WO2008053735A1 - Method and device for heating article - Google Patents

Method and device for heating article Download PDF

Info

Publication number
WO2008053735A1
WO2008053735A1 PCT/JP2007/070558 JP2007070558W WO2008053735A1 WO 2008053735 A1 WO2008053735 A1 WO 2008053735A1 JP 2007070558 W JP2007070558 W JP 2007070558W WO 2008053735 A1 WO2008053735 A1 WO 2008053735A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
gate voltage
sample
heating
control
Prior art date
Application number
PCT/JP2007/070558
Other languages
French (fr)
Japanese (ja)
Inventor
Hiromichi Watanabe
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to DE112007002614T priority Critical patent/DE112007002614T5/en
Publication of WO2008053735A1 publication Critical patent/WO2008053735A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity

Definitions

  • the present invention relates to a method of heating a substance that can maintain a constant temperature at a predetermined temperature with good reproducibility and efficiency, particularly when various substances are heated to a predetermined temperature at a high speed and then maintained at a constant temperature.
  • the present invention relates to an apparatus for carrying out the method, and further relates to a method and apparatus using the object heating method and apparatus.
  • thermophysical values In order to conduct heat transfer analysis of equipment that generates heat or equipment used at high temperatures, the thermal properties of heat transfer and accumulation of component materials (specific heat capacity, hemispherical total emissivity, heat Conductivity, thermal diffusivity). There is no accumulation of newly developed materials or reliable literature values!
  • thermophysical values When using materials as component materials for equipment, the above-mentioned thermophysical values must be obtained experimentally. In general, the above four thermophysical values are measured by different devices, so there is a problem that costs and time are superimposed.
  • a thermophysical value at a high temperature of 1000 ° C or higher is required, heating the sample to a high temperature for each thermophysical value measurement may cause sample deterioration or degradation of the measuring device. .
  • thermophysical values were derived from the equation.
  • this measurement method is limited to conductive materials, it has achieved high-speed measurement of thermophysical values at high temperatures of 2000 ° C and above, which has been very difficult to measure, resulting from sample deterioration and measurement device deterioration. Minimize measurement error It was an epoch-making method that allowed the measurement cost to be significantly reduced while limiting the measurement cost.
  • thermal conductivity is defined as the product of specific heat capacity, density and thermal diffusivity.
  • the temperature dependence of the density of solids is very small compared to the temperature dependence of thermal conductivity and specific heat capacity, so in general, the thermal diffusivity at high temperatures is generally the same as the density value at room temperature.
  • the thermal conductivity can be calculated from the measurement results of the thermal diffusivity and specific heat capacity.
  • the thermal diffusivity of solids is generally measured by the flash method.
  • the temperature of the sample is generally controlled using a resistance furnace! /, So the measurable temperature is limited to about 2700 ° C.
  • sample deterioration as described above and degradation of the measurement device may affect the measurement.
  • This technology has a system configuration as shown in FIG. 5, and a capacitor 32 in the figure stores electric charge used for sample heating, and serves as a control device for the gate electrode of a current switch 33 made up of a field effect transistor.
  • a control voltage signal from the data recording and control device computer 42 constituted by a computer a heating current is supplied to a flat sample 35 having a thickness of 1 mm or less, and the generated Joule heat is generated. This causes sample 35 to self-heat.
  • a voltage signal after the potential difference between both ends of the standard resistor 34 is amplified by the signal adjustment amplifier 40 is input to the data recording and control computer 42 and the heating current flowing through the sample 35 Measure the size of. Further, the signal after the potential difference in the sample 35 is amplified by the signal adjustment amplifier 41 is inputted to the data recording and control computer 42, and the magnitude of the voltage applied to the sample 35 is measured. Calculate the product of the current and voltage, and the power required to heat the sample 5, and continuously measure the Joule heat per unit time generated in the sample.
  • the temperature of the sample 35 heated as described above is measured by a radiation thermometer 37 using a silicon photodiode having a time resolution of about several tens of microseconds as a detection element, and the signal is recorded and recorded. Input to computer 42 for control device.
  • the vertical spectral emissivity required to convert the luminance temperature measured by the radiation thermometer 37 to the true temperature is determined at high speed by a 'statistic' parameter that represents the polarization state of light without a mechanical drive. Measure continuously using a DO AP type monochromatic ellipsometer.
  • the computer 42 for data recording and control monitors the temperature signal of the radiation thermometer 37 and adjusts the gate voltage of the current switch 33 so that the temperature of the sample 35 becomes the set temperature. Control the flowing current.
  • a field-effect transistor is used as the current switch 33, and the gate voltage is feedback controlled to keep the sample temperature constant at the specified target value.
  • the feedback control of the sample heating current is continued for a certain period, the feedback control is stopped, and the subsequent gate voltage value is held at the control value immediately before the feedback control is stopped.
  • the sample surface of the sample 35 measured by the radiation thermometer 37 is irradiated with laser light from the Norse YAG laser 36 by the trigger signal output from the computer 42 for data recording and device control, and is heated. is doing.
  • the surface temperature change of the sample 35 after irradiation with the laser beam for light heating is measured by a radiation thermometer 37, and the temperature change is fitted to a one-dimensional heat diffusion model by a computer 42 for data recording and control equipment, so that heat diffusion is achieved. Calculate the rate.
  • the radiation temperature of the sample is measured at a sampling interval of several tens of microseconds
  • a silicon photodiode having a high response speed as described above is used as the light intensity detection element of the radiation thermometer.
  • the measurement atmosphere should be a vacuum below ImPa.
  • the surface of the sample 35 is irradiated with light from the light source 38 of the high-speed ellipsometer, and its reflection is reflected.
  • the light is detected by a detector 39 of a high-speed ellipsometer, and the signal is input to a data recording and control computer 42 to measure the spectral emissivity of the sample surface.
  • Patent Document 1 JP-A-2005-249427
  • Non-Patent Document 1 A.Cezairliyan, J ⁇ .McClure, C.W.Beckett: J.Res. National Bureau of Standards, Vol.75C-l (1971), pp.7-18
  • step 5 of t> 800ms set the gate voltage to zero and quickly return the sample temperature to room temperature.
  • FIG. 7 shows an example of failure of sample heating using this conventional method.
  • Fig. 7 (a) and Fig. 7 (b) show the results of two heating experiments performed continuously under the same heating conditions on the same tantalum sample. In both of these experiments, the target temperature was set to 2100K, and the time to continue feed knock control was set to 300ms.
  • the temperature is not kept constant in step 3, ie, the step of maintaining the gate voltage value finally derived by feedback control, and the temperature gradually increases.
  • the temperature drops to step 3! /, And then the temperature gradually drops! /.
  • the gate voltage Vg is the saturation drain voltage value of the gate voltage of the field-effect transistor used this time when the temperature of the specimen temperature is kept constant from the rapid heating state. Therefore, it is shown that the voltage drops rapidly to about 2.7V.
  • the fluctuation range of Vg needs to be considerably smaller than the saturation drain voltage value.
  • the fluctuation range of the feedback control value of Vg set in advance is a wide range up to the saturation drain voltage value. It is necessary to.
  • P value proportional variable
  • the present invention performs energization heating while performing feedback control of the gate voltage of a transistor such as a field effect transistor so that the temperature of the object to be heated such as a sample becomes a target value. Feedback control after is maintained at the target value.
  • the main object is to provide a heating method and a heating device for the object.
  • the object heating method controls the gate voltage of a transistor used to control the amount of current supplied to the conductive object to be heated, and the temperature of the object to be heated is a target value.
  • the gate voltage feedback control is started so that the temperature of the object to be heated remains constant at the target value, and the temperature of the object to be heated remains constant at the target value.
  • the feedback control is continued until the temperature is within the temperature amplitude range that can be substantially regarded as having been set, and the feedback control is stopped when the target value is held constant, and then the gate voltage value immediately before the feedback control is stopped.
  • the temperature of the object to be heated is held constant at the target value by holding the average value of the gate voltage control value at any given time.
  • a predetermined range in which a control range of the gate voltage is determined in a period during which the gout voltage is feedback-controlled is characterized by limiting to.
  • the heated object is a conductive sample for measuring a thermophysical property, and immediately after the gate voltage is held.
  • the sample is characterized by measuring the thermal properties by light heating the sample and measuring the subsequent temperature change of the sample.
  • the object heating apparatus includes an energization heating unit that energizes and heats a conductive object to be heated, a transistor disposed in an energization circuit of the object to be heated, and a temperature of the object to be heated.
  • Temperature control means for measuring the transistor, and a temperature control for controlling the gate voltage of the transistor so that the temperature of the object to be heated becomes a predetermined target value by inputting a temperature signal measured by the temperature measurement means
