WO2008053592A1 - Anisotropic light diffusing film, and display device and liquid crystal display device using the anisotropic light diffusing film - Google Patents

Anisotropic light diffusing film, and display device and liquid crystal display device using the anisotropic light diffusing film Download PDF

Info

Publication number
WO2008053592A1
WO2008053592A1 PCT/JP2007/001185 JP2007001185W WO2008053592A1 WO 2008053592 A1 WO2008053592 A1 WO 2008053592A1 JP 2007001185 W JP2007001185 W JP 2007001185W WO 2008053592 A1 WO2008053592 A1 WO 2008053592A1
Authority
WO
WIPO (PCT)
Prior art keywords
anisotropic light
light diffusing
liquid crystal
display device
crystal display
Prior art date
Application number
PCT/JP2007/001185
Other languages
French (fr)
Japanese (ja)
Inventor
Kensaku Higashi
Yasuhiko Motoda
Original Assignee
Tomoegawa Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Co., Ltd. filed Critical Tomoegawa Co., Ltd.
Publication of WO2008053592A1 publication Critical patent/WO2008053592A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0257Diffusing elements; Afocal elements characterised by the diffusing properties creating an anisotropic diffusion characteristic, i.e. distributing output differently in two perpendicular axes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0268Diffusing elements; Afocal elements characterized by the fabrication or manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements

Definitions

  • Anisotropic light diffusing film display device using the same, and liquid crystal display device
  • the present invention relates to an anisotropic light diffusion film capable of expanding a viewing angle, a display device using the same, and a liquid crystal display device.
  • Examples of the display device that can be used include a liquid crystal display panel, a plasma display panel (PDP), an organic electroluminescence panel (EL), a rear projector, and a field emission display. It is done. Among these, liquid crystal display devices using liquid crystal display panels are used in many products.
  • nematic liquid crystal is sandwiched between a pair of transparent glass substrates on which transparent electrodes are formed, and a pair of polarizing plates is provided on both sides of the glass substrate. It is the structure which was made.
  • the display direction is good with respect to the normal direction of the liquid crystal display panel, the vertical or horizontal direction with respect to the normal line of the liquid crystal display panel
  • the display characteristic is remarkably deteriorated in a direction inclined more than a specific angle.
  • a plurality of refractive index distribution type microlenses formed by reaction of a photopolymerizable monomer are formed in a transparent polymer substrate.
  • a microlens array is disclosed in which the viewing angle of a liquid crystal display device can be expanded by having a region of (see, for example, Patent Document 1). . )
  • a bundle of many glass fibers is thinly cut at a surface where the optical axis of the fiber is inclined at a specific angle with respect to the normal of the fiber plate.
  • a liquid crystal display device in which the emitted light has directivity by being laminated as a glass substrate on the side is disclosed (for example, see Patent Document 2).
  • the resin layer made of a cured product of a composition containing a photopolymerizable compound, all in a predetermined direction P
  • An anisotropic diffusion film in which an aggregate of a plurality of bar-shaped hardened regions extending in parallel is disclosed (see, for example, Patent Document 3). It is known that this anisotropic diffusion film can slightly improve the viewing angle by being applied to the viewing surface side of a liquid crystal display device.
  • photopolymerization and “curing” will be used as the photopolymerizable compound undergoes a polymerization reaction with light, and both are used interchangeably.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 6_59 10 2
  • Patent Document 2 JP-A-6-2 5 8 6 2 7
  • Patent Document 3 Japanese Patent Laid-Open No. 2 0 0 _ 2 6 5 9 1 5
  • an object of the present invention is to provide an anisotropic light diffusion film capable of sufficiently expanding the viewing angle of a display panel, particularly a liquid crystal display panel, in an arbitrary direction, and a liquid crystal display device using the same.
  • the present inventor has determined that the transmission diffusibility of incident light is anisotropic light diffusion.
  • the scattering central axis projected on the surface of the anisotropic light diffusing layer has an incident angle dependency that changes depending on the angle at which the scattering central axis of the scattering layer intersects the optical axis of the incident light to the anisotropic light diffusing layer.
  • the anisotropic light diffusing film of the present invention comprises a plurality of anisotropic light diffusing layers made of a cured product of a composition containing a photopolymerizable compound, and each of the anisotropic light diffusing layers has one scattering center axis,
  • the transmission diffusivity of incident light to the anisotropic light diffusing layer has an incident angle dependency that changes depending on the angle at which the scattering central axis of the anisotropic light diffusing layer and the optical axis of the incident light intersect.
  • the direction of the scattering central axis differs depending on each anisotropic light diffusion layer.
  • [001 1] According to the present invention, by stacking a plurality of anisotropic light diffusing layers having different scattering center axes, light emitted from a display panel, particularly a liquid crystal display panel, is distributed in a direction around a plurality of scattering center axes. As a result, the viewing angle of the display panel including the liquid crystal display panel can be sufficiently expanded in an arbitrary direction.
  • the anisotropic light diffusing layer in the anisotropic light diffusing film of the present invention has an assembly of a plurality of rod-like hardened regions 3 in the anisotropic light diffusing layer 1, and a scattering center in the length direction.
  • the plurality of rod-shaped hardened regions 3 are formed so as to be parallel to the axis P, and the refractive index is different from the periphery thereof.
  • the viewing angle is expanded in a direction that is parallel to the direction in which the scattering center axis P is projected onto the surface of the anisotropic light diffusion layer, and the emitted light is diffused around the scattering center axis. Then, by performing this action with a plurality of anisotropic light diffusion layers, the light emitted from the display panel including the liquid crystal display panel is distributed and diffused around a plurality of scattering central axes. Can do.
  • light directed in a direction different from the direction in which the scattering center axis P is projected onto the surface of the anisotropic light diffusion layer is further directed to another direction by the plurality of anisotropic light diffusion layers.
  • the viewing angle of a display panel including a liquid crystal display panel be sufficiently expanded in any direction by adjusting the scattering center axis, but also in a direction different from the direction in which the scattering center axis is directed. Can be expanded up to the viewing angle.
  • FIG. 1 is a diagram schematically showing an example of an anisotropic light diffusion film of the present invention.
  • FIG. 2 is a view schematically showing an anisotropic light diffusion layer in the present invention.
  • FIG. 3 is a three-dimensional polar coordinate display for explaining the scattering center axis in the present invention.
  • FIG. 4 is a diagram schematically showing an example of a liquid crystal display device of the present invention.
  • FIG. 5 is a diagram schematically showing another example of the liquid crystal display device of the present invention.
  • FIG. 6 is a schematic diagram showing a conventional light control plate.
  • FIG. 7 is a diagram showing that the anisotropic light diffusion film of the present invention can expand the luminance of the backlight in an arbitrary direction.
  • the anisotropic light diffusing film of the present invention has, for example, a configuration in which a plurality of anisotropic light diffusing layers 1 are laminated with an adhesive 2 as shown in FIG.
  • an adhesive 2 for the pressure-sensitive adhesive layer 2, generally known adhesives and pressure-sensitive adhesives are appropriately used.
  • the anisotropic light diffusing layer in the present invention is made of a cured product of a composition containing a photopolymerizable compound, and an assembly of a plurality of rod-shaped cured regions is parallel to the scattering central axis in the length direction. It is formed as follows.
  • a composition containing a photopolymerizable compound is provided in a sheet form, and a light beam parallel to the desired scattering center axis P is irradiated from a light source to the sheet, and the composition is cured.
  • the length direction of the rod-shaped region aggregate and the scattering center axis are parallel as long as they satisfy the law of refractive index (S ne II's law) and are strictly parallel. There is no need.
  • the aggregate of rod-shaped cured regions referred to in the present invention is schematically shown in Fig. 2, but a large number of rod-shaped or columnar cured regions have their length directions parallel to the scattering center axis.
  • the rod shape is estimated from the irradiation light source and the cross section is schematically shown in a circular shape in FIG. 2, it is formed in a rod shape parallel to the scattering center axis.
  • the cross-sectional shape is not particularly limited, such as a circular shape, a polygonal shape, or an indefinite shape.
  • the scattering central axis P in the present invention has a polar angle of 0 when the anisotropic light diffusion layer surface is the X y plane and the normal is the z axis. It can be expressed by the azimuth angle ⁇ . That is, P xy in FIG. 3 can be said to be the length direction of the scattering central axis projected onto the surface of the anisotropic light diffusion layer.
  • the viewing angle of a display panel including a liquid crystal display panel can be sufficiently enlarged if the azimuth angle ⁇ in at least a plurality of anisotropic light diffusing layers is different.
  • the polar angle 0 of the scattering center angle P is preferably 10 to 60 °, more preferably 30 to 45 °. If the polar angle 0 is less than 10 °, the viewing angle of the display panel including the liquid crystal display panel cannot be expanded sufficiently. -On the other hand, if the polar angle 0 exceeds 60 °, it is necessary to irradiate the composition containing the photopolymerizable compound provided in the form of a sheet in the manufacturing process from a deep inclination, and the absorption efficiency of the irradiated light is increased. Since it is bad and disadvantageous in manufacture, it is not preferable.
  • the anisotropic light diffusing film of the present invention is formed by laminating a plurality of anisotropic light diffusing layers made of a cured product of a composition containing a photopolymerizable compound.
  • the laminated body is formed on a transparent substrate. It is also possible to adopt a configuration in which a transparent substrate is laminated on both sides of the laminated body.
  • the transparent substrate the higher the transparency, the better, and the total light transmittance (JIS K736 1-1) is 80% or more, more preferably 85 ⁇ 1 ⁇ 2 or more, most preferably 90 ⁇ 1 ⁇ 2 or more.
  • haze value JISK 7 1366
  • a plastic film is preferred because it is thin, light, difficult to break, and has excellent productivity.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • TAC triacetyl cellulose
  • PC polystrength Ponate
  • PC polyester sulphone
  • P ES polyester sulphone
  • cellophane polyethylene
  • PE Polypropylene
  • PP polyvinyl alcohol
  • PVA cycloolefin resin and the like
  • the thickness of the substrate is 1 m to 5 mm, preferably 10 to 500; Um, more preferably 50 to 15 in consideration of use and productivity.
  • the anisotropic light diffusing film of the present invention includes an anisotropic light diffusing layer obtained by curing a composition containing a photopolymerizable compound, and the following combinations can be used as this composition. .
  • the refractive index change and the difference in refractive index specifically indicate a change or difference of 0.11 or more, preferably 0.05 or more, more preferably 0.110 or more. is there.
  • the photopolymerizable compound which is an essential material for forming the anisotropic light diffusion layer of the present invention, is a photopolymerization selected from a polymer having a radically polymerizable or cationically polymerizable functional group, an oligomer, and a monomer. It is a material that is composed of an organic compound and a photoinitiator, and is polymerized and cured by irradiation with ultraviolet rays and visible light.
  • the radical polymerizable compound mainly contains one or more unsaturated double bonds in the molecule, and specifically includes epoxy acrylate, urethane acrylate, polyester acrylate, poly Acryl oligomers called ether acrylates, polybutadiene acrylates, silicone acrylates, and 2-ethyl hexyl acrylate, isoamyl acrylate, butoxy shetyl acrylate, ethoxydiethylene glycol acrylate , Phenoxychetyl acrylate, Tetrahydrofurfuryl acrylate, Isonol phenyl acrylate, 2-Hydroxyethyl acrylate, 2-Hydroxypropyl acrylate, 2-Acryloyl oxyphthalic acid, Dicyclopentenyl Acrylate, triethyleneglycol Rudiacrylate, neopentyl glycol diacrylate, 1,6-hexanediol diacrylate, EO adduct of bis
  • the cationically polymerizable compound includes an epoxy group and a vinyl ether group in the molecule.
  • a compound having one or more oxetane groups can be used.
  • Compounds having an epoxy group include 2-ethylhexyl diglycol glycidyl ether, biphenyl glycidyl ether, bisphenol A, hydrogenated bisphenol A, bisphenol F, bisphenol AD, bisphenol S, tetramethyl.
