果  [0079] Effect of one embodiment
この実施形態では、室外ユニット(10)が、熱源ユニット(10)に設けられた切換機構( 17)によって利用ユニット(7)の運転状態を切り換える冷凍装置(5)と、利用ユニット (7 )毎に設けられたユニット(60)に収容された切換機構(63,64)によって利用ユニット(7 )の運転状態を切り換える冷凍装置(5)との何れにも適用することができる熱源ュニッ ト(10)の構成に加えて、常に圧縮機(14)の吐出側に連通する第 1ガス側ポート(31) を備えている。  In this embodiment, the outdoor unit (10) includes a refrigeration apparatus (5) for switching the operating state of the usage unit (7) by a switching mechanism (17) provided in the heat source unit (10), and each usage unit (7). The heat source unit (10) applicable to any of the refrigeration system (5) for switching the operating state of the utilization unit (7) by the switching mechanism (63, 64) housed in the unit (60) provided in ) In addition to the first gas side port (31) always communicating with the discharge side of the compressor (14).
[0080] そして、第 2形態の冷凍装置(5)、又は第 3形態の冷凍装置(5)のように、室内回路  [0080] Then, as in the second form refrigeration apparatus (5) or the third form refrigeration apparatus (5), the indoor circuit
(8)のガス側端を第 3ガス側ポート(33)に接続して室内回路 (8)の液側端を液側ポー ト(34)に接続すると共に、補助ユニット(50)の補助熱交換器 (52)の液側端を液側ポ ート(34)に接続して補助熱交換器 (52)のガス側端を第 1ガス側ポート(31)と第 2ガス 側ポート(32)とに選択的に接続すると、第 2切換機構(18)が第 3ガス側ポート(33)を 第 1ガスライン (25)と連通させる状態では、圧縮機(14)から吐出された高圧の冷媒が 第 3ガス側ポート (33)を通じて供給される室内熱交換器 (40)が凝縮器となる暖房運 転が行われる。そして、その暖房運転中に室内熱交換器 (40)で凝縮した冷媒を補助 熱交換器 (52)へ導入すると、導入された冷媒が補助熱交換器 (52)で蒸発した後に 第 2ガス側ポート(32)から室外回路(12)に流入して圧縮機(14)に吸入される。また、 第 2切換機構(18)が第 3ガス側ポート(33)を第 2ガスライン (26)と連通させる状態で は、室外熱交換器(15)で凝縮した液冷媒が液側ポート (34)を通じて供給される室内 熱交換器 (40)が蒸発器となる冷房運転が行われる。そして、その冷房運転中に第 1 ガス側ポート (31)を通じて圧縮機(14)力 吐出された冷媒を補助熱交換器 (52)へ 導入すると、導入された冷媒が補助熱交換器 (52)で凝縮した後に室外熱交換器(15 )で凝縮した液冷媒と共に室内熱交換器 (40)へ導入される。室内熱交換器 (40)へ 導入された冷媒は室内熱交換器 (40)で蒸発し、蒸発後の低圧の冷媒が第 3ガス側 ポート(33)から室外回路(12)に流入して圧縮機(14)に吸入される。 Connect the gas side end of (8) to the third gas side port (33) and connect the liquid side end of the indoor circuit (8) to the liquid side port (34), and the auxiliary heat of the auxiliary unit (50). Connect the liquid side end of the exchanger (52) to the liquid side port (34) and connect the gas side end of the auxiliary heat exchanger (52) to the first gas side port (31) and the second gas side port (32 When the second switching mechanism (18) communicates the third gas side port (33) with the first gas line (25), the high pressure discharged from the compressor (14) is selectively connected. Heating operation is performed in which the indoor heat exchanger (40) to which the refrigerant is supplied through the third gas side port (33) serves as a condenser. Then, when the refrigerant condensed in the indoor heat exchanger (40) during the heating operation is introduced into the auxiliary heat exchanger (52), the introduced refrigerant evaporates in the auxiliary heat exchanger (52). It flows into the outdoor circuit (12) from the second gas side port (32) and is sucked into the compressor (14). When the second switching mechanism (18) connects the third gas side port (33) to the second gas line (26), the liquid refrigerant condensed in the outdoor heat exchanger (15) The cooling operation is performed in which the indoor heat exchanger (40) supplied through (34) serves as an evaporator. Then, when