  • the gate voltage is first rapidly heated by controlling the gate voltage, and once reaching the target value, the gate voltage is kept constant at the target value.
  • the feedback control is stopped after the temperature is maintained at the target value by the control, and then the gate voltage value is set to the average value of the gate voltage control values at a plurality of time points immediately before the feedback control is stopped.
  • the sample temperature is kept constant at the target value even after feedback control is stopped.
  • another object heating device provides a predetermined range in which a control range of the gate voltage is determined in advance during a period during which the gout voltage is feedback controlled by the object heating device. It is characterized by limiting to.
  • the heated object in the object heating apparatus, is a conductive sample for measuring thermophysical properties, and immediately after the gate voltage is held.
  • the sample is characterized by measuring the thermal properties by light heating the sample and measuring the subsequent temperature change of the sample.
  • another object heating apparatus is characterized in that the object heating apparatus is used as a high-speed precision temperature heater that heats various objects.
  • Another object heating apparatus is characterized in that the object heating apparatus is used as a heat treatment method for a metal or alloy using direct current heating.
  • the gate voltage of a transistor such as a field effect transistor is not feedback controlled so that an object to be heated, such as a sample, reaches a target temperature. After that, in the heating control that keeps the temperature constant by simply holding the gate voltage, the temperature constant state can be continued with good reproducibility after the feedback control is stopped.
  • FIG. 1 Experimental data showing changes in luminance temperature when a sample is heated by the heating method of the present invention.
  • FIG. 2 is a diagram showing an example of a photoconductive hybrid 'pulse heating system to which the heating method of the present invention is applied.
  • FIG. 3 Experimental data showing the fluctuation state of the gate voltage during the feedback control by the heating method of the present invention and the conventional example.
  • FIG. 4 Experimental data showing the state of luminance temperature change of the sample by the heating method of the present invention and the conventional example.
  • FIG. 5 is a system diagram of a conventional thermophysical property measuring apparatus previously proposed by the present inventors.
  • FIG. 6 Experimental data showing changes in brightness temperature when a sample is heated by a conventional device.
  • FIG. 7 Experimental data showing an example of failure when a sample is heated by a conventional apparatus.
  • the present invention controls the gate voltage of a transistor used to control the amount of current supplied to the conductive object to be heated, and rapidly heats the object to be heated until the temperature reaches the target value. After reaching the target value, feedback control is continued until the temperature of the object to be heated converges to a temperature amplitude range that can be substantially regarded as being held at the target value. After the control is stopped, the gate voltage value of the gate voltage control value at multiple points immediately before the feedback control is stopped By holding the average value, the temperature of the object to be heated is held constant at the target value.
  • Fig. 1 shows the temperature change of the sample when the heating method of the present invention is used and the heating control is actually performed, and corresponds to the sample temperature change during the experiment by the conventional heating method shown in Fig. 6 above. is doing.
  • the heating system for executing the heating method according to the present invention uses the same heating system as that of the previous application by the present inventors shown in FIG. 5, and the photoconductive hybrid pulse heating as shown in FIG. System 1 is used.
  • Capacitor 2 in FIG. 2 stores electric charge used for sample heating, and applies a control voltage signal from temperature control / signal recording computer 12 configured by a computer as a control device to the gate electrode of field effect transistor 3 Thus, a heating current is supplied to the flat sample 5 and the sample 5 is self-heated by the generated Joule heat.
  • the signal of the potential difference between both ends of the standard resistor 4 is input to the temperature control signal recording computer 12, and the magnitude of the heating current flowing through the sample 5 is measured.
  • the potential difference signal in sample 5 is input to temperature control / signal recording computer 12 and the voltage applied to sample 5 is measured.
  • Product of the above current and voltage Calculate the power required to heat sample 5, and continuously measure the Joule heat per unit time generated in the sample.
  • the temperature of the sample 5 heated as described above is measured by a radiation thermometer 7 using a silicon photodiode having a time resolution of about several tens of microseconds as a detection element, and the signal is controlled by a temperature control signal. Input to recording computer 12.
  • the vertical spectral emissivity required to convert the luminance temperature measured with the radiation thermometer 7 to the true temperature is determined at a high speed with a 'statistics' parameter representing the polarization state of light without a mechanical drive. Measure continuously using a DOAP type monochromatic ellipsometer.
  • the temperature control 'signal recording computer 12 monitors the temperature signal of the radiation thermometer 7 and adjusts the gate voltage of the field effect transistor 3 so that the sample 5 has a set temperature, thereby adjusting the sample temperature. Is kept constant at the target value.
  • the surface temperature change of the sample 5 after irradiation with the light norms is measured by a radiation thermometer 7, and the temperature control and signal recording computer 12 is used to fit the temperature change to a one-dimensional heat diffusion model. Calculate the diffusion rate.
  • a silicon photodiode having a high response speed is used as the light intensity detection element of the radiation thermometer as described above.
  • the measurement atmosphere should be a vacuum of ImPa or less.
  • the surface of the sample 5 is irradiated with light from the semiconductor laser 8, which is the light source of the high-speed ellipsometer, and the reflected light is detected by the high-speed ellipsometer 9, and the signal is controlled by a temperature control signal recording computer.
  • Input to 12 and measure the spectral emissivity of the sample surface The subsequent measurement of thermophysical properties is described in detail in the above-mentioned previous application, and since there is little direct relationship with the present invention, explanation here is omitted.
  • the sample is heated as shown in FIG.
  • rapid heating is performed in step 1 corresponding to the time region until the target temperature 2100K set in advance is reached.
  • feedback control of the gate voltage is started so that the target temperature is kept constant.
  • This feedback control period corresponds to the time region of step 2 in FIG. 1.
  • the sample temperature has already reached the target value before starting the feedback control.
  • the fluctuation range of the voltage control value does not need to include such a large value as required during rapid heating. Therefore, fluctuations in the appropriate gate voltage control value to keep the target temperature constant Set the range in advance.
  • the control value fluctuation range of the gate voltage was limited to 2.8 to 2.9 V, and the fluctuation of the sample temperature and control gate voltage value in the time domain of Step 2 could be reduced.
  • the force S that will stop the feedback control after the end of step 3 after that, and the average value of the 20 gate voltage control values derived just before the stop of the feed knock control are temperature control and signal recording.
  • the value of the gate voltage is held at this average value in the time domain in which the calculation is performed by the computer 12 and step 6 is completed after the start of step 4 after the feedback control is stopped.
  • the time interval for deriving the 20 gate voltage control values used to calculate the average value is 2 ms, and this time domain corresponds to step 3 and corresponds to the 2 ms period immediately before the end of step 2. is doing.
  • step 5 The time domain from the start of the gate voltage hold to the pulse laser irradiation shown as step 5 in the figure corresponds to step 4, which is 20 ms long in this experiment.
  • pulse laser irradiation was not performed in order to confirm the continuity of the sample temperature after feedback control.
  • the temperature change of the sample is measured by the pulse laser to obtain various physical properties as detailed in the previous application.
  • the period of step 6 is a period for acquiring data necessary for calculating the thermal diffusivity.
  • the gate voltage is set to zero after the preset measurement work completion time, and the sample temperature is quickly returned to room temperature.
  • FIG. 3 shows an example of the fluctuation range of the gate voltage by the same conventional heating method as in Fig. 8 (b).
  • Vg 2.7 to 6 V
  • the fluctuation range is large. It has been shown.
  • the gate voltage Vg is maintained at 2.8 to 2.9V, and the allowable range of the gate voltage control value is narrowed. It is shown.
  • the temperature can be kept constant with good reproducibility when holding the gate voltage after feedback control, and the temperature is kept at a predetermined constant value when holding the gate voltage with a shorter feedback control time than before. be able to.
  • the experiment time is shortened, the contamination time of the sample is reduced, accurate measurement is possible, and the measurement cost S can be reduced.
  • FIGS. 4 (a) and 4 (b) show the temperature changes of the samples obtained during heating shown in FIGS. 3 (a) and (b), respectively.
  • Fig. 4 (a) showing the change in brightness temperature of the sample, it is shown that the temperature must be constant in step 3 after step 2 where feedback is stopped as described above!
  • the gate voltage during the feedback control in step 2 is stable as described above.
  • the heating method of the present invention mainly measures the thermophysical values such as specific heat capacity, hemispherical total emissivity, thermal conductivity and thermal diffusivity of various substances at high temperatures as described above.
  • This heating method can be used for electrification heating of test specimens and various devices, for example. It can also be used as a high-speed precision temperature heater that requires