  • Diglycidyl ethers of bisphenols such as Rubisphenol A, Tetramethylbisphenol ", Tetrachlorobisphenol 8, Tetrabromobisphenol A, Phenolic nopolac, Cresolol nopolac, Bromo ⁇ Polyglycidyl ethers of nopolak resins such as nornolacol and orthocresol nopolac, ethylene glycol, polyethylene glycol, polypropylene glycol, butanediol, 1,6-hexanediol, neopentyl glycol Diglycidyl ethers of alkylene glycols such as trimethylolpropane, 1,4-cyclohexanedimethanol, EO adduct of bisphenol A, PO adduct of bisphenol A, glycidyl esters and dimers of hexahydrophthalic acid Examples thereof include glycidyl esters such as diglycidyl ester of acid.
  • Examples of the compound having a vinyl ether group include diethylene glycol divinyl ether, triethylene glycol divinyl ether, butanediol divinyl ether, hexanediol divinyl ether, cyclohexanedimethanol divinyl ether. Ter, hydroxy butyl vinyl ter, ethyl vinyl ter, dodecyl vinyl ter, trimethylol propane trivinyl ether, propenyl ether propylene, etc. It is not limited.
  • the vinyl ether compound is generally cationically polymerizable but can be radically polymerized by combining with acrylate.
  • the above cationically polymerizable compounds may be used alone or in combination.
  • the photopolymerizable compound is not limited to the above.
  • the photopolymerizable compound may be introduced with fluorine atoms (F) in order to reduce the refractive index, and in order to increase the refractive index.
  • F fluorine atoms
  • S sulfur atom
  • Br bromine atom
  • various metal atoms may be introduced.
  • Special Table 2 0 0 5— 5 1 4 4 8 7 such as titanium oxide (T i 0 2 ), zirconium oxide (Z r 0 2 ), tin oxide (S n O x ), etc.
  • Photoinitiators capable of polymerizing radically polymerizable compounds include benzophenone, benzyl, Michler's ketone, 2-chlorodithioxanthone, 2,4-diethylthioxanthone, benzoinethyl ether, benzoinisopropyl Ether, benzoin isobutyl ether, 2, 2-ethoxy Acetophenone, benzyldimethyl ketal, 2,2-dimethoxy-1,2-diphenylethane_1_one, 2-hydroxy-2-methyl-1,1-phenylpropane-1-one, 1-hydroxycyclohexyl phenyl ketone , 2 —Methyl mono 1_ [4— (Methylthio) phenyl] _2_morpholinopropanone _1, 11 [41 (2-hydroxyethoxy) -phenyl] _2—hydroxy 2-methyl-1-propan _1 _one Bis (cyclopentadien
  • the photoinitiator of a cationic polymerizable compound is a compound that generates an acid by light irradiation and can polymerize the above cationic polymerizable compound by the generated acid.
  • Mouthcene complexes are preferably used.
  • Dionium salts, sulfonium salts, sodium salts, phosphonium salts, selenium salts, etc. are used as onium salts, and these counter ions include BF 4 _, PF 6 _, A s F 6 _, S b F 6 Anions such as _ are used.
  • Specific examples include 4-chlorobenzene benzene hexafluorophosphate, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium hexafluorophosphate, ( (4-phenylthiophenyl) diphenylsulfonium hexafluoroantimonate, (41-phenylthiophenyl) diphenylsulfonium hexafluorophosphate, bis [41- (diphenylsulfonio ) Phenyl] sulfi dobis monohexafluoroanmonate, bis [41 (diphenylsulfonio) phenyl] sulfido monobis monohexafluorophosphate, (4-methoxyphenyl) diphenylsulfonhexaful Oloantimonate, (4-methoxyphenyl) phenfluorohexafluoroanti Ne
  • the photoinitiator is 0.01 to 10 parts by weight, preferably 0.1 to 7 parts by weight, more preferably 0 to 100 parts by weight of the photopolymerizable compound. About 1 to 5 parts by weight are blended. This is because if less than 0.1 part by weight, the photocuring property is lowered, and if more than 10 parts by weight is blended, only the surface is cured and the internal curability is lowered. Because it comes.
  • These photoinitiators are usually used by directly dissolving a powder in a photopolymerizable compound, but if the solubility is poor, a photoinitiator dissolved in a very small amount of solvent in advance at a high concentration is used. It can also be used.
  • Such a solvent is more preferably photopolymerizable, and specific examples thereof include propylene carbonate, and r-peptilolactone. It is also possible to add various known dyes and sensitizers in order to improve photopolymerization. Further, a thermosetting initiator capable of curing the photopolymerizable compound by heating can be used in combination with the photoinitiator. In this case, by heating after photocuring, it can be expected that polymerization curing of the photopolymerizable compound is further promoted and completed.
  • an anisotropic light diffusing layer can be formed by curing the above-mentioned photopolymerizable compound alone or by mixing a mixture of a plurality thereof.
  • the anisotropic light diffusion layer of the present invention can also be formed by curing a mixture of a photopolymerizable compound and a polymer resin that does not have photocurability.
  • Polymer resins that can be used here include acrylic resin, styrene resin, styrene-acrylic copolymer, polyurethane resin, polyester resin, epoxy resin, cellulose resin, vinyl acetate resin, and vinyl chloride vinyl chloride copolymer. And polyvinyl ptylal resin.
  • polymer resins and photopolymerizable compounds must have sufficient compatibility before photocuring, but various organic solvents must be used to ensure this compatibility. It is also possible to use an agent or a plasticizer.
  • acrylate is used as the photopolymerizable compound, it is preferable from the viewpoint of compatibility that the polymer resin is selected from acryl resins.
  • the anisotropic light diffusing film of the present invention is provided with a composition containing the above-mentioned photopolymerizable compound in a sheet form, and a light beam parallel to the desired scattering center axis P is irradiated from the light source to the sheet. And is produced by curing the composition.
  • a method of providing the composition containing the photopolymerizable compound in a sheet form on the substrate a normal coating method or printing method is applied.
  • air coating, bar coating, blade coating, knife coating, river coating, transfer coating, gravure mouth coating, kisco coating, cast coating Coating, spray coating, slot orifice coating, calendar coating, dam coating, dip coating, die coating, etc., intaglio printing such as gravure printing, stencil printing such as screen printing, etc. can be used.
  • a weir of a certain height can be provided around the substrate, and the composition can be cast inside the weir.
  • a short arc ultraviolet light source is usually used. Specifically, a high pressure mercury lamp, a low pressure mercury lamp Metahalide lamps, xenon lamps, etc. can be used. Note that a light source having a rod-like light emitting surface is inappropriate in the present invention. When such a rod-shaped light source is used, a plate-like hardened region is formed, resulting in the conventional light diffusion medium shown in FIG. In the present invention, it is necessary to irradiate the composition containing the photopolymerizable compound formed in the form of a sheet with a light beam parallel to the desired scattering center axis P. Is preferably used. In addition, when producing a small size, it is possible to irradiate from a sufficiently long distance using an ultraviolet spot light source.
  • the light applied to the sheet of the composition containing the photopolymerizable compound needs to have a wavelength capable of curing the photopolymerizable compound, and is usually a mercury lamp. Light with a wavelength centering around 365 nm is used.
  • the illuminance is preferably in the range of 0.01 to 1 OO mW / cm 2 , more preferably 0.1 to 20. it is in the range of mW / cm 2. Illuminance 0.
  • Such transmitted light intensity distribution type masks can be produced by vapor deposition, printing, or coating.
  • a display device is applicable as long as the display performance has a viewing angle dependency.
  • Examples of the display device that can be used include a liquid crystal display panel, a PDP panel, an organic EL panel, a rear projector, a field emission display, and the like.
  • the viewing performance depends on the viewing angle. When viewing from the front direction (normal direction of the viewing surface of the display device, viewing angle 0 °) and oblique viewing (direction larger than viewing angle 0 °) This means that the display performance such as contrast ratio, gradation characteristics, and chromaticity is different, and the brightness changes greatly.
  • the liquid crystal display device has a configuration in which the above-described anisotropic light diffusion film is provided on the outgoing light side of the liquid crystal display panel.
  • a nematic liquid crystal 13 is sandwiched between a pair of transparent glass substrates 11 and 12 on which transparent electrodes are formed, and a pair of glass substrates 11 and 12 are placed on both sides.
  • the anisotropic light diffusion film 10 is placed on the polarizing plate 14 or between the glass substrate 11 and the polarizing plate 14. This is a configuration provided.
  • transparent glass substrate nematic liquid crystal, polarizing plate, etc., generally known ones can be used.
  • a partition wall with a height of 0.5 mm was formed with a curable resin using a dispenser on the entire periphery of the 76 x 26 mm size slide glass.
  • a composition containing the following photopolymerizable compound was dropped into this and covered with another slide glass.
  • Example 1 An anisotropic light diffusion film of Example 1 was produced by laminating two anisotropic light diffusion layers.
  • An anisotropic light diffusing film is not laminated 1.
  • An 8-inch color STN panel was used as the liquid crystal display device of Comparative Example 1.
  • a diffusion film BS _ 037 (manufactured by Keiwa) was used as the anisotropic light diffusing film of Comparative Example 3, and the liquid crystal display device of Comparative Example 3 was laminated on an 8-inch column STN panel. It was.
  • the tone reversal angle here refers to the angle at which tone reversal starts to occur when the screen is viewed from a position inclined with respect to the normal of the screen.
  • the viewing angle in this measurement was the maximum polar angle at which the contrast ratio represented by the ratio of white luminance to black luminance was 2 or more.
  • the presence or absence of image blur was also confirmed, and the results are shown in Table 1.
  • the viewing angle of the liquid crystal display device of Comparative Example 1 is 40 ° with respect to the vertical and diagonal directions and the horizontal direction, and the gradation inversion angles are vertical and diagonal and left and right. It was 50 ° to the direction.
  • the viewing angle of the liquid crystal display device of Comparative Example 2 is 40 ° in the vertical and diagonal directions, and the horizontal direction is 65 °.
  • the gradation inversion angle is 50 ° in the vertical and diagonal directions, and 75 in the horizontal direction. °.
  • the viewing angle of the liquid crystal display device of Comparative Example 3 was 50 ° in the vertical, diagonal, and horizontal directions, and the gradation inversion angle was 60 ° in the vertical, diagonal, and horizontal directions.
  • the viewing angle in the vertical, diagonal, and horizontal directions was 55 °
  • the gradation inversion angle was 65 ° in the vertical and diagonal directions. That is, the anisotropic light diffusing film and the liquid crystal display device of the present invention can expand the viewing angle by 15 ° with respect to the vertical, diagonal, and horizontal directions as compared with the conventional liquid crystal display device.
  • Z r (OP r) 4 65 Place 4 parts by weight in a 250 m I three-necked flask and ice bath Cooled in. While stirring this, 17.2 parts by weight of methacrylic acid (MAA) was gradually added dropwise over 15 minutes. The whole amount is added dropwise and stirred for another 10 minutes, and then the three-necked flask is removed from the ice bath and stirred at 25 ° C for another 10 minutes, Zr (OPr) 4 / MAA (1: 1) was prepared.
  • MAA methacrylic acid
  • the photopolymerizable composition prepared as described above was applied to provide a coating film having a dry film thickness of 50 m. Furthermore, a 38 m thick release PET film (trade name: 38 X, manufactured by Lintec) was laminated on this coating film, and parallel UV light was irradiated from above on a direction with an incident angle of 30 °. Thus, an anisotropic light diffusion film having a scattering central axis of 30 ° was produced.
  • Example 2 An anisotropic light diffusing film was prepared.
  • the anisotropic light diffusion layer having a diffusion center axis of 30 ° in Example 2 is
  • the anisotropic light diffusing film of Comparative Example 4 was produced by placing the azimuth of the light so that it coincides with the 0 ° direction of the light exit surface of the backlight (the horizontal right direction of the light exit surface).
  • a commercially available backlight was placed on a rotating table with its light emitting surface standing upright, and a luminance meter was placed in front of it.
  • the rotation table was intermittently rotated at 0 ° in the normal direction of the light exit surface, the luminance at each angle was measured, and the luminance distribution characteristic was measured only for the backlight with nothing on it.
  • the anisotropic light diffusing film of Example 2 was overlaid on the backlight so that the azimuth angle of the scattering center axis was 0 ° and 180 ° of the light exit surface of the backlight.
  • the luminance distribution characteristics were measured in the same manner as described above.
  • the anisotropic light diffusing film of Comparative Example 4 is arranged such that the azimuth angle of the scattering center axis thereof coincides with 0 ° (horizontal direction of the light exit surface) of the exit surface of the backlight.
  • the luminance distribution characteristics were measured in the same manner as described above.
  • each luminance in FIG. 7 is standardized assuming that the luminance in the 0 ° direction of the backlight is 100%, and the actual luminance data is shown in Table 2.
  • the anisotropic light diffusing film of the present invention shows that the luminance in the scattering central axis direction is improved, although the luminance in the front direction is slightly lowered.
  • the anisotropic light diffusing film of the present invention induces light in the front direction in the direction of the scattering center axis.
  • an anisotropic light diffusion film capable of sufficiently expanding the viewing angle of a display device, particularly a liquid crystal display panel, in an arbitrary direction, a display device using the same, and a liquid crystal display device are provided. be able to.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)