the refrigerant discharged from the compressor (14) through the first gas side port (31) is introduced into the auxiliary heat exchanger (52) during the cooling operation, the introduced refrigerant becomes the auxiliary heat exchanger (52). Then, it is introduced into the indoor heat exchanger (40) together with the liquid refrigerant condensed in the outdoor heat exchanger (15). The refrigerant introduced into the indoor heat exchanger (40) evaporates in the indoor heat exchanger (40), and the low-pressure refrigerant after evaporation flows into the outdoor circuit (12) from the third gas side port (33) and is compressed. Inhaled into the machine (14).
[0081] このように、補助ユニット(50)の補助熱交換器 (52)のガス側端を第 1ガス側ポート(3 1)と第 2ガス側ポート (32)とに選択的に接続することで、暖房運転の際には蒸発器と なる補助熱交換器 (52)からの低圧のガス冷媒を第 2ガス側ポート(32)を通じて圧縮 機(14)に導入することができ、冷房運転の際には凝縮器となる補助熱交換器 (52)に 第 1ガス側ポート(31)を通じて高圧のガス冷媒を供給することができる。従って、補助 ユニット(50)を冷房運転と暖房運転との両方に対応させて使用することができる。す なわち、本実施形態の室外ユニット(10)は、冷房運転と暖房運転との両方に対応さ せて補助ユニット(50)を接続することができる。また、本実施形態の補助ユニット(50) は、冷却運転と加熱運転との何れにおいても室外熱交換器(15)における熱交換量 を補助熱交換器 (52)で補う動作ができるように構成されて!/、る。  [0081] In this manner, the gas side end of the auxiliary heat exchanger (52) of the auxiliary unit (50) is selectively connected to the first gas side port (31) and the second gas side port (32). Thus, during the heating operation, the low-pressure gas refrigerant from the auxiliary heat exchanger (52) serving as an evaporator can be introduced into the compressor (14) through the second gas side port (32). In this case, high-pressure gas refrigerant can be supplied to the auxiliary heat exchanger (52) serving as a condenser through the first gas side port (31). Therefore, the auxiliary unit (50) can be used corresponding to both the cooling operation and the heating operation. That is, the outdoor unit (10) of the present embodiment can be connected to the auxiliary unit (50) in correspondence with both the cooling operation and the heating operation. Further, the auxiliary unit (50) of the present embodiment is configured so that the heat exchange amount in the outdoor heat exchanger (15) can be supplemented by the auxiliary heat exchanger (52) in both the cooling operation and the heating operation. Being! /
[0082] 《その他の実施形態》  << Other Embodiments >>
上記実施形態について、図 12に示すように、互いに並列に接続された複数の室外 ユニット(10, 10, · · · )によって空気調和装置(5)を構成してもよ!/、。  In the above embodiment, as shown in FIG. 12, the air conditioner (5) may be constituted by a plurality of outdoor units (10, 10,...) Connected in parallel to each other! /.
[0083] なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、 あるいはその用途の範囲を制限することを意図するものではな!/、。  [0083] It should be noted that the above embodiments are essentially preferable examples, and are not intended to limit the scope of the present invention, its application, or its use! /.
産業上の利用可能性  Industrial applicability
[0084] 以上説明したように、本発明は、利用ユニットに連絡配管を介して接続される冷凍 装置の熱源ユニット、及びその熱源ユニットを備える冷凍装置につ!、て有用である。 As described above, the present invention is useful for a heat source unit of a refrigeration apparatus connected to a utilization unit via a communication pipe, and a refrigeration apparatus including the heat source unit.