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

In the heating control for maintaining the sample temperature, conduction heating is performed while feedback-controlling the gate voltage of a conduction heating control transistor so that an article to be heated such as a sample is at a target temperature, and the gate voltage is held after stopping feedback-control. The gate voltage of the conduction heating control transistor to the sample is controlled to perform quick heating until the temperature reaches a target level in order to maintain the temperature at the target value with good repeatability at the time of holding the gate voltage. Then feedback control of the gate voltage is started to maintain the temperature at the target level. After continuing feedback control until it can be considered that the temperature is maintained, feedback control is stopped and the average control value at a plurality of moments in time immediately before stopping feedback control is held thus maintaining the sample temperature at the target value. When this heating method is employed in measurement of thermal properties of a matter, light heating is performed at the time of holding the gate voltage and a plurality of values of thermal properties are determined by measuring temperature variation and Joule heating value.

Description

明 細 書  Specification
物体加熱方法及び装置  Object heating method and apparatus
技術分野  Technical field
[0001] この発明は特に各種物質を高速で所定温度に加熱した後に一定温度保持するに 際し、再現性良ぐ且つ効率良く所定温度に一定保持することができるようにした物 体加熱方法及びその方法を実施する装置に関し、更に同物体加熱方法及び装置を 用いる方法及び装置に関する。  [0001] The present invention relates to a method of heating a substance that can maintain a constant temperature at a predetermined temperature with good reproducibility and efficiency, particularly when various substances are heated to a predetermined temperature at a high speed and then maintained at a constant temperature. The present invention relates to an apparatus for carrying out the method, and further relates to a method and apparatus using the object heating method and apparatus.
背景技術  Background art
[0002] 熱を発生する機器や高温で使用する機器の熱移動解析を行うためには、機器の構 成材料について熱の移動と蓄積に関わる熱物性値(比熱容量、半球全放射率、熱 伝導率、熱拡散率)が必要となる。新しく開発された材料や信頼できる文献値の蓄積 が無!/、材料を機器の構成材料に用いる場合、上記の熱物性値は実験的に求める必 要がある。一般に上記 4つの熱物性値はそれぞれ別の装置で測定されているため、 コストと時間が重畳して掛かるという問題がある。また、 1000°C以上の高温における 熱物性値が必要になる場合、各熱物性値の測定のたびに試料を高温に熱すること により、試料の変質や測定装置の劣化が生じる可能性がある。  [0002] In order to conduct heat transfer analysis of equipment that generates heat or equipment used at high temperatures, the thermal properties of heat transfer and accumulation of component materials (specific heat capacity, hemispherical total emissivity, heat Conductivity, thermal diffusivity). There is no accumulation of newly developed materials or reliable literature values! When using materials as component materials for equipment, the above-mentioned thermophysical values must be obtained experimentally. In general, the above four thermophysical values are measured by different devices, so there is a problem that costs and time are superimposed. In addition, if a thermophysical value at a high temperature of 1000 ° C or higher is required, heating the sample to a high temperature for each thermophysical value measurement may cause sample deterioration or degradation of the measuring device. .
[0003] 1970年代に米国の Cezairliyanらは、 1000°C以上の温度にある導電性物質の比 熱容量、半球全放射率を一台の測定装置により高速で測定する方法を開発した。こ の測定方法の特徴は試料の加熱方法にあり、大容量のバッテリーもしくはコンデンサ 一に蓄えた電荷を導電性の試料に流し、試料内を流れるパルス状の大電流により発 生するジュール熱によって試料を 3000°C以上に至る高温まで 0. 2秒以内に加熱さ せること力 Sでさた。  [0003] In the 1970s, Cezairliyan et al. In the United States developed a method for measuring the specific heat capacity and hemispherical total emissivity of conductive materials at temperatures above 1000 ° C at high speed using a single measuring device. The characteristic of this measurement method is the method of heating the sample. The charge stored in a large-capacity battery or capacitor is passed through the conductive sample, and the sample is generated by Joule heat generated by a large pulsed current flowing in the sample. Was heated to 3000 ° C or higher within 0.2 seconds with force S.
[0004] この測定方法においては、上述の通電加熱中もしくは通電後の試料冷却中におけ る試料の温度と電気抵抗を測定し、発生したジュール熱と試料の熱容量と熱放射と の熱収支関係式により上記の 2つの熱物性値を導出した。この測定方法は導電性物 質に限られるが、それまで非常に測定が困難であった 2000°C以上の高温の熱物性 値の高速測定を実現し、試料の変質や測定装置の劣化に起因する測定誤差を最小 限にすると共に測定コストの大幅な低減を可能にする画期的な方法であった。 [0004] In this measurement method, the temperature and electrical resistance of the sample are measured during the above-described energization heating or cooling of the sample after energization, and the heat balance relationship between the generated Joule heat, the heat capacity of the sample, and heat radiation. The above two thermophysical values were derived from the equation. Although this measurement method is limited to conductive materials, it has achieved high-speed measurement of thermophysical values at high temperatures of 2000 ° C and above, which has been very difficult to measure, resulting from sample deterioration and measurement device deterioration. Minimize measurement error It was an epoch-making method that allowed the measurement cost to be significantly reduced while limiting the measurement cost.
[0005] しかしながら、この測定方法では伝熱解析に必要な熱伝導率及び熱拡散率を測定 すること力 Sできず、これらの熱物性値は別個に測定する必要があった。これに対応し てイタリアの Righiniらはパルス通電加熱中の試料の温度分布の時間変化を測定して 熱伝導率も同時測定する方法を開発したが、熱伝導率は必ずしも自明でない仮定の 下に算出されて!/、るため、一般に普及するには至って!/、なレ、。 [0005] However, this measurement method cannot measure the thermal conductivity and thermal diffusivity necessary for heat transfer analysis, and it is necessary to measure these thermophysical values separately. Correspondingly, Righini et al. In Italy developed a method to measure the thermal conductivity at the same time by measuring the temporal change of the temperature distribution of the sample during pulsed heating, but the thermal conductivity is not necessarily self-evident. Because it is calculated! /, It has become popular! /, Nare.
[0006] 原理的に熱伝導率は比熱容量と密度と熱拡散率の積と定義される。多くの場合、 固体の密度の温度依存性は熱伝導率や比熱容量の温度依存性に比べれば非常に 小さ!/、ので、一般に高温での熱拡散率は室温での密度の値と高温での熱拡散率と 比熱容量の測定結果から熱伝導率を算出することができる。現在、固体の熱拡散率 は一般にフラッシュ法により測定されている。 [0006] In principle, thermal conductivity is defined as the product of specific heat capacity, density and thermal diffusivity. In many cases, the temperature dependence of the density of solids is very small compared to the temperature dependence of thermal conductivity and specific heat capacity, so in general, the thermal diffusivity at high temperatures is generally the same as the density value at room temperature. The thermal conductivity can be calculated from the measurement results of the thermal diffusivity and specific heat capacity. Currently, the thermal diffusivity of solids is generally measured by the flash method.
[0007] しかしながら、フラッシュ法による高温物質の熱拡散率を測定する際には、一般に 抵抗炉を用いて試料の温度制御が為されて!/、るため測定可能温度は 2700°C程度 が上限であると共に、上述したような試料の変質や測定装置の劣化が測定に影響を 与える可能性がある。 [0007] However, when measuring the thermal diffusivity of high-temperature materials by the flash method, the temperature of the sample is generally controlled using a resistance furnace! /, So the measurable temperature is limited to about 2700 ° C. At the same time, sample deterioration as described above and degradation of the measurement device may affect the measurement.
[0008] 前記の問題点を解決し、高温物質の熱拡散率を測定するに際して、比熱容量、半 球全放射率、熱伝導率、熱拡散率等の物性値を一度に測定することができ、しかも 従来の方法では測定を行うことができな!/、ような高温にぉレ、てもその物性値を測定す ることができるようにした多重熱物性測定方法及びその方法を実施する装置を下記 特許文献 1に開示している。  [0008] In solving the above-mentioned problems and measuring the thermal diffusivity of a high-temperature substance, physical property values such as specific heat capacity, hemispherical total emissivity, thermal conductivity, and thermal diffusivity can be measured at a time. In addition, it is impossible to measure with conventional methods! /, A multiple thermophysical property measurement method capable of measuring the physical property values even at high temperatures, and an apparatus for carrying out the method Is disclosed in Patent Document 1 below.
[0009] この技術は図 5に示すようなシステム構成をなし、図中におけるコンデンサー 32は 試料加熱に用いる電荷を蓄えるものであり、電界効果トランジスタからなる電流スイツ チ 33のゲート電極へ制御装置としてのコンピュータによって構成されるデータ記録及 び制御装置用コンピュータ 42からの制御電圧信号を印可することにより、厚さ lmm 以下の平板状の試料 35に対して加熱用電流を供給し、発生したジュール熱により試 料 35を自己加熱させる。  [0009] This technology has a system configuration as shown in FIG. 5, and a capacitor 32 in the figure stores electric charge used for sample heating, and serves as a control device for the gate electrode of a current switch 33 made up of a field effect transistor. By applying a control voltage signal from the data recording and control device computer 42 constituted by a computer, a heating current is supplied to a flat sample 35 having a thickness of 1 mm or less, and the generated Joule heat is generated. This causes sample 35 to self-heat.