Abstract

This invention provides an anisotropic light diffusing film comprising a plurality of anisotropic light diffusing layers stacked on top of each other so that the direction of a scattering central axis varies depending upon each anisotropic light diffusing layer. The anisotropic light diffusing layer is formed of a cured product of a composition containing a photopolymerizable compound. Each of the anisotropic light diffusing layers has such an incident light diffusion through property that each has a scattering central axis and has an incident angle dependency which varies depending upon the angle at which the scattering central axis and the incident light axis cross each other.

Description

明 細 書  Specification
異方性光拡散フィルム並びにそれを用いた表示装置及び液晶表示装 置  Anisotropic light diffusing film, display device using the same, and liquid crystal display device
技術分野  Technical field
[0001 ] 本発明は、 視野角を拡大し得る異方性光拡散フィルム並びにそれを用いた 表示装置及び液晶表示装置に関するものである。  TECHNICAL FIELD [0001] The present invention relates to an anisotropic light diffusion film capable of expanding a viewing angle, a display device using the same, and a liquid crystal display device.
背景技術  Background art
[0002] 表示装置に使用することができるものとしては、 例えば、 液晶表示パネル 、 プラズマディスプレイパネル (P D P ) 、 有機エレク ト口ルミネッセンス パネル (E L ) 、 リアプロジェクタ一、 フィールドェミッションディスプレ ィ等が挙げられる。 これらの中でも液晶表示パネルを使用した液晶表示装置 は多くの製品に使用されている。  [0002] Examples of the display device that can be used include a liquid crystal display panel, a plasma display panel (PDP), an organic electroluminescence panel (EL), a rear projector, and a field emission display. It is done. Among these, liquid crystal display devices using liquid crystal display panels are used in many products.
[0003] 従来の液晶表示装置における液晶表示パネルは、 透明電極が形成された一 対の透明ガラス基板の間に、 ネマチック液晶が狭持され、 このガラス基板の 両側に、 一対の偏光板が設けられた構成である。 しかしながら、 このような 構成の液晶表示パネルを用いた液晶表示装置においては、 液晶表示パネルの 法線方向に関しては良好な表示特性を示すものの、 液晶表示パネルの法線に 対して上下又は左右の方向へ特定角度以上に傾いた方向に関しては表示特性 が著しく低下してしまうといった問題を有していた。  [0003] In a liquid crystal display panel in a conventional liquid crystal display device, nematic liquid crystal is sandwiched between a pair of transparent glass substrates on which transparent electrodes are formed, and a pair of polarizing plates is provided on both sides of the glass substrate. It is the structure which was made. However, in the liquid crystal display device using the liquid crystal display panel having such a configuration, although the display direction is good with respect to the normal direction of the liquid crystal display panel, the vertical or horizontal direction with respect to the normal line of the liquid crystal display panel However, there is a problem that the display characteristic is remarkably deteriorated in a direction inclined more than a specific angle.
[0004] この表示特性の著しい低下原因のひとつとして、 パネルの法線方向では良 好な明暗のコントラス卜が、 法線に対して上下又は左右の方向へ特定角度以 上に傾いた方向では著しく低下し、 場合によっては画面の明暗が逆転してし まうといった現象が発生する。 この現象を画面の階調反転と呼ぶ。  [0004] As one of the causes of the remarkable deterioration of the display characteristics, a good contrast between dark and light is good in the normal direction of the panel, but it is remarkable in the direction inclined above or below or right and left with respect to the normal. In some cases, the brightness of the screen may be reversed. This phenomenon is called screen gradation inversion.
[0005] 上記階調反転を含む、 これら表示特性に関する問題に対しては、 透明なポ リマー基材中に、 光重合性モノマーが反応してなる屈折率分布型の微小レン ズを形成する複数の領域を有することによって、 液晶表示装置の視野角を拡 大し得るマイクロレンズアレイが開示されている (例えば、 特許文献 1参照 。 ) 。 また、 多数のグラスファイバ一を束ねたものを、 ファイバ一の光軸が ファイバープレートの法線に対して特定の角度傾くような面で薄く切断した ファイバ一プレートを用い、 このファイバ一プレートを出射側のガラス基板 として積層することによって、 出射光に指向性を持たせた液晶表示装置が開 示されている (例えば、 特許文献 2参照。 ) 。 [0005] To solve these display characteristics problems including gradation inversion, a plurality of refractive index distribution type microlenses formed by reaction of a photopolymerizable monomer are formed in a transparent polymer substrate. A microlens array is disclosed in which the viewing angle of a liquid crystal display device can be expanded by having a region of (see, for example, Patent Document 1). . ) In addition, a bundle of many glass fibers is thinly cut at a surface where the optical axis of the fiber is inclined at a specific angle with respect to the normal of the fiber plate. A liquid crystal display device in which the emitted light has directivity by being laminated as a glass substrate on the side is disclosed (for example, see Patent Document 2).
[0006] しかしながら、 これらの技術は、 単に表示パネルの法線方向への出射光を 特定の方向へ向ける技術にすぎず、 液晶表示装置における任意の方向への視 野角の拡大は十分ではない。  [0006] However, these techniques are merely techniques for directing emitted light in the normal direction of the display panel in a specific direction, and the expansion of the viewing angle in an arbitrary direction in the liquid crystal display device is not sufficient.
[0007] また、 入射光の入射角度に応じて直線透過光量を変化させる技術としては 、 光重合性化合物を含む組成物の硬化物からなる樹脂層の内部に、 全て所定 の方向 Pに対して平行に延在する複数の棒状硬化領域の集合体を形成した異 方性拡散フィルムが開示されている (例えば、 特許文献 3参照。 ) 。 この異 方性拡散フィルムは、 液晶表示装置の観察面側に貼ることで、 視野角を多少 改善できることが知られている。 以後、 本明細書において 「光重合」 及び 「 硬化」 の意味を、 光重合性化合物が光により重合反応することとし、 両者を 同意義で用いることとする。  [0007] In addition, as a technique for changing the amount of linearly transmitted light according to the incident angle of incident light, the resin layer made of a cured product of a composition containing a photopolymerizable compound, all in a predetermined direction P An anisotropic diffusion film in which an aggregate of a plurality of bar-shaped hardened regions extending in parallel is disclosed (see, for example, Patent Document 3). It is known that this anisotropic diffusion film can slightly improve the viewing angle by being applied to the viewing surface side of a liquid crystal display device. Hereinafter, in the present specification, the terms “photopolymerization” and “curing” will be used as the photopolymerizable compound undergoes a polymerization reaction with light, and both are used interchangeably.
[0008] 特許文献 1 :特開平 6 _ 5 9 1 0 2号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 6_59 10 2
特許文献 2:特開平 6— 2 5 8 6 2 7号公報  Patent Document 2: JP-A-6-2 5 8 6 2 7
特許文献 3:特開 2 0 0 5 _ 2 6 5 9 1 5号公報  Patent Document 3: Japanese Patent Laid-Open No. 2 0 0 _ 2 6 5 9 1 5
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 上記のように、 従来の異方性光拡散フィルムでは、 所定の方向 Pに近い方 向の視野角を多少改善させることができるものの、 視野角を十分に改善する までには至っていない。 そこで、 本発明は、 表示パネル、 特に液晶表示パネ ルの視野角を任意の方向に十分拡大することができる異方性光拡散フィルム 及びそれを用いた液晶表示装置を提供することを目的としている。  [0009] As described above, the conventional anisotropic light diffusion film can slightly improve the viewing angle in the direction close to the predetermined direction P, but has not yet sufficiently improved the viewing angle. Accordingly, an object of the present invention is to provide an anisotropic light diffusion film capable of sufficiently expanding the viewing angle of a display panel, particularly a liquid crystal display panel, in an arbitrary direction, and a liquid crystal display device using the same.
課題を解決するための手段  Means for solving the problem
[0010] 本発明者は、 上記の従来技術を鑑みて、 入射光の透過拡散性が異方性光拡 散層の有する散乱中心軸と異方性光拡散層への入射光の光軸とが交差する角 度に依存して変化する入射角依存性を有し、 異方性光拡散層表面に投影した 散乱中心軸の長さ方向を、 視野角を拡大させたい方向に近づけた異方性光拡 散層を用い、 この異方性光拡散層を複数積層することによって、 表示パネル 、 特に液晶表示パネルの視野角を任意の方向に十分に拡大することを可能と し、 本願発明の完成に至った。 したがって、 本発明の異方性光拡散フィルム は、 光重合性化合物を含む組成物の硬化物からなる異方性光拡散層を複数層 備え、 上記異方性光拡散層は、 各々ひとつの散乱中心軸を有し、 上記異方性 光拡散層への入射光の透過拡散性は、 該異方性光拡散層の有する散乱中心軸 と該入射光の光軸とが交差する角度に依存して変化する入射角度依存性を有 し、 上記散乱中心軸の方向は、 各異方性光拡散層により異なっていることを 特徴としている。 [0010] In view of the above prior art, the present inventor has determined that the transmission diffusibility of incident light is anisotropic light diffusion. The scattering central axis projected on the surface of the anisotropic light diffusing layer has an incident angle dependency that changes depending on the angle at which the scattering central axis of the scattering layer intersects the optical axis of the incident light to the anisotropic light diffusing layer. By using an anisotropic light diffusing layer whose length direction is close to the direction in which the viewing angle is desired to be enlarged, by stacking multiple anisotropic light diffusing layers, the viewing angle of a display panel, in particular a liquid crystal display panel, can be set in any direction. The present invention has been completed. Therefore, the anisotropic light diffusing film of the present invention comprises a plurality of anisotropic light diffusing layers made of a cured product of a composition containing a photopolymerizable compound, and each of the anisotropic light diffusing layers has one scattering center axis, The transmission diffusivity of incident light to the anisotropic light diffusing layer has an incident angle dependency that changes depending on the angle at which the scattering central axis of the anisotropic light diffusing layer and the optical axis of the incident light intersect. However, it is characterized in that the direction of the scattering central axis differs depending on each anisotropic light diffusion layer.
発明の効果  The invention's effect
[001 1 ] 本発明によれば、 散乱中心軸が異なる異方性光拡散層を複数積層すること により、 表示パネル、 特に液晶表示パネルからの出射光を複数の散乱中心軸 を中心とした方向へ振り分けることができ、 その結果、 液晶表示パネルを含 む表示パネルの視野角を任意の方向に十分拡大することができるといった効 果を奏する。  [001 1] According to the present invention, by stacking a plurality of anisotropic light diffusing layers having different scattering center axes, light emitted from a display panel, particularly a liquid crystal display panel, is distributed in a direction around a plurality of scattering center axes. As a result, the viewing angle of the display panel including the liquid crystal display panel can be sufficiently expanded in an arbitrary direction.
[0012] このような効果は以下のようにして得られると考えられる。 まず、 本発明 の異方性光拡散フィルムにおける異方性光拡散層は、 図 2に示すように、 異 方性光拡散層 1の内部に、 複数の棒状硬化領域 3の集合体が、 長さ方向を散 乱中心軸 Pと平行になるように形成されており、 この複数の棒状硬化領域 3 は、 その周辺と屈折率が異なっていることから、 表示パネル、 特に液晶表示 パネルからの出射光の一部を、 視野角を拡大させたい方向、 すなわち、 異方 性光拡散層表面に散乱中心軸 Pを投影した方向と平行な方向に向けさせると ともに、 散乱中心軸を中心にこの出射光を拡散する。 そして、 この作用を複 数の異方性光拡散層により行うことによって、 液晶表示パネルを含む表示パ ネルからの出射光を、 複数の散乱中心軸を中心に振り分けかつ拡散すること ができる。 さらには、 異方性光拡散層表面に散乱中心軸 Pを投影した方向と 異なる方向に振り向けられた光が、 複数の異方性光拡散層によりさらに他の 方向へと振り向けられる。 その結果、 液晶表示パネルを含む表示パネルの視 野角を、 散乱中心軸を調整することで任意の方向に十分拡大することができ るだけでなく、 散乱中心軸を振り向けた方向と異なる方向への視野角までも が拡大できる。 Such an effect is considered to be obtained as follows. First, as shown in FIG. 2, the anisotropic light diffusing layer in the anisotropic light diffusing film of the present invention has an assembly of a plurality of rod-like hardened regions 3 in the anisotropic light diffusing layer 1, and a scattering center in the length direction. The plurality of rod-shaped hardened regions 3 are formed so as to be parallel to the axis P, and the refractive index is different from the periphery thereof. Therefore, a part of the light emitted from the display panel, particularly the liquid crystal display panel, The viewing angle is expanded in a direction that is parallel to the direction in which the scattering center axis P is projected onto the surface of the anisotropic light diffusion layer, and the emitted light is diffused around the scattering center axis. Then, by performing this action with a plurality of anisotropic light diffusion layers, the light emitted from the display panel including the liquid crystal display panel is distributed and diffused around a plurality of scattering central axes. Can do. Furthermore, light directed in a direction different from the direction in which the scattering center axis P is projected onto the surface of the anisotropic light diffusion layer is further directed to another direction by the plurality of anisotropic light diffusion layers. As a result, not only can the viewing angle of a display panel including a liquid crystal display panel be sufficiently expanded in any direction by adjusting the scattering center axis, but also in a direction different from the direction in which the scattering center axis is directed. Can be expanded up to the viewing angle.
図面の簡単な説明  Brief Description of Drawings
[0013] [図 1 ]本発明の異方性光拡散フィルムの一例を模式的に示す図である。 FIG. 1 is a diagram schematically showing an example of an anisotropic light diffusion film of the present invention.
[図 2]本発明における異方性光拡散層を模式的に示す図である。  FIG. 2 is a view schematically showing an anisotropic light diffusion layer in the present invention.