Claims

請求の範囲 The scope of the claims
[1] 圧縮機(14)と熱源側熱交換器(15)とが接続された熱源側回路(12)を備える冷凍 装置の熱源ユニットであって、  [1] A heat source unit of a refrigeration apparatus including a heat source side circuit (12) to which a compressor (14) and a heat source side heat exchanger (15) are connected,
上記熱源側回路(12)には、  In the heat source side circuit (12),
上記圧縮機(14)の吐出側と常に連通する第 1ガスライン (25)の端部となる第 1ガス 側ポート(31)と、  A first gas side port (31) serving as an end of a first gas line (25) always communicating with the discharge side of the compressor (14);
上記圧縮機(14)の吸入側と常に連通する第 2ガスライン (26)の端部となる第 2ガス 側ポート(32)と、  A second gas side port (32) serving as an end of a second gas line (26) always communicating with the suction side of the compressor (14);
上記第 1ガスライン (25)と第 2ガスライン (26)との何れか一方と選択的に連通する第 3ガスライン (27)の端部となる第 3ガス側ポート(33)と、  A third gas side port (33) serving as an end of a third gas line (27) that selectively communicates with either the first gas line (25) or the second gas line (26);
上記熱源側熱交換器(15)の液側端と常に連通する液ライン (28)の端部となる液側 ポート(34)と、  A liquid side port (34) serving as an end of a liquid line (28) always communicating with the liquid side end of the heat source side heat exchanger (15);
上記熱源側熱交換器(15)のガス側端を上記圧縮機(14)の吐出側と連通する状態 と該圧縮機(14)の吸入側と連通する状態とに切り換えるための第 1切換機構(17)と、 上記第 3ガスライン (27)を上記第 1ガスライン (25)と連通する状態と上記第 2ガスラ イン (26)と連通する状態とに切り換えるための第 2切換機構(18)とが設けられている ことを特徴とする冷凍装置の熱源ユニット。  A first switching mechanism for switching the gas side end of the heat source side heat exchanger (15) to a state communicating with the discharge side of the compressor (14) and a state communicating with the suction side of the compressor (14) (17) and a second switching mechanism for switching the third gas line (27) between a state communicating with the first gas line (25) and a state communicating with the second gas line (26) (18 ) And a heat source unit for a refrigeration apparatus.
[2] 請求項 1に記載の冷凍装置(5)の熱源ユニット(10)と、 [2] The heat source unit (10) of the refrigeration apparatus (5) according to claim 1,
液側端から順に減圧機構 (41)と利用側熱交換器 (40)とが接続された利用側回路( 8)を有する利用ユニット(7)とを備え、  A use unit (7) having a use side circuit (8) to which a pressure reducing mechanism (41) and a use side heat exchanger (40) are connected in order from the liquid side end;
上記熱源ユニット(10)の熱源側回路(12)の第 3ガス側ポート(33)と上記利用側回 路 (8)のガス側端とが接続されて、該熱源側回路(12)の液側ポート(34)と該利用側 回路 (8)の液側端とが接続されて構成された冷媒回路 (9)にお!/、て蒸気圧縮冷凍サ イタルを行うことを特徴とする冷凍装置。  The third gas side port (33) of the heat source side circuit (12) of the heat source unit (10) and the gas side end of the use side circuit (8) are connected, and the liquid of the heat source side circuit (12) is connected. The refrigerant circuit (9) is configured by connecting the side port (34) and the liquid side end of the use side circuit (8) to perform a vapor compression refrigeration cycle. .
[3] 請求項 2において、 [3] In claim 2,
補助熱交換器 (52)と、上記補助熱交換器 (52)の液側端と常に連通する第 1接続 ポート(56)と、上記補助熱交換器 (52)のガス側端が選択的に連通する第 2接続ポー ト(57)及び第 3接続ポート (58)と、上記補助熱交換器 (52)のガス側端を上記第 2接 続ポート(57)と連通する状態と上記第 3接続ポート(58)と連通する状態とに切り換え るための補助切換機構(54)とを有する補助ユニット(50)を備え、 The auxiliary heat exchanger (52), the first connection port (56) always communicating with the liquid side end of the auxiliary heat exchanger (52), and the gas side end of the auxiliary heat exchanger (52) are selectively The second connection port (57) and the third connection port (58) communicating with the gas side end of the auxiliary heat exchanger (52) are connected to the second connection port (57). An auxiliary unit (50) having an auxiliary switching mechanism (54) for switching between a state communicating with the connection port (57) and a state communicating with the third connection port (58),
上記冷媒回路 (9)では、上記第 1接続ポート (56)が上記熱源側回路(12)の液側ポ 一トに接続され、上記第 2接続ポート (57)が上記熱源側回路( 12)の第 1ガス側ポート (31)に接続され、上記第 3接続ポート(58)が上記熱源側回路(12)の第 2ガス側ポー ト(32)に接続されて!/、ることを特徴とする冷凍装置。  In the refrigerant circuit (9), the first connection port (56) is connected to the liquid side port of the heat source side circuit (12), and the second connection port (57) is connected to the heat source side circuit (12). Connected to the first gas side port (31), and the third connection port (58) is connected to the second gas side port (32) of the heat source side circuit (12)! / Refrigeration equipment.
[4] 請求項 2又は 3において、 [4] In claim 2 or 3,
上記利用ュュット (7)を複数備え、  A plurality of the above-mentioned usages (7)
上記冷媒回路 (9)では、複数の利用側回路 (8)が熱源側回路(12)に対して並列に 接続されて!/ヽることを特徴とする冷凍装置。  In the refrigerant circuit (9), a plurality of use side circuits (8) are connected in parallel to the heat source side circuit (12)!
[5] 請求項 4において、 [5] In claim 4,
上記複数の利用ユニット(7)に対してそれぞれ設けられて、各利用ユニット(7)の利 用側回路 (8)のガス側端を上記第 2ガス側ポート (32)と連通する状態と上記第 3ガス 側ポート(33)と連通する状態とに切り換えるための運転状態切換機構 (63,64)を有す る切換ユニット(60)を備えて!/、ることを特徴とする冷凍装置。  A state in which the gas side end of the usage side circuit (8) of each usage unit (7) is in communication with the second gas side port (32), provided for each of the usage units (7); A refrigeration apparatus comprising a switching unit (60) having an operation state switching mechanism (63, 64) for switching to a state communicating with the third gas side port (33).
PCT/JP2007/070655 2006-10-30 2007-10-23 Heat source unit for refrigerating apparatus, and refrigerating apparatus WO2008053752A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES07830389.8T ES2574090T3 (en) 2006-10-30 2007-10-23 Heat source unit for cooling device and cooling device
CN2007800394660A CN101529169B (en) 2006-10-30 2007-10-23 Heat source unit for refrigerating apparatus, and refrigerating apparatus
US12/446,253 US20100319376A1 (en) 2006-10-30 2007-10-23 Heat source unit of refrigeration system and refrigeration system
BRPI0716309-6A BRPI0716309A2 (en) 2006-10-30 2007-10-23 "heat source unit of a cooling system and cooling system"
EP07830389.8A EP2078905B1 (en) 2006-10-30 2007-10-23 Heat source unit for refrigerating apparatus, and refrigerating apparatus
AU2007315521A AU2007315521B2 (en) 2006-10-30 2007-10-23 Heat source unit of refrigeration system and refrigeration system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-294729 2006-10-30
JP2006294729A JP4079184B1 (en) 2006-10-30 2006-10-30 Refrigeration unit heat source unit and refrigeration unit

Publications (1)

Publication Number Publication Date
WO2008053752A1 true WO2008053752A1 (en) 2008-05-08

Family

ID=39344095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070655 WO2008053752A1 (en) 2006-10-30 2007-10-23 Heat source unit for refrigerating apparatus, and refrigerating apparatus

Country Status (11)

Country Link
US (1) US20100319376A1 (en)
EP (1) EP2078905B1 (en)
JP (1) JP4079184B1 (en)
KR (1) KR100989460B1 (en)
CN (1) CN101529169B (en)
AU (1) AU2007315521B2 (en)
BR (1) BRPI0716309A2 (en)
ES (1) ES2574090T3 (en)
RU (1) RU2395044C1 (en)
TW (1) TW200827637A (en)
WO (1) WO2008053752A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5176874B2 (en) * 2008-10-31 2013-04-03 ダイキン工業株式会社 Refrigeration equipment
JP2010159896A (en) * 2009-01-06 2010-07-22 Fuji Electric Retail Systems Co Ltd Refrigerant circuit device
JP2013217631A (en) * 2012-03-14 2013-10-24 Denso Corp Refrigeration cycle device
KR102025740B1 (en) * 2012-10-29 2019-09-26 삼성전자주식회사 Heat pump apparatus
KR20150012498A (en) * 2013-07-25 2015-02-04 삼성전자주식회사 Heat pump and flow path switching apparatus
CN104567133A (en) * 2013-10-09 2015-04-29 海尔集团公司 Multifunctional multi-connected air conditioner and control method thereof
WO2015059814A1 (en) * 2013-10-25 2015-04-30 三菱電機株式会社 Refrigeration cycle device
JP2016056992A (en) * 2014-09-09 2016-04-21 株式会社富士通ゼネラル Air conditioner
JP6248878B2 (en) * 2014-09-18 2017-12-20 株式会社富士通ゼネラル Air conditioner
CN104390283B (en) * 2014-10-21 2017-06-30 广东美的暖通设备有限公司 Multi-gang air-conditioner device and its outdoor machine system
US10365025B2 (en) 2014-11-25 2019-07-30 Lennox Industries, Inc. Methods and systems for operating HVAC systems in low load conditions
CN105066501B (en) * 2015-07-22 2017-05-03 广东美的暖通设备有限公司 Outdoor unit of multi-split air conditioner and multi-split air conditioner comprising same
CN106288488B (en) * 2016-08-29 2019-02-01 广东美的暖通设备有限公司 The control method of air-conditioner system and air-conditioner system
DE102017211891A1 (en) * 2017-07-12 2019-01-17 Audi Ag Valve arrangement for a refrigerant circuit
CN112594871B (en) * 2020-12-31 2022-02-08 广东积微科技有限公司 Defrosting control method of multifunctional multi-split system with double four-way valves

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0926219A (en) * 1996-07-30 1997-01-28 Sanyo Electric Co Ltd Cooling/heating apparatus for many rooms
JPH11241844A (en) 1998-11-11 1999-09-07 Daikin Ind Ltd Air conditioner
JPH11325636A (en) * 1998-05-07 1999-11-26 Daikin Ind Ltd Air conditioner
JP2000146345A (en) * 1998-11-04 2000-05-26 Daikin Ind Ltd Refrigerator
JP2006078087A (en) 2004-09-09 2006-03-23 Daikin Ind Ltd Refrigeration unit

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4065938A (en) * 1976-01-05 1978-01-03 Sun-Econ, Inc. Air-conditioning apparatus with booster heat exchanger
JP4221780B2 (en) * 1998-07-24 2009-02-12 ダイキン工業株式会社 Refrigeration equipment
US6202428B1 (en) * 1998-09-14 2001-03-20 Fujitsu General Limited Air conditioner
TWI263025B (en) * 2002-01-24 2006-10-01 Daikin Ind Ltd Freezing device
KR100437805B1 (en) * 2002-06-12 2004-06-30 엘지전자 주식회사 Multi-type air conditioner for cooling/heating the same time and method for controlling the same
KR100499507B1 (en) * 2003-01-13 2005-07-05 엘지전자 주식회사 Multi type air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0926219A (en) * 1996-07-30 1997-01-28 Sanyo Electric Co Ltd Cooling/heating apparatus for many rooms
JPH11325636A (en) * 1998-05-07 1999-11-26 Daikin Ind Ltd Air conditioner
JP2000146345A (en) * 1998-11-04 2000-05-26 Daikin Ind Ltd Refrigerator
JPH11241844A (en) 1998-11-11 1999-09-07 Daikin Ind Ltd Air conditioner
JP2006078087A (en) 2004-09-09 2006-03-23 Daikin Ind Ltd Refrigeration unit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2078905A4 *

Also Published As

Publication number Publication date
CN101529169A (en) 2009-09-09
JP4079184B1 (en) 2008-04-23
KR100989460B1 (en) 2010-10-22
AU2007315521A1 (en) 2008-05-08
BRPI0716309A2 (en) 2015-05-19
EP2078905A4 (en) 2013-03-27
JP2008111589A (en) 2008-05-15
EP2078905B1 (en) 2016-03-09
ES2574090T3 (en) 2016-06-14
KR20090089298A (en) 2009-08-21
EP2078905A1 (en) 2009-07-15
TW200827637A (en) 2008-07-01
CN101529169B (en) 2011-07-27
US20100319376A1 (en) 2010-12-23
RU2395044C1 (en) 2010-07-20
AU2007315521B2 (en) 2011-03-10
TWI342944B (en) 2011-06-01

Similar Documents

Publication Publication Date Title
WO2008053752A1 (en) Heat source unit for refrigerating apparatus, and refrigerating apparatus
JP2008157558A (en) Air-conditioning system
JPH0754217B2 (en) Air conditioner
JP2008157557A (en) Air-conditioning system
JP4303032B2 (en) Air conditioner
JP4288934B2 (en) Air conditioner
JPWO2012085965A1 (en) Air conditioner
JPH02118372A (en) Air-conditioning device
KR100688168B1 (en) Heat exchanger of air conditioner
JP2017101854A (en) Air conditioning system
JP2006170541A (en) Air conditioner
JP3969381B2 (en) Multi-room air conditioner
JP2004108715A (en) Air conditioner for many rooms
JP2011052865A (en) Air conditioner
JP2002340436A (en) Multi-chamber air conditioner
JP2010127504A (en) Air conditioning device
KR200469716Y1 (en) Airconditioner system
WO2021065677A1 (en) Air conditioner
KR20060075024A (en) Multiple air conditioner
JP2005147582A (en) Air conditioner
KR100337921B1 (en) Multi type refrigerating cycle and air conditioner having multi type refrigerating
JPH0339870A (en) Air conditioning apparatus
KR100544873B1 (en) Multi-air conditioner for both cooling and heating which air cooling efficiency is improved
JPH0311276A (en) Air conditioner
JPH10238882A (en) Operating method of multi-type air conditioner

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780039466.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830389

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007830389

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007315521

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 12446253

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1595/KOLNP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020097009071

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2007315521

Country of ref document: AU

Date of ref document: 20071023

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2009120525

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0716309

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090428