[0010] 標準抵抗 34の両端の電位差を信号調節用アンプ 40で増幅した後の電圧信号を データ記録及び制御装置用コンピュータ 42に入力して、試料 35を流れる加熱電流 の大きさを測定する。また、試料 35における電位差を信号調節用アンプ 41で増幅し た後の信号をデータ記録及び制御装置用コンピュータ 42に入力して、試料 35にか 力、る電圧の大きさを測定する。上記の電流と電圧の積力、ら試料 5を加熱するに要した 電力を算出し、試料に発生する単位時間あたりのジュール熱を連続測定する。 [0010] A voltage signal after the potential difference between both ends of the standard resistor 34 is amplified by the signal adjustment amplifier 40 is input to the data recording and control computer 42 and the heating current flowing through the sample 35 Measure the size of. Further, the signal after the potential difference in the sample 35 is amplified by the signal adjustment amplifier 41 is inputted to the data recording and control computer 42, and the magnitude of the voltage applied to the sample 35 is measured. Calculate the product of the current and voltage, and the power required to heat the sample 5, and continuously measure the Joule heat per unit time generated in the sample.
[0011] 上記のようにして加熱された試料 35の温度は、数十マイクロ秒程度の時間分解能 をもつシリコンフォトダイオードを検出素子とする放射温度計 37によって測定され、そ の信号をデータ記録及び制御装置用コンピュータ 42に入力する。放射温度計 37で 測定した輝度温度を真温度に変換するために必要な垂直分光放射率は、機械的な 駆動部を有さずに光の偏光状態を表すスト一タス 'パラメータを高速で決定する DO AP型の単色エリプソメータを用いて連続測定する。  The temperature of the sample 35 heated as described above is measured by a radiation thermometer 37 using a silicon photodiode having a time resolution of about several tens of microseconds as a detection element, and the signal is recorded and recorded. Input to computer 42 for control device. The vertical spectral emissivity required to convert the luminance temperature measured by the radiation thermometer 37 to the true temperature is determined at high speed by a 'statistic' parameter that represents the polarization state of light without a mechanical drive. Measure continuously using a DO AP type monochromatic ellipsometer.
[0012] データ記録及び制御装置用コンピュータ 42は、前記放射温度計 37の温度信号を 監視し、試料 35が設定した温度になるように電流スィッチ 33のゲート電圧を調整す ることにより試料 35を流れる電流の制御を行う。この電流スィッチ 33として電界効果ト ランジスタを用い、そのゲート電圧をフィードバック制御することにより、試料温度を所 定の目標値に一定保持する。  [0012] The computer 42 for data recording and control monitors the temperature signal of the radiation thermometer 37 and adjusts the gate voltage of the current switch 33 so that the temperature of the sample 35 becomes the set temperature. Control the flowing current. A field-effect transistor is used as the current switch 33, and the gate voltage is feedback controlled to keep the sample temperature constant at the specified target value.
[0013] 試料加熱電流のフィードバック制御をある期間継続した後にフィードバック制御を 停止し、その後のゲート電圧値をフィードバック制御を停止する直前の制御値にホー ルドすることにより短時間だけ維持される温度一定状態の間に、放射温度計 37が測 定する試料 35の試料面に、データ記録及び装置制御用コンピュータ 42から出力さ れたトリガー信号によってノ ルス YAGレーザ 36からレーザ光を照射して光加熱して いる。この光加熱用のレーザ光照射後の試料 35の表面温度変化を放射温度計 37 によって測定し、データ記録及び制御装置用コンピュータ 42によってその温度変化 を一次元熱拡散モデルにフィットさせることにより熱拡散率を算出する。この装置にお いては、試料の放射温度測定を数十マイクロ秒のサンプリング間隔で行うため、放射 温度計の光強度検出素子には前記のように応答速度の速いシリコンフォトダイオード を用いている。また、試料と気体との熱交換による熱損失を低減するため、測定雰囲 気は ImPa以下の真空にする。  [0013] After the feedback control of the sample heating current is continued for a certain period, the feedback control is stopped, and the subsequent gate voltage value is held at the control value immediately before the feedback control is stopped. During the state, the sample surface of the sample 35 measured by the radiation thermometer 37 is irradiated with laser light from the Norse YAG laser 36 by the trigger signal output from the computer 42 for data recording and device control, and is heated. is doing. The surface temperature change of the sample 35 after irradiation with the laser beam for light heating is measured by a radiation thermometer 37, and the temperature change is fitted to a one-dimensional heat diffusion model by a computer 42 for data recording and control equipment, so that heat diffusion is achieved. Calculate the rate. In this apparatus, since the radiation temperature of the sample is measured at a sampling interval of several tens of microseconds, a silicon photodiode having a high response speed as described above is used as the light intensity detection element of the radiation thermometer. In order to reduce heat loss due to heat exchange between the sample and gas, the measurement atmosphere should be a vacuum below ImPa.
[0014] 一方、試料 35の表面に高速エリプソメータの光源 38からの光を照射し、その反射 光を高速エリプソメータの検出器 39で検出し、その信号をデータ記録及び制御装置 用コンピュータ 42に入力して試料表面の分光放射率を測定している。 On the other hand, the surface of the sample 35 is irradiated with light from the light source 38 of the high-speed ellipsometer, and its reflection is reflected. The light is detected by a detector 39 of a high-speed ellipsometer, and the signal is input to a data recording and control computer 42 to measure the spectral emissivity of the sample surface.
特許文献 1 :特開 2005— 249427号公報  Patent Document 1: JP-A-2005-249427
非特許文献 1 : A.Cezairliyan,J丄 .McClure,C.W.Beckett:J.Res.National Bureau of Sta ndards, Vol.75C-l(1971),pp.7-18  Non-Patent Document 1: A.Cezairliyan, J 丄 .McClure, C.W.Beckett: J.Res. National Bureau of Standards, Vol.75C-l (1971), pp.7-18
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0015] 前記のような本発明者等が提案している熱物性測定手法においては、例えば図 6 に示すような試料の加熱が行われ、ノ^レスレーザ照射による試料の温度変化の測定 が行われる。即ち図 6に示す例においては、 0 < t< 480msのステップ 1において、室 温状体にある試料に対して電界効果トランジスタのゲート電圧をフィードバック制御し ながら通電加熱を行い、 目標温度に保持する。次いで、 t = 480msのステップ 2にお いて、ステップ 1で行っていたフィードバック制御を停止する。次いで、 480 < t< 800 msのステップ 3において、フィードバック制御により最後に導出されたゲート電圧値を 維持する。次いで t = 480. 55msのステップ 4において、試料にパルスレーザを照射 し、パルスレーザによる試料の温度変化を測定する。最後に t〉 800msのステップ 5 において、ゲート電圧を零として、迅速に試料温度を室温に戻す。  In the thermophysical property measurement method proposed by the present inventors as described above, for example, the sample is heated as shown in FIG. 6, and the temperature change of the sample due to the laserless laser irradiation is measured. Is called. That is, in the example shown in FIG. 6, in Step 1 where 0 <t <480 ms, the sample in the room temperature body is energized and heated while feedback controlling the gate voltage of the field effect transistor, and is maintained at the target temperature. . Next, in step 2 where t = 480 ms, the feedback control performed in step 1 is stopped. Next, in step 3 where 480 <t <800 ms, the last gate voltage value derived by feedback control is maintained. Next, in step 4 at t = 480.55 ms, the sample is irradiated with a pulse laser and the temperature change of the sample due to the pulse laser is measured. Finally, in step 5 of t> 800ms, set the gate voltage to zero and quickly return the sample temperature to room temperature.
[0016] 上記のような従来の手法によって、実際に所望の加熱が行われ、正確な測定を行う ことができる場合もある力 S、必ずしも前記図 6と同様な試料温度変化が得られるとは限 らず、再現性良く試料温度を一定に保持することができな!/、場合があることがわかつ た。このような従来の手法による試料加熱の失敗例を図 7に示す。図 7 (a)と図 7 (b) には、同一のタンタル試料に対して同一の加熱条件下で連続して行った 2回の加熱 実験の結果を示している。これらの実験では、どちらも目標温度を 2100K、フィード ノ ック制御を継続する時間を 300msに設定した。図 7 (a)の実験ではステップ 3、即 ちフィードバック制御により最後に導出されたゲート電圧値を維持するステップにお いて温度が一定に保持されず、次第に温度が上昇している。それに対して図 7 (b)の 例にぉレ、ては同ステップ 3にお!/、て、次第に温度が降下して!/、る。  [0016] By the conventional method as described above, the desired heating is actually performed, and there is a case where an accurate measurement may be performed. However, it was found that the sample temperature could not be kept constant with good reproducibility! /. Figure 7 shows an example of failure of sample heating using this conventional method. Fig. 7 (a) and Fig. 7 (b) show the results of two heating experiments performed continuously under the same heating conditions on the same tantalum sample. In both of these experiments, the target temperature was set to 2100K, and the time to continue feed knock control was set to 300ms. In the experiment of Fig. 7 (a), the temperature is not kept constant in step 3, ie, the step of maintaining the gate voltage value finally derived by feedback control, and the temperature gradually increases. On the other hand, in the example of Fig. 7 (b), the temperature drops to step 3! /, And then the temperature gradually drops! /.
[0017] 上記のように試料加熱が失敗する原因を種々の実験で検討した結果、室温状態に ある試料に対して電界効果トランジスタのゲート電圧をフィードバック制御しながら通 電加熱を行い、 目標温度に保持するステップ 1におけるゲート電圧制御値の変動が 大きいことが原因であることがわかった。前記図 7 (b)に相当する図 8 (a)に示す加熱 実験時の電界効果トランジスタのゲート電圧制御値の時間変化を示す図 8 (b)に着 目すると、加熱開始から時間 100msまでの急速加熱時とその後の目標温度近辺に 到達した後のゲート電圧制御値に大きな差が存在することがわかる。 [0017] As a result of examining various causes of sample heating failure as described above, It was found that the gate voltage of the field-effect transistor was heated while feedback controlling the gate voltage of a field-effect transistor, and the variation in the gate voltage control value in step 1 was maintained at the target temperature. Focusing on Fig. 8 (b), which shows the time change of the gate voltage control value of the field effect transistor during the heating experiment shown in Fig. 8 (a), which corresponds to Fig. 7 (b), the time from the start of heating to the time of 100ms It can be seen that there is a large difference in the gate voltage control value during rapid heating and after reaching the target temperature.
[0018] 図示の例では、試料温度の急速加熱状態から温度一定に保持する段階になった 時点でゲート電圧 Vgが今回使用している電界効果トランジスタのゲート電圧の飽和 ドレイン電圧値である 6V力、ら約 2. 7Vに急減していることを示しており、温度一定に 保持する段階では Vgの変動幅は飽和ドレイン電圧値よりかなり小さくする必要がある こと力 Sわ力、る。しかし、従来の手法では、急速加熱を行っている段階において既にフ イードバック制御を実行しているため、事前に設定する Vgのフィードバック制御値の 変動範囲は飽和ドレイン電圧値を上限とする広い範囲とする必要がある。また、急速 加熱を実行するため、フィードバック制御アルゴリズムに採用した PID制御理論の比 例変数 (P値)の値は大きくする必要がある。このような理由から、上記従来特許技術 においては Vgの変動幅と P値は大きな値にする必要があり、必然的に、急速加熱後 の温度一定時において Vgすなわち単位時間あたりに発生するジュール発熱量は大 きく変動してしまう。上記従来技術では、フィードバック制御停止後に Vgの値を最終 制御値に維持した際、その最終制御値に対応するジュール発熱量が目標温度にあ る試料からの輻射や伝熱による熱損失量と一致することにより、フィードバック制御を 停止した後も温度一定の状態を短時間ではあるが継続することを利用している。しか し、フィードバック制御中の Vgの変動が大きい場合、最終制御値が試料の目標温度 に対応しない値となってしまうことが多々生じてしまうことになる。このような不適切な 加熱が行われるとき、最初に試料を定常状態に保持する必要がある熱物性測定の結 果が不正確となる。 [0018] In the example shown in the figure, the gate voltage Vg is the saturation drain voltage value of the gate voltage of the field-effect transistor used this time when the temperature of the specimen temperature is kept constant from the rapid heating state. Therefore, it is shown that the voltage drops rapidly to about 2.7V. In the stage where the temperature is kept constant, the fluctuation range of Vg needs to be considerably smaller than the saturation drain voltage value. However, in the conventional method, feedback control is already performed at the stage of rapid heating, so the fluctuation range of the feedback control value of Vg set in advance is a wide range up to the saturation drain voltage value. It is necessary to. In addition, in order to perform rapid heating, it is necessary to increase the proportional variable (P value) of the PID control theory adopted in the feedback control algorithm. For this reason, in the above-mentioned prior art, it is necessary to make the fluctuation range and P value of Vg large, and inevitably, when the temperature is constant after rapid heating, Vg, that is, Joule heat generated per unit time. The amount varies greatly. In the above prior art, when the Vg value is maintained at the final control value after feedback control is stopped, the Joule heat generation corresponding to the final control value matches the heat loss due to radiation or heat transfer from the sample at the target temperature. By doing so, it is used to maintain a constant temperature for a short time after feedback control is stopped. However, if the fluctuation of Vg during feedback control is large, the final control value often becomes a value that does not correspond to the target temperature of the sample. When such inadequate heating is performed, the results of thermophysical measurements that need to initially hold the sample in a steady state will be inaccurate.
[0019] したがって本発明は、試料等の被加熱物体の温度が目標値になるように電界効果 トランジスタ等のトランジスタのゲート電圧をフィードバック制御を行いながら通電加熱 を行い、十分に被加熱物体の温度が目標値に維持された後にフィードバック制御を 停止し、その後はゲート電圧をホールドすることだけで温度一定の状態を継続する加 熱制御において、フィードバック制御停止後のゲート電圧ホールド時において、再現 性良く温度一定状態を継続することができるようにした物体の加熱方法及び加熱装 置を提供することを主たる目的とする。 Therefore, the present invention performs energization heating while performing feedback control of the gate voltage of a transistor such as a field effect transistor so that the temperature of the object to be heated such as a sample becomes a target value. Feedback control after is maintained at the target value In heating control where the temperature is kept constant only by holding the gate voltage after that, so that the temperature constant state can be maintained with good reproducibility when the gate voltage is held after the feedback control is stopped. The main object is to provide a heating method and a heating device for the object.
課題を解決するための手段  Means for solving the problem
[0020] 本発明に係る物体加熱方法は、上記課題を解決するため、導電性被加熱物体へ の通電量を制御するために用いるトランジスタのゲート電圧を制御し、被加熱物体の 温度が目標値に達するまで急速加熱し、 目標値に到達した後、被加熱物体の温度 が目標値に一定保持されるように前記ゲート電圧のフィードバック制御を開始し、被 加熱物体の温度が目標値に一定保持されたと実質的に見なせる温度振幅範囲に収 束するまでフィードバック制御を継続し、 目標値に一定保持された時点でフィードバ ック制御を停止し、その後は、ゲート電圧値をフィードバック制御を停止する直前の任 意の複数時点におけるゲート電圧制御値の平均値にホールドすることにより被加熱 物体の温度を目標値に一定保持することを特徴とする。  [0020] In order to solve the above problems, the object heating method according to the present invention controls the gate voltage of a transistor used to control the amount of current supplied to the conductive object to be heated, and the temperature of the object to be heated is a target value. After reaching the target value, the gate voltage feedback control is started so that the temperature of the object to be heated remains constant at the target value, and the temperature of the object to be heated remains constant at the target value. The feedback control is continued until the temperature is within the temperature amplitude range that can be substantially regarded as having been set, and the feedback control is stopped when the target value is held constant, and then the gate voltage value immediately before the feedback control is stopped. The temperature of the object to be heated is held constant at the target value by holding the average value of the gate voltage control value at any given time.
[0021] また、本発明に係る他の物体加熱方法は、前記物体加熱方法にお!/、て、前記グー ト電圧をフィードバック制御する期間において、ゲート電圧の制御範囲を予め定めた 所定の範囲に制限することを特徴とする。  [0021] Further, according to another object heating method of the present invention, in the object heating method, a predetermined range in which a control range of the gate voltage is determined in a period during which the gout voltage is feedback-controlled. It is characterized by limiting to.
[0022] また、本発明に係る他の物体加熱方法は、前記物体加熱方法にお!/、て、前記被加 熱物体は熱物性を測定する導電性試料であり、前記ゲート電圧のホールド直後に試 料を光加熱し、試料のその後の温度変化を測定して熱物性を測定することを特徴と する。  [0022] Further, according to another object heating method of the present invention, in the object heating method, the heated object is a conductive sample for measuring a thermophysical property, and immediately after the gate voltage is held. The sample is characterized by measuring the thermal properties by light heating the sample and measuring the subsequent temperature change of the sample.
[0023] また、本発明に係る物体加熱装置は、導電性被加熱物体に通電して加熱する通電 加熱手段と、前記被加熱物体の通電回路に配置したトランジスタと、前記被加熱物 体の温度を測定する温度測定手段と、前記温度測定手段により測定した温度の信 号を入力し、被加熱物体の温度が所定の目標値になるように、前記トランジスタのゲ ート電圧を制御する温度制御手段とを備え、前記温度制御手段では、最初にゲート 電圧を制御することにより急速加熱し、一旦、 目標値に到達した後は、試料の温度が 目標値に一定保持されるように前記ゲート電圧をフィードバック制御し、フィードバッ ク制御により温度が目標値に保持された後にフィードバック制御を停止し、その後は 、ゲート電圧の値をフィードバック制御を停止する直前の複数時点におけるゲート電 圧制御値の平均値に設定することにより、フィードバック制御を停止した後も試料温 度を目標値に一定保持することを特徴とする。 [0023] Further, the object heating apparatus according to the present invention includes an energization heating unit that energizes and heats a conductive object to be heated, a transistor disposed in an energization circuit of the object to be heated, and a temperature of the object to be heated. Temperature control means for measuring the transistor, and a temperature control for controlling the gate voltage of the transistor so that the temperature of the object to be heated becomes a predetermined target value by inputting a temperature signal measured by the temperature measurement means In the temperature control means, the gate voltage is first rapidly heated by controlling the gate voltage, and once reaching the target value, the gate voltage is kept constant at the target value. Feedback control and feedback The feedback control is stopped after the temperature is maintained at the target value by the control, and then the gate voltage value is set to the average value of the gate voltage control values at a plurality of time points immediately before the feedback control is stopped. The sample temperature is kept constant at the target value even after feedback control is stopped.
[0024] また、本発明に係る他の物体加熱装置は、前記物体加熱装置にお!/、て、前記グー ト電圧をフィードバック制御する期間に、ゲート電圧の制御範囲を予め定めた所定の 範囲に制限することを特徴とする。  [0024] Further, another object heating device according to the present invention provides a predetermined range in which a control range of the gate voltage is determined in advance during a period during which the gout voltage is feedback controlled by the object heating device. It is characterized by limiting to.
[0025] また、本発明に係る他の物体加熱装置は、前記物体加熱装置にお!/、て、前記被加 熱物体は熱物性を測定する導電性試料であり、前記ゲート電圧のホールド直後に試 料を光加熱し、試料のその後の温度変化を測定して熱物性を測定することを特徴と する。  [0025] Further, in another object heating apparatus according to the present invention, in the object heating apparatus, the heated object is a conductive sample for measuring thermophysical properties, and immediately after the gate voltage is held. The sample is characterized by measuring the thermal properties by light heating the sample and measuring the subsequent temperature change of the sample.
[0026] また、本発明に係る他の物体加熱装置は、前記物体加熱装置を各種の物体をカロ 熱する高速精密温度ヒーターとして用いたことを特徴とする。  [0026] Further, another object heating apparatus according to the present invention is characterized in that the object heating apparatus is used as a high-speed precision temperature heater that heats various objects.
[0027] また、本発明に係る他の物体加熱装置は、前記物体加熱装置を直接通電加熱を 利用した金属或いは合金の熱処理方法として用いたことを特徴とする。 [0027] Another object heating apparatus according to the present invention is characterized in that the object heating apparatus is used as a heat treatment method for a metal or alloy using direct current heating.
発明の効果  The invention's effect
[0028] 本発明は上記のように構成したので、試料等の被加熱物体が目標の温度になるよ うに電界効果トランジスタ等のトランジスタのゲート電圧をフィードバック制御を行いな 力 ¾通電加熱を行い、その後ゲート電圧をホールドすることだけで温度一定の状態を 継続する加熱制御において、フィードバック制御を停止した後に再現性良く温度一 定の状態を継続することができるようになる。  [0028] Since the present invention is configured as described above, the gate voltage of a transistor such as a field effect transistor is not feedback controlled so that an object to be heated, such as a sample, reaches a target temperature. After that, in the heating control that keeps the temperature constant by simply holding the gate voltage, the temperature constant state can be continued with good reproducibility after the feedback control is stopped.
図面の簡単な説明  Brief Description of Drawings
[0029] [図 1]本発明の加熱手法により試料を加熱したときの、輝度温度の変化を示す実験デ ータである。  [0029] [Fig. 1] Experimental data showing changes in luminance temperature when a sample is heated by the heating method of the present invention.
[図 2]本発明の加熱手法を適用する光通電ハイブリッド 'パルス加熱システムの例を 示す図である。  FIG. 2 is a diagram showing an example of a photoconductive hybrid 'pulse heating system to which the heating method of the present invention is applied.
[図 3]本発明と従来例の加熱方法による、特にフィードバック制御中のゲート電圧の 変動状態を示す実験データである。 [図 4]本発明と従来例の加熱方法による試料の輝度温度変化の状態を示す実験デ ータである。 [FIG. 3] Experimental data showing the fluctuation state of the gate voltage during the feedback control by the heating method of the present invention and the conventional example. [Fig. 4] Experimental data showing the state of luminance temperature change of the sample by the heating method of the present invention and the conventional example.
[図 5]本発明者等が先に提案している従来の熱物性測定装置のシステム図である。  FIG. 5 is a system diagram of a conventional thermophysical property measuring apparatus previously proposed by the present inventors.
[図 6]従来の装置により試料を加熱した時の輝度温度変化の状態を示す実験データ である。  [Fig. 6] Experimental data showing changes in brightness temperature when a sample is heated by a conventional device.
[図 7]従来の装置により試料を加熱した時の失敗例を示す実験データである。  [Fig. 7] Experimental data showing an example of failure when a sample is heated by a conventional apparatus.
[図 8]従来の試料加熱失敗の原因を示す実験データである。  [Fig. 8] Experimental data showing the cause of conventional sample heating failure.
符号の説明  Explanation of symbols
[0030] 1 光通電ハイブリッド 'パルス加熱システム [0030] 1 Photoelectric hybrid 'pulse heating system
2 コンデンサ  2 capacitors
3 電界効果トランジスタ  3 Field effect transistor
4 標準抵抗  4 Standard resistance
5 試料  5 samples
6 ノ ノレス.レーザ  6 No Noles Laser
7 放射温度計  7 Radiation thermometer
8 半導体レーザ  8 Semiconductor laser
9 高速エリプソメータ  9 High-speed ellipsometer
10 ビーム'スプリッタ  10 beam 'splitter
11 電圧測定プローブ  11 Voltage measurement probe
12 温度制御 ·信号記録用コンピュータ  12 Temperature control · Signal recording computer
13 光検出器  13 photodetector
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0031] 本発明は前記課題を解決するため、導電性被加熱物体への通電量を制御するた めに用いるトランジスタのゲート電圧を制御し、被加熱物体の温度が目標値に達する まで急速加熱し、 目標値に到達達した後、被加熱物体の温度が目標値に一定保持 されたと実質的に見なせる温度振幅範囲に収束するまでフィードバック制御を継続し 、 目標値に一定保持された時点でフィードバック制御を停止し、その後は、ゲート電 圧値をフィードバック制御を停止する直前の複数時点におけるゲート電圧制御値の 平均値にホールドすることにより被加熱物体の温度を目標値に一定保持するようにし たものである。 [0031] In order to solve the above problems, the present invention controls the gate voltage of a transistor used to control the amount of current supplied to the conductive object to be heated, and rapidly heats the object to be heated until the temperature reaches the target value. After reaching the target value, feedback control is continued until the temperature of the object to be heated converges to a temperature amplitude range that can be substantially regarded as being held at the target value. After the control is stopped, the gate voltage value of the gate voltage control value at multiple points immediately before the feedback control is stopped By holding the average value, the temperature of the object to be heated is held constant at the target value.
実施例 1  Example 1
[0032] 本発明の実施例を図面に沿って説明する。図 1には本発明の加熱手法を用い、実 際に加熱制御を行った際の試料の温度変化を示しており、前記図 6に示した従来の 加熱手法による実験時の試料温度変化に対応している。本発明における加熱手法 を実行する加熱システムは、前記図 5に示す本発明者等による先の出願と同様の加 熱システムを利用しており、図 2に示すような光通電ハイブリッド ' ·パルス加熱システム 1を用いている。  [0032] An embodiment of the present invention will be described with reference to the drawings. Fig. 1 shows the temperature change of the sample when the heating method of the present invention is used and the heating control is actually performed, and corresponds to the sample temperature change during the experiment by the conventional heating method shown in Fig. 6 above. is doing. The heating system for executing the heating method according to the present invention uses the same heating system as that of the previous application by the present inventors shown in FIG. 5, and the photoconductive hybrid pulse heating as shown in FIG. System 1 is used.
[0033] 図 2におけるコンデンサー 2は試料加熱に用いる電荷を蓄え、電界効果トランジスタ 3のゲート電極に制御装置としてのコンピュータによって構成される温度制御 ·信号 記録用コンピュータ 12から制御電圧信号を印可することにより、平板状の試料 5に対 して加熱用電流を供給し、発生したジュール熱により試料 5を自己加熱させる。  Capacitor 2 in FIG. 2 stores electric charge used for sample heating, and applies a control voltage signal from temperature control / signal recording computer 12 configured by a computer as a control device to the gate electrode of field effect transistor 3 Thus, a heating current is supplied to the flat sample 5 and the sample 5 is self-heated by the generated Joule heat.
[0034] 標準抵抗 4の両端の電位差の信号を温度制御'信号記録用コンピュータ 12に入力 して、試料 5を流れる加熱電流の大きさを測定する。また、試料 5における電位差の 信号を温度制御 ·信号記録用コンピュータ 12に入力して、試料 5にかかる電圧の大き さを測定する。上記の電流と電圧の積力 試料 5を加熱するに要した電力を算出し、 試料に発生する単位時間あたりのジュール熱を連続測定する。  [0034] The signal of the potential difference between both ends of the standard resistor 4 is input to the temperature control signal recording computer 12, and the magnitude of the heating current flowing through the sample 5 is measured. In addition, the potential difference signal in sample 5 is input to temperature control / signal recording computer 12 and the voltage applied to sample 5 is measured. Product of the above current and voltage Calculate the power required to heat sample 5, and continuously measure the Joule heat per unit time generated in the sample.
[0035] 上記のようにして加熱された試料 5の温度は、数十マイクロ秒程度の時間分解能を もつシリコンフォトダイオードを検出素子とする放射温度計 7によって測定され、その 信号を温度制御 ·信号記録用コンピュータ 12に入力する。放射温度計 7で測定した 輝度温度を真温度に変換するために必要な垂直分光放射率は、機械的な駆動部を 有さずに光の偏光状態を表すスト一タス 'パラメータを高速で決定する DOAP型の単 色エリプソメータを用いて連続測定する。  [0035] The temperature of the sample 5 heated as described above is measured by a radiation thermometer 7 using a silicon photodiode having a time resolution of about several tens of microseconds as a detection element, and the signal is controlled by a temperature control signal. Input to recording computer 12. The vertical spectral emissivity required to convert the luminance temperature measured with the radiation thermometer 7 to the true temperature is determined at a high speed with a 'statistics' parameter representing the polarization state of light without a mechanical drive. Measure continuously using a DOAP type monochromatic ellipsometer.
[0036] 温度制御'信号記録用コンピュータ 12は、前記放射温度計 7の温度信号を監視し 、試料 5が設定した温度になるように電界効果トランジスタ 3のゲート電圧を調節する ことにより、試料温度を目標値に一定保持する。  [0036] The temperature control 'signal recording computer 12 monitors the temperature signal of the radiation thermometer 7 and adjusts the gate voltage of the field effect transistor 3 so that the sample 5 has a set temperature, thereby adjusting the sample temperature. Is kept constant at the target value.
[0037] ゲート電圧のフィードバック制御により試料温度が目標値に一定保持された後、フィ ードバック制御を停止し、フィードバック制御停止直前の任意の複数時点におけるゲ ート電圧制御値の平均値にゲート電圧値をホールドすることにより短時間だけ維持さ れる温度一定状態の間に、放射温度計 7が測定する試料 5の面の裏面に対して、温 度制御'信号記録用コンピュータ 12の信号によってノ ルス'レーザ 6から光ノ ルスを 照射することにより瞬間光加熱を行う。その際、ビームスプリッタ 10によりパルス光束 の一部を光検出器 13に取り込み、検出器からの信号を温度制御 ·信号記録用コンビ ユータにより解析して光ノ ルスの照射時間を決定する。 [0037] After the sample temperature is kept constant at the target value by the feedback control of the gate voltage, Radiation thermometer during a constant temperature state that is maintained for a short time by stopping the feedback control and holding the gate voltage value at the average value of the gate voltage control value at any time instant just before stopping the feedback control The back of the surface of the sample 5 to be measured by 7 is subjected to instantaneous light heating by irradiating optical noise from the laser 6 with a signal from the temperature control 'signal recording computer 12'. At that time, a part of the pulsed light beam is taken into the photodetector 13 by the beam splitter 10, and the signal from the detector is analyzed by a temperature control / signal recording computer to determine the irradiation time of the optical noise.
[0038] この光ノ ルス照射後の試料 5の表面温度変化を放射温度計 7によって測定し、温 度制御 ·信号記録用コンピュータ 12によってその温度変化を一次元熱拡散モデルに フィットさせることにより熱拡散率を算出する。この装置においては、試料の放射温度 測定を数十マイクロ秒のサンプリング間隔で行うため、放射温度計の光強度検出素 子には前記のように応答速度の速いシリコンフォトダイオードを用いている。また、試 料と気体との熱交換による熱損失を低減するため、測定雰囲気は ImPa以下の真空 にする。 [0038] The surface temperature change of the sample 5 after irradiation with the light norms is measured by a radiation thermometer 7, and the temperature control and signal recording computer 12 is used to fit the temperature change to a one-dimensional heat diffusion model. Calculate the diffusion rate. In this device, since the radiation temperature of the sample is measured at a sampling interval of several tens of microseconds, a silicon photodiode having a high response speed is used as the light intensity detection element of the radiation thermometer as described above. In order to reduce heat loss due to heat exchange between the sample and gas, the measurement atmosphere should be a vacuum of ImPa or less.
[0039] 一方、試料 5の表面に高速エリプソメータの光源である半導体レーザ 8からの光を 照射し、その反射光を高速エリプソメータ 9でこれを検出し、その信号を温度制御'信 号記録用コンピュータ 12に入力して試料表面の分光放射率を測定して!/、る。なお、 その後の熱物性測定に関しては前記先の出願に詳述しており、本発明とは直接の関 係は少ないので、ここでの説明は省略する。  [0039] On the other hand, the surface of the sample 5 is irradiated with light from the semiconductor laser 8, which is the light source of the high-speed ellipsometer, and the reflected light is detected by the high-speed ellipsometer 9, and the signal is controlled by a temperature control signal recording computer. Input to 12 and measure the spectral emissivity of the sample surface! The subsequent measurement of thermophysical properties is described in detail in the above-mentioned previous application, and since there is little direct relationship with the present invention, explanation here is omitted.
[0040] 上記のような装置を用い、本発明においては図 1に示すような試料加熱を行うもの である。図 1に示す加熱実験においては、最初のステップ 1において、事前に設定し た目標温度 2100Kに達するまでの時間領域に対応するステップ 1では急速加熱を 行う。急速加熱により前記目標温度に一旦到達した時点から、 目標温度に一定保持 されるようにゲート電圧のフィードバック制御を開始する。このフィードバック制御期間 は図 1においてはステップ 2の時間領域に対応しており、前記従来特許技術と異なり 、フィードバック制御を開始する前に既に目標値近傍に試料温度が到達しているた め、ゲート電圧制御値の変動範囲は急速加熱時に必要とするような大きな値を含む 必要はない。そこで、 目標温度に一定保持する上で適当なゲート電圧制御値の変動 範囲を事前に設定する。ここに示す実験においては、ゲート電圧の制御値変動範囲 を 2. 8〜2. 9Vに限定し、ステップ 2の時間領域での試料温度と制御ゲート電圧値の 変動を小さくすることができた。 [0040] Using the apparatus as described above, in the present invention, the sample is heated as shown in FIG. In the heating experiment shown in Fig. 1, in the first step 1, rapid heating is performed in step 1 corresponding to the time region until the target temperature 2100K set in advance is reached. Once the target temperature is reached by rapid heating, feedback control of the gate voltage is started so that the target temperature is kept constant. This feedback control period corresponds to the time region of step 2 in FIG. 1. Unlike the above-described prior art, the sample temperature has already reached the target value before starting the feedback control. The fluctuation range of the voltage control value does not need to include such a large value as required during rapid heating. Therefore, fluctuations in the appropriate gate voltage control value to keep the target temperature constant Set the range in advance. In the experiment shown here, the control value fluctuation range of the gate voltage was limited to 2.8 to 2.9 V, and the fluctuation of the sample temperature and control gate voltage value in the time domain of Step 2 could be reduced.
[0041] その後のステップ 3の終了後にフィードバック制御を停止することとなる力 S、フィード ノ ック制御を停止する直前に導出された 20点のゲート電圧制御値の平均値を温度 制御 ·信号記録用コンピュータ 12によって算出し、フィードバック制御停止後のステツ プ 4の開始からステップ 6が終了する時間領域においてはゲート電圧の値はこの平均 値にホールドされる。この実験では、平均値算出に用いた 20点のゲート電圧制御値 を導出した時間間隔は 2msであり、この時間領域がステップ 3に対応しており、ステツ プ 2の終了直前 2msの期間に対応している。  [0041] The force S that will stop the feedback control after the end of step 3 after that, and the average value of the 20 gate voltage control values derived just before the stop of the feed knock control are temperature control and signal recording. The value of the gate voltage is held at this average value in the time domain in which the calculation is performed by the computer 12 and step 6 is completed after the start of step 4 after the feedback control is stopped. In this experiment, the time interval for deriving the 20 gate voltage control values used to calculate the average value is 2 ms, and this time domain corresponds to step 3 and corresponds to the 2 ms period immediately before the end of step 2. is doing.
[0042] フィードバック制御終了後、前記フィードバック制御を停止する直前の複数時点で のゲート電圧制御値の平均値を求めて、ステップ 4の開始時点からステップ 6の終了 時までゲート電圧をその値にホールドする。ゲート電圧のホールドの開始から図中ス テツプ 5として示しているパルス.レーザ照射時までの時間領域がステップ 4に対応し ており、この実験では 20msの長さである。この実験では、フィードバック制御後の試 料温度の定常性を確認するため、パルスレーザの照射は行っていない。ステップ 6に 示すレーザ照射後の時間領域にぉレ、て、先の出願に詳述したような各種物性値を得 るための、パルスレーザによる試料の温度変化の測定を行う。このステップ 6の期間 は、熱拡散率を算出するに必要なデータを取得する期間である。最後に予め設定さ れた測定作業終了時期後にゲート電圧を零として、迅速に試料温度を室温に戻す。  [0042] After the feedback control is completed, an average value of the gate voltage control values at a plurality of times immediately before stopping the feedback control is obtained, and the gate voltage is held at that value from the start of step 4 to the end of step 6. To do. The time domain from the start of the gate voltage hold to the pulse laser irradiation shown as step 5 in the figure corresponds to step 4, which is 20 ms long in this experiment. In this experiment, pulse laser irradiation was not performed in order to confirm the continuity of the sample temperature after feedback control. In the time domain after laser irradiation shown in step 6, the temperature change of the sample is measured by the pulse laser to obtain various physical properties as detailed in the previous application. The period of step 6 is a period for acquiring data necessary for calculating the thermal diffusivity. Finally, the gate voltage is set to zero after the preset measurement work completion time, and the sample temperature is quickly returned to room temperature.
[0043] 上記のような制御を行う結果、再現性よぐゲート電圧ホールド時に温度を一定に すること力 Sできる。また、従来より短いフィードバック制御時間で、ゲート電圧ホールド 時に温度を一定にすることができる。更に、フィードバック制御時の温度変動を小さく することができると共に、急速加熱の終了時に生じる試料温度のオーバーシュートの 大きさ力 S小さくなる。これらの効果により、効率的かつ正確な熱物性測定を行うことが できる。 [0043] As a result of performing the control as described above, it is possible to maintain the temperature at the time of holding the gate voltage based on reproducibility. In addition, the feedback control time is shorter than before and the temperature can be kept constant when the gate voltage is held. Furthermore, the temperature fluctuation during feedback control can be reduced, and the magnitude force S of the overshoot of the sample temperature generated at the end of the rapid heating is reduced. These effects enable efficient and accurate thermophysical property measurement.
[0044] 本発明の前記効果を確認するため、同一のタンタル試料を用いて連続して行った 従来特許技術と本発明の技術により行った加熱実験の比較を図 3及び図 4に示す。 図 3 (a)には前記図 8 (b)と同じ従来の加熱方法によるゲート電圧の変動幅の例を示 しており、前記のように Vg = 2. 7〜6Vと、変動幅が大きいことが示されている。それ に対して図 3 (b)に示す本発明の加熱方法によると、ゲート電圧 Vgを 2. 8〜2. 9Vに 維持しており、ゲート電圧の制御値の許容範囲が狭くなつていることが示されている。 このような制御を行うことにより、フィードバック制御後のゲート電圧のホールド時に再 現性よく温度を一定にすることができ、従来より短いフィードバック制御時間でゲート 電圧ホールド時に温度を所定の一定値にすることができる。それにより、実験時間が 短縮し、試料の汚染時間が減少して正確な測定が可能となり、測定コストの削減を図 ること力 Sでさる。 [0044] In order to confirm the above-mentioned effects of the present invention, a comparison between a conventional patent technique continuously performed using the same tantalum sample and a heating experiment performed by the technique of the present invention is shown in FIG. 3 and FIG. Fig. 3 (a) shows an example of the fluctuation range of the gate voltage by the same conventional heating method as in Fig. 8 (b). As mentioned above, Vg = 2.7 to 6 V, and the fluctuation range is large. It has been shown. On the other hand, according to the heating method of the present invention shown in FIG. 3 (b), the gate voltage Vg is maintained at 2.8 to 2.9V, and the allowable range of the gate voltage control value is narrowed. It is shown. By carrying out such control, the temperature can be kept constant with good reproducibility when holding the gate voltage after feedback control, and the temperature is kept at a predetermined constant value when holding the gate voltage with a shorter feedback control time than before. be able to. As a result, the experiment time is shortened, the contamination time of the sample is reduced, accurate measurement is possible, and the measurement cost S can be reduced.
[0045] また、図 4 (a)と図 4 (b)は、それぞれ図 3 (a)と図(b)に示す加熱時に得られた試料 の温度変化を示しており、従来の加熱方法による試料の輝度温度変化を示す図 4 (a )では、前記のようにフィードバックを停止するステップ 2以降のステップ 3において温 度が一定にならな!/、状態があることが示されて!/、る。それに対して図 3 (b)と図 4 (b) に示す本発明の加熱方法、フィードバック停止後のゲート電圧ホールド時において、 前記のようにステップ 2におけるフィードバック制御中のゲート電圧が安定していること もあり、またフィードバック制御停止直前の数十点の値の平均値をホールド値に用い ているため、フィードバック制御後もフィードバック制御の所定温度と同じ温度に極め て安定して維持することができる。このことは熱拡散率と半球全放射率測定の精度を 向上させることができる効果がある。  [0045] FIGS. 4 (a) and 4 (b) show the temperature changes of the samples obtained during heating shown in FIGS. 3 (a) and (b), respectively. In Fig. 4 (a) showing the change in brightness temperature of the sample, it is shown that the temperature must be constant in step 3 after step 2 where feedback is stopped as described above! The On the other hand, in the heating method of the present invention shown in FIGS. 3 (b) and 4 (b), when the gate voltage is held after the feedback is stopped, the gate voltage during the feedback control in step 2 is stable as described above. In addition, since the average value of several tens of points immediately before the feedback control is stopped is used as the hold value, it can be maintained extremely stably at the same temperature as the predetermined temperature of the feedback control even after the feedback control. . This has the effect of improving the accuracy of thermal diffusivity and hemispherical total emissivity measurements.
産業上の利用可能性  Industrial applicability
[0046] 上記のような本発明の加熱方法は、主として前記のように各種物質の高温時にお ける比熱容量、半球全放射率、熱伝導率、熱拡散率等の熱物性値を測定するため の試料の通電加熱に用いるために好適に利用することができるものである力 この加 熱方法は例えば試験装置や各種機器の通電加熱ヒーターにお!/、て、瞬間的に所定 のエネルギーの熱量を必要とする高速精密温度ヒーターとしても利用することができ [0046] The heating method of the present invention as described above mainly measures the thermophysical values such as specific heat capacity, hemispherical total emissivity, thermal conductivity and thermal diffusivity of various substances at high temperatures as described above. This heating method can be used for electrification heating of test specimens and various devices, for example. It can also be used as a high-speed precision temperature heater that requires
更に、例えば金属や合金の熱処理において、 目的の温度に正確且つ高速に到達 させ、正確な時間だけその温度を保持することも可能である。 Furthermore, for example, in the heat treatment of metals and alloys, it is possible to reach the target temperature accurately and at high speed, and hold the temperature for an accurate time.

Claims

請求の範囲 The scope of the claims
[1] 導電性被加熱物体への通電量を制御するために用いるトランジスタのゲート電圧を 制御し、被加熱物体の温度が所定の目標値に達するまで急速加熱し、 目標値に到 達した後、  [1] After controlling the gate voltage of the transistor used to control the amount of current supplied to the conductive object to be heated, rapidly heating until the temperature of the object to be heated reaches a predetermined target value, and then reaching the target value ,
被加熱物体の温度が目標値に保持されるように前記ゲート電圧のフィードバック制 御を開始し、被加熱物体の温度が目標値に一定保持されたと実質的に見なせる温 度振幅範囲に収束するまでフィードバック制御を継続し、 目標値に一定保持された 時点でフィードバック制御を停止し、その後は、ゲート電圧値をフィードバック制御を 停止する直前の任意の複数時点におけるゲート電圧制御値の平均値にホールドす ることにより被加熱物体の温度を目標値に一定保持することを特徴とする物体加熱 方法。  Start feedback control of the gate voltage so that the temperature of the object to be heated is maintained at the target value, until the temperature of the object to be heated converges to a temperature amplitude range that can be substantially regarded as being held at the target value. Continues feedback control, stops feedback control when it is held constant at the target value, and then holds the gate voltage value at the average value of the gate voltage control value at any time point immediately before stopping feedback control. The object heating method is characterized in that the temperature of the object to be heated is kept constant at a target value.
[2] 前記ゲート電圧をフィードバック制御する期間において、ゲート電圧の制御範囲を 予め定めた所定の範囲に制限することを特徴とする請求項 1記載の物体加熱方法。  2. The object heating method according to claim 1, wherein a control range of the gate voltage is limited to a predetermined range in a period during which the gate voltage is feedback-controlled.
[3] 前記被加熱物体は熱物性を測定する導電性試料であり、 [3] The heated object is a conductive sample for measuring thermal properties,
前記ゲート電圧のホールド直後に試料を光加熱し、  Immediately after holding the gate voltage, the sample is photoheated,
試料のその後の温度変化を測定して熱物性を測定することを特徴とする請求項 1 記載の物体加熱方法を用レ、た熱物性測定方法。  The method for measuring a thermophysical property using the method for heating an object according to claim 1, wherein the thermophysical property is measured by measuring a subsequent temperature change of the sample.
[4] 導電性被加熱物体に通電して加熱する通電加熱手段と、 [4] energization heating means for energizing and heating the conductive object to be heated;
前記被加熱物体の通電回路に配置したトランジスタと、  A transistor disposed in the energization circuit of the heated object;
前記被加熱物体の温度を測定する温度測定手段と、  Temperature measuring means for measuring the temperature of the heated object;
前記温度測定手段により測定した温度の信号を入力し、被加熱物体の温度が所定 の目標値になるように、前記トランジスタのゲート電圧を制御する温度制御手段とを 備え、  A temperature control means for inputting a temperature signal measured by the temperature measurement means and controlling the gate voltage of the transistor so that the temperature of the object to be heated becomes a predetermined target value;
前記温度制御手段では、最初にゲート電圧を制御して急速加熱し、一旦、 目標値 に到達した後は、試料の温度が目標値に一定保持されるように前記ゲート電圧をフィ ードバック制御し、フィードバック制御により温度が目標値に保持された後にフィード ノ ック制御を停止し、その後は、ゲート電圧の値をフィードバック制御を停止する直前 の複数時点におけるゲート電圧制御値の平均値に設定することにより、フィードバッ ク制御を停止した後も試料温度を目標値に一定保持することを特徴とする物体加熱 装置。 In the temperature control means, first, the gate voltage is controlled and rapidly heated, and once the target value is reached, the gate voltage is feedback controlled so that the temperature of the sample is kept constant at the target value. After the temperature is maintained at the target value by feedback control, stop the feed knock control, and then set the gate voltage value to the average value of the gate voltage control values at multiple points just before stopping the feedback control. The feedback The object heating device is characterized in that the sample temperature is kept constant at the target value even after the vacuum control is stopped.
[5] 前記ゲート電圧をフィードバック制御する期間において、ゲート電圧を予め定めた 所定の範囲に制限することを特徴とする請求項 4記載の物体加熱装置。  5. The object heating device according to claim 4, wherein the gate voltage is limited to a predetermined range within a period during which the gate voltage is feedback controlled.
[6] 前記被加熱物体は熱物性を測定する導電性試料であり、 [6] The heated object is a conductive sample for measuring thermal properties,
前記ゲート電圧のホールド直後に試料を光加熱し、  Immediately after holding the gate voltage, the sample is photoheated,
試料のその後の温度変化を測定して熱物性を測定することを特徴とする請求項 4 記載の物体加熱装置を用いた熱物性測定装置。  5. The thermophysical property measuring apparatus using the object heating device according to claim 4, wherein the thermophysical property is measured by measuring a subsequent temperature change of the sample.
[7] 前記装置を各種の物体を加熱する高速精密温度ヒーターとして用いたことを特徴と する請求項 4記載の物体加熱装置。 7. The object heating apparatus according to claim 4, wherein the apparatus is used as a high-speed precision temperature heater for heating various objects.
[8] 前記装置を直接通電加熱を利用した金属或いは合金の熱処理方法として用いたこ とを特徴とする請求項 4記載の物体加熱装置。 8. The object heating apparatus according to claim 4, wherein the apparatus is used as a heat treatment method for a metal or alloy using direct current heating.
PCT/JP2007/070558 2006-11-02 2007-10-22 Method and device for heating article WO2008053735A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112007002614T DE112007002614T5 (en) 2006-11-02 2007-10-22 Method and device for heating an article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-298883 2006-11-02
JP2006298883A JP4953061B2 (en) 2006-11-02 2006-11-02 Object heating method and apparatus

Publications (1)

Publication Number Publication Date
WO2008053735A1 true WO2008053735A1 (en) 2008-05-08

Family

ID=39344078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070558 WO2008053735A1 (en) 2006-11-02 2007-10-22 Method and device for heating article

Country Status (3)

Country Link
JP (1) JP4953061B2 (en)
DE (1) DE112007002614T5 (en)
WO (1) WO2008053735A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114747943A (en) * 2022-04-29 2022-07-15 佛山市顺德区美的饮水机制造有限公司 Instant heating water dispenser, preheating control method and device thereof and storage medium

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5414068B2 (en) * 2010-09-15 2014-02-12 独立行政法人産業技術総合研究所 Method and apparatus for measuring specific heat capacity and hemispherical total emissivity of conductive samples
JP5633071B2 (en) * 2011-01-26 2014-12-03 独立行政法人産業技術総合研究所 Calibration method of radiation thermometer using thermal radiation source

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08261967A (en) * 1995-03-27 1996-10-11 Chiyoukouon Zairyo Kenkyusho:Kk Measuring method and device for thermal constant using laser flash method
JP2004022256A (en) * 2002-06-14 2004-01-22 Toshiba Home Technology Corp Electromagnetic induction heating arrangement
JP2005215944A (en) * 2004-01-29 2005-08-11 Kyocera Mita Corp Temperature controller
JP2005249427A (en) * 2004-03-01 2005-09-15 National Institute Of Advanced Industrial & Technology Thermophysical property measuring method and device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08261967A (en) * 1995-03-27 1996-10-11 Chiyoukouon Zairyo Kenkyusho:Kk Measuring method and device for thermal constant using laser flash method
JP2004022256A (en) * 2002-06-14 2004-01-22 Toshiba Home Technology Corp Electromagnetic induction heating arrangement
JP2005215944A (en) * 2004-01-29 2005-08-11 Kyocera Mita Corp Temperature controller
JP2005249427A (en) * 2004-03-01 2005-09-15 National Institute Of Advanced Industrial & Technology Thermophysical property measuring method and device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIROMICHI WATANABE ET AL.: "Electrical-optical hybrid pulse-heating method for rapid measurement of high-temperature thermal diffusivity", APPLIED PHYSICS LETTERS, vol. 88, 12 June 2006 (2006-06-12), pages 241901-1 - 241901-3 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114747943A (en) * 2022-04-29 2022-07-15 佛山市顺德区美的饮水机制造有限公司 Instant heating water dispenser, preheating control method and device thereof and storage medium
CN114747943B (en) * 2022-04-29 2024-03-15 佛山市顺德区美的饮水机制造有限公司 Instant heating water dispenser, preheating control method and device thereof and storage medium

Also Published As

Publication number Publication date
JP4953061B2 (en) 2012-06-13
JP2008116285A (en) 2008-05-22
DE112007002614T5 (en) 2009-09-03

Similar Documents

Publication Publication Date Title
JP4195935B2 (en) Thermophysical property measuring method and apparatus
JP6382912B2 (en) Method and apparatus for photothermal analysis of a sample
CN109470740B (en) Dual wavelength flash Raman method for characterizing thermal diffusivity of bulk material
JP4953061B2 (en) Object heating method and apparatus
JP2017125842A (en) Method and device for thermal analysis of sample and/or for calibration of temperature measuring device
JPH03225268A (en) Direct heating type calorimetric instrument
Fleurence et al. Thermal conductivity measurements of thin films at high temperature modulated photothermal radiometry at LNE
JP6401350B2 (en) Calibration method of temperature adjustment during thermal analysis of sample
US6375349B1 (en) Instrument configured to test multiple samples for the determination of thermophysical properties by the flash method
JP5160816B2 (en) Infrared detector temperature calibration method and specific heat capacity measurement method
Diez et al. Time-Resolved Reflectivity and Temperature Measurements During Laser Irradiation of Crystalline Silicon.
JP4171817B2 (en) Thermophysical property measuring method and apparatus
CN108918580A (en) A kind of lossless steady heat conduction rate measurement method
RU2303777C2 (en) Method of determining thermophysical properties of solids
Schmon et al. Thermophysical properties of Manganin (Cu86Mn12Ni2) in the solid and liquid state
JP6299876B2 (en) Surface temperature sensor calibration device
RU2263306C1 (en) Method of identifying set of thermal-physical characteristics of solid materials
RU2811326C1 (en) Method for measuring thermophysical properties of materials and unit for its implementation using heat flow sensors
RU2324165C1 (en) Method of identifying system of thermo-physical properties of hard materials
Meresse et al. Thermal diffusivity identification by 2nd derivative analysis of transient temperature profile
RU2751454C1 (en) Method for determining temperature conductivity and thermal conductivity of metal melts by pulse method
RU2324164C1 (en) Method of identifying system of thermo-physical properties of hard materials
RU170886U1 (en) DEVICE FOR NON-DESTRUCTIVE TESTING OF TEMPERATURE CONDUCTIVITY OF THERMAL COMPENSATORS OF POWER SEMICONDUCTOR DEVICES
JP2012063207A (en) Method and apparatus for measuring specific heat capacity and total hemispherical emissivity of conductive sample
JPS63159740A (en) Heat constant measuring instrument by laser flash method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830292

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120070026146

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112007002614

Country of ref document: DE

Date of ref document: 20090903

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 07830292

Country of ref document: EP

Kind code of ref document: A1