[図 3]本発明における散乱中心軸を説明する 3次元極座標表示である。  FIG. 3 is a three-dimensional polar coordinate display for explaining the scattering center axis in the present invention.
[図 4]本発明の液晶表示装置の一例を模式的に示す図である。  FIG. 4 is a diagram schematically showing an example of a liquid crystal display device of the present invention.
[図 5]本発明の液晶表示装置の他の一例を模式的に示す図である。  FIG. 5 is a diagram schematically showing another example of the liquid crystal display device of the present invention.
[図 6]従来の光制御板を示す模式図である。  FIG. 6 is a schematic diagram showing a conventional light control plate.
[図 7]本発明の異方性光拡散フィルムがバックライ 卜の輝度を任意の方向に拡 げられることを示す図である。  FIG. 7 is a diagram showing that the anisotropic light diffusion film of the present invention can expand the luminance of the backlight in an arbitrary direction.
符号の説明  Explanation of symbols
[0014] 1…異方性光拡散層、 2…粘着剤、 3…棒状硬化領域、 1 0…異方性光拡 散フィルム、 1 1 , 1 2…ガラス基板、 1 3…ネマチック液晶、 1 4 , 1 5 …偏光板、 P…散乱中心軸。  [0014] 1 ... Anisotropic light diffusing layer, 2 ... Adhesive, 3 ... Bar-shaped cured region, 10 ... Anisotropic light diffusing film, 1 1, 1 2 ... Glass substrate, 1 3 ... Nematic liquid crystal, 1 4, 1 5 … Polarizing plate, P… scattering central axis.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 本発明の異方性光拡散フィルムは、 例えば、 図 1に示すように、 複数の異 方性光拡散層 1を、 粘着剤 2を介して積層した構成である。 粘着層 2には、 一般公知の接着剤や粘着剤等が適宜用いられる。 本発明における異方性光拡 散層は、 光重合性化合物を含む組成物の硬化物からなり、 内部に、 複数の棒 状硬化領域の集合体が、 その長さ方向を散乱中心軸と平行になるように形成 されている。 このような構成は、 例えば、 光重合性化合物を含む組成物をシ -ト状に設け、 所望の散乱中心軸 Pと平行な光線を光源からシ一卜に対して 照射し、 組成物を硬化させることにより形成できる。 [0016] ここで、 棒状領域集合体の長さ方向と散乱中心軸が平行であるとは、 屈折 率の法則 (S n e I Iの法則) を満たすものであればよく、 厳密に平行であ る必要はない。 S n e I Iの法則は、 屈折率 η ιの媒質から屈折率 n2の媒質 の界面に対して光が入射する場合、 その入射角 0 と屈折角 02との間に、 η ι s i η Θ , = n 2 s i n 02の関係が成立するものである。 例えば、 ΓΗ= 1 ( 空気) 、 η2= 1. 51 (異方性光拡散層) とすると、 散乱中心軸の傾き (入 射角) が 30° の場合、 棒状領域集合体の長さ方向の向き (屈折角) は約 1 9° となるが、 このように入射角と屈折角が異なっていても S n e I Iの法 則を満たしていれば、 本発明においては平行の概念に包含される。 [0015] The anisotropic light diffusing film of the present invention has, for example, a configuration in which a plurality of anisotropic light diffusing layers 1 are laminated with an adhesive 2 as shown in FIG. For the pressure-sensitive adhesive layer 2, generally known adhesives and pressure-sensitive adhesives are appropriately used. The anisotropic light diffusing layer in the present invention is made of a cured product of a composition containing a photopolymerizable compound, and an assembly of a plurality of rod-shaped cured regions is parallel to the scattering central axis in the length direction. It is formed as follows. In such a configuration, for example, a composition containing a photopolymerizable compound is provided in a sheet form, and a light beam parallel to the desired scattering center axis P is irradiated from a light source to the sheet, and the composition is cured. Can be formed. [0016] Here, the length direction of the rod-shaped region aggregate and the scattering center axis are parallel as long as they satisfy the law of refractive index (S ne II's law) and are strictly parallel. There is no need. Law of S ne II, when the light to the interface of the medium refractive index n 2 from a medium of refractive index eta iota incident, between the incident angle of 0 and a refractive angle of 0 2, η ι si η Θ , = n 2 sin 0 2 is established. For example, if ΓΗ = 1 (air) and η 2 = 1.51 (anisotropic light diffusing layer), if the inclination of the scattering center axis (incident angle) is 30 °, the length direction of the rod-shaped region aggregate The (refraction angle) is about 19 °. However, even if the incident angle and the refraction angle are different from each other as long as the Sne II law is satisfied, the present invention includes the parallel concept.
[0017] なお、 本発明でいう棒状硬化領域の集合体とは、 図 2に模式的に表したが 、 多数の棒状又は柱状の硬化領域がその長さ方向を散乱中心軸に平行となる ように形成されたものを意味するものであり、 また、 棒状とは、 照射光源か ら推定して図 2では断面を円状に模式的に記載したが、 散乱中心軸に平行に 棒状に形成された状態を意味するもので、 その断面形状は円状、 多角形状、 不定形状など、 特に限定されるものではない。  [0017] Note that the aggregate of rod-shaped cured regions referred to in the present invention is schematically shown in Fig. 2, but a large number of rod-shaped or columnar cured regions have their length directions parallel to the scattering center axis. In addition, although the rod shape is estimated from the irradiation light source and the cross section is schematically shown in a circular shape in FIG. 2, it is formed in a rod shape parallel to the scattering center axis. The cross-sectional shape is not particularly limited, such as a circular shape, a polygonal shape, or an indefinite shape.
[0018] 本発明における散乱中心軸 Pは、 図 3に示すような 3次元極座標表示によ れば、 異方性光拡散層表面を X y平面とし、 法線を z軸とすると、 極角 0と 方位角 øとによって表現することができる。 つまり、 図 3中の Pxyが、 上記 の異方性光拡散層表面に投影した散乱中心軸の長さ方向ということができる 。 本発明の異方性光拡散フィルムにおいては、 少なくとも複数の異方性光拡 散層における上記の方位角 øが異なっていれば、 液晶表示パネルを含む表示 パネルの視野角を十分拡大することができる。 [0018] According to the three-dimensional polar coordinate display as shown in FIG. 3, the scattering central axis P in the present invention has a polar angle of 0 when the anisotropic light diffusion layer surface is the X y plane and the normal is the z axis. It can be expressed by the azimuth angle ø. That is, P xy in FIG. 3 can be said to be the length direction of the scattering central axis projected onto the surface of the anisotropic light diffusion layer. In the anisotropic light diffusing film of the present invention, the viewing angle of a display panel including a liquid crystal display panel can be sufficiently enlarged if the azimuth angle ø in at least a plurality of anisotropic light diffusing layers is different.
[0019] 本発明においては、 散乱中心角 Pの極角 0が 1 0〜60° であることが好 ましく、 より好ましくは 30〜45° である。 極角 0が 1 0° 未満では、 液 晶表示パネルを含む表示パネルの視野角を十分に拡大することができない。 —方、 極角 0が 60° を超えると、 製造過程においてシート状に設けられた 光重合性化合物を含む組成物に対して深い傾きから光を照射する必要があり 、 照射光の吸収効率が悪く製造上不利であるため好ましくない。 [0020] 本発明の異方性光拡散フィルムの形態としては、 光重合性化合物を含む組 成物の硬化物からなる異方性光拡散層を複数積層するものであるが、 この積 層体を透明基体上に積層した構成や、 この積層体の両側に透明基体を積層し た構成とすることもできる。 ここで、 透明基体としては、 透明性は高いもの 程良好であって、 全光線透過率 (J I S K736 1— 1 ) が 80%以上、 より好ましくは 85<½以上、 最も好ましくは 90<½以上のもの、 また、 ヘイ ズ値 ( J I S K 7 1 36 ) が 3. 0以下、 より好ましくは 1. 0以下、 最 も好ましくは 0. 5以下のものが好適に使用できる。 透明なプラスチックフ イルムやガラス板等が使用可能であるが、 薄く、 軽く、 割れ難く、 生産性に 優れる点でプラスチックフィルムが好適である。 具体的には、 ポリエチレン テレフタレ一ト (P E T) 、 ポリエチレンナフタレート (P E N) 、 トリァ セチルセルロース (TAC) 、 ポリ力一ポネート (P C) 、 ポリェ一テルス ルホン (P ES) 、 セロファン、 ポリエチレン (P E) 、 ポリプロピレン ( P P) 、 ポリビニルアルコール (PVA) 、 シクロォレフイン樹脂等が挙げ られ、 これらの単独または混合、 更には積層したものを用いることが出来る 。 また、 基体の厚さは、 用途や生産性を考慮すると 1 m〜5mm、 好まし くは 1 0〜500 ;Um、 より好ましくは、 50〜 1 5 である。 In the present invention, the polar angle 0 of the scattering center angle P is preferably 10 to 60 °, more preferably 30 to 45 °. If the polar angle 0 is less than 10 °, the viewing angle of the display panel including the liquid crystal display panel cannot be expanded sufficiently. -On the other hand, if the polar angle 0 exceeds 60 °, it is necessary to irradiate the composition containing the photopolymerizable compound provided in the form of a sheet in the manufacturing process from a deep inclination, and the absorption efficiency of the irradiated light is increased. Since it is bad and disadvantageous in manufacture, it is not preferable. [0020] The anisotropic light diffusing film of the present invention is formed by laminating a plurality of anisotropic light diffusing layers made of a cured product of a composition containing a photopolymerizable compound. The laminated body is formed on a transparent substrate. It is also possible to adopt a configuration in which a transparent substrate is laminated on both sides of the laminated body. Here, as the transparent substrate, the higher the transparency, the better, and the total light transmittance (JIS K736 1-1) is 80% or more, more preferably 85 <½ or more, most preferably 90 <½ or more. In addition, those having a haze value (JISK 7 136) of 3.0 or less, more preferably 1.0 or less, and most preferably 0.5 or less can be suitably used. A transparent plastic film or glass plate can be used, but a plastic film is preferred because it is thin, light, difficult to break, and has excellent productivity. Specifically, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), triacetyl cellulose (TAC), polystrength Ponate (PC), polyester sulphone (P ES), cellophane, polyethylene (PE) Polypropylene (PP), polyvinyl alcohol (PVA), cycloolefin resin and the like can be mentioned, and these can be used alone or in combination or further laminated. The thickness of the substrate is 1 m to 5 mm, preferably 10 to 500; Um, more preferably 50 to 15 in consideration of use and productivity.
[0021] 次に、 本発明の異方性光拡散フィルムは、 光重合性化合物を含む組成物を 硬化した異方性光拡散層を含むものであるが、 この組成物としては次のよう な組み合わせが使用可能である。 Next, the anisotropic light diffusing film of the present invention includes an anisotropic light diffusing layer obtained by curing a composition containing a photopolymerizable compound, and the following combinations can be used as this composition. .
( 1 ) 後述する単独の光重合性化合物を使用するもの  (1) Using a single photopolymerizable compound described later
(2) 後述する複数の光重合性化合物を混合使用するもの  (2) A mixture of a plurality of photopolymerizable compounds described later
(3) 単独又は複数の光重合性化合物と、 光重合性を有しない高分子化合物 とを混合して使用するもの  (3) One or a plurality of photopolymerizable compounds mixed with a polymer compound that does not have photopolymerizability
[0022] いずれの組み合わせにおいても、 光照射により異方性光拡散層中に、 屈折 率の異なるミクロンオーダーの微細な構造が形成されるようであり、 これに より本発明に示される特異な異方性光拡散特性が発現できるものと思われる 。 従って、 上記 (1 ) では光重合の前後における屈折率変化が大きいほうが 好ましく、 また (2 ) 、 ( 3 ) では屈折率の異なる複数の材料を組み合わせ ることが好ましい。 なお、 ここで屈折率変化や、 屈折率の差とは、 具体的に 0 . 0 1以上、 好ましくは 0 . 0 5以上、 より好ましくは 0 . 1 0以上の変 化や差を示すものである。 In any combination, it seems that a fine structure of micron order with different refractive index is formed in the anisotropic light diffusion layer by light irradiation, and this makes the unique anisotropic light diffusion shown in the present invention. It seems that the characteristics can be expressed. Therefore, in (1) above, the larger the refractive index change before and after photopolymerization, In (2) and (3), it is preferable to combine a plurality of materials having different refractive indexes. Here, the refractive index change and the difference in refractive index specifically indicate a change or difference of 0.11 or more, preferably 0.05 or more, more preferably 0.110 or more. is there.
[0023] 本発明の異方性光拡散層を形成するのに必須な材料である光重合性化合物 は、 ラジカル重合性またはカチオン重合性の官能基を有するポリマー、 オリ ゴマー、 モノマーから選択される光重合性化合物と光開始剤とから構成され 、 紫外線及び可視光線を照射することにより重合■硬化する材料である。  [0023] The photopolymerizable compound, which is an essential material for forming the anisotropic light diffusion layer of the present invention, is a photopolymerization selected from a polymer having a radically polymerizable or cationically polymerizable functional group, an oligomer, and a monomer. It is a material that is composed of an organic compound and a photoinitiator, and is polymerized and cured by irradiation with ultraviolet rays and visible light.
[0024] ラジカル重合性化合物は、 主に分子中に 1個以上の不飽和二重結合を含有 するもので、 具体的には、 エポキシァクリレート、 ウレタンァクリレート、 ポリエステルァクリレート、 ポリエーテルァクリレート、 ポリブタジエンァ クリレート、 シリコーンァクリレ一ト等の名称で呼ばれるァクリルオリゴマ —と、 2—ェチルへキシルァクリレート、 イソアミルァクリレート、 ブトキ シェチルァクリレート、 エトキシジエチレングリコールァクリレート、 フエ ノキシェチルァクリレート、 テトラヒドロフルフリルァクリレート、 イソノ ルポルニルァクリレート、 2—ヒドロキシェチルァクリレート、 2—ヒドロ キシプロピルァクリレート、 2—ァクリロイ口キシフタル酸、 ジシクロペン テニルァクリレート、 トリエチレングリコ一ルジァクリレート、 ネオペンチ ルグリコ一ルジァクリレート、 1 , 6—へキサンジォ一ルジァクリレート、 ビスフエノール Aの E O付加物ジァクリレ一ト、 トリメチロールプロパント リアクリレート、 E O変成トリメチロールプロパントリァクリレート、 ペン タエリスリ | ルトリアクリレ一ト、 ペンタエリスリ | ルテトラァクリレ —ト、 ジトリメチロールプロパンテトラァクリレート、 ジペンタエリスリ ト —ルへキサァクリレート等のァクリレートモノマーが挙げられる。 また、 こ れらの化合物は、 各単体で用いてもよく、 複数混合して用いてもよい。 なお 、 同様にメタクリレ一トも使用可能である力 一般にはメタクリレートより もァクリレー卜の方が光重合速度が速いので好ましい。  [0024] The radical polymerizable compound mainly contains one or more unsaturated double bonds in the molecule, and specifically includes epoxy acrylate, urethane acrylate, polyester acrylate, poly Acryl oligomers called ether acrylates, polybutadiene acrylates, silicone acrylates, and 2-ethyl hexyl acrylate, isoamyl acrylate, butoxy shetyl acrylate, ethoxydiethylene glycol acrylate , Phenoxychetyl acrylate, Tetrahydrofurfuryl acrylate, Isonol phenyl acrylate, 2-Hydroxyethyl acrylate, 2-Hydroxypropyl acrylate, 2-Acryloyl oxyphthalic acid, Dicyclopentenyl Acrylate, triethyleneglycol Rudiacrylate, neopentyl glycol diacrylate, 1,6-hexanediol diacrylate, EO adduct of bisphenol A diacrylate, trimethylolpropane triacrylate, EO modified trimethylolpropane triacrylate, pentaerythritol | lutriacrylate, Acrylate monomers such as pentaerythritol | rutetraacrylate, ditrimethylolpropane tetraacrylate, and dipentaerythritol hexacrylate. In addition, these compounds may be used alone or in combination. Similarly, the ability to use methacrylates is generally preferable to methacrylates because of higher photopolymerization rate than methacrylates.
[0025] カチオン重合性化合物としては、 分子中にエポキシ基やビニルエーテル基 、 ォキセタン基を 1個以上有する化合物が使用出来る。 エポキシ基を有する 化合物としては、 2—ェチルへキシルジグリコ一ルグリシジルェ一テル、 ビ フエ二ルのグリシジルェ一テル、 ビスフエノール A、 水添ビスフエノール A 、 ビスフエノール F、 ビスフエノール A D、 ビスフエノール S、 テトラメチ ルビスフエノ一ル A、 テトラメチルビスフエノ一ル「、 テトラクロロビスフ エノ一ル八、 テトラブロモビスフエノール A等のビスフエノール類のジグリ シジルエーテル類、 フエノールノポラック、 クレゾ一ルノポラック、 ブロム 化フヱノールノポラック、 オルトクレゾ一ルノポラック等のノポラック樹脂 のポリグリシジルェ一テル類、 エチレングリコール、 ポリエチレングリコ一 ル、 ポリプロピレングリコール、 ブタンジオール、 1 , 6—へキサンジォ一 ル、 ネオペンチルグリコール、 トリメチロールプロパン、 1 , 4ーシクロへ キサンジメタノール、 ビスフエノール Aの E O付加物、 ビスフエノール Aの P O付加物等のアルキレングリコール類のジグリシジルエーテル類、 へキサ ヒドロフタル酸のグリシジルエステルやダイマ一酸のジグリシジルエステル 等のグリシジルエステル類が挙げられる。 [0025] The cationically polymerizable compound includes an epoxy group and a vinyl ether group in the molecule. A compound having one or more oxetane groups can be used. Compounds having an epoxy group include 2-ethylhexyl diglycol glycidyl ether, biphenyl glycidyl ether, bisphenol A, hydrogenated bisphenol A, bisphenol F, bisphenol AD, bisphenol S, tetramethyl. Diglycidyl ethers of bisphenols such as Rubisphenol A, Tetramethylbisphenol ", Tetrachlorobisphenol 8, Tetrabromobisphenol A, Phenolic nopolac, Cresolol nopolac, Bromoヱ Polyglycidyl ethers of nopolak resins such as nornolacol and orthocresol nopolac, ethylene glycol, polyethylene glycol, polypropylene glycol, butanediol, 1,6-hexanediol, neopentyl glycol Diglycidyl ethers of alkylene glycols such as trimethylolpropane, 1,4-cyclohexanedimethanol, EO adduct of bisphenol A, PO adduct of bisphenol A, glycidyl esters and dimers of hexahydrophthalic acid Examples thereof include glycidyl esters such as diglycidyl ester of acid.
さらに、 3 , 4—エポキシシクロへキシルメチルー 3 ' , 4 ' 一エポキシ シクロへキサンカルポキシレート、 2— (3 , 4—エポキシシクロへキシル —5 , 5—スピロ一 3 , 4—エポキシ) シクロへキサン一メタ一ジォキサン 、 ジ (3 , 4—エポキシシクロへキシルメチル) アジペート、 ジ (3 , 4— エポキシ一 6—メチルシクロへキシルメチル) アジペート、 3 , 4—ェポキ シ一 6—メチルシクロへキシルー 3 ' , 4 ' 一エポキシ一 6 ' —メチルシク 口へキサンカルポキシレート、 メチレンビス (3 , 4—エポキシシクロへキ サン) 、 ジシクロペンタジェンジエポキシド、 エチレングリコールのジ (3 , 4一エポキシシクロへキシルメチル) エーテル、 エチレンビス (3 , 4— エポキシシクロへキサンカルポキシレート) 、 ラク トン変性 3 , 4—ェポキ シシクロへキシルメチルー 3 ' , 4 ' 一エポキシシクロへキサンカルポキシ レート、 テトラ (3 , 4—エポキシシクロへキシルメチル) ブタンテトラ力 ルポキシレート、 ジ (3 , 4—エポキシシクロへキシルメチル) 一 4 , 5— エポキシテトラヒドロフタレート等の脂環式エポキシ化合物も挙げられるが 、 これらに限定されるものではない。 In addition, 3,4-epoxycyclohexylmethyl- 3 ', 4'-epoxy cyclohexylcarboxylate, 2-((3,4-epoxycyclohexyl-5,5-spiro-3,4-epoxy) cycloto Di (3,4-epoxycyclohexylmethyl) adipate, Di (3,4-epoxy-1-methylcyclohexylmethyl) adipate, 3,4-epoxy 6-methylcyclohexyl luo 3 ', 4 'mono-epoxy 1' 6-methyl hexane carboxycarboxylate, methylenebis (3,4-epoxycyclohexane), dicyclopentadiene epoxide, diethylene glycol (3,4 mono-epoxycyclohexylmethyl) Ether, ethylene bis (3,4-epoxycyclohexanecarboxylate), lactone modified 3,4-epoxy Chlohexylmethyl- 3 ', 4' monoepoxy cyclohexyl carboxylate, tetra (3, 4-epoxycyclohexylmethyl) butanetetra force lpoxylate, di (3, 4-epoxycyclohexylmethyl) one 4, 5, Although alicyclic epoxy compounds, such as epoxy tetrahydrophthalate, are also mentioned, it is not limited to these.
[0027] ビニルエーテル基を有する化合物としては、 例えば、 ジエチレングリコ一 ルジビ二ルェ一テル、 トリエチレングリコ一ルジビ二ルェ一テル、 ブタンジ オールジビニルエーテル、 へキサンジオールジビニルエーテル、 シクロへキ サンジメタノールジビニルェ一テル、 ヒドロキシプチルビ二ルェ一テル、 ェ チルビ二ルェ一テル、 ドデシルビ二ルェ一テル、 トリメチロールプロパント リビニルエーテル、 プロぺニルエーテルプロピレン力一ポネ一ト等が挙げら れるが、 これらに限定されるものではない。 なお、 ビニルエーテル化合物は 、 一般にはカチオン重合性であるが、 ァクリレートと組み合わせることによ りラジカル重合も可能である。  [0027] Examples of the compound having a vinyl ether group include diethylene glycol divinyl ether, triethylene glycol divinyl ether, butanediol divinyl ether, hexanediol divinyl ether, cyclohexanedimethanol divinyl ether. Ter, hydroxy butyl vinyl ter, ethyl vinyl ter, dodecyl vinyl ter, trimethylol propane trivinyl ether, propenyl ether propylene, etc. It is not limited. The vinyl ether compound is generally cationically polymerizable but can be radically polymerized by combining with acrylate.
[0028] また、 ォキセタン基を有する化合物としては、 1 , 4一ビス [ ( 3—ェチ ルー 3—ォキセタニルメ トキシ) メチル] ベンゼン、 3—ェチルー 3— (ヒ ドロキシメチル) 一ォキセタン等が使用できる。  As the compound having an oxetane group, 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, 3-ethyl-3- (hydroxymethyl) monoxetane, and the like can be used.
[0029] なお、 以上のカチオン重合性化合物は、 各単体で用いてもよく、 複数混合 して用いてもよい。 また、 上記光重合性化合物は、 上述に限定されるもので はない。 さらに、 十分な屈折率差を生じさせるべく、 上記光重合性化合物に は、 低屈折率化を図るために、 フッ素原子 (F ) を導入してもよく、 また、 高屈折率化を図るために、 硫黄原子 (S ) 、 臭素原子 (B r ) 、 各種金属原 子を導入してもよい。 また、 特表 2 0 0 5— 5 1 4 4 8 7に開示されるよう に、 酸化チタン (T i 0 2 ) 、 酸化ジルコニウム (Z r 0 2 ) 、 酸化錫 (S n O x ) 等の高屈折率の金属化合物からなる超微粒子の表面に、 アクリル基、 メ タクリル基、 エポキシ基等の光重合性官能基を導入した機能性超微粒子を上 記の光重合性化合物に添加することも有効である。 [0029] The above cationically polymerizable compounds may be used alone or in combination. The photopolymerizable compound is not limited to the above. Further, in order to produce a sufficient refractive index difference, the photopolymerizable compound may be introduced with fluorine atoms (F) in order to reduce the refractive index, and in order to increase the refractive index. In addition, a sulfur atom (S), a bromine atom (Br), and various metal atoms may be introduced. In addition, as disclosed in Special Table 2 0 0 5— 5 1 4 4 8 7, such as titanium oxide (T i 0 2 ), zirconium oxide (Z r 0 2 ), tin oxide (S n O x ), etc. It is also possible to add functional ultrafine particles in which photopolymerizable functional groups such as acrylic group, methacrylyl group, and epoxy group are introduced to the surface of ultrafine particles made of a metal compound having a high refractive index to the photopolymerizable compound. It is valid.
[0030] ラジカル重合性化合物を重合させることの出来る光開始剤としては、 ベン ゾフエノン、 ベンジル、 ミヒラ一ズケトン、 2—クロ口チォキサントン、 2 , 4一ジェチルチオキサントン、 ベンゾインェチルエーテル、 ベンゾインィ ソプロピルエーテル、 ベンゾインイソブチルエーテル、 2 , 2—ジェトキシ ァセトフエノン、 ベンジルジメチルケタール、 2, 2—ジメ トキシ一 1 , 2 ージフヱニルェタン _1 _オン、 2—ヒドロキシー 2—メチルー 1一フエ二 ルプロパン一 1—オン、 1—ヒドロキシシクロへキシルフェニルケトン、 2 —メチル一 1_ [4— (メチルチオ) フヱニル] _2_モルフォリノプロパ ノン _1、 1一 [4一 (2—ヒドロキシェトキシ) ーフヱニル] _2—ヒド 口キシー 2—メチルー 1一プロパン _1 _オン、 ビス (シクロペンタジェ二 ル) 一ビス (2, 6—ジフルオロー 3— (ピル _1_ィル) チタニウム、 2 一べンジルー 2—ジメチルアミノー 1一 (4—モルフォリノフエ二ル) 一ブ タノン一 1、 2, 4, 6—トリメチルベンゾィルジフエニルフォスフィンォ キサイ ド等が挙げられる。 また、 これらの化合物は、 各単体で用いてもよく 、 複数混合して用いてもよい。 [0030] Photoinitiators capable of polymerizing radically polymerizable compounds include benzophenone, benzyl, Michler's ketone, 2-chlorodithioxanthone, 2,4-diethylthioxanthone, benzoinethyl ether, benzoinisopropyl Ether, benzoin isobutyl ether, 2, 2-ethoxy Acetophenone, benzyldimethyl ketal, 2,2-dimethoxy-1,2-diphenylethane_1_one, 2-hydroxy-2-methyl-1,1-phenylpropane-1-one, 1-hydroxycyclohexyl phenyl ketone , 2 —Methyl mono 1_ [4— (Methylthio) phenyl] _2_morpholinopropanone _1, 11 [41 (2-hydroxyethoxy) -phenyl] _2—hydroxy 2-methyl-1-propan _1 _one Bis (cyclopentadienyl) bis (2, 6-difluoro-3- (pill_1_yl) titanium, 2 monobenzyl 2-dimethylamino 1 (4-morpholinophenyl) 1 Thanone 1, 2, 4, 6-trimethylbenzoyldiphenylphosphine oxide etc. These compounds may be used alone or in combination. May be.
また、 カチオン重合性化合物の光開始剤は光照射によって酸を発生し、 こ の発生した酸により上述のカチオン重合性化合物を重合させることが出来る 化合物であり、 一般的には、 ォニゥム塩、 メタ口セン錯体が好適に用いられ る。 ォニゥム塩としては、 ジァゾニゥム塩、 スルホニゥム塩、 ョ一ドニゥム 塩、 ホスホニゥム塩、 セレニウム塩等が使用され、 これらの対イオンには、 B F4_、 P F6_、 A s F6_、 S b F6_等のァニオンが用いられる。 具体例と しては、 4一クロ口ベンゼンジァゾニゥムへキサフルォロホスフェート、 ト リフエニルスルホニゥムへキサフルォロアンチモネ一ト、 トリフエニルスル ホニゥムへキサフルォロホスフェート、 (4一フエ二ルチオフエニル) ジフ ェニルスルホニゥムへキサフルォロアンチモネ一ト、 (4一フエ二ルチオフ ェニル) ジフエニルスルホニゥムへキサフルォロホスフェート、 ビス [4一 (ジフエニルスルホニォ) フエニル] スルフィ ドービス一へキサフルォロア ンチモネ一ト、 ビス [4一 (ジフエニルスルホニォ) フエニル] スルフィ ド 一ビス一へキサフルォロホスフェート、 (4ーメ トキシフエ二ル) ジフエ二 ルスルホニゥムへキサフルォロアンチモネ一ト、 (4ーメ トキシフエニル) フエ二ルョ一ドニゥムへキサフルォロアンチモネ一ト、 ビス (4_t_プチ ルフエニル) ョ一ドニゥムへキサフルォロホスフェート、 ベンジルトリフエ ニルホスホニゥムへキサフルォロアンチモネ一ト、 トリフエ二ルセレニウム へキサフルォロホスフェート、 ( 7? 5—イソプロピルベンゼン) (7? 5—シ クロペンタジェニル) 鉄 ( I I ) へキサフルォロホスフヱ_ト等が挙げられ るが、 これらに限定されるものではない。 また、 これらの化合物は、 各単体 で用いてもよく、 複数混合して用いてもよい。 In addition, the photoinitiator of a cationic polymerizable compound is a compound that generates an acid by light irradiation and can polymerize the above cationic polymerizable compound by the generated acid. Mouthcene complexes are preferably used. Dionium salts, sulfonium salts, sodium salts, phosphonium salts, selenium salts, etc. are used as onium salts, and these counter ions include BF 4 _, PF 6 _, A s F 6 _, S b F 6 Anions such as _ are used. Specific examples include 4-chlorobenzene benzene hexafluorophosphate, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium hexafluorophosphate, ( (4-phenylthiophenyl) diphenylsulfonium hexafluoroantimonate, (41-phenylthiophenyl) diphenylsulfonium hexafluorophosphate, bis [41- (diphenylsulfonio ) Phenyl] sulfi dobis monohexafluoroanmonate, bis [41 (diphenylsulfonio) phenyl] sulfido monobis monohexafluorophosphate, (4-methoxyphenyl) diphenylsulfonhexaful Oloantimonate, (4-methoxyphenyl) phenfluorohexafluoroanti Ne one, bis (4_T_ Petit Rufueniru) hexa to ® one Doniumu full O b phosphate, benzyl triflate et Nylphosphonium hexafluoroantimonate, triphenylselenium hexafluorophosphate, (7? 5-isopropylbenzene) (7? 5-cyclopentagenyl) iron (II) hexafluoro Examples include, but are not limited to, phosphates. These compounds may be used alone or in combination.
[0032] 本発明において、 上記光開始剤は、 光重合性化合物 1 0 0重量部に対して 、 0 . 0 1〜 1 0重量部、 好ましくは 0 . 1〜7重量部、 より好ましくは 0 . 1〜5重量部程度配合される。 これは、 0 . 0 1重量部未満では光硬化性 が低下し、 1 0重量部を超えて配合した場合には、 表面だけが硬化して内部 の硬化性が低下してしまう弊害が出てくるからである。 これらの光開始剤は 、 通常粉体を光重合性化合物中に直接溶解して使用されるが、 溶解性が悪い 場合は光開始剤を予め極少量の溶剤に高濃度に溶解させたものを使用するこ とも出来る。 このような溶剤としては光重合性であることが更に好ましく具 体的には炭酸プロピレン、 : r一プチロラク トン等が挙げられる。 また、 光重 合性を向上させるために公知の各種染料や增感剤を添加することも可能であ る。 さらに、 光重合性化合物を加熱により硬化させることの出来る熱硬化開 始剤を光開始剤と共に併用することも出来る。 この場合光硬化の後に加熱す ることにより光重合性化合物の重合硬化を更に促進し完全なものにすること が期待できる。 [0032] In the present invention, the photoinitiator is 0.01 to 10 parts by weight, preferably 0.1 to 7 parts by weight, more preferably 0 to 100 parts by weight of the photopolymerizable compound. About 1 to 5 parts by weight are blended. This is because if less than 0.1 part by weight, the photocuring property is lowered, and if more than 10 parts by weight is blended, only the surface is cured and the internal curability is lowered. Because it comes. These photoinitiators are usually used by directly dissolving a powder in a photopolymerizable compound, but if the solubility is poor, a photoinitiator dissolved in a very small amount of solvent in advance at a high concentration is used. It can also be used. Such a solvent is more preferably photopolymerizable, and specific examples thereof include propylene carbonate, and r-peptilolactone. It is also possible to add various known dyes and sensitizers in order to improve photopolymerization. Further, a thermosetting initiator capable of curing the photopolymerizable compound by heating can be used in combination with the photoinitiator. In this case, by heating after photocuring, it can be expected that polymerization curing of the photopolymerizable compound is further promoted and completed.
[0033] 本発明では、 上記の光重合性化合物を単独で、 または複数を混合した組成 物を硬化させて、 異方性光拡散層を形成することが出来る。 また、 光重合性 化合物と光硬化性を有しない高分子樹脂の混合物を硬化させることによって も本発明の異方性光拡散層を形成可能である。 ここで使用できる高分子樹脂 としては、 アクリル樹脂、 スチレン樹脂、 スチレン一アクリル共重合体、 ポ リウレタン樹脂、 ポリエステル樹脂、 エポキシ樹脂、 セルロース系樹脂、 酢 酸ビニル系樹脂、 塩ビー酢ビ共重合体、 ポリビニルプチラール樹脂等が挙げ られる。 これらの高分子樹脂と光重合性化合物は、 光硬化前は十分な相溶性 を有していることが必要であるが、 この相溶性を確保するために各種有機溶 剤や可塑剤等を使用することも可能である。 なお、 光重合性化合物としてァ クリレートを使用する場合は、 高分子樹脂としてはァクリル樹脂から選択す ることが相溶性の点で好ましい。 In the present invention, an anisotropic light diffusing layer can be formed by curing the above-mentioned photopolymerizable compound alone or by mixing a mixture of a plurality thereof. The anisotropic light diffusion layer of the present invention can also be formed by curing a mixture of a photopolymerizable compound and a polymer resin that does not have photocurability. Polymer resins that can be used here include acrylic resin, styrene resin, styrene-acrylic copolymer, polyurethane resin, polyester resin, epoxy resin, cellulose resin, vinyl acetate resin, and vinyl chloride vinyl chloride copolymer. And polyvinyl ptylal resin. These polymer resins and photopolymerizable compounds must have sufficient compatibility before photocuring, but various organic solvents must be used to ensure this compatibility. It is also possible to use an agent or a plasticizer. When acrylate is used as the photopolymerizable compound, it is preferable from the viewpoint of compatibility that the polymer resin is selected from acryl resins.
[0034] 本発明の異方性光拡散フィルムは、 上述の光重合性化合物を含む組成物を シ一ト状に設け、 所望の散乱中心軸 Pと平行な光線を光源からシ一卜に対し て照射し、 組成物を硬化させることにより製造されるものである。 ここで、 光重合性化合物を含む組成物を基体上にシ一ト状に設ける手法としては、 通 常の塗工方式や印刷方式が適用される。 具体的には、 エアドクターコ一ティ ング、 バーコ一ティング、 ブレードコ一ティング、 ナイフコ一ティング、 リ バースコ一ティング、 トランスファロ一ルコ一ティング、 グラビア口一ルコ —ティング、 キスコ一ティング、 キャストコ一ティング、 スプレーコ一ティ ング、 スロットオリフィスコ一ティング、 カレンダ一コ一ティング、 ダムコ —ティング、 ディップコーティング、 ダイコーティング等のコーティングや 、 グラビア印刷等の凹版印刷、 スクリーン印刷等の孔版印刷等の印刷等が使 用できる。 また、 組成物が低粘度の場合は、 基体の周囲に一定の高さの堰を 設けて、 この堰で囲まれた中に組成物をキャス卜することも出来る。  [0034] The anisotropic light diffusing film of the present invention is provided with a composition containing the above-mentioned photopolymerizable compound in a sheet form, and a light beam parallel to the desired scattering center axis P is irradiated from the light source to the sheet. And is produced by curing the composition. Here, as a method of providing the composition containing the photopolymerizable compound in a sheet form on the substrate, a normal coating method or printing method is applied. Specifically, air coating, bar coating, blade coating, knife coating, river coating, transfer coating, gravure mouth coating, kisco coating, cast coating Coating, spray coating, slot orifice coating, calendar coating, dam coating, dip coating, die coating, etc., intaglio printing such as gravure printing, stencil printing such as screen printing, etc. Can be used. In addition, when the composition has a low viscosity, a weir of a certain height can be provided around the substrate, and the composition can be cast inside the weir.
[0035] シ一ト状に設けた光重合性化合物を含む組成物に光照射を行うための光源 としては、 通常はショートアークの紫外線発生光源が使用され、 具体的には 高圧水銀灯、 低圧水銀灯、 メタハラィ ドランプ、 キセノンランプ等が使用可 能である。 なお、 棒状の発光面を有する光源は、 本発明では不適当である。 このような棒状光源を使用すると、 板状の硬化領域が形成され、 図 6に示す 従来の光拡散媒体となってしまう。 本発明では、 シート状に形成された光重 合性化合物を含む組成物に対して、 所望の散乱中心軸 Pと平行な光線を照射 させる必要があり、 レジス卜の露光に使用される露光装置を使用することが 好ましい。 また、 サイズが小さいものを作製する場合は、 紫外線スポット光 源を用いて十分離れた距離から照射することも可能である。  [0035] As a light source for irradiating a composition containing a photopolymerizable compound provided in a sheet form, a short arc ultraviolet light source is usually used. Specifically, a high pressure mercury lamp, a low pressure mercury lamp Metahalide lamps, xenon lamps, etc. can be used. Note that a light source having a rod-like light emitting surface is inappropriate in the present invention. When such a rod-shaped light source is used, a plate-like hardened region is formed, resulting in the conventional light diffusion medium shown in FIG. In the present invention, it is necessary to irradiate the composition containing the photopolymerizable compound formed in the form of a sheet with a light beam parallel to the desired scattering center axis P. Is preferably used. In addition, when producing a small size, it is possible to irradiate from a sufficiently long distance using an ultraviolet spot light source.
[0036] 光重合性化合物を含む組成物をシート状にしたものに照射する光線は、 該 光重合性化合物を硬化可能な波長を含んでいることが必要で、 通常は水銀灯 の 3 6 5 n mを中心とする波長の光が利用される。 この波長帯を使って本発 明の異方性光拡散層を作製する場合、 照度としては 0 . 0 1〜 1 O O mW/ c m 2の範囲であることが好ましく、 より好ましくは 0 . 1〜2 0 mW/ c m 2の範囲である。 照度が 0 . 0 1 mW/ c m 2以下であると硬化に長時間を 要するため、 生産効率が悪くなり、 1 0 O mW/ c m 2以上であると光重合性 化合物の硬化が速過ぎて構造形成を生じず、 目的とする入射光の透過拡散性 を発現できなくなるからである。 [0036] The light applied to the sheet of the composition containing the photopolymerizable compound needs to have a wavelength capable of curing the photopolymerizable compound, and is usually a mercury lamp. Light with a wavelength centering around 365 nm is used. When the anisotropic light diffusion layer of the present invention is produced using this wavelength band, the illuminance is preferably in the range of 0.01 to 1 OO mW / cm 2 , more preferably 0.1 to 20. it is in the range of mW / cm 2. Illuminance 0. 0 1 mW / cm 2 it takes a long time to a be a cured or less, the production efficiency becomes poor, 1 0 O mW / cm 2 or more curing is the photopolymerizable compound is too fast structure This is because no formation occurs and the desired transmission diffusivity of incident light cannot be expressed.
[0037] 上記の光照射に関しては、 シ一ト状の光重合性化合物を含む組成物に直接 紫外線照射をすることも可能であるが、 光重合性化合物の材質による酸素障 害を防ぐため、 該光重合性化合物を含む組成物の表面に透明なガラスゃフィ ルムを密着させ、 これを介して紫外線照射を行うことが好ましい。 また、 シ -ト状の光重合性化合物を含む組成物の表面に、 透過光強度分布を有するマ スクを密着し、 このマスクを介して紫外線を照射することも可能である。 こ の透過光強度分布を有するマスクを介した紫外線照射では、 シ一ト状の光重 合性化合物を含む組成物中に、 その照射強度に応じた光重合反応を生じるた め、 屈折率分布を生じ易く、 本発明の異方性光拡散層の作製に有効である。 なお、 このような透過光強度分布型のマスクは、 蒸着法や印刷法、 塗工法に より作製することが出来る。  [0037] Regarding the above-mentioned light irradiation, it is possible to directly irradiate a composition containing a sheet-like photopolymerizable compound with ultraviolet rays, but in order to prevent oxygen damage due to the material of the photopolymerizable compound, It is preferable that a transparent glass film is brought into close contact with the surface of the composition containing the photopolymerizable compound, and ultraviolet irradiation is performed through the glass. It is also possible to attach a mask having a transmitted light intensity distribution to the surface of a composition containing a sheet-like photopolymerizable compound and to irradiate ultraviolet rays through this mask. In ultraviolet irradiation through a mask having this transmitted light intensity distribution, a photopolymerization reaction corresponding to the irradiation intensity occurs in a composition containing a sheet-like photopolymerizable compound. This is effective in producing the anisotropic light diffusion layer of the present invention. Such transmitted light intensity distribution type masks can be produced by vapor deposition, printing, or coating.
[0038] 本発明の他の態様である表示装置としては、 表示性能に視野角依存性を有 するものであれば適用可能である。 表示装置として使用することができるも のとしては、 例えば、 液晶表示パネル、 P D Pパネル、 有機 E Lパネル、 リ ァプロジェクタ一、 フィ一ルドエミッションディスプレイ等を挙げることが できる。 ここで、 表示性能に視野角依存性を有するとは、 正面方向 (表示装 置の観察面法線方向、 視野角 0 ° 方向) から観察した場合と斜め方向 (視野 角 0 ° より大きい方向) から観察した場合とで、 コントラスト比、 階調特性 、 色度等の表示性能が異なることや、 輝度が大きく変化することを意味する 。 特に液晶表示パネルの T Nモ一ドゃ S T Nモ一ドでこのような視野角依存 性が強く現れるが、 これらの表示装置の観察面側に、 本発明の異方性光拡散 フィルムを設けることにより、 良好な表示性能を任意の方向に拡大させるこ とができる。 [0038] A display device according to another aspect of the present invention is applicable as long as the display performance has a viewing angle dependency. Examples of the display device that can be used include a liquid crystal display panel, a PDP panel, an organic EL panel, a rear projector, a field emission display, and the like. Here, the viewing performance depends on the viewing angle. When viewing from the front direction (normal direction of the viewing surface of the display device, viewing angle 0 °) and oblique viewing (direction larger than viewing angle 0 °) This means that the display performance such as contrast ratio, gradation characteristics, and chromaticity is different, and the brightness changes greatly. In particular, such viewing angle dependence is strongly observed in the TN mode of the liquid crystal display panel or STN mode, but the anisotropic light diffusion of the present invention is present on the observation surface side of these display devices. By providing a film, good display performance can be expanded in any direction.
[0039] また、 本発明の他の態様である液晶表示装置は、 液晶表示パネルの出射光 側に、 上記の異方性光拡散フィルムが設けられた構成であるが、 具体的には 、 図 4又は図 5に示すように、 透明電極が形成された一対の透明ガラス基板 1 1、 1 2の間に、 ネマチック液晶 1 3が狭持され、 このガラス基板 1 1 , 1 2の両側に、 一対の偏光板 1 4, 1 5が設けられた従来の液晶表示パネル において、 偏光板 1 4上、 又は、 ガラス基板 1 1 と偏光板 1 4との間に、 上 記の異方性光拡散フィルム 1 0を設けた構成である。 なお、 上記の透明ガラ ス基板、 ネマチック液晶、 偏光板等は、 一般公知のものを使用することがで さる。  [0039] In addition, the liquid crystal display device according to another aspect of the present invention has a configuration in which the above-described anisotropic light diffusion film is provided on the outgoing light side of the liquid crystal display panel. As shown in FIG. 5, a nematic liquid crystal 13 is sandwiched between a pair of transparent glass substrates 11 and 12 on which transparent electrodes are formed, and a pair of glass substrates 11 and 12 are placed on both sides. In the conventional liquid crystal display panel provided with the polarizing plates 14 and 15, the anisotropic light diffusion film 10 is placed on the polarizing plate 14 or between the glass substrate 11 and the polarizing plate 14. This is a configuration provided. For the above-mentioned transparent glass substrate, nematic liquid crystal, polarizing plate, etc., generally known ones can be used.
実施例  Example
[0040] 次に、 本発明を実施例を用いて具体的に説明するが、 本発明はこれに限定 されるものではない。  Next, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
<実施例 1 >  <Example 1>
76 X 26 mmサイズのスライ ドガラスの縁部全周に、 ディスペンサーを 使い硬化性樹脂で高さ 0. 5 mmの隔壁を形成した。 この中に下記の光重合 性化合物を含む組成物を滴下し、 別のスライ ドガラスでカバーした。  A partition wall with a height of 0.5 mm was formed with a curable resin using a dispenser on the entire periphery of the 76 x 26 mm size slide glass. A composition containing the following photopolymerizable compound was dropped into this and covered with another slide glass.
[光重合性化合物]  [Photopolymerizable compound]
■ 2- (パーフルォロォクチル) —ェチルァクリレート (共栄社化学社製、 商品名 : ライ トァクリレート FA— 1 08) 50重量部 ■ 2- (Perfluorooctyl) -Ethyl acrylate (Kyoeisha Chemical Co., Ltd., trade name: Light acrylate FA— 1 08) 50 parts by weight
■ 1 , 9—ノナンジオールジァクリレート (共栄社化学社製、 商品名 : ライ トァクリレート 1. 9 N D— A) 50重量部■ 1,9—Nonanediol diacrylate (Kyoeisha Chemical Co., Ltd., trade name: Light acrylate 1.9 N D— A) 50 parts by weight
[光開始剤] [Photoinitiator]
■ 2—ヒドロキシ一 2—メチル一 1—フエニルプロパン一 1—オン (チバ■ スペシャルティ ■ケミカルズ製、 商品名 : D a r o c u r e 1 1 73)  ■ 2-Hydroxy-1, 2-Methyl-1- 1-Phenylpropane-1-one (Ciba ■ Specialty ■ Chemicals, product name: D aro cure 1 1 73)
4重量部 4 parts by weight
[0041] 上記両面をスライ ドガラスで挟まれた 0. 3mmの厚さの液膜に対して、 U Vスポット光源 (浜松ホトニクス製、 商品名 : L 2859 _ 01 ) の落射 システムを用いて、 その法線から 30° 傾斜させた状態で、 照射強度 8mW /cm2の紫外線を 1分間照射した。 その後両側のスライ ドガラスを外して異 方性光拡散層を得た。 [0041] With respect to a liquid film having a thickness of 0.3 mm sandwiched between both sides of the slide glass, Using an epi-illumination system with a UV spot light source (manufactured by Hamamatsu Photonics, product name: L 2859 _ 01), ultraviolet rays with an irradiation intensity of 8 mW / cm 2 were irradiated for 1 minute at an inclination of 30 ° from the normal. Thereafter, the slide glass on both sides was removed to obtain an anisotropic light diffusion layer.
[0042] 次いで、 粘着剤 (商品名 : TD06A、 巴川製紙社製) を用いて、 液晶表 示パネル上に積層した際の方位角 øがそれぞれ 0° 及び 1 80° となるよう に、 上記の異方性光拡散層 2枚を貼り合わせて実施例 1の異方性光拡散フィ ルムを作製した。 [0042] Next, using an adhesive (trade name: TD06A, manufactured by Yodogawa Paper Co., Ltd.), the azimuth angles ø when laminated on the liquid crystal display panel are 0 ° and 180 °, respectively. An anisotropic light diffusion film of Example 1 was produced by laminating two anisotropic light diffusion layers.
[0043] 次に、 上記の異方性光拡散フィルムを、 1. 8インチカラ一 S TNパネル  [0043] Next, the anisotropic light diffusing film described above is applied to an 1.8 inch color S TN panel.
(上下視野角 40° 、 左右視野角 40° ) の上側に、 方位角 øがパネルのそ れぞれ 0° 及び 1 80° となるように、 上記粘着剤を用いて貼り合わせ、 本 発明の液晶表示装置を作製した。 このとき、 方位角 0 = 0° 及び 1 80° の 方向を各々パネルの右及び左方向とした。  Adhering to the upper side (vertical viewing angle 40 °, left and right viewing angle 40 °) using the above-mentioned adhesive so that the azimuth angle ø is 0 ° and 180 °, respectively. A liquid crystal display device was produced. At this time, the directions of azimuth angles 0 = 0 ° and 1 80 ° were defined as the right and left directions of the panel, respectively.
[0044] <比較例 1 > [0044] <Comparative Example 1>
異方性光拡散フィルムを積層しない 1. 8インチカラ一 S T Nパネルを比 較例 1の液晶表示装置とした。  An anisotropic light diffusing film is not laminated 1. An 8-inch color STN panel was used as the liquid crystal display device of Comparative Example 1.
[0045] <比較例 2> [0045] <Comparative Example 2>
実施例 1の異方性光拡散フィルムの代わりにルミスティ MFZ— 2555 (住友化学社製) を比較例 2の異方性光拡散フィルムとし、 1. 8インチ力 ラ一 S T Nパネル上に積層して比較例 2の液晶表示装置とした。  Instead of the anisotropic light diffusing film of Example 1, Lumisty MFZ-2555 (manufactured by Sumitomo Chemical Co., Ltd.) was used as the anisotropic light diffusing film of Comparative Example 2, and was laminated on the 1.8-inch force STN panel. A liquid crystal display device was obtained.
[0046] <比較例 3> <Comparative Example 3>
実施例 1の異方性光拡散フィルムの代わりに拡散フイルム B S _ 037 ( 恵和製) を比較例 3の異方性光拡散フィルムとし、 1. 8インチカラ一 S T Nパネル上に積層して比較例 3の液晶表示装置とした。  Instead of the anisotropic light diffusing film of Example 1, a diffusion film BS _ 037 (manufactured by Keiwa) was used as the anisotropic light diffusing film of Comparative Example 3, and the liquid crystal display device of Comparative Example 3 was laminated on an 8-inch column STN panel. It was.
[0047] 上記のようにして作製した実施例 1及び比較例 1〜 3の液晶表示装置に対 して、 上下視野角及び左右視野角、 並びに以下に説明する階調反転角を確認 した。 ここでいう階調反転角とは、 画面の法線に対して傾いた位置から画面 を見て、 階調反転が起こり始める角度とした。 このときの傾く方向として、 方位角 90° 及び 270° 方向に当たる画面の上下の方向と、 方位角 45° 及び 235° 方向に当たる画面の斜めの方向と、 方位角 0° 及び 1 80° 方 向に当たる画面の左右の方向と、 の各々について確認した。 なお、 この測定 における視野角は、 白輝度と黒輝度との比で表わされるコントラスト比が 2 以上を示す最大極角とした。 また、 画像ボケの有無についても確認し、 これ らの結果を表 1に示した。 [0047] With respect to the liquid crystal display devices of Example 1 and Comparative Examples 1 to 3 manufactured as described above, the vertical and horizontal viewing angles and the gradation inversion angle described below were confirmed. The tone reversal angle here refers to the angle at which tone reversal starts to occur when the screen is viewed from a position inclined with respect to the normal of the screen. As the direction of tilting at this time, Up and down direction of the screen corresponding to the azimuth angle 90 ° and 270 ° direction, diagonal direction of the screen corresponding to the azimuth angle 45 ° and 235 ° direction, left and right direction of the screen corresponding to the azimuth angle 0 ° and 1 80 ° direction, It confirmed about each of. The viewing angle in this measurement was the maximum polar angle at which the contrast ratio represented by the ratio of white luminance to black luminance was 2 or more. In addition, the presence or absence of image blur was also confirmed, and the results are shown in Table 1.
[0048] [表 1] [0048] [Table 1]
Figure imgf000017_0001
Figure imgf000017_0001
[0049] その結果、 表 1に示すように、 比較例 1の液晶表示装置の視野角は、 上下 、 斜め及び左右方向に対し 40° であり、 階調反転角は、 上下、 斜め及び左 右方向に対し 50° であった。 比較例 2の液晶表示装置の視野角は、 上下及 び斜め方向に対し 40° 、 左右方向は 65° であり、 階調反転角は、 上下及 び斜め方向に対し 50° 、 左右方向は 75° であった。 比較例 3の液晶表示 装置の視野角は、 上下、 斜め及び左右方向に対し 50° であり、 階調反転角 は上下、 斜め及び左右方向に対し 60° であった。 そして、 50° 以内であ つても画面にボケが発生して、 画像の輪郭の鮮明さが低下していた。 これに 対し、 本発明の実施例の液晶表示装置においては、 上下、 斜め及び左右方向 の視野角は 55° であり、 階調反転角は、 上下及び斜め方向に対し 65° で あった。 すなわち、 本発明の異方性光拡散フィルム及び液晶表示装置では、 従来の液晶表示装置よりも上下、 斜め及び左右方向に対して 1 5° 視野角を 拡げることが出来た。 As a result, as shown in Table 1, the viewing angle of the liquid crystal display device of Comparative Example 1 is 40 ° with respect to the vertical and diagonal directions and the horizontal direction, and the gradation inversion angles are vertical and diagonal and left and right. It was 50 ° to the direction. The viewing angle of the liquid crystal display device of Comparative Example 2 is 40 ° in the vertical and diagonal directions, and the horizontal direction is 65 °. The gradation inversion angle is 50 ° in the vertical and diagonal directions, and 75 in the horizontal direction. °. The viewing angle of the liquid crystal display device of Comparative Example 3 was 50 ° in the vertical, diagonal, and horizontal directions, and the gradation inversion angle was 60 ° in the vertical, diagonal, and horizontal directions. Even within 50 °, the screen was blurred, and the outline of the image was not clear. On the other hand, in the liquid crystal display device of the example of the present invention, the viewing angle in the vertical, diagonal, and horizontal directions was 55 °, and the gradation inversion angle was 65 ° in the vertical and diagonal directions. That is, the anisotropic light diffusing film and the liquid crystal display device of the present invention can expand the viewing angle by 15 ° with respect to the vertical, diagonal, and horizontal directions as compared with the conventional liquid crystal display device.
[0050] 次に、 他の実施形態の実施例を用いて本発明を具体的に説明する。  [0050] Next, the present invention will be specifically described using examples of other embodiments.
<実施例 2>  <Example 2>
Z r (O P r ) 465. 4重量部を 250 m I三口フラスコ中に入れ、 氷浴 中で冷却した。 これを攪拌しながらメタクリル酸 (MAA) 1 7. 2重量部 を 1 5分かけて徐々に滴下した。 全量を滴下してからさらに 1 0分間攪拌し 、 その後、 三口フラスコを氷浴から取り出し、 25°Cでさらに 1 0分間攪拌 して、 Z r (O P r ) 4/MA A ( 1 : 1 ) を調製した。 Z r (OP r) 4 65. Place 4 parts by weight in a 250 m I three-necked flask and ice bath Cooled in. While stirring this, 17.2 parts by weight of methacrylic acid (MAA) was gradually added dropwise over 15 minutes. The whole amount is added dropwise and stirred for another 10 minutes, and then the three-necked flask is removed from the ice bath and stirred at 25 ° C for another 10 minutes, Zr (OPr) 4 / MAA (1: 1) Was prepared.
[0051] 次いで、 メタクリルォキシプロビルトリメ トキシシラン 24. 8重量部、 ジメチルジェトキシシラン 1 4. 8重量部、 ポリビニルプチラール溶液 (濃 度 30重量%エタノール溶液) 1 33. 6重量部及びトリエチレングリコ一 ルジ (2 _ェチルへキサノア一ト) 1 1 0. 6重量部を混合し、 25°Cで 1 5分間攪拌して、 光重合性組成物用混合溶液を調製した。 この光重合性組成 物用混合溶液に、 0. 1 Nの H C I 4. 50重量部を加え、 濁っていた反応 混合物が透明になるまで、 室温で 1 0分間攪拌した。 そして、 攪拌しながら 、 液下漏斗を用いて、 上記の Z r (O P r ) 4/MA A ( 1 : 1 ) 4 1. 6重 量部を徐々に加え、 完全に添加した後、 さらに室温で 4時間攪拌した。 その 後、 この光重合性組成物用混合溶液に、 水 1. 9重量部を滴下し、 室温で一 晚攪拌した。 さらに、 商品名 : C r o d a m e r U V A 42 1を 6. 7 5重量部加え、 次いで、 イソプロパノール 86. 3重量部で希釈し、 さらに 、 商品名 : B y k 306を 6. 5重量部を加え、 完全に均質化されるまで攪 拌し、 光重合性組成物を調製した。 [0051] Next, 24.8 parts by weight of methacryloxypropyl trimethoxysilane, 14.8 parts by weight of dimethyljetoxysilane, polyvinyl propylal solution (concentration 30% by weight ethanol solution) 1 33.6 parts by weight and tri Ethylene glycol (2_ethylhexanoate) 1 1 0.6 parts by weight were mixed and stirred at 25 ° C. for 15 minutes to prepare a mixed solution for the photopolymerizable composition. To this mixed solution for photopolymerizable composition, 4.50 parts by weight of 0.1 N HCI was added, and the mixture was stirred at room temperature for 10 minutes until the cloudy reaction mixture became clear. Then, while stirring, using a submerged funnel, gradually add the above Zr (OPr) 4 / MAA (1: 1) 41.6 parts by weight, and after complete addition, For 4 hours. Thereafter, 1.9 parts by weight of water was added dropwise to the mixed solution for photopolymerizable composition, and stirred at room temperature. Furthermore, the product name: C rodamer UVA 42 1 was added 6.7 5 parts by weight, then diluted with 86.3 parts by weight of isopropanol, and the product name: Byk 306 was added 6.5 parts by weight, completely The mixture was stirred until homogenized to prepare a photopolymerizable composition.
[0052] 厚さ 1 0 O mの透明 P E Tフィルム上に、 上記のように調製された光重 合性組成物を塗工し、 乾燥膜厚 50 mの塗工膜を設けた。 さらに、 この塗 ェ膜上に、 厚さ 38 mの離型 P E Tフィルム (商品名 : 38 X、 リンテツ ク社製) をラミネートし、 この上から入射角 30° の方向から平行 UV光を 照射して、 散乱中心軸 30° の異方性光拡散フィルムを作製した。  [0052] On the transparent PET film having a thickness of 10 Om, the photopolymerizable composition prepared as described above was applied to provide a coating film having a dry film thickness of 50 m. Furthermore, a 38 m thick release PET film (trade name: 38 X, manufactured by Lintec) was laminated on this coating film, and parallel UV light was irradiated from above on a direction with an incident angle of 30 °. Thus, an anisotropic light diffusion film having a scattering central axis of 30 ° was produced.
[0053] 次に、 上記の異方性光拡散フィルムをその散乱中心軸の方位角がバックラ イ トの出射光面の 0° と 1 80° となるように 2枚重ねて載置し、 実施例 2 の異方性光拡散フィルムを作製した。  [0053] Next, two sheets of the anisotropic light diffusing film described above were placed so that the azimuth angles of the scattering center axes thereof were 0 ° and 1800 ° of the outgoing light surface of the backlight, and Example 2 An anisotropic light diffusing film was prepared.
[0054] <比較例 4>  <Comparative Example 4>
実施例 2における拡散中心軸 30° の異方性光拡散層を、 その散乱中心軸 の方位角がバックライ トの光出射面の 0 ° 方向 (光出射面の水平右方向) と 一致するように載置し、 比較例 4の異方性光拡散フィルムを作製した。 The anisotropic light diffusion layer having a diffusion center axis of 30 ° in Example 2 is The anisotropic light diffusing film of Comparative Example 4 was produced by placing the azimuth of the light so that it coincides with the 0 ° direction of the light exit surface of the backlight (the horizontal right direction of the light exit surface).
[0055] 市販のバックライ トを、 その光出射面を垂直に立てた状態で、 回転テープ ルに載せ、 その正面に輝度計を配置した。 光出射面の法線方向の 0 ° として 、 回転テーブルを間欠的に回転させ、 各角度における輝度を測定し、 何も載 せていない状態のバックライ トのみ輝度分布特性を測定した。  [0055] A commercially available backlight was placed on a rotating table with its light emitting surface standing upright, and a luminance meter was placed in front of it. The rotation table was intermittently rotated at 0 ° in the normal direction of the light exit surface, the luminance at each angle was measured, and the luminance distribution characteristic was measured only for the backlight with nothing on it.
[0056] 次いで、 このバックライ ト上に、 実施例 2の異方性光拡散フィルムを、 そ の散乱中心軸の方位角がバックライ トの光出射面の 0 ° と 1 8 0 ° となるよ うに重ねて載せ、 上記と同様に、 輝度分布特性を測定した。  [0056] Next, the anisotropic light diffusing film of Example 2 was overlaid on the backlight so that the azimuth angle of the scattering center axis was 0 ° and 180 ° of the light exit surface of the backlight. The luminance distribution characteristics were measured in the same manner as described above.
[0057] さらに、 このバックライ ト上に、 比較例 4の異方性光拡散フィルムを、 そ の散乱中心軸の方位角がバックライ 卜の出射面の 0 ° (光出射面の水平方向 ) と一致するように載せ、 上記と同様に、 輝度分布特性を測定した。  [0057] Further, on this backlight, the anisotropic light diffusing film of Comparative Example 4 is arranged such that the azimuth angle of the scattering center axis thereof coincides with 0 ° (horizontal direction of the light exit surface) of the exit surface of the backlight. The luminance distribution characteristics were measured in the same manner as described above.
[0058] これらの結果を図 7に示した。 図 7から明らかなように、 バックライ 卜の み輝度分布特性と比べると、 異方性光拡散層を 1枚用いた比較例 4の異方性 光拡散フィルムでは、 + 3 2 ° 以上の角度領域で大幅に輝度が向上している ものの、 マイナス側の角度領域では輝度は全く改善されていないことが示さ れた。 これに対し、 異方性光拡散層を 2枚用いた実施例 2の異方性光拡散フ イルムでは、 プラス側だけではなくマイナス側の角度領域においても、 約 3 0 ° 以上の角度領域で輝度の大幅な向上が示された。  [0058] These results are shown in FIG. As can be seen from Fig. 7, compared with the brightness distribution characteristics of the backlight 卜 alone, the anisotropic light diffusing film of Comparative Example 4 using one anisotropic light diffusing layer shows a significant increase in the angle region of + 32 ° or more. Although the brightness was improved, the brightness was not improved at all in the minus angle region. In contrast, in the anisotropic light diffusing film of Example 2 using two anisotropic light diffusing layers, not only in the plus side but also in the minus side angle region, the brightness is greatly increased in an angle region of about 30 ° or more. An improvement was shown.
[0059] なお、 図 7における各輝度は、 バックライ 卜の 0 ° 方向の輝度を 1 0 0 % として規格化したものであり、 実際の輝度のデータを表 2に示した。 このデ ータによれば、 本発明の異方性光拡散フィルムは、 正面方向の輝度はやや低 下するものの、 散乱中心軸方向の輝度が向上することが示されている。 すな わち、 本発明の異方性光拡散フィルムは、 正面方向の光を散乱中心軸方向に 誘導することを示している。  Note that each luminance in FIG. 7 is standardized assuming that the luminance in the 0 ° direction of the backlight is 100%, and the actual luminance data is shown in Table 2. According to this data, the anisotropic light diffusing film of the present invention shows that the luminance in the scattering central axis direction is improved, although the luminance in the front direction is slightly lowered. In other words, the anisotropic light diffusing film of the present invention induces light in the front direction in the direction of the scattering center axis.
[0060] ほ 2] [0060] 2
Figure imgf000020_0001
Figure imgf000020_0001
以上のように、 本発明によれば、 表示装置、 特に液晶表示パネルの視野角 を任意の方向に十分拡大することができる異方性光拡散フィルム並びにそれ を用いた表示装置及び液晶表示装置を提供することができる。  As described above, according to the present invention, an anisotropic light diffusion film capable of sufficiently expanding the viewing angle of a display device, particularly a liquid crystal display panel, in an arbitrary direction, a display device using the same, and a liquid crystal display device are provided. be able to.

Claims

請求の範囲 The scope of the claims
[1 ] 光重合性化合物を含む組成物の硬化物からなる異方性光拡散層を複数層備 え、  [1] A plurality of anisotropic light diffusion layers made of a cured product of a composition containing a photopolymerizable compound,
上記異方性光拡散層は、 各々ひとつの散乱中心軸を有し、  Each of the anisotropic light diffusion layers has one scattering center axis,
上記異方性光拡散層への入射光の透過拡散性は、 該異方性光拡散層の有す る散乱中心軸と該入射光の光軸とが交差する角度に依存して変化する入射角 度依存性を有し、  The transmission diffusivity of incident light to the anisotropic light diffusing layer depends on the incident angle depending on the angle at which the scattering central axis of the anisotropic light diffusing layer intersects the optical axis of the incident light. Have
上記散乱中心軸の方向は、 各異方性光拡散層により異なつていることを特 徵とする異方性光拡散フィルム。  An anisotropic light diffusing film characterized in that the direction of the scattering central axis is different depending on each anisotropic light diffusing layer.
[2] 前記散乱中心軸の方位角が、 前記異方性光拡散層ごとに異なることを特徴 とする請求項 1に記載の異方性光拡散フィルム。  [2] The anisotropic light diffusing film according to [1], wherein an azimuth angle of the scattering central axis is different for each anisotropic light diffusing layer.
[3] 前記散乱中心軸の極角が、 前記異方性光拡散層ごとに異なることを特徴と する請求項 1に記載の異方性光拡散フィルム。 [3] The anisotropic light diffusion film according to [1], wherein a polar angle of the scattering central axis is different for each of the anisotropic light diffusion layers.
[4] 表示性能に視野角依存性を有する表示装置の観察面側に、 請求項 1に記載 の異方性光拡散フィルムを配置したことを特徴とする表示装置。 [4] A display device comprising the anisotropic light diffusing film according to claim 1 arranged on an observation surface side of a display device having viewing angle dependence on display performance.
[5] 透明電極が形成された一対の透明基板の間に、 液晶が狭持され、 該透明基 板の該液晶が狭持されるのとは反対側の両面に、 一対の偏光板が設けられた 液晶表示パネルを備えた液晶表示装置であって、 [5] A liquid crystal is sandwiched between a pair of transparent substrates on which a transparent electrode is formed, and a pair of polarizing plates is provided on both sides of the transparent substrate opposite to the side where the liquid crystal is sandwiched. A liquid crystal display device comprising a liquid crystal display panel,
請求項 1に記載の異方性光拡散フィルムを、 上記液晶パネルの出射光側に 設けたことを特徴とする液晶表示装置。  2. A liquid crystal display device comprising the anisotropic light diffusing film according to claim 1 provided on an outgoing light side of the liquid crystal panel.
PCT/JP2007/001185 2006-10-31 2007-10-30 Anisotropic light diffusing film, and display device and liquid crystal display device using the anisotropic light diffusing film WO2008053592A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006296868 2006-10-31
JP2006-296868 2006-10-31

Publications (1)

Publication Number Publication Date
WO2008053592A1 true WO2008053592A1 (en) 2008-05-08

Family

ID=39343945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/001185 WO2008053592A1 (en) 2006-10-31 2007-10-30 Anisotropic light diffusing film, and display device and liquid crystal display device using the anisotropic light diffusing film

Country Status (2)

Country Link
TW (1) TW200837392A (en)
WO (1) WO2008053592A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010276682A (en) * 2009-05-26 2010-12-09 Optrex Corp Liquid crystal display device
JP2012141592A (en) * 2010-12-15 2012-07-26 Lintec Corp Composition for anisotropic light-diffusing film and anisotropic light-diffusing film
JP2012141593A (en) * 2010-12-16 2012-07-26 Lintec Corp Light diffusion film and manufacturing method for light diffusion film
JP2012208408A (en) * 2011-03-30 2012-10-25 Japan Display West Co Ltd Display and electronic device
WO2015111523A1 (en) * 2014-01-21 2015-07-30 株式会社巴川製紙所 Anisotropic optical film
WO2015146708A1 (en) * 2014-03-28 2015-10-01 株式会社巴川製紙所 Anisotropic optical film
CN108933157A (en) * 2017-05-25 2018-12-04 乐金显示有限公司 Organic light-emitting display device
JP6581329B1 (en) * 2018-05-14 2019-09-25 株式会社巴川製紙所 Head mounted display
WO2019220775A1 (en) * 2018-05-14 2019-11-21 株式会社巴川製紙所 Head-mounted display

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019053167A (en) * 2017-09-14 2019-04-04 日東電工株式会社 Optical laminate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63309902A (en) * 1987-06-11 1988-12-19 Sumitomo Chem Co Ltd Light control plate and its production
JPH10239683A (en) * 1996-12-25 1998-09-11 Sharp Corp Reflective-type liquid crystal; display device
JPH1184115A (en) * 1997-09-01 1999-03-26 Seiko Epson Corp Reflector and liquid crystal display as well as electronic apparatus
JP2004054132A (en) * 2002-07-23 2004-02-19 Daicel Chem Ind Ltd Reflection screen
JP2005265915A (en) * 2004-03-16 2005-09-29 Tomoegawa Paper Co Ltd Anisotropic diffusion medium and its manufacturing method
JP2006119241A (en) * 2004-10-20 2006-05-11 Tomoegawa Paper Co Ltd Anisotropic diffusing medium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63309902A (en) * 1987-06-11 1988-12-19 Sumitomo Chem Co Ltd Light control plate and its production
JPH10239683A (en) * 1996-12-25 1998-09-11 Sharp Corp Reflective-type liquid crystal; display device
JPH1184115A (en) * 1997-09-01 1999-03-26 Seiko Epson Corp Reflector and liquid crystal display as well as electronic apparatus
JP2004054132A (en) * 2002-07-23 2004-02-19 Daicel Chem Ind Ltd Reflection screen
JP2005265915A (en) * 2004-03-16 2005-09-29 Tomoegawa Paper Co Ltd Anisotropic diffusion medium and its manufacturing method
JP2006119241A (en) * 2004-10-20 2006-05-11 Tomoegawa Paper Co Ltd Anisotropic diffusing medium

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010276682A (en) * 2009-05-26 2010-12-09 Optrex Corp Liquid crystal display device
JP2012141592A (en) * 2010-12-15 2012-07-26 Lintec Corp Composition for anisotropic light-diffusing film and anisotropic light-diffusing film
JP2012141593A (en) * 2010-12-16 2012-07-26 Lintec Corp Light diffusion film and manufacturing method for light diffusion film
US9291851B2 (en) 2011-03-30 2016-03-22 Japan Display Inc. Display and electronic unit
JP2012208408A (en) * 2011-03-30 2012-10-25 Japan Display West Co Ltd Display and electronic device
EP2506066A3 (en) * 2011-03-30 2013-12-25 Japan Display West Inc. Display and electronic unit
US10191322B2 (en) 2011-03-30 2019-01-29 Japan Display Inc. Display and electronic unit
KR102240334B1 (en) * 2014-01-21 2021-04-14 가부시키가이샤 도모에가와 세이시쇼 Anisotropic optical film
US10330831B2 (en) 2014-01-21 2019-06-25 Tomoegawa Co., Ltd. Anisotropic optical film
CN105829924A (en) * 2014-01-21 2016-08-03 株式会社巴川制纸所 Anisotropic optical film
KR20160111961A (en) * 2014-01-21 2016-09-27 가부시키가이샤 도모에가와 세이시쇼 Anisotropic optical film
JPWO2015111523A1 (en) * 2014-01-21 2017-03-23 株式会社巴川製紙所 Anisotropic optical film
WO2015111523A1 (en) * 2014-01-21 2015-07-30 株式会社巴川製紙所 Anisotropic optical film
KR20160137964A (en) * 2014-03-28 2016-12-02 가부시키가이샤 도모에가와 세이시쇼 Anisotropic optical film
CN106133588A (en) * 2014-03-28 2016-11-16 株式会社巴川制纸所 Anisotropic optical film
JP2015191178A (en) * 2014-03-28 2015-11-02 株式会社巴川製紙所 anisotropic optical film
CN106133588B (en) * 2014-03-28 2019-08-23 株式会社巴川制纸所 Anisotropic optical film
WO2015146708A1 (en) * 2014-03-28 2015-10-01 株式会社巴川製紙所 Anisotropic optical film
KR102316118B1 (en) * 2014-03-28 2021-10-25 가부시키가이샤 도모에가와 세이시쇼 Anisotropic optical film
CN108933157A (en) * 2017-05-25 2018-12-04 乐金显示有限公司 Organic light-emitting display device
CN108933157B (en) * 2017-05-25 2023-06-30 乐金显示有限公司 Organic light emitting display device
JP6581329B1 (en) * 2018-05-14 2019-09-25 株式会社巴川製紙所 Head mounted display
WO2019220775A1 (en) * 2018-05-14 2019-11-21 株式会社巴川製紙所 Head-mounted display
US11874481B2 (en) 2018-05-14 2024-01-16 Tomoegawa Co., Ltd. Head-mounted display

Also Published As

Publication number Publication date
TW200837392A (en) 2008-09-16

Similar Documents

Publication Publication Date Title
JP6483030B2 (en) Anisotropic optical film
WO2008053592A1 (en) Anisotropic light diffusing film, and display device and liquid crystal display device using the anisotropic light diffusing film
KR102316118B1 (en) Anisotropic optical film
JP6433638B1 (en) Light guide laminate using anisotropic optical film and planar light source device using the same
JP5670601B2 (en) Anisotropic optical film
JP6093113B2 (en) Anisotropic optical film
JP6616921B1 (en) Head mounted display
KR20160117313A (en) Process for Production of Anisotropic Optical Film
JP6039911B2 (en) Anisotropic optical film for polarizing plate and method for producing the same
JP5090862B2 (en) Anisotropic diffusion medium and light source unit using the same
JP5977955B2 (en) Anisotropic optical film and method for producing the same
JP2015222441A (en) Anisotropic optical film
JP6745625B2 (en) Anisotropic optical film
JP2019179204A (en) Anisotropic optical film
CN112088578B (en) Head-mounted display
JP6581329B1 (en) Head mounted display
WO2022209567A1 (en) Anisotropic light-diffusing film and display device
JP2017187770A (en) Anisotropic optical film and production method of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07827964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07827964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP