WO2022209567A1 - Anisotropic light-diffusing film and display device - Google Patents
Anisotropic light-diffusing film and display device Download PDFInfo
- Publication number
- WO2022209567A1 WO2022209567A1 PCT/JP2022/009244 JP2022009244W WO2022209567A1 WO 2022209567 A1 WO2022209567 A1 WO 2022209567A1 JP 2022009244 W JP2022009244 W JP 2022009244W WO 2022209567 A1 WO2022209567 A1 WO 2022209567A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- angle
- anisotropic light
- light
- central axis
- scattering
- Prior art date
Links
- 238000009792 diffusion process Methods 0.000 claims abstract description 142
- 239000011159 matrix material Substances 0.000 claims abstract description 14
- 238000002834 transmittance Methods 0.000 claims description 52
- 230000000694 effects Effects 0.000 abstract description 10
- 150000001875 compounds Chemical class 0.000 description 62
- 239000010410 layer Substances 0.000 description 32
- 238000000034 method Methods 0.000 description 28
- 239000004973 liquid crystal related substance Substances 0.000 description 27
- 229920001296 polysiloxane Polymers 0.000 description 25
- 230000003287 optical effect Effects 0.000 description 24
- -1 alkylene glycols Chemical class 0.000 description 20
- 238000000576 coating method Methods 0.000 description 20
- 239000011342 resin composition Substances 0.000 description 20
- 239000011248 coating agent Substances 0.000 description 19
- 229920005989 resin Polymers 0.000 description 17
- 239000011347 resin Substances 0.000 description 17
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 12
- 238000001723 curing Methods 0.000 description 11
- 238000011156 evaluation Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 8
- 125000000524 functional group Chemical group 0.000 description 8
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 7
- 125000002091 cationic group Chemical group 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 229920001187 thermosetting polymer Polymers 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 125000003700 epoxy group Chemical group 0.000 description 6
- 230000001678 irradiating effect Effects 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- 229920002799 BoPET Polymers 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 229920003986 novolac Polymers 0.000 description 5
- 239000003973 paint Substances 0.000 description 5
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 229920005992 thermoplastic resin Polymers 0.000 description 5
- 239000004593 Epoxy Substances 0.000 description 4
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 230000005764 inhibitory process Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000000016 photochemical curing Methods 0.000 description 4
- 239000002952 polymeric resin Substances 0.000 description 4
- 238000007639 printing Methods 0.000 description 4
- 229920002050 silicone resin Polymers 0.000 description 4
- 229920003002 synthetic resin Polymers 0.000 description 4
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 4
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 229920000178 Acrylic resin Polymers 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical group C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 3
- 239000012790 adhesive layer Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- 125000003566 oxetanyl group Chemical group 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229920000570 polyether Polymers 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- INQDDHNZXOAFFD-UHFFFAOYSA-N 2-[2-(2-prop-2-enoyloxyethoxy)ethoxy]ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOCCOC(=O)C=C INQDDHNZXOAFFD-UHFFFAOYSA-N 0.000 description 2
- RZVINYQDSSQUKO-UHFFFAOYSA-N 2-phenoxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC1=CC=CC=C1 RZVINYQDSSQUKO-UHFFFAOYSA-N 0.000 description 2
- VVBLNCFGVYUYGU-UHFFFAOYSA-N 4,4'-Bis(dimethylamino)benzophenone Chemical compound C1=CC(N(C)C)=CC=C1C(=O)C1=CC=C(N(C)C)C=C1 VVBLNCFGVYUYGU-UHFFFAOYSA-N 0.000 description 2
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- YXALYBMHAYZKAP-UHFFFAOYSA-N 7-oxabicyclo[4.1.0]heptan-4-ylmethyl 7-oxabicyclo[4.1.0]heptane-4-carboxylate Chemical compound C1CC2OC2CC1C(=O)OCC1CC2OC2CC1 YXALYBMHAYZKAP-UHFFFAOYSA-N 0.000 description 2
- 229930185605 Bisphenol Natural products 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 125000004386 diacrylate group Chemical group 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- FJKIXWOMBXYWOQ-UHFFFAOYSA-N ethenoxyethane Chemical compound CCOC=C FJKIXWOMBXYWOQ-UHFFFAOYSA-N 0.000 description 2
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical class OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 2
- 230000004313 glare Effects 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 2
- YDKNBNOOCSNPNS-UHFFFAOYSA-N methyl 1,3-benzoxazole-2-carboxylate Chemical compound C1=CC=C2OC(C(=O)OC)=NC2=C1 YDKNBNOOCSNPNS-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920002689 polyvinyl acetate Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000011882 ultra-fine particle Substances 0.000 description 2
- UNMJLQGKEDTEKJ-UHFFFAOYSA-N (3-ethyloxetan-3-yl)methanol Chemical compound CCC1(CO)COC1 UNMJLQGKEDTEKJ-UHFFFAOYSA-N 0.000 description 1
- GPHWXFINOWXMDN-UHFFFAOYSA-N 1,1-bis(ethenoxy)hexane Chemical compound CCCCCC(OC=C)OC=C GPHWXFINOWXMDN-UHFFFAOYSA-N 0.000 description 1
- HIYIGPVBMDKPCR-UHFFFAOYSA-N 1,1-bis(ethenoxymethyl)cyclohexane Chemical compound C=COCC1(COC=C)CCCCC1 HIYIGPVBMDKPCR-UHFFFAOYSA-N 0.000 description 1
- MYWOJODOMFBVCB-UHFFFAOYSA-N 1,2,6-trimethylphenanthrene Chemical compound CC1=CC=C2C3=CC(C)=CC=C3C=CC2=C1C MYWOJODOMFBVCB-UHFFFAOYSA-N 0.000 description 1
- CYIGRWUIQAVBFG-UHFFFAOYSA-N 1,2-bis(2-ethenoxyethoxy)ethane Chemical compound C=COCCOCCOCCOC=C CYIGRWUIQAVBFG-UHFFFAOYSA-N 0.000 description 1
- MSAHTMIQULFMRG-UHFFFAOYSA-N 1,2-diphenyl-2-propan-2-yloxyethanone Chemical compound C=1C=CC=CC=1C(OC(C)C)C(=O)C1=CC=CC=C1 MSAHTMIQULFMRG-UHFFFAOYSA-N 0.000 description 1
- MWZJGRDWJVHRDV-UHFFFAOYSA-N 1,4-bis(ethenoxy)butane Chemical compound C=COCCCCOC=C MWZJGRDWJVHRDV-UHFFFAOYSA-N 0.000 description 1
- DKEGCUDAFWNSSO-UHFFFAOYSA-N 1,8-dibromooctane Chemical compound BrCCCCCCCCBr DKEGCUDAFWNSSO-UHFFFAOYSA-N 0.000 description 1
- CZAVRNDQSIORTH-UHFFFAOYSA-N 1-ethenoxy-2,2-bis(ethenoxymethyl)butane Chemical compound C=COCC(CC)(COC=C)COC=C CZAVRNDQSIORTH-UHFFFAOYSA-N 0.000 description 1
- SAMJGBVVQUEMGC-UHFFFAOYSA-N 1-ethenoxy-2-(2-ethenoxyethoxy)ethane Chemical compound C=COCCOCCOC=C SAMJGBVVQUEMGC-UHFFFAOYSA-N 0.000 description 1
- LAYAKLSFVAPMEL-UHFFFAOYSA-N 1-ethenoxydodecane Chemical compound CCCCCCCCCCCCOC=C LAYAKLSFVAPMEL-UHFFFAOYSA-N 0.000 description 1
- OBNIRVVPHSLTEP-UHFFFAOYSA-N 1-ethoxy-2-(2-hydroxyethoxy)ethanol;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(O)COCCO OBNIRVVPHSLTEP-UHFFFAOYSA-N 0.000 description 1
- 239000012956 1-hydroxycyclohexylphenyl-ketone Substances 0.000 description 1
- ZACYPAQBANPHSS-UHFFFAOYSA-N 1-prop-2-enoyloxycyclohexa-3,5-diene-1,2-dicarboxylic acid Chemical compound OC(=O)C1C=CC=CC1(OC(=O)C=C)C(O)=O ZACYPAQBANPHSS-UHFFFAOYSA-N 0.000 description 1
- PIZHFBODNLEQBL-UHFFFAOYSA-N 2,2-diethoxy-1-phenylethanone Chemical compound CCOC(OCC)C(=O)C1=CC=CC=C1 PIZHFBODNLEQBL-UHFFFAOYSA-N 0.000 description 1
- BTJPUDCSZVCXFQ-UHFFFAOYSA-N 2,4-diethylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(CC)=CC(CC)=C3SC2=C1 BTJPUDCSZVCXFQ-UHFFFAOYSA-N 0.000 description 1
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 1
- OADIZUFHUPTFAG-UHFFFAOYSA-N 2-[2-(2-ethylhexoxy)ethoxy]ethanol Chemical compound CCCCC(CC)COCCOCCO OADIZUFHUPTFAG-UHFFFAOYSA-N 0.000 description 1
- ASAQRGCLIPUSEK-UHFFFAOYSA-N 2-[4-amino-n-(2-hydroxyethyl)-3-nitroanilino]ethanol;hydrochloride Chemical compound Cl.NC1=CC=C(N(CCO)CCO)C=C1[N+]([O-])=O ASAQRGCLIPUSEK-UHFFFAOYSA-N 0.000 description 1
- PTJDGKYFJYEAOK-UHFFFAOYSA-N 2-butoxyethyl prop-2-enoate Chemical compound CCCCOCCOC(=O)C=C PTJDGKYFJYEAOK-UHFFFAOYSA-N 0.000 description 1
- ZCDADJXRUCOCJE-UHFFFAOYSA-N 2-chlorothioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(Cl)=CC=C3SC2=C1 ZCDADJXRUCOCJE-UHFFFAOYSA-N 0.000 description 1
- KMNCBSZOIQAUFX-UHFFFAOYSA-N 2-ethoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OCC)C(=O)C1=CC=CC=C1 KMNCBSZOIQAUFX-UHFFFAOYSA-N 0.000 description 1
- GTELLNMUWNJXMQ-UHFFFAOYSA-N 2-ethyl-2-(hydroxymethyl)propane-1,3-diol;prop-2-enoic acid Chemical class OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.CCC(CO)(CO)CO GTELLNMUWNJXMQ-UHFFFAOYSA-N 0.000 description 1
- TZLVUWBGUNVFES-UHFFFAOYSA-N 2-ethyl-5-methylpyrazol-3-amine Chemical compound CCN1N=C(C)C=C1N TZLVUWBGUNVFES-UHFFFAOYSA-N 0.000 description 1
- XMLYCEVDHLAQEL-UHFFFAOYSA-N 2-hydroxy-2-methyl-1-phenylpropan-1-one Chemical compound CC(C)(O)C(=O)C1=CC=CC=C1 XMLYCEVDHLAQEL-UHFFFAOYSA-N 0.000 description 1
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 1
- GWZMWHWAWHPNHN-UHFFFAOYSA-N 2-hydroxypropyl prop-2-enoate Chemical compound CC(O)COC(=O)C=C GWZMWHWAWHPNHN-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- VEORPZCZECFIRK-UHFFFAOYSA-N 3,3',5,5'-tetrabromobisphenol A Chemical compound C=1C(Br)=C(O)C(Br)=CC=1C(C)(C)C1=CC(Br)=C(O)C(Br)=C1 VEORPZCZECFIRK-UHFFFAOYSA-N 0.000 description 1
- LMIOYAVXLAOXJI-UHFFFAOYSA-N 3-ethyl-3-[[4-[(3-ethyloxetan-3-yl)methoxymethyl]phenyl]methoxymethyl]oxetane Chemical compound C=1C=C(COCC2(CC)COC2)C=CC=1COCC1(CC)COC1 LMIOYAVXLAOXJI-UHFFFAOYSA-N 0.000 description 1
- ZVYGIPWYVVJFRW-UHFFFAOYSA-N 3-methylbutyl prop-2-enoate Chemical compound CC(C)CCOC(=O)C=C ZVYGIPWYVVJFRW-UHFFFAOYSA-N 0.000 description 1
- RRXFVFZYPPCDAW-UHFFFAOYSA-N 4-(7-oxabicyclo[4.1.0]heptan-4-ylmethoxymethyl)-7-oxabicyclo[4.1.0]heptane Chemical compound C1CC2OC2CC1COCC1CC2OC2CC1 RRXFVFZYPPCDAW-UHFFFAOYSA-N 0.000 description 1
- HYYPKCMPDGCDHE-UHFFFAOYSA-N 4-(7-oxabicyclo[4.1.0]heptan-4-ylmethyl)-7-oxabicyclo[4.1.0]heptane Chemical compound C1CC2OC2CC1CC1CC2OC2CC1 HYYPKCMPDGCDHE-UHFFFAOYSA-N 0.000 description 1
- ODJUOZPKKHIEOZ-UHFFFAOYSA-N 4-[2-(4-hydroxy-3,5-dimethylphenyl)propan-2-yl]-2,6-dimethylphenol Chemical compound CC1=C(O)C(C)=CC(C(C)(C)C=2C=C(C)C(O)=C(C)C=2)=C1 ODJUOZPKKHIEOZ-UHFFFAOYSA-N 0.000 description 1
- HMBNQNDUEFFFNZ-UHFFFAOYSA-N 4-ethenoxybutan-1-ol Chemical compound OCCCCOC=C HMBNQNDUEFFFNZ-UHFFFAOYSA-N 0.000 description 1
- CFBIJCTVJKLRCH-UHFFFAOYSA-N 4-methyl-1,3-dioxolan-2-one;1-prop-1-enoxyprop-1-ene Chemical compound CC=COC=CC.CC1COC(=O)O1 CFBIJCTVJKLRCH-UHFFFAOYSA-N 0.000 description 1
- FIHBHSQYSYVZQE-UHFFFAOYSA-N 6-prop-2-enoyloxyhexyl prop-2-enoate Chemical compound C=CC(=O)OCCCCCCOC(=O)C=C FIHBHSQYSYVZQE-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- DAKWPKUUDNSNPN-UHFFFAOYSA-N Trimethylolpropane triacrylate Chemical compound C=CC(=O)OCC(CC)(COC(=O)C=C)COC(=O)C=C DAKWPKUUDNSNPN-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 241000385223 Villosa iris Species 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 229920002433 Vinyl chloride-vinyl acetate copolymer Polymers 0.000 description 1
- HVVWZTWDBSEWIH-UHFFFAOYSA-N [2-(hydroxymethyl)-3-prop-2-enoyloxy-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(CO)(COC(=O)C=C)COC(=O)C=C HVVWZTWDBSEWIH-UHFFFAOYSA-N 0.000 description 1
- XRMBQHTWUBGQDN-UHFFFAOYSA-N [2-[2,2-bis(prop-2-enoyloxymethyl)butoxymethyl]-2-(prop-2-enoyloxymethyl)butyl] prop-2-enoate Chemical compound C=CC(=O)OCC(COC(=O)C=C)(CC)COCC(CC)(COC(=O)C=C)COC(=O)C=C XRMBQHTWUBGQDN-UHFFFAOYSA-N 0.000 description 1
- MPIAGWXWVAHQBB-UHFFFAOYSA-N [3-prop-2-enoyloxy-2-[[3-prop-2-enoyloxy-2,2-bis(prop-2-enoyloxymethyl)propoxy]methyl]-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(COC(=O)C=C)(COC(=O)C=C)COCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C MPIAGWXWVAHQBB-UHFFFAOYSA-N 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- DJUWPHRCMMMSCV-UHFFFAOYSA-N bis(7-oxabicyclo[4.1.0]heptan-4-ylmethyl) hexanedioate Chemical compound C1CC2OC2CC1COC(=O)CCCCC(=O)OCC1CC2OC2CC1 DJUWPHRCMMMSCV-UHFFFAOYSA-N 0.000 description 1
- XFUOBHWPTSIEOV-UHFFFAOYSA-N bis(oxiran-2-ylmethyl) cyclohexane-1,2-dicarboxylate Chemical compound C1CCCC(C(=O)OCC2OC2)C1C(=O)OCC1CO1 XFUOBHWPTSIEOV-UHFFFAOYSA-N 0.000 description 1
- LMMDJMWIHPEQSJ-UHFFFAOYSA-N bis[(3-methyl-7-oxabicyclo[4.1.0]heptan-4-yl)methyl] hexanedioate Chemical compound C1C2OC2CC(C)C1COC(=O)CCCCC(=O)OCC1CC2OC2CC1C LMMDJMWIHPEQSJ-UHFFFAOYSA-N 0.000 description 1
- MQDJYUACMFCOFT-UHFFFAOYSA-N bis[2-(1-hydroxycyclohexyl)phenyl]methanone Chemical compound C=1C=CC=C(C(=O)C=2C(=CC=CC=2)C2(O)CCCCC2)C=1C1(O)CCCCC1 MQDJYUACMFCOFT-UHFFFAOYSA-N 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000012461 cellulose resin Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- QSAWQNUELGIYBC-UHFFFAOYSA-N cyclohexane-1,2-dicarboxylic acid Chemical compound OC(=O)C1CCCCC1C(O)=O QSAWQNUELGIYBC-UHFFFAOYSA-N 0.000 description 1
- DNWBGZGLCKETOT-UHFFFAOYSA-N cyclohexane;1,3-dioxane Chemical compound C1CCCCC1.C1COCOC1 DNWBGZGLCKETOT-UHFFFAOYSA-N 0.000 description 1
- NZNMSOFKMUBTKW-UHFFFAOYSA-M cyclohexanecarboxylate Chemical compound [O-]C(=O)C1CCCCC1 NZNMSOFKMUBTKW-UHFFFAOYSA-M 0.000 description 1
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000012954 diazonium Substances 0.000 description 1
- 150000001989 diazonium salts Chemical class 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- VFHVQBAGLAREND-UHFFFAOYSA-N diphenylphosphoryl-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)P(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 VFHVQBAGLAREND-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- ZSWFCLXCOIISFI-UHFFFAOYSA-N endo-cyclopentadiene Natural products C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229940052303 ethers for general anesthesia Drugs 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 125000003709 fluoroalkyl group Chemical group 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical class I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000007759 kiss coating Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- LUCXVPAZUDVVBT-UHFFFAOYSA-N methyl-[3-(2-methylphenoxy)-3-phenylpropyl]azanium;chloride Chemical compound Cl.C=1C=CC=CC=1C(CCNC)OC1=CC=CC=C1C LUCXVPAZUDVVBT-UHFFFAOYSA-N 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 150000004714 phosphonium salts Chemical class 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 125000003748 selenium group Chemical class *[Se]* 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229920001909 styrene-acrylic polymer Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- MUTNCGKQJGXKEM-UHFFFAOYSA-N tamibarotene Chemical compound C=1C=C2C(C)(C)CCC(C)(C)C2=CC=1NC(=O)C1=CC=C(C(O)=O)C=C1 MUTNCGKQJGXKEM-UHFFFAOYSA-N 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- UXKIKTPOJMDBEZ-UHFFFAOYSA-N tetrakis(7-oxabicyclo[4.1.0]heptan-4-ylmethyl) butane-1,1,1,2-tetracarboxylate Chemical compound C1CC2OC2CC1COC(=O)C(C(=O)OCC1CC2OC2CC1)(C(=O)OCC1CC2OC2CC1)C(CC)C(=O)OCC1CC2OC2CC1 UXKIKTPOJMDBEZ-UHFFFAOYSA-N 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 229920006305 unsaturated polyester Polymers 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
Definitions
- the present invention relates to an anisotropic light-diffusing film and a display device equipped with the anisotropic light-diffusing film.
- a “viewing angle” is one of the important characteristics of a display device, and it is generally considered that a wide viewing angle is preferable, except for applications such as prevention of prying eyes.
- Methods for expanding the viewing angle of LCDs which are one of the most typical display devices, can be broadly classified into two.
- the first one is a liquid crystal panel driving method such as TN, VA, or IPS, or a “method based on the internal design of the liquid crystal panel” such as the use of a retardation film for the purpose of optical compensation.
- the second is a "method of adding members to the surface of a liquid crystal panel” such as using a diffusion film on the surface of a specific liquid crystal panel on the viewing side.
- Methods by internal design of liquid crystal panel is the basic method, but in order to optimize for each individual application and usage environment, “Method by adding materials to the surface of liquid crystal panel” is more productive. is advantageous.
- Patent Document 1 As a specific example of the "method by adding members to the surface of the liquid crystal panel", for example, (1) an "isotropic method” such as a light diffusion film having a light diffusion layer in which translucent fine particles are dispersed as shown in Patent Document 1 (2) A method of arranging a microlens array as shown in Patent Documents 2 and 3 or a "lens” such as a wave lens film on the liquid crystal panel surface; (3) Patent Document 4 There is a method of improving viewing angle characteristics by providing a "light control film having angle dependence" as shown in .
- an “isotropic method” such as a light diffusion film having a light diffusion layer in which translucent fine particles are dispersed as shown in Patent Document 1
- Patent Document 4 There is a method of improving viewing angle characteristics by providing a "light control film having angle dependence" as shown in .
- an “anisotropic light diffusion film with anisotropy and directivity” that can change the amount of linearly transmitted light according to the incident angle of incident light can be used in a specific direction.
- the viewing angle can be widened, the orientation of light is not steep, and it is easy to bond with other members.
- Patent Document 5 a light diffusion film consisting of a single layer that has incident angle dependence in light diffusion and transmission and has two structural regions in the same film can effectively expand the light diffusion angle region. disclosed.
- JP 2012-98526 A JP-A-8-166582 JP-A-7-239467 JP-A-7-146404 International publication WO2014/156420
- the "isotropic diffuser" of Patent Document 1 produces a viewing angle widening effect in all directions, so even if it is desired to expand the viewing angle in a specific direction, the diffuser is also diffused outside the specific direction. As a result, there is a problem that it is difficult to reduce the luminance in the direction in which the viewing angle is desired to be widened.
- Patent Documents 2 and 3 use light refraction and reflection, so the light orientation becomes steep, and the brightness tends to change suddenly due to changes in the viewing angle. Because of the interference, glare and moiré tend to occur.
- the concave-convex structure of the lens is on the outermost surface, there is a problem that the effect tends to be reduced due to adhesion of dirt or the like.
- attaching with an adhesive layer causes a problem that the unevenness is filled with the adhesive layer and the optical characteristics change, so the adhesive layer is used. Even if this is not done, there is a problem that the transmittance is lowered due to the presence of an air layer between the uneven structure and the film.
- the "light control film having angle dependence" of Patent Document 4 has a steep change in the haze ratio with respect to the incident angle of light, so there is a problem that the brightness changes sharply due to the change in the viewing angle.
- the "light diffusion film” of Patent Document 5 for example, in applications such as TV and digital signage, is rarely viewed from a deep vertical angle. If you want to expand the viewing angle in two directions, it is not only difficult to expand the viewing angle with good left-right balance by diffusing in the thickness direction in stages, but also the thickness increases due to the structure of the light diffusion film. There was a problem that it took a lot of work and cost.
- an object of the present invention is to provide an anisotropic light diffusion film that enables widening of the viewing angle in two directions having vertical or horizontal symmetry and suppression of blurring while suppressing thickness and cost.
- the present invention is as follows.
- the present invention An anisotropic light diffusion film whose diffusibility changes depending on the incident angle of light,
- the anisotropic light diffusion film has a matrix region and a columnar region that is a plurality of columnar structures having a different refractive index from the matrix region,
- the scattering central axis A and the scattering central axis B are in an angle range of more than 0° and less than 90°
- the azimuth angle ⁇ A of the scattering central axis A is 0°
- the azimuth angle ⁇ B of the scattering central axis B is 170° to 190°
- the angle between the normal line and the scattering center axis B be the scattering center axis angle ⁇ B
- ⁇ B ⁇
- An anisotropic light-diffusing film characterized in that A is ⁇
- Tmin A be the minimum linear transmittance at the angle between the scattering central axis A and the normal
- Tmin B be the minimum linear transmittance at the angle between the scattering central axis B and the normal.
- ⁇ 5 percentage points is preferred.
- the scattering central axis angle ⁇ A is preferably 10° to 60°. It is preferable that the haze value is 40% or more. It is preferable that the aspect ratio of the minor axis to the major axis in the cross section perpendicular to the alignment direction of the plurality of columnar structures is less than 2.
- the present invention A display device comprising the anisotropic light diffusion film.
- an anisotropic light diffusion film that has an enlarged viewing angle in two directions with vertical or horizontal symmetry and an effect of suppressing blurring, while suppressing thickness and costs.
- FIG. 4 is an explanatory diagram showing the incident light angle dependency of an anisotropic light diffusion film.
- FIG. 3 is a top view showing the surface structure of an anisotropic light-diffusing film; It is a schematic diagram which shows the example of an anisotropic light-diffusion film. It is a three-dimensional polar coordinate representation for explaining the scattering central axis in an anisotropic light diffusion film.
- 4 is a graph showing an example of an optical profile in an anisotropic light diffusion film; It is a schematic diagram which shows the measuring method of the linear transmission light amount of an anisotropic light-diffusion film.
- FIG. 3 is a schematic diagram showing the relationship between the central scattering axis A and the central scattering axis B in an anisotropic light diffusion film.
- FIG. 2 is a schematic diagram showing a method for producing an anisotropic light-diffusing film of the present invention by optional step 1-3.
- anisotropic light-diffusing film an anisotropic light-diffusing film having only one scattering central axis angle
- anisotropic light-diffusing film having two scattering central axis angles anisotropic light-diffusing film having two scattering central axis angles
- the anisotropic light diffusion film is a film having optical anisotropy, in which the linear transmittance [(amount of transmitted light in the linear direction of incident light)/(amount of incident light)] changes depending on the angle of incidence of light. . That is, with respect to incident light to the anisotropic light diffusion film, incident light within a predetermined angle range is transmitted while maintaining linearity, and incident light within other angle ranges exhibits diffusing properties.
- the anisotropic light diffusion film which is an example shown in FIG. 1, exhibits diffusibility when the incident angle is 20° to 50°, and exhibits no diffusivity at other incident angles and exhibits linear transmittance.
- the anisotropic light diffusion film has a matrix region and columnar regions, which are a plurality of columnar structures having different refractive indices from those of the matrix region.
- the plurality of columnar structures contained in the anisotropic light-diffusing film are usually oriented and extended from one surface to the other surface of the anisotropic light-diffusing film (see FIG. 3).
- the length of the columnar structure is not particularly limited, and may be a length that penetrates from one surface of the anisotropic light diffusion film to the other surface, or a length that does not reach from one surface to the other surface.
- the shape of the cross section perpendicular to the column axis of the plurality of columnar structures included in the anisotropic light diffusion film can be a shape having a minor axis and a major axis.
- the cross-sectional shape of the columnar structure is not particularly limited, and may be circular, elliptical, or polygonal, for example.
- the minor axis and the major axis are equal; in the case of an ellipse, the minor axis is the length of the minor axis and the major axis is the length of the major axis;
- the shortest length can be used as the short axis, and the longest length can be used as the long axis.
- FIG. 2 shows a plurality of columnar structures viewed from the surface direction of the anisotropic light diffusion film.
- LA represents the major axis
- SA represents the minor axis.
- the aspect ratio is 1 or more and less than 2, when light parallel to the axial direction of the columnar structure is irradiated, the transmitted light diffuses isotropically ⁇ see FIG. 3(a) ⁇ .
- the aspect ratio is 2 to 20
- diffusion occurs with an anisotropy corresponding to the aspect ratio ⁇ see FIG. 3(b) ⁇ .
- the minor axis and major axis of the columnar structures were obtained by observing a cross section of the anisotropic light diffusion film perpendicular to the columnar axis with an optical microscope, and measuring the minor axis and major axis of each of 20 arbitrarily selected columnar structures. These average values can be used.
- the difference in refractive index means that at least part of the light incident on the anisotropic light-diffusing film is reflected at the interface between the matrix region and the columnar region, and is not particularly limited.
- the difference in refractive index between the matrix region and the columnar region should be 0.001 or more.
- n 1 sin ⁇ 1 n 2 sin ⁇ 2 between the incident light angle ⁇ 1 and the refraction angle ⁇ 2. relationship is established.
- the orientation direction (refractive angle) of the columnar regions is about 19°.
- FIG. 4 is a three-dimensional polar coordinate representation for explaining the scattering center axis P in the anisotropic light diffusion film.
- the scattering central axis means the direction in which the light diffusibility coincides with the incident light angle of light having approximately symmetry with respect to the incident light angle when the incident light angle to the anisotropic light diffusion film is changed.
- the incident light angle at this time is the linear transmittance in the optical profile (FIG. 5 as an example) obtained by measuring the linear transmission light amount of the anisotropic light diffusion film and plotting the calculated linear transmittance for each incident light angle. It is the angle of the approximate central portion (the central portion of the diffusion region) sandwiched between the minimum values.
- the scattering center axis is the polar angle ⁇ and the azimuth when the surface of the anisotropic light diffusion film is the xy plane and the normal line to the surface of the anisotropic light diffusion film is the z axis.
- angle ⁇ the angle ⁇
- the polar angle ⁇ (0° ⁇ 90°) formed by the normal to the anisotropic light diffusion film (z-axis shown in FIG. 4) and the columnar region can be defined as the scattering central axis angle.
- the angle of the axial direction of the plurality of columnar structures can be adjusted within a desired range by changing the direction of the irradiated light beam.
- the anisotropic light diffusing film has light diffusing properties dependent on the incident light angle, in which the linear transmittance changes depending on the incident light angle.
- the curve showing the incident light angle dependence of light diffusion as shown in FIG. 5 is hereinafter referred to as an "optical profile”.
- An optical profile can be created, for example, as follows.
- An anisotropic light diffusion film is placed between the light source 1 and the detector 2, as shown in FIG.
- the incident light angle is 0° when the irradiation light I from the light source 1 is incident from the normal direction of the anisotropic light diffusion film.
- the anisotropic light diffusion film is arranged so as to be freely rotatable with the straight line V as the axis of rotation, and the light source 1 and the detector 2 are fixed. That is, according to this method, a sample (anisotropic light diffusion film) is placed between the light source 1 and the detector 2, and the sample is transmitted straight through while changing the angle with the straight line V on the sample surface as the axis of rotation for detection.
- the linear transmitted light amount entering the device 2 is measured (this straight line V is a line on the anisotropic light diffusion film perpendicular to the tilted azimuth of the central axis of scattering). After that, the linear transmittance is calculated from the amount of linearly transmitted light, and the linear transmittance is plotted for each angle to create an optical profile.
- the optical profile does not directly express the light diffusibility, but if it is interpreted that the diffuse transmittance increases due to the decrease in the in-line transmittance, it generally indicates the light diffusivity. It can be said that
- a normal isotropic light diffusion film exhibits a mountain-shaped optical profile with a peak at an incident light angle near 0°.
- the anisotropic light diffusion film has the property that the incident light is strongly diffused in the incident light angle range close to the scattering center axis, but the diffusion weakens and the linear transmittance increases in the incident light angle range beyond that.
- the optical profile shifts so that the linear transmittance decreases at incident light angles near the scattering center axis angle (the troughs of the optical profile move to the scattering center axis angle side). do).
- the linear transmittance of light incident on the anisotropic light diffusion film at the incident angle at which the linear transmittance is minimized is called the minimum linear transmittance.
- the angle range of the two incident light angles with respect to the intermediate value of the linear transmittance between the maximum linear transmittance and the minimum linear transmittance is called a diffusion region (the width of this diffusion region is the "diffusion width"). , is called a non-diffusion area (transmissive area).
- the haze value (total haze) of an anisotropic light-diffusing film is an index showing the diffusibility of the anisotropic light-diffusing film. As the haze value increases, the diffusibility of the anisotropic light-diffusing film increases.
- a method for measuring the haze value is not particularly limited, and it can be measured by a known method. For example, it can be measured according to JIS K7136-1:2000 "Plastics - Determination of haze of transparent materials".
- the anisotropic light-diffusing film according to the present invention includes, in one layer, a first columnar region composed of a plurality of columnar structures inclined in a certain direction with respect to the normal direction of the anisotropic light-diffusing film, and an anisotropic light-diffusing film. It is composed of a plurality of columnar structures inclined in a different direction from the first columnar regions with respect to the normal direction, and has a second columnar region extending in a different direction from the first columnar regions.
- the anisotropic light diffusion film according to the present invention has such a configuration, the first scattering center axis (scattering center axis A) based on the first columnar region and the second scattering center axis based on the second columnar region As the scattering center axis (scattering center axis B), one layer has two scattering center axes (see FIG. 7(1)).
- both the first columnar region and the second columnar region extend from one surface to the other surface of the anisotropic light-diffusing film in the normal direction of the anisotropic light-diffusing film. It has a tilted structure. Therefore, "the positional relationship between the scattering central axis A and the scattering central axis B" and “the scattering central axis A and the scattering central axis B when the scattering central axis B is rotated 180° around the normal line of the anisotropic light diffusion film "positional relationship with” is different. Therefore, in the present invention, the positional relationship between the scattering central axes A and B is indicated by the above-described polar angle ⁇ and azimuth angle ⁇ .
- the scattering center axis A is on the X axis, and its azimuth angle ⁇ A ( The 3 o'clock direction in FIG. 7(1) is assumed to be 0°.
- the angle ⁇ B formed with the line is 170° to 190°, preferably 175° to 185°, still more preferably 180° (FIG. 7(2) shows a preferred example).
- the angle of the normal direction of the anisotropic light-diffusing film when the angle of the normal direction of the anisotropic light-diffusing film is 0°, it is more than 0° and less than 90° (preferably 10° to 60°, more preferably 20° to 45° ) have two scattering central axes. That is, as shown in FIG.
- the angle between the normal to the anisotropic light-diffusing film and the scattering center axis A is the scattering center axis angle ⁇ A
- two scattering central axes that satisfy the above relationship are present inside a single layer of an anisotropic light diffusion film, thereby suppressing the thickness and providing excellent optical properties. It becomes an anisotropic light diffusing film having a , and it is possible to expand the viewing angle in two directions having symmetry, such as up and down or left and right.
- the anisotropic light-diffusing film according to the present invention has a first columnar region that forms the central scattering axis A and a second columnar region that forms the central scattering axis B, which extend in different directions. There are two columnar regions.
- common structures (minor axis, major axis, aspect ratio) of the plurality of columnar structures included in the first columnar region and the plurality of columnar structures included in the second columnar region will be described.
- the structure of the plurality of columnar structures included in the first columnar region and the structure of the plurality of columnar structures included in the second columnar region may be the same or different.
- the first columnar region and the second columnar region of the present invention are obtained by irradiating light from two different angles to cure the resin.
- the structure of the plurality of columnar structures included in the columnar region and the structure of the plurality of columnar structures included in the second columnar region can be individually adjusted.
- the average short diameter (average short diameter) of the columnar structures is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, and even more preferably 1.5 ⁇ m or more.
- the average minor axis of the columnar structures is preferably 5.0 ⁇ m or less, more preferably 4.0 ⁇ m or less, and even more preferably 3.0 ⁇ m or less.
- the lower limit and upper limit of the minor axis of these columnar structures can be combined as appropriate.
- the average major axis (average major axis) of the columnar structures is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, and even more preferably 1.5 ⁇ m or more.
- the average length of the columnar structures is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, and even more preferably 30 ⁇ m or less.
- the lower limit and upper limit of the major axis of these columnar structures can be combined as appropriate.
- the ratio of the average major axis to the average minor axis of the columnar structure (average major axis/average minor axis), that is, the aspect ratio is preferably 1 to 20, more preferably less than 2.
- the aspect ratio of the plurality of columnar structures included in the first columnar region and the plurality of columnar structures included in the second columnar region is preferably 1:2 to 2:1, more preferably 2:3 to 3:2, still more preferably 9:10 to 10:9.
- the thickness of the anisotropic light-diffusing film is preferably 15 ⁇ m to 100 ⁇ m, more preferably 30 ⁇ m to 80 ⁇ m. By setting it in such a range, it is possible to reduce manufacturing costs such as material costs and costs required for UV irradiation, and to achieve a sufficient effect of improving visual dependence.
- the anisotropic light-diffusing film according to the present invention has two scattering central axes. Therefore, in the optical profile of the anisotropic light diffusion film according to the present invention, the linear transmittance in the incident light angle range corresponding to the scattering central axis A and the linear transmittance in the incident light angle range corresponding to the scattering central axis B are exist.
- the anisotropic light-diffusing film according to the present invention has a minimum linear transmittance Tmin A at the angle between the scattering central axis A and the normal to the anisotropic light-diffusing film, the scattering central axis B, and the normal to the anisotropic light-diffusing film.
- which is the absolute value of the difference from the minimum linear transmittance Tmin B at the angle between is more preferable.
- the anisotropic light-diffusing film according to the present invention preferably has a maximum in-line transmittance of 50% or less, more preferably 30% or less. By doing so, the symmetry of the anisotropic light-diffusing film is improved, and it is possible to expand the viewing angle in two directions having vertical or horizontal symmetry.
- the in-line transmittance is adjusted by the refractive index of the material of the anisotropic light diffusion film (difference in refractive index when multiple resins are used), film thickness of the coating film, UV illuminance, temperature during structure formation, and other curing conditions. be able to.
- the in-line transmittance tends to decrease, for example, when UV irradiation is performed, the thicker the coating film, the higher the temperature of the coating film, and the greater the refractive index difference in the case of using a plurality of resins.
- the haze value of the anisotropic light-diffusing film is preferably 40% or more, more preferably 50% or more. By setting it as such a range, the effect of this invention can be heightened more.
- the haze value can be adjusted by adjusting the refractive index of the material of the anisotropic light diffusion film (difference in refractive index when multiple resins are used), coating film thickness, UV illumination, and curing conditions such as temperature during structure formation. can. For example, when performing UV irradiation, the irradiation angle is close to the normal direction of the coating film, the layer thickness of the coating film is thick, the temperature of the coating film is high, and the refractive index difference when using a plurality of resins is It tends to increase as the size increases.
- Raw materials for the anisotropic light-diffusing film will be described in the order of (1) photopolymerizable compound, (2) photoinitiator, (3) blending amount, and other optional components.
- the photopolymerizable compound comprises a photopolymerizable compound selected from macromonomers, polymers, oligomers, and monomers having radically polymerizable or cationic polymerizable functional groups, and a photoinitiator, and emits ultraviolet rays and/or visible rays. It is a material that polymerizes and hardens when irradiated.
- (Meth)acrylate means that it may be either acrylate or methacrylate.
- Radically polymerizable compounds mainly contain one or more unsaturated double bonds in the molecule, and specific examples include epoxy acrylates, urethane acrylates, polyester acrylates, polyether acrylates, polybutadiene acrylates, silicone acrylates, and the like. and 2-ethylhexyl acrylate, isoamyl acrylate, butoxyethyl acrylate, ethoxydiethylene glycol acrylate, phenoxyethyl acrylate, tetrahydrofurfuryl acrylate, isonorbornyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate.
- 2-acryloyloxyphthalic acid dicyclopentenyl acrylate, triethylene glycol diacrylate, neopentyl glycol diacrylate, 1,6-hexanediol diacrylate, EO adduct diacrylate of bisphenol A, trimethylolpropane triacrylate, Acrylate monomers such as EO-modified trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, ditrimethylolpropane tetraacrylate, and dipentaerythritol hexaacrylate. Also, these compounds may be used alone or in combination. Methacrylates can also be used, but acrylates are generally preferable to methacrylates because they have a faster photopolymerization rate.
- a compound having one or more epoxy groups, vinyl ether groups, or oxetane groups in the molecule can be used as the cationic polymerizable compound.
- Compounds having an epoxy group include 2-ethylhexyl diglycol glycidyl ether, biphenyl glycidyl ether, bisphenol A, hydrogenated bisphenol A, bisphenol F, bisphenol AD, bisphenol S, tetramethylbisphenol A, tetramethylbisphenol F, tetrachloro Diglycidyl ethers of bisphenols such as bisphenol A and tetrabromobisphenol A, polyglycidyl ethers of novolak resins such as phenol novolak, cresol novolak, brominated phenol novolak and ortho-cresol novolak, ethylene glycol, polyethylene glycol, polypropylene glycol, diglycidyl ethers of alkylene glycols such as butanediol, 1,6-hex
- compounds having an epoxy group include 3,4-epoxycyclohexylmethyl-3′,4′-epoxycyclohexanecarboxylate and 2-(3,4-epoxycyclohexyl-5,5-spiro-3,4-epoxy).
- Examples of compounds having a vinyl ether group include diethylene glycol divinyl ether, triethylene glycol divinyl ether, butanediol divinyl ether, hexanediol divinyl ether, cyclohexanedimethanol divinyl ether, hydroxybutyl vinyl ether, ethyl vinyl ether, dodecyl vinyl ether, trimethylolpropane tri vinyl ether, propenyl ether propylene carbonate, etc., but not limited thereto.
- Vinyl ether compounds are generally cationic polymerizable, but can be radically polymerized by combining them with acrylates.
- the above cationic polymerizable compounds may be used alone or in combination.
- the photopolymerizable compound is not limited to those mentioned above.
- fluorine atoms may be introduced into the photopolymerizable compound in order to lower the refractive index.
- a sulfur atom (S), a bromine atom (Br), and various metal atoms may be introduced.
- ultrafine particles made of metal oxides with a high refractive index such as titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), tin oxide (SnO x ), etc. It is also effective to add functional ultrafine particles having a photopolymerizable functional group such as an acrylic group, a methacrylic group, or an epoxy group introduced to the surface of the above-described photopolymerizable compound.
- a photopolymerizable compound having a silicone skeleton is preferably used as the photopolymerizable compound.
- a photopolymerizable compound having a silicone skeleton is oriented and polymerized and cured along with its structure (mainly ether bonds) to form a low refractive index region, a high refractive index region, or a low refractive index region and a high refractive index region. Form.
- a photopolymerizable compound having a silicone skeleton it becomes easier to incline the columnar structure, and light collection in the front direction is improved.
- the low refractive index region corresponds to either the columnar region or the matrix region, and the other corresponds to the high refractive index region.
- silicone resin which is a cured product of a photopolymerizable compound having a silicone skeleton
- silicone resins contain more silicon (Si) than compounds that do not have a silicone skeleton. amount can be checked.
- a photopolymerizable compound having a silicone skeleton is a monomer, oligomer, prepolymer or macromonomer having a radically polymerizable or cationic polymerizable functional group.
- radically polymerizable functional groups include acryloyl groups, methacryloyl groups, and allyl groups
- examples of cationic polymerizable functional groups include epoxy groups and oxetane groups.
- Compounds having a silicone skeleton may have insufficient compatibility with other compounds due to their structure. In such cases, the compatibility can be enhanced by urethanization.
- a silicone/urethane/(meth)acrylate having an acryloyl group or a methacryloyl group at its end is preferably used.
- the weight average molecular weight (Mw) of the photopolymerizable compound having a silicone skeleton is preferably in the range of 500 to 50,000. It is more preferably in the range of 2,000 to 20,000.
- Mw weight average molecular weight
- a sufficient photocuring reaction occurs, and the silicone resin present in each anisotropic light-diffusing film of the anisotropic light-diffusing film is easily oriented. With the orientation of the silicone resin, it becomes easier to tilt the scattering central axis.
- silicone skeleton examples include those represented by the following general formula (1).
- R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a methyl group, an alkyl group, a fluoroalkyl group, a phenyl group, an epoxy group, an amino group and a carboxyl group. , a polyether group, an acryloyl group, a methacryloyl group, and the like.
- n is preferably an integer of 1-500.
- thermoplastic resins and thermosetting resins can be used as compounds that do not have a silicone skeleton, and these can also be used in combination.
- a polymer, oligomer, or monomer having a radically polymerizable or cationic polymerizable functional group can be used (however, it does not have a silicone skeleton).
- Thermoplastic resins include polyesters, polyethers, polyurethanes, polyamides, polystyrenes, polycarbonates, polyacetals, polyvinyl acetates, acrylic resins and their copolymers and modified products.
- the anisotropic light diffusion film is formed by dissolving the resin in a solvent that dissolves the thermoplastic resin, applying and drying the resin, and then curing the photopolymerizable compound having a silicone skeleton with ultraviolet rays.
- Thermosetting resins include epoxy resins, phenolic resins, melamine resins, urea resins, unsaturated polyesters and their copolymers and modified products.
- a thermosetting resin the photopolymerizable compound having a silicone skeleton is cured with ultraviolet light and then heated appropriately to cure the thermosetting resin and form an anisotropic light diffusion film.
- a photopolymerizable compound is most preferable as a compound that does not have a silicone skeleton. It is easy to separate the low refractive index region and the high refractive index region, and when using a thermoplastic resin, no solvent is required and no drying process is required. It is excellent in productivity because it does not require a thermosetting process unlike a thermosetting resin.
- Photoinitiators capable of polymerizing radically polymerizable compounds include benzophenone, benzyl, Michler's ketone, 2-chlorothioxanthone, 2,4-diethylthioxanthone, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, 2,2- diethoxyacetophenone, benzyl dimethyl ketal, 2,2-dimethoxy-1,2-diphenylethan-1-one, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexylphenyl ketone, 2 -methyl-1-[4-(methylthio)phenyl]-2-morpholinopropanone-1, 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propane-1 -one, bis(cyclopentadienyl)-bis[2,6-difluoride
- the photoinitiator of the cationically polymerizable compound is a compound that generates an acid upon irradiation with light and can polymerize the above-described cationically polymerizable compound with the generated acid.
- onium salts and metallocene complexes are It is preferably used.
- onium salts diazonium salts , sulfonium salts , iodonium salts , phosphonium salts, selenium salts and the like are used. Used. Specific examples include 4-chlorobenzenediazonium hexafluorophosphate, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium hexafluorophosphate, (4-phenylthiophenyl)diphenylsulfonium hexafluoroantimonate, (4-phenylthiophenyl)diphenyl Sulfonium hexafluorophosphate, bis[4-(diphenylsulfonio)phenyl]sulfide-bis-hexafluoroantimonate, bis[4-(diphenylsulfonio)phenyl]sulfide-bis-hexafluoroantimonate, bis[4-(diphen
- the photoinitiator is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 7 parts by mass, and still more preferably about 0.1 to 5 parts by mass with respect to 100 parts by mass of the photopolymerizable compound. be. This is because if the amount is less than 0.01 part by mass, the photocurability is reduced, and if the amount is more than 10 parts by mass, only the surface is cured and the internal curability is reduced. This is because it leads to inhibition of the formation of
- the photoinitiator is usually used by directly dissolving the powder in the photopolymerizable compound, but if the solubility is poor, the photoinitiator should be pre-dissolved in a very small amount of solvent at a high concentration.
- a solvent is more preferably photopolymerizable, and specific examples thereof include propylene carbonate and ⁇ -butyrolactone.
- various known dyes and sensitizers can be added to improve the photopolymerizability.
- thermosetting initiator capable of curing the photopolymerizable compound by heating can be used together with the photoinitiator.
- thermosetting initiator capable of curing the photopolymerizable compound by heating
- An anisotropic light-diffusing film can be formed by curing a composition containing a single photopolymerizable compound or a mixture of multiple photopolymerizable compounds.
- An anisotropic light diffusion film can also be formed by curing a mixture of a photopolymerizable compound and a non-photocurable polymer resin.
- Polymer resins that can be used here include acrylic resins, styrene resins, styrene-acrylic copolymers, polyurethane resins, polyester resins, epoxy resins, cellulose resins, vinyl acetate resins, vinyl chloride-vinyl acetate copolymers, Polyvinyl butyral resin etc. are mentioned. These polymer resins and photopolymerizable compounds must have sufficient compatibility before photocuring, and various organic solvents and plasticizers are used to ensure this compatibility. is also possible.
- acrylate When acrylate is used as the photopolymerizable compound, it is preferable to select from acrylic resins as the polymer resin in terms of compatibility.
- the mass ratio of the photopolymerizable compound having a silicone skeleton to the compound having no silicone skeleton is preferably in the range of 15:85 to 85:15. More preferably, it is in the range of 30:70 to 70:30. Within this range, phase separation between the low-refractive-index region and the high-refractive-index region is facilitated, and the columnar structures are easily tilted. If the ratio of the photopolymerizable compound having a silicone skeleton is less than the lower limit or more than the upper limit, phase separation will be difficult to progress, and the columnar structure will be difficult to tilt.
- silicone/urethane/(meth)acrylate as a photopolymerizable compound having a silicone skeleton improves compatibility with compounds that do not have a silicone skeleton. As a result, the columnar structure can be tilted even if the mixing ratio of the materials is widened.
- a solvent for preparing a composition containing a photopolymerizable compound for example, ethyl acetate, butyl acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, toluene, xylene, etc. can be used.
- the paint containing the photopolymerizable compound described above is coated on a suitable substrate such as a transparent PET film to form a sheet, and if necessary dried to form a film, forming an uncured resin composition layer.
- a suitable substrate such as a transparent PET film
- an uncured resin composition layer By irradiating light onto this uncured resin composition layer, an anisotropic light diffusion film can be produced.
- Step 1-1 Step of providing an uncured resin composition layer on a substrate
- Step 1-2 Step of obtaining parallel light from a light source
- Optional step 1-3 Directive light
- the anisotropic light-diffusing film according to the present invention has two scattering central axes (scattering central axis A and scattering central axis B).
- scattering central axis A and scattering central axis B are extended in a form corresponding to the irradiation direction of each light.
- the structure of the columnar structures included in the first columnar region and the structure of the columnar structures included in the second columnar region can be made different. can.
- a prism sheet on the path of the light beam and dividing the light beam into two directions for irradiation, it is possible to irradiate the light beam from two directions.
- light beams of the same quality are irradiated from two directions except that the irradiation angles of the light beams are different.
- a plurality of columnar structures in the columnar region can be substantially the same structure except for the tilt direction.
- Step 1-1 Step of Providing Uncured Resin Composition Layer on Substrate>
- a usual coating method or printing method is applied to the technique of providing the coating material containing the photopolymerizable compound on the substrate in the form of a sheet as an uncured resin composition layer. Specifically, air doctor coating, bar coating, blade coating, knife coating, reverse coating, transfer roll coating, gravure roll coating, kiss coating, cast coating, spray coating, slot orifice coating, calender coating, dam coating, dip coating , coating such as die coating, intaglio printing such as gravure printing, and printing such as stencil printing such as screen printing can be used. If the paint has a low viscosity, a weir of a certain height can be provided around the substrate and the paint can be cast into the area surrounded by this weir.
- step 1-1 in order to prevent oxygen inhibition of the uncured resin composition layer and efficiently form a columnar structure, which is a feature of an anisotropic light diffusion film, on the light irradiation side of the uncured resin composition layer It is also possible to laminate a mask that is in close contact and locally changes the irradiation intensity of light.
- a light absorbing filler such as carbon is dispersed in the matrix. Part of the incident light is absorbed by the carbon, but the rest of the incident light is sufficiently transmitted. things are preferred.
- a matrix include transparent plastics such as PET, TAC, PVAc, PVA, acryl, and polyethylene; inorganic materials such as glass and quartz; It may contain a pigment that absorbs the
- Step 1-2 Step of Obtaining Parallel Light from Light Source>
- a short-arc ultraviolet light source is usually used, and specifically, a high-pressure mercury lamp, a low-pressure mercury lamp, a methhalide lamp, a xenon lamp, or the like can be used. At this time, it is necessary to obtain a light beam parallel to the desired scattering center axis.
- an optical lens such as a Fresnel lens for irradiation, it can be obtained by arranging a reflecting mirror behind the light source so that light is emitted as a point light source in a predetermined direction.
- Optional step 1-3 is a step of making parallel light beams incident on a directional diffusion element to obtain light beams with directivity.
- FIG. 8 is a schematic diagram showing a method for manufacturing an anisotropic light-diffusing film of the present invention by optional step 1-3.
- the directional diffusing elements 301 and 302 used in the optional step 1-3 should just impart directivity to the parallel light beams D incident from the light source 300 .
- FIG. 8 describes that the directional light E is incident on the uncured resin composition layer 303 in such a manner that it diffuses much in the X direction and scarcely diffuses in the Y direction.
- needle-like fillers having a high aspect ratio are contained in the directional diffusion elements 301 and 302, and the needle-like fillers are arranged in the Y direction in the long axis direction. It is possible to adopt a method of orienting such that the Directional diffusion elements 301 and 302 can use various methods other than the method of using needle-like fillers.
- the aspect ratio of the light E with directivity is preferably 2-20.
- a columnar region having an aspect ratio substantially corresponding to the aspect ratio is formed.
- the upper limit of the aspect ratio is more preferably 10 or less, even more preferably 5 or less. If the aspect ratio exceeds 20, interference rainbows and glare may occur.
- the sizes of the columnar regions to be formed can be appropriately determined.
- the anisotropic light-diffusing film of this embodiment can be obtained in both FIGS.
- the difference between FIGS. 8A and 8B is that the spread of the light E with directivity is large in FIG. 8A and small in FIG. 8B.
- the size of the columnar region differs depending on the size of the spread of the light E having directivity.
- the spread of the light E with directivity mainly depends on the types of the directional diffusion elements 301 and 302 and the distance from the uncured resin composition layer 303 .
- Step 1-4 Step of curing the uncured resin composition layer>
- the light beam that is applied to the uncured resin composition layer to cure the uncured resin composition layer must contain a wavelength capable of curing the photopolymerizable compound, and is usually centered at 365 nm of a mercury lamp. wavelengths of light are used.
- the illuminance is preferably in the range of 0.01 mW/cm 2 to 100 mW/cm 2 , more preferably 0.1 mW/cm 2 to 20 mW/cm 2 .
- the illuminance is less than 0.01 mW/cm 2 , it takes a long time for curing, resulting in poor production efficiency. , the desired optical characteristics cannot be exhibited.
- the light irradiation time is not particularly limited, it is preferably 10 seconds to 180 seconds, more preferably 30 seconds to 120 seconds.
- the anisotropic light-diffusing film according to the present invention can be obtained by irradiating light from two directions.
- the anisotropic light diffusion film is obtained by forming a specific internal structure in the uncured resin composition layer by irradiating the film with low-intensity light for a relatively long time. Therefore, such light irradiation alone may leave unreacted monomer components, causing stickiness and problems in handleability and durability.
- the residual monomer can be polymerized by additionally irradiating light with a high illuminance of 1000 mW/cm 2 or more. At this time, light irradiation may be performed from the side opposite to the side on which the mask is laminated.
- the scattering center axis of the resulting anisotropic light-diffusing film can be set to a desired value by adjusting the angle of light with which the uncured resin composition layer is irradiated.
- anisotropic Light Diffusion Film is excellent in the effect of improving the viewing angle dependence, it can be applied to all display devices such as liquid crystal display devices, organic EL display devices, and plasma displays.
- the anisotropic light-diffusing film can be used particularly preferably in TN liquid crystals, which tend to have viewing angle dependency problems.
- a liquid crystal display device including a liquid crystal layer and an anisotropic light diffusion film.
- the anisotropic light-diffusing film is provided on the viewing side of the liquid crystal layer.
- the liquid crystal display device may be of any of the TN system, VA system, IPS system, and the like. More specifically, a general liquid crystal device includes a light source, a polarizing plate, a glass substrate, a transparent electrode film, a liquid crystal layer, a transparent electrode film, a color filter, a glass substrate, and a polarizing plate from the display device toward the viewing side. Although it has a layered structure in which it is laminated in order and further has an appropriate functional layer, the anisotropic light-diffusing film may be provided anywhere on the viewing side of the liquid crystal layer.
- an organic EL display device including a light emitting layer and an anisotropic light diffusion film.
- the anisotropic light-diffusing film is provided (stacked) on the viewing side of the light-emitting layer (including the electrode connected to the light-emitting layer).
- the organic EL display device may be of any type such as a top emission method or a bottom emission method, and in the case of a color organic EL display device, may be of any type such as an RGB coloring method or a color filter method. Also, the organic EL display device may be a multilayered one.
- Partition walls with a height of 30 ⁇ m or 60 ⁇ m were formed with a curable resin using a dispenser around the entire edge of a 100 ⁇ m-thick PET film (manufactured by Toyobo Co., Ltd., trade name: A4300).
- a paint containing the following UV-curable photopolymerizable compound was dripped into this and covered with another PET film.
- ⁇ Silicone urethane acrylate (refractive index: 1.460, weight average molecular weight: 5890) 20 parts by weight (manufactured by RAHN, trade name: 00-225/TM18) ⁇ Neopentyl glycol diacrylate (refractive index: 1.450) 30 parts by weight (manufactured by Daicel Cytec, trade name Ebecryl145) ⁇ EO adduct diacrylate of bisphenol A (refractive index: 1.536) 15 parts by weight (manufactured by Daicel Cytec, trade name Ebecryl150) ⁇ Phenoxyethyl acrylate (refractive index 1.518) 40 parts by weight (Made by Kyoeisha Chemical, trade name: Light Acrylate PO-A) ⁇ 2,2-dimethoxy-1,2-diphenylethan-1-one 4 parts by weight (manufactured by BASF, trade name: Irgacure651)
- a liquid film having a thickness of 60 ⁇ m sandwiched between PET films on both sides was irradiated with an intensity of 10 mW/cm 2 to 100 mW/ from an epi-illumination unit of a UV spot light source (manufactured by Hamamatsu Photonics, trade name: L2859-01).
- Ultraviolet rays which are parallel rays of cm 2 , were irradiated.
- a prism sheet was placed between the light source and the liquid film to split the parallel rays into two directions, and the parallel rays in the two directions were irradiated at an azimuth angle of 180°.
- Anisotropic light diffusion films 1 to 5 having two scattering central axes and having the characteristics shown in Table 1 were obtained by changing parameters such as liquid film thickness, UV illuminance, and liquid film temperature during parallel light irradiation.
- the two scattering central axes are located on the positive side of 0° at the incident light angle at which the light diffusion is approximately symmetrical when an optical profile is created by measuring the amount of linearly transmitted light (details of measurement will be described later).
- the angle (the angle of the central portion (central portion of the diffusion region) sandwiched between the linear transmittance minimum values) is obtained as the scattering central axis angle ⁇ A of the scattering central axis A, and is on the minus side of 0°
- the angle at which it lies was taken as the scattering central axis angle ⁇ B of the scattering central axis B.
- the obtained azimuth angle of each anisotropic light diffusion film was determined by measuring the amount of linearly transmitted light. In the arrangement shown in FIG. From the arrangement of FIG. 6, each anisotropic light diffusion film is rotated (rotated so that the circular double-headed arrow indicating rotation in FIG. 6 is vertical, but the straight line V remains as it is), and the optical profile for each rotation angle is obtained.
- the azimuth angle ⁇ B of the scattering central axis B is all 180. ° was This coincided with the azimuth angle of parallel rays in two directions.
- the side of the produced anisotropic light-diffusing film irradiated with light is hereinafter referred to as the "irradiated surface", and the opposite side is referred to as the "rear surface”.
- Anisotropic light diffusion films 6 to 8 having one scattering central axis and having the characteristics shown in Table 1 were obtained by changing parameters such as the irradiation angle, liquid film thickness, UV illuminance, and liquid film temperature during parallel light irradiation. .
- the exposed surface of the anisotropic light-diffusing film constituting the produced anisotropic light-diffusing film laminate is referred to as the "laminate surface”
- the anisotropic light diffusion constituting the anisotropic light-diffusing film laminate is hereinafter referred to as the "laminate surface”.
- the back side, which is the exposed surface of the film, is referred to as the "back side of the laminate”.
- the scattering central axis of the anisotropic light-diffusing film having the surface of the laminate is the scattering central axis A and has the scattering central axis angle ⁇ A
- the scattering central axis of the anisotropic light-diffusing film having the back surface of the laminate was assumed to be the scattering central axis B and to have the scattering central axis angle ⁇ B .
- the anisotropic light-diffusing films 7 and 8 were produced in the same manner as the anisotropic light-diffusing film laminate 1 using the anisotropic light-diffusing film 7 to obtain anisotropic light-diffusing film laminates 2 and 3, respectively. It is shown in Table 1, including the characteristics.
- the anisotropic light-diffusing films and the anisotropic light-diffusing film laminates obtained in Examples were measured using a micrometer (manufactured by Mitutoyo Corporation). The measured value is the average value of the values measured at a total of 5 points including the vicinity of 4 corners on the plane of the produced anisotropic light diffusion film and the anisotropic light diffusion film laminate and 1 point near the center of the plane. did.
- the anisotropic light diffusion film obtained in the example and the The linear transmitted light amount of the anisotropic light diffusion film laminate was measured.
- a detector was fixed at a position where it received rectilinear light from the light source, and the anisotropic light-diffusing film and the anisotropic light-diffusing film laminate obtained in Examples were set on a sample holder therebetween.
- the straight line V was arranged so as to be a line on the anisotropic light diffusion film perpendicular to the tilt direction of the central axis of scattering.
- the incident side of the light from the light source is the irradiation surface side in the anisotropic light diffusion film, the laminate surface side in the anisotropic light diffusion film laminate, and the scattering center axis angle ⁇ of the anisotropic light diffusion film having the laminate surface. It was set so that A was a positive value. As shown in FIG. 6, the sample is rotated with the straight line V as the axis of rotation, the amount of linear transmitted light corresponding to each incident light angle is measured, the linear transmittance is calculated, the linear transmittance is plotted for each angle, An optical profile was created. With this evaluation method, it is possible to evaluate in which range of angles the incident light is diffused.
- the amount of linearly transmitted light was measured at a wavelength in the visible light region using a visibility filter. Based on the optical profile obtained as a result of the above measurements, the maximum linear transmittance, which is the maximum value of the linear transmittance, and the incident light angle at the maximum linear transmittance were obtained.
- the incident light angle at which the light diffusion property is approximately symmetrical is an angle located on the positive side of 0° (between the minimum values of linear transmittance
- the angle of the central portion (the central portion of the diffusion region)) is obtained as the scattering central axis angle ⁇ A of the scattering central axis A, and the angle located on the minus side of 0° (between the minimum values of the linear transmittance)
- the angle of the approximate central portion (the central portion of the diffusion region)) was obtained as the scattering central axis angle ⁇ B of the scattering central axis B.
- the angle of incident light (substantially central portion sandwiched between the minimum values of linear transmittance (central portion of the diffusion region) at which the light diffusion property has approximately symmetry angle) was obtained as the scattering central axis angle ⁇ A of the scattering central axis A.
- the minimum linear transmittance at the angle between the scattering central axis A and the plane normal of the anisotropic light diffusing film is Tmin A
- Tmin A the minimum linear transmittance at the angle between the scattering central axis and the plane normal of the anisotropic light-diffusing film was obtained as Tmin A.
- a plurality of columnar structures of the anisotropic light-diffusing film and the anisotropic light-diffusing film laminate obtained in Examples were observed with an optical microscope for cross sections perpendicular to the columnar axis (irradiation light side during ultraviolet irradiation).
- a major axis LA and a minor axis SA of the columnar structure were measured.
- An average value of 20 arbitrary columnar structures was used to calculate the average major axis LA and average minor axis SA.
- the average major axis LA/average minor axis SA was calculated as an aspect ratio with respect to the obtained average major axis LA and average minor axis SA.
- ⁇ Haze value (Hz)> Using a haze meter NDH-2000 (manufactured by Nippon Denshoku Industries Co., Ltd.), the haze values of the anisotropic light diffusion films and anisotropic light diffusion film laminates obtained in Examples were measured according to JIS K7136-1:2000. rice field. The incident side of light was the irradiated surface for the anisotropic light diffusion film, and the surface of the laminate for the anisotropic light diffusion film laminate.
- anisotropic light-diffusing films 1 to 5 and the anisotropic light-diffusing film laminates 1 to 3 prepared in Examples were used as the anisotropic light-diffusing films 1 to 5 of Examples 1 to 5 and the anisotropic light diffusion films 1 to 5 of Comparative Examples 1 to 3 shown in Table 2.
- Anisotropic light diffusion film laminates 1 to 3 were evaluated as follows.
- white luminance was measured in a polar angle range of 0 to 80° with respect to the normal direction of the liquid crystal display when white was displayed on the liquid crystal display.
- the white luminance ratio was calculated as a ratio to a blank, with 1 being the state in which the anisotropic light-diffusing film or the anisotropic light-diffusing film laminate was not attached to the surface of the liquid crystal display.
- ⁇ bokeh> In the configuration used for the evaluation of white luminance (an anisotropic light diffusion film or an anisotropic light diffusion film laminate was attached to the surface of the liquid crystal display), white was displayed on the liquid crystal display, and RGB pixels were confirmed from the surface using a loupe. .
- RGB can be identified respectively: ⁇ At least part of RGB looks mixed: ⁇
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Optical Elements Other Than Lenses (AREA)
- Liquid Crystal (AREA)
Abstract
Description
1つ目は、TN、VA、IPSといった液晶パネルの駆動方式や、光学補償用目的での位相差フィルムの使用等の「液晶パネルの内部設計による方法」である。
2つ目は、特定の液晶パネル視認側表面へ拡散フィルムを使用する等の「液晶パネル表面への部材追加による方法」である。 A "viewing angle" is one of the important characteristics of a display device, and it is generally considered that a wide viewing angle is preferable, except for applications such as prevention of prying eyes. Methods for expanding the viewing angle of LCDs, which are one of the most typical display devices, can be broadly classified into two.
The first one is a liquid crystal panel driving method such as TN, VA, or IPS, or a “method based on the internal design of the liquid crystal panel” such as the use of a retardation film for the purpose of optical compensation.
The second is a "method of adding members to the surface of a liquid crystal panel" such as using a diffusion film on the surface of a specific liquid crystal panel on the viewing side.
光の入射角度により拡散性が変化する異方性光拡散フィルムであって、
前記異方性光拡散フィルムは、マトリックス領域と、前記マトリックス領域とは屈折率の異なる複数の柱状構造体である柱状領域とを有し、
前記異方性光拡散フィルムの法線角度を0°としたとき、0°超90°未満の角度範囲に散乱中心軸Aおよび散乱中心軸Bを有し、
前記散乱中心軸Aの方位角φAを0°としたとき、前記散乱中心軸Bの方位角φBは、170°~190°であり、
前記法線と、前記散乱中心軸Aとのなす角度を散乱中心軸角度θAとし、前記法線と前記散乱中心軸Bとのなす角度を散乱中心軸角度θBとすると、θB=θA±10°であることを特徴とする、異方性光拡散フィルムである。 The present invention
An anisotropic light diffusion film whose diffusibility changes depending on the incident angle of light,
The anisotropic light diffusion film has a matrix region and a columnar region that is a plurality of columnar structures having a different refractive index from the matrix region,
When the normal angle of the anisotropic light diffusion film is 0°, the scattering central axis A and the scattering central axis B are in an angle range of more than 0° and less than 90°,
When the azimuth angle φ A of the scattering central axis A is 0°, the azimuth angle φ B of the scattering central axis B is 170° to 190°,
Let the angle formed by the normal line and the scattering center axis A be the scattering center axis angle θ A , and let the angle between the normal line and the scattering center axis B be the scattering center axis angle θ B , then θ B =θ An anisotropic light-diffusing film characterized in that A is ±10°.
|TminA-TminB|≦5パーセントポイント
であることが好ましい。
前記散乱中心軸角度θAが10°~60°であることが好ましい。
ヘイズ値が、40%以上であることが好ましい。
前記複数の柱状構造体の配向方向に垂直な断面における短径と長径のアスペクト比が2未満であることが好ましい。 Let Tmin A be the minimum linear transmittance at the angle between the scattering central axis A and the normal, and Tmin B be the minimum linear transmittance at the angle between the scattering central axis B and the normal.
|Tmin A −Tmin B |≦5 percentage points is preferred.
The scattering central axis angle θ A is preferably 10° to 60°.
It is preferable that the haze value is 40% or more.
It is preferable that the aspect ratio of the minor axis to the major axis in the cross section perpendicular to the alignment direction of the plurality of columnar structures is less than 2.
前記異方性光拡散フィルムを含むことを特徴とする、表示装置である。 In addition, the present invention
A display device comprising the anisotropic light diffusion film.
次いで、本発明に係る異方性光拡散フィルム(散乱中心軸角度を2つ有する異方性光拡散フィルム)の構造、物性、製造方法、用途等について説明する。 The structure and the like of a general anisotropic light-diffusing film (an anisotropic light-diffusing film having only one scattering central axis angle) will be described below.
Next, the structure, physical properties, manufacturing method, application, etc. of the anisotropic light-diffusing film (anisotropic light-diffusing film having two scattering central axis angles) according to the present invention will be described.
異方性光拡散フィルムとは、光の入射角により、直線透過率[(入射した光の直線方向の透過光量)/(入射した光の光量)]が変化する、光学異方性を有するフィルムである。即ち、異方性光拡散フィルムに対する入射光について、所定の角度範囲の入射光は直線性を維持して透過し、その他の角度範囲の入射光は、拡散性を示す。 <<<<1 General anisotropic light diffusion film>>>>
The anisotropic light diffusion film is a film having optical anisotropy, in which the linear transmittance [(amount of transmitted light in the linear direction of incident light)/(amount of incident light)] changes depending on the angle of incidence of light. . That is, with respect to incident light to the anisotropic light diffusion film, incident light within a predetermined angle range is transmitted while maintaining linearity, and incident light within other angle ranges exhibits diffusing properties.
また、図2(b)は、柱状構造体のアスペクト比が1以上2未満の異方性光拡散フィルムの一例を示しており、アスペクト比が1の場合、LA=SAとなる。 FIG. 2(a) shows an example of an anisotropic light diffusion film in which the aspect ratio of the columnar structure is 2-20.
Further, FIG. 2(b) shows an example of an anisotropic light diffusion film in which the aspect ratio of the columnar structures is 1 or more and less than 2. When the aspect ratio is 1, LA=SA.
散乱中心軸を有する異方性光拡散フィルムにおいて、散乱中心軸と複数の柱状構造体の配向方向(延在方向)とは、通常、平行な関係にある。なお、散乱中心軸と複数の柱状構造体の配向方向とが平行であるとは、屈折率の法則(Snellの法則)を満たすものであればよく、厳密に平行である必要はない。 <<<1-1 Scattering central axis>>>
In an anisotropic light-diffusing film having a central scattering axis, the central scattering axis and the alignment direction (extending direction) of the plurality of columnar structures are generally parallel to each other. It should be noted that the scattering center axis and the orientation direction of the plurality of columnar structures being parallel only need to satisfy the refractive index law (Snell's law), and need not be strictly parallel.
図5に示すように、異方性光拡散フィルムは、入射光角度によって直線透過率が変化する光拡散性の入射光角度依存性を有するものである。ここで、図5のように光拡散性の入射光角度依存性を示す曲線を以下、「光学プロファイル」と称する。 <<<1-2 Optical Profile>>>
As shown in FIG. 5, the anisotropic light diffusing film has light diffusing properties dependent on the incident light angle, in which the linear transmittance changes depending on the incident light angle. Here, the curve showing the incident light angle dependence of light diffusion as shown in FIG. 5 is hereinafter referred to as an "optical profile".
図5に示すように、直線透過率が最大となる入射角で異方性光拡散フィルムに入射した光の直線透過率を、最大直線透過率と称する。 <<<1-3 Linear transmittance >>>
As shown in FIG. 5, the linear transmittance of light incident on the anisotropic light diffusion film at the incident angle at which the linear transmittance is maximized is referred to as the maximum linear transmittance.
異方性光拡散フィルムのヘイズ値(全ヘイズ)は、異方性光拡散フィルムの拡散性を示す指標である。ヘイズ値が大きくなると、異方性光拡散フィルムの拡散性が高くなる。 <<<1-4 Haze value>>>
The haze value (total haze) of an anisotropic light-diffusing film is an index showing the diffusibility of the anisotropic light-diffusing film. As the haze value increases, the diffusibility of the anisotropic light-diffusing film increases.
以下、本発明に係る異方性光拡散フィルムについて説明する。以下の説明においては、矛盾の存在しない範囲で、前述した一般的な異方性光拡散フィルムで説明された事項を全て適用できるものとする。 <<<<2 Anisotropic Light Diffusion Film According to the Present Invention>>>>
The anisotropic light-diffusing film according to the present invention will be described below. In the following description, it is assumed that all the matters described in the above general anisotropic light diffusion film can be applied as long as there is no contradiction.
本発明に係る異方性光拡散フィルムは、1層内に、異方性光拡散フィルムの法線方向に対してある方向に傾斜した複数の柱状構造体からなる第1の柱状領域と、異方性光拡散フィルムの法線方向に対して第1の柱状領域とは別の方向に傾斜した複数の柱状構造体からなり、第1の柱状領域とは延在方向の異なる第2の柱状領域とを有する。 <<<2-1 Structure of anisotropic light diffusion film according to the present invention>>>
The anisotropic light-diffusing film according to the present invention includes, in one layer, a first columnar region composed of a plurality of columnar structures inclined in a certain direction with respect to the normal direction of the anisotropic light-diffusing film, and an anisotropic light-diffusing film. It is composed of a plurality of columnar structures inclined in a different direction from the first columnar regions with respect to the normal direction, and has a second columnar region extending in a different direction from the first columnar regions.
ここで、本発明に係る異方性光拡散フィルムにおいて、第1の柱状領域および第2の柱状領域は、共に、異方性光拡散フィルムの一方の表面から他方の表面にかけて、異方性光拡散フィルムの法線方向に対し、傾斜する構造を有する。従って、「散乱中心軸Aと散乱中心軸Bとの位置関係」と、「散乱中心軸Bを異方性光拡散フィルムの法線周りに180°回転させた場合の散乱中心軸Aと散乱中心軸Bとの位置関係」とは、異なるものとなる。
従って、本発明においては、散乱中心軸AおよびBの位置関係は、上述の極角θおよび方位角φによって示されることとなる。 <<2-1-1 Positional Relationship between Scattering Central Axis A and Scattering Central Axis B>>
Here, in the anisotropic light-diffusing film according to the present invention, both the first columnar region and the second columnar region extend from one surface to the other surface of the anisotropic light-diffusing film in the normal direction of the anisotropic light-diffusing film. It has a tilted structure. Therefore, "the positional relationship between the scattering central axis A and the scattering central axis B" and "the scattering central axis A and the scattering central axis B when the scattering central axis B is rotated 180° around the normal line of the anisotropic light diffusion film "positional relationship with" is different.
Therefore, in the present invention, the positional relationship between the scattering central axes A and B is indicated by the above-described polar angle θ and azimuth angle φ.
更に、θB=θA±10°(好ましくはθB=θA±5°、より好ましくはθB=θA±3°)である。 In the anisotropic light-diffusing film according to the present invention, when the angle of the normal direction of the anisotropic light-diffusing film is 0°, it is more than 0° and less than 90° (preferably 10° to 60°, more preferably 20° to 45° ) have two scattering central axes. That is, as shown in FIG. 7(3), the angle between the normal to the anisotropic light-diffusing film and the scattering center axis A is the scattering center axis angle θ A , and the normal to the anisotropic light-diffusing film and the scattering center axis B When the angle is the scattering central axis angle θ B , θ A and θ B satisfy the relationship of more than 0° and less than 90°.
Furthermore, θ B =θ A ±10° (preferably θ B =θ A ±5°, more preferably θ B =θ A ±3°).
前述したように、本発明に係る異方性光拡散フィルムは、散乱中心軸Aを構成する第1の柱状領域、および、散乱中心軸Bを構成する第2の柱状領域、という、延在方向が異なる2つの柱状領域が存在する。 <<2-1-2 Columnar region>>
As described above, the anisotropic light-diffusing film according to the present invention has a first columnar region that forms the central scattering axis A and a second columnar region that forms the central scattering axis B, which extend in different directions. There are two columnar regions.
本発明の第1の柱状領域および第2の柱状領域は、2つの異なる角度から光を照射して樹脂を硬化させて得られるため、各々の光の照射条件を変更することで、第1の柱状領域に含まれる複数の柱状構造体の構造と、第2の柱状領域に含まれる複数の柱状構造体の構造とを、個別に調整することができる。 Hereinafter, common structures (minor axis, major axis, aspect ratio) of the plurality of columnar structures included in the first columnar region and the plurality of columnar structures included in the second columnar region will be described. The structure of the plurality of columnar structures included in the first columnar region and the structure of the plurality of columnar structures included in the second columnar region may be the same or different.
The first columnar region and the second columnar region of the present invention are obtained by irradiating light from two different angles to cure the resin. The structure of the plurality of columnar structures included in the columnar region and the structure of the plurality of columnar structures included in the second columnar region can be individually adjusted.
柱状構造体の短径の平均値(平均短径)は、0.5μm以上であることが好ましく、1.0μm以上であることがより好ましく、1.5μm以上であることがさらに好ましい。一方、柱状構造体の平均短径は、5.0μm以下であることが好ましく、4.0μm以下であることがより好ましく、3.0μm以下であることがさらに好ましい。これら柱状構造体の短径の下限値および上限値は、適宜組み合わせることができる。 <2-1-2-1 Minor diameter>
The average short diameter (average short diameter) of the columnar structures is preferably 0.5 μm or more, more preferably 1.0 μm or more, and even more preferably 1.5 μm or more. On the other hand, the average minor axis of the columnar structures is preferably 5.0 μm or less, more preferably 4.0 μm or less, and even more preferably 3.0 μm or less. The lower limit and upper limit of the minor axis of these columnar structures can be combined as appropriate.
柱状構造体の長径の平均値(平均長径)は、0.5μm以上であることが好ましく、1.0μm以上であることがより好ましく、1.5μm以上であることがさらに好ましい。一方、柱状構造体の平均長径は、100μm以下であることが好ましく、50μm以下であることがより好ましく、30μm以下であることがさらに好ましい。これら柱状構造体の長径の下限値および上限値は、適宜組み合わせることができる。 <2-1-2-2 Length>
The average major axis (average major axis) of the columnar structures is preferably 0.5 μm or more, more preferably 1.0 μm or more, and even more preferably 1.5 μm or more. On the other hand, the average length of the columnar structures is preferably 100 μm or less, more preferably 50 μm or less, and even more preferably 30 μm or less. The lower limit and upper limit of the major axis of these columnar structures can be combined as appropriate.
柱状構造体の平均短径に対する平均長径の比(平均長径/平均短径)、即ち、アスペクト比は、1~20とすることが好ましく、2未満であることがより好ましい。 <2-1-2-3 Aspect Ratio>
The ratio of the average major axis to the average minor axis of the columnar structure (average major axis/average minor axis), that is, the aspect ratio is preferably 1 to 20, more preferably less than 2.
異方性光拡散フィルムの厚みは、好ましくは15μm~100μmであり、より好ましくは30μm~80μmである。このような範囲とすることで、材料費やUV照射に要する費用等の製造コストを低減させつつ、視覚依存性改善効果を十分なものとすることができる。 <<2-1-3 Thickness>>
The thickness of the anisotropic light-diffusing film is preferably 15 μm to 100 μm, more preferably 30 μm to 80 μm. By setting it in such a range, it is possible to reduce manufacturing costs such as material costs and costs required for UV irradiation, and to achieve a sufficient effect of improving visual dependence.
<<2-2-1 直線透過率>>
本発明に係る異方性光拡散フィルムは、2つの散乱中心軸を有する。そのため、本発明に係る異方性光拡散フィルムの光学プロファイルにおいては、散乱中心軸Aに対応する入射光角度範囲における直線透過率と、散乱中心軸Bに対応する入射光角度範囲における直線透過率とが存在する。 <<<2-2 Physical Properties of Anisotropic Light Diffusion Film>>>
<<2-2-1 Linear transmittance>>
The anisotropic light-diffusing film according to the present invention has two scattering central axes. Therefore, in the optical profile of the anisotropic light diffusion film according to the present invention, the linear transmittance in the incident light angle range corresponding to the scattering central axis A and the linear transmittance in the incident light angle range corresponding to the scattering central axis B are exist.
本発明に係る異方性光拡散フィルムは、散乱中心軸Aと、異方性光拡散フィルムの法線との間の角度における極小直線透過率TminAと、散乱中心軸Bと、異方性光拡散フィルムの法線との間の角度における極小直線透過率TminBとの差の絶対値である、|TminA-TminB|が、5パーセントポイント以下あり、3パーセントポイント以下であることが好ましく、1パーセントポイント以下であることがより好ましい。このようにすることで、異方性光拡散フィルムの対称性が向上し、上下又は左右等対称性を有する2方向への視野角拡大を可能とすることができる。 <<2-2-2 Minimum linear transmittance>>
The anisotropic light-diffusing film according to the present invention has a minimum linear transmittance Tmin A at the angle between the scattering central axis A and the normal to the anisotropic light-diffusing film, the scattering central axis B, and the normal to the anisotropic light-diffusing film. |Tmin A −Tmin B |, which is the absolute value of the difference from the minimum linear transmittance Tmin B at the angle between is more preferable. By doing so, the symmetry of the anisotropic light-diffusing film is improved, and it is possible to widen the viewing angle in two directions having vertical or horizontal symmetry.
本発明に係る異方性光拡散フィルムは、最大直線透過率が、50%以下であることが好ましく、30%以下であることがより好ましい。このようにすることで、異方性光拡散フィルムの対称性が向上し、上下又は左右等対称性を有する2方位への視野角拡大を可能とすることができる。 <<2-2-3 Maximum linear transmittance>>
The anisotropic light-diffusing film according to the present invention preferably has a maximum in-line transmittance of 50% or less, more preferably 30% or less. By doing so, the symmetry of the anisotropic light-diffusing film is improved, and it is possible to expand the viewing angle in two directions having vertical or horizontal symmetry.
異方性光拡散フィルムのヘイズ値は、40%以上が好ましく、50%以上がより好ましい。このような範囲とすることで、本発明の効果をより高めることができる。 <<2-2-4 Haze value>>
The haze value of the anisotropic light-diffusing film is preferably 40% or more, more preferably 50% or more. By setting it as such a range, the effect of this invention can be heightened more.
以下、異方性光拡散フィルムの製造方法について説明する。 <<<2-3 Method for producing anisotropic light diffusion film>>>
A method for producing an anisotropic light-diffusing film will be described below.
異方性光拡散フィルムの原料について、(1)光重合性化合物、(2)光開始剤、(3)配合量、その他任意成分の順に説明する。 <<2-3-1 Raw materials>>
Raw materials for the anisotropic light-diffusing film will be described in the order of (1) photopolymerizable compound, (2) photoinitiator, (3) blending amount, and other optional components.
光重合性化合物は、ラジカル重合性又はカチオン重合性の官能基を有するマクロモノマー、ポリマー、オリゴマー、モノマーから選択される光重合性化合物と光開始剤とから構成され、紫外線および/又は可視光線を照射することにより重合・硬化する材料である。 <2-3-1-1 Photopolymerizable compound>
The photopolymerizable compound comprises a photopolymerizable compound selected from macromonomers, polymers, oligomers, and monomers having radically polymerizable or cationic polymerizable functional groups, and a photoinitiator, and emits ultraviolet rays and/or visible rays. It is a material that polymerizes and hardens when irradiated.
ラジカル重合性化合物を重合させることのできる光開始剤としては、ベンゾフェノン、ベンジル、ミヒラーズケトン、2-クロロチオキサントン、2,4-ジエチルチオキサントン、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、2,2-ジエトキシアセトフェノン、ベンジルジメチルケタール、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパノン-1、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-3-(ピル-1-イル)フェニル]チタニウム、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド等が挙げられる。又、これらの化合物は、各単体で用いてもよく、複数混合して用いてもよい。 <2-3-1-2 Photoinitiator>
Photoinitiators capable of polymerizing radically polymerizable compounds include benzophenone, benzyl, Michler's ketone, 2-chlorothioxanthone, 2,4-diethylthioxanthone, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, 2,2- diethoxyacetophenone, benzyl dimethyl ketal, 2,2-dimethoxy-1,2-diphenylethan-1-one, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexylphenyl ketone, 2 -methyl-1-[4-(methylthio)phenyl]-2-morpholinopropanone-1, 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propane-1 -one, bis(cyclopentadienyl)-bis[2,6-difluoro-3-(pyr-1-yl)phenyl]titanium, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl) -butanone-1,2,4,6-trimethylbenzoyldiphenylphosphine oxide and the like. Also, these compounds may be used alone or in combination.
光開始剤は、通常粉体を光重合性化合物中に直接溶解して使用されるが、溶解性が悪い場合は光開始剤を予め極少量の溶剤に高濃度に溶解させたものを使用することもできる。このような溶剤としては光重合性であることがさらに好ましく、具体的には炭酸プロピレン、γ-ブチロラクトン等が挙げられる。また、光重合性を向上させるために公知の各種染料や増感剤を添加することも可能である。さらに、重合速度を調整するため、重合禁止剤などを添加することも可能である。 <2-3-1-3 Other components>
The photoinitiator is usually used by directly dissolving the powder in the photopolymerizable compound, but if the solubility is poor, the photoinitiator should be pre-dissolved in a very small amount of solvent at a high concentration. can also Such a solvent is more preferably photopolymerizable, and specific examples thereof include propylene carbonate and γ-butyrolactone. Also, various known dyes and sensitizers can be added to improve the photopolymerizability. Furthermore, it is possible to add a polymerization inhibitor or the like in order to adjust the polymerization rate.
次に、異方性光拡散フィルムの製造プロセスについて説明する。 <<2-3-2 Manufacturing process>>
Next, the manufacturing process of the anisotropic light diffusion film will be described.
(1)工程1-1:未硬化樹脂組成物層を基体上に設ける工程
(2)工程1-2:光源から平行光線を得る工程
(3)任意工程1-3:指向性をもった光線を得る工程
(4)工程1-4:未硬化樹脂組成物層を硬化させる工程 More specifically, the process of forming the anisotropic light-diffusing film mainly includes the following steps.
(1) Step 1-1: Step of providing an uncured resin composition layer on a substrate (2) Step 1-2: Step of obtaining parallel light from a light source (3) Optional step 1-3: Directive light Step (4) Step 1-4: Step of curing the uncured resin composition layer
また、光線の進路上にプリズムシートを配置し、光線を2方向へと分割して照射することで、2方向からの照射とすることも可能である。このようにプリズムレンズを使用した製造方法の場合、光線の照射角度が異なる以外は同質の光線が2方向から照射されることとなり、第1の柱状領域の複数の柱状構造体と、第2の柱状領域の複数の柱状構造体とを、傾斜方向以外は略同一の構造体とすることができる。 As described above, the anisotropic light-diffusing film according to the present invention has two scattering central axes (scattering central axis A and scattering central axis B). By irradiating the uncured resin composition layer with light from two directions, the scattering center axis A and the scattering center axis B are extended in a form corresponding to the irradiation direction of each light. By changing the conditions other than the irradiation angle of the light beam, the structure of the columnar structures included in the first columnar region and the structure of the columnar structures included in the second columnar region can be made different. can.
Further, by arranging a prism sheet on the path of the light beam and dividing the light beam into two directions for irradiation, it is possible to irradiate the light beam from two directions. In the case of the manufacturing method using the prism lens as described above, light beams of the same quality are irradiated from two directions except that the irradiation angles of the light beams are different. A plurality of columnar structures in the columnar region can be substantially the same structure except for the tilt direction.
光重合性化合物を含む塗料を、基体上に、シート状に、未硬化樹脂組成物層として設ける手法は、通常の塗工方式や印刷方式が適用される。具体的には、エアドクターコーティング、バーコーティング、ブレードコーティング、ナイフコーティング、リバースコーティング、トランスファロールコーティング、グラビアロールコーティング、キスコーティング、キャストコーティング、スプレーコーティング、スロットオリフィスコーティング、カレンダーコーティング、ダムコーティング、ディップコーティング、ダイコーティング等のコーティングや、グラビア印刷等の凹版印刷、スクリーン印刷等の孔版印刷等の印刷等が使用できる。塗料が低粘度の場合は、基体の周囲に一定の高さの堰を設けて、この堰で囲まれた中に塗料をキャストすることもできる。 <2-3-2-1 Step 1-1: Step of Providing Uncured Resin Composition Layer on Substrate>
A usual coating method or printing method is applied to the technique of providing the coating material containing the photopolymerizable compound on the substrate in the form of a sheet as an uncured resin composition layer. Specifically, air doctor coating, bar coating, blade coating, knife coating, reverse coating, transfer roll coating, gravure roll coating, kiss coating, cast coating, spray coating, slot orifice coating, calender coating, dam coating, dip coating , coating such as die coating, intaglio printing such as gravure printing, and printing such as stencil printing such as screen printing can be used. If the paint has a low viscosity, a weir of a certain height can be provided around the substrate and the paint can be cast into the area surrounded by this weir.
光源としては、通常はショートアークの紫外線発生光源が使用され、具体的には高圧水銀灯、低圧水銀灯、メタハライドランプ、キセノンランプ等が使用可能である。このとき、所望の散乱中心軸と平行な光線を得る必要があるが、このような平行光線は、例えば点光源を配置して、この点光源と未硬化樹脂組成物層の間に平行光線を照射するためのフレネルレンズ等の光学レンズを配置する他、光源の背後に反射鏡を配置して、所定の方向に点光源として光が出射するようにすること等で、得ることができる。 <2-3-2-2 Step 1-2: Step of Obtaining Parallel Light from Light Source>
As the light source, a short-arc ultraviolet light source is usually used, and specifically, a high-pressure mercury lamp, a low-pressure mercury lamp, a methhalide lamp, a xenon lamp, or the like can be used. At this time, it is necessary to obtain a light beam parallel to the desired scattering center axis. In addition to arranging an optical lens such as a Fresnel lens for irradiation, it can be obtained by arranging a reflecting mirror behind the light source so that light is emitted as a point light source in a predetermined direction.
任意工程1-3は、平行光線を指向性拡散素子に入射させ、指向性をもった光線を得る工程である。図8は、任意工程1-3による本発明の異方性光拡散フィルムの製造方法を示す模式図である。 <2-3-2-3 Optional Step 1-3: Step of Obtaining Directive Light Rays>
Optional step 1-3 is a step of making parallel light beams incident on a directional diffusion element to obtain light beams with directivity. FIG. 8 is a schematic diagram showing a method for manufacturing an anisotropic light-diffusing film of the present invention by optional step 1-3.
未硬化樹脂組成物層に照射して、未硬化樹脂組成物層を硬化させる光線は、光重合性化合物を硬化可能な波長を含んでいることが必要で、通常は水銀灯の365nmを中心とする波長の光が利用される。この波長帯を使って異方性光拡散フィルムを作製する場合、照度としては0.01mW/cm2~100mW/cm2の範囲が好ましく、0.1mW/cm2~20mW/cm2 がより好ましい。照度が0.01mW/cm2未満であると、硬化に長時間を要するため、生産効率が悪くなり、100mW/cm2を超えると、光重合性化合物の硬化が速すぎて構造形成を生じず、目的の光学特性を発現できなくなるからである。 <2-3-2-4 Step 1-4: Step of curing the uncured resin composition layer>
The light beam that is applied to the uncured resin composition layer to cure the uncured resin composition layer must contain a wavelength capable of curing the photopolymerizable compound, and is usually centered at 365 nm of a mercury lamp. wavelengths of light are used. When producing an anisotropic light diffusion film using this wavelength band, the illuminance is preferably in the range of 0.01 mW/cm 2 to 100 mW/cm 2 , more preferably 0.1 mW/cm 2 to 20 mW/cm 2 . When the illuminance is less than 0.01 mW/cm 2 , it takes a long time for curing, resulting in poor production efficiency. , the desired optical characteristics cannot be exhibited.
異方性光拡散フィルムは、視野角依存性改善効果に優れることから、液晶表示装置、有機EL表示装置、プラズマディスプレイ等のあらゆる表示装置に適用することができる。 <<<<2-4 Applications of Anisotropic Light Diffusion Film>>>>
Since the anisotropic light diffusion film is excellent in the effect of improving the viewing angle dependence, it can be applied to all display devices such as liquid crystal display devices, organic EL display devices, and plasma displays.
次に、本発明を実施例および比較例により、更に具体的に説明するが、本発明は、これらの例によって何ら限定されるものではない。 <<<Example>>>
EXAMPLES Next, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited by these examples.
厚み100μmのPETフィルム(東洋紡社製、商品名:A4300)の縁部全周に、ディスペンサーを使い、硬化性樹脂で高さ30μm又は60μmの隔壁を形成した。この中に下記の紫外線硬化する光重合性化合物を含む塗料を滴下し、別のPETフィルムでカバーした。 <<Production of anisotropic light diffusion film and anisotropic light diffusion film laminate>>
Partition walls with a height of 30 μm or 60 μm were formed with a curable resin using a dispenser around the entire edge of a 100 μm-thick PET film (manufactured by Toyobo Co., Ltd., trade name: A4300). A paint containing the following UV-curable photopolymerizable compound was dripped into this and covered with another PET film.
(RAHN社製、商品名:00-225/TM18)
・ネオペンチルグリコールジアクリレート(屈折率:1.450) 30重量部
(ダイセルサイテック社製、商品名Ebecryl145)
・ビスフェノールAのEО付加物ジアクリレート(屈折率:1.536) 15重量部
(ダイセルサイテック社製、商品名Ebecryl150)
・フェノキシエチルアクリレート(屈折率1.518) 40重量部
(共栄社化学製、商品名:ライトアクリレートPО-A)
・2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン 4重量部
(BASF社製、商品名:Irgacure651) ・Silicone urethane acrylate (refractive index: 1.460, weight average molecular weight: 5890) 20 parts by weight (manufactured by RAHN, trade name: 00-225/TM18)
・Neopentyl glycol diacrylate (refractive index: 1.450) 30 parts by weight
(manufactured by Daicel Cytec, trade name Ebecryl145)
・ EO adduct diacrylate of bisphenol A (refractive index: 1.536) 15 parts by weight
(manufactured by Daicel Cytec, trade name Ebecryl150)
・ Phenoxyethyl acrylate (refractive index 1.518) 40 parts by weight
(Made by Kyoeisha Chemical, trade name: Light Acrylate PO-A)
· 2,2-dimethoxy-1,2-diphenylethan-1-
(manufactured by BASF, trade name: Irgacure651)
両面をPETフィルムで挟まれた60μmの厚みの液膜に対して、UVスポット光源(浜松ホトニクス社製、商品名:L2859-01)の落射用照射ユニットから、照射強度10mW/cm2~100mW/cm2の平行光線である紫外線を照射した。このとき、光源と液膜の間にプリズムシートを設置し、平行光線を2方向へと分割し、2方向の平行光線の方位角180°にて、照射した。
液膜の厚み、UV照度、平行光線照射時の液膜温度などのパラメータを変えることで、表1の特性を有する散乱中心軸を2つ有する異方性光拡散フィルム1~5を得た。
なお、2つの散乱中心軸は、直線透過光量の測定により光学プロファイルを作成したとき(後に測定詳細説明)、光拡散性が略対称性を有する入射光角度で、0°よりもプラス側に位置する角度(直線透過率極小値間に挟まれた略中央部(拡散領域の中央部)の角度)を、散乱中心軸Aの散乱中心軸角度θAとして得て、0°よりもマイナス側に位置する角度を、散乱中心軸Bの散乱中心軸角度θBとして得た。
また、得られた、各異方性光拡散フィルムの方位角は、直線透過光量の測定で、図6に示す配置において、散乱中心軸Aの方位角φAを0°とし、且つ、1°ずつ、図6の配置から、各異方性光拡散フィルムを回転させて(図6の回転を示す円状の両矢印が垂直になった回転、ただし、直線Vはそのまま)、各回転角度毎の光学プロファイルを作成したとき、各グラフ形状で散乱中心軸角度付近の直線透過率の変曲が確認されたグラフの回転角度を、散乱中心軸Bの方位角φBとすると、方位角φBは、全て180°だった。これは、2方向の平行光線の方位角と一致した。
なお、以降、区別のため、作製した異方性光拡散フィルムの光線照射側面を「照射表面」、反対側面を「裏面」と称す。 <Preparation of anisotropic light diffusion film having two scattering central axes>
A liquid film having a thickness of 60 μm sandwiched between PET films on both sides was irradiated with an intensity of 10 mW/cm 2 to 100 mW/ from an epi-illumination unit of a UV spot light source (manufactured by Hamamatsu Photonics, trade name: L2859-01). Ultraviolet rays, which are parallel rays of cm 2 , were irradiated. At this time, a prism sheet was placed between the light source and the liquid film to split the parallel rays into two directions, and the parallel rays in the two directions were irradiated at an azimuth angle of 180°.
Anisotropic
The two scattering central axes are located on the positive side of 0° at the incident light angle at which the light diffusion is approximately symmetrical when an optical profile is created by measuring the amount of linearly transmitted light (details of measurement will be described later). The angle (the angle of the central portion (central portion of the diffusion region) sandwiched between the linear transmittance minimum values) is obtained as the scattering central axis angle θ A of the scattering central axis A, and is on the minus side of 0° The angle at which it lies was taken as the scattering central axis angle θ B of the scattering central axis B.
Further, the obtained azimuth angle of each anisotropic light diffusion film was determined by measuring the amount of linearly transmitted light. In the arrangement shown in FIG. From the arrangement of FIG. 6, each anisotropic light diffusion film is rotated (rotated so that the circular double-headed arrow indicating rotation in FIG. 6 is vertical, but the straight line V remains as it is), and the optical profile for each rotation angle is obtained. When the rotation angle of the graph at which the inflection of the linear transmittance near the scattering central axis angle was confirmed in each graph shape when it was created, is the azimuth angle φ B of the scattering central axis B, the azimuth angle φ B is all 180. ° was This coincided with the azimuth angle of parallel rays in two directions.
For distinction, the side of the produced anisotropic light-diffusing film irradiated with light is hereinafter referred to as the "irradiated surface", and the opposite side is referred to as the "rear surface".
両面をPETフィルムで挟まれた30μmの厚みの液膜に対して、UVスポット光源(浜松ホトニクス社製、商品名:L2859-01)の落射用照射ユニットから、照射強度10mW/cm2~100mW/cm2の平行光線である紫外線を照射した。照射角度や液膜の厚み、UV照度、平行光線照射時の液膜温度などのパラメータを変えることで、表1の特性を有する散乱中心軸を1つ有する異方性光拡散フィルム6~8を得た。 <Preparation of anisotropic light diffusion film having one scattering central axis>
A liquid film having a thickness of 30 μm sandwiched between PET films on both sides was irradiated with an intensity of 10 mW/cm 2 to 100 mW/ from an epi-illumination unit of a UV spot light source (manufactured by Hamamatsu Photonics, trade name: L2859-01). Ultraviolet rays, which are parallel rays of cm 2 , were irradiated. Anisotropic light diffusion films 6 to 8 having one scattering central axis and having the characteristics shown in Table 1 were obtained by changing parameters such as the irradiation angle, liquid film thickness, UV illuminance, and liquid film temperature during parallel light irradiation. .
異方性光拡散フィルム6を2枚準備し、2枚の散乱中心軸が互い違いとなるよう、傾斜方位を180°ずらし、5μmの厚みの透明粘着を介して積層し、散乱中心軸を2つ有する異方性光拡散フィルム積層体1を得た。このとき、異方性光拡散フィルム6の照射表面に透明粘着を介し2つ目の異方性光拡散フィルム6の裏面を積層した。
なお、以降、区別のため、作製した異方性光拡散フィルム積層体を構成する異方性光拡散フィルムの露出面である照射表面側を「積層体表面」、異方性光拡散フィルム積層体を構成する異方性光拡散フィルムの露出面である裏面側を「積層体裏面」と称す。
また、異方性光拡散フィルム積層体を構成する異方性光拡散フィルムの内、積層体表面を有する異方性光拡散フィルムの散乱中心軸が、散乱中心軸Aで、散乱中心軸角度θAを有するものとし、積層体裏面を有する異方性光拡散フィルムの散乱中心軸が、散乱中心軸Bで、散乱中心軸角度θBを有するものとした。
続いて異方性光拡散フィルム7および8も、異方性光拡散フィルム7による異方性光拡散フィルム積層体1作製と同様の製法を行い、それぞれ異方性光拡散フィルム積層体2および3を得た。特性を含め、表1に示した。 <Production of an anisotropic light diffusion film laminate having two scattering central axes>
Two sheets of anisotropic light diffusion film 6 were prepared, and the azimuths of inclination of the two sheets were shifted by 180° so that the central scattering axes of the two sheets were alternated. An anisotropic light
Hereinafter, for distinction, the exposed surface of the anisotropic light-diffusing film constituting the produced anisotropic light-diffusing film laminate is referred to as the "laminate surface", and the anisotropic light diffusion constituting the anisotropic light-diffusing film laminate is hereinafter referred to as the "laminate surface". The back side, which is the exposed surface of the film, is referred to as the "back side of the laminate".
Further, among the anisotropic light-diffusing films constituting the anisotropic light-diffusing film laminate, the scattering central axis of the anisotropic light-diffusing film having the surface of the laminate is the scattering central axis A and has the scattering central axis angle θ A , The scattering central axis of the anisotropic light-diffusing film having the back surface of the laminate was assumed to be the scattering central axis B and to have the scattering central axis angle θB .
Subsequently, the anisotropic light-diffusing films 7 and 8 were produced in the same manner as the anisotropic light-diffusing
特性測定は、以下方法に従った。 <<Characteristics measurement>>
The properties were measured according to the following methods.
実施例で得られた異方性光拡散フィルムおよび異方性光拡散フィルム積層体に対し、マイクロメーター(ミツトヨ社製)を用いて測定を行った。測定値は、作製した異方性光拡散フィルムおよび異方性光拡散フィルム積層体の平面における4つの角付近と、平面における中央付近の1箇所とを含む計5箇所で測定した値の平均値を、厚みとした。 <Thickness>
The anisotropic light-diffusing films and the anisotropic light-diffusing film laminates obtained in Examples were measured using a micrometer (manufactured by Mitutoyo Corporation). The measured value is the average value of the values measured at a total of 5 points including the vicinity of 4 corners on the plane of the produced anisotropic light diffusion film and the anisotropic light diffusion film laminate and 1 point near the center of the plane. did.
図6に示すような、光源の投光角、検出器の受光角を任意に可変できる変角光度計ゴニオフォトメータ(ジェネシア社製)を用いて、実施例で得られた異方性光拡散フィルムおよび異方性光拡散フィルム積層体の直線透過光量の測定を行った。光源からの直進光を受ける位置に検出器を固定し、その間のサンプルホルダーに実施例で得られた異方性光拡散フィルムおよび異方性光拡散フィルム積層体をセットした。なお、この直線Vは、散乱中心軸の傾斜方位に垂直な異方性光拡散フィルム上の線となるように配置した。
また、光源からの光の入射側が、異方性光拡散フィルムでは照射表面側に、異方性光拡散フィルム積層体では積層体表面側で、且つ、積層体表面を有する異方性光拡散フィルムの散乱中心軸角度θAが、正の値となるようにして、設置した。
図6に示すように直線Vを回転軸としてサンプルを回転させて、それぞれの入射光角度に対応する直線透過光量を測定し、直線透過率を算出し、直線透過率を角度ごとにプロットし、光学プロファイルを作成した。この評価方法によって、どの角度の範囲で入射される光が拡散するかを評価することができる。直線透過光量の測定は、視感度フィルターを用いて可視光領域の波長において測定した。
以上のような測定の結果得られた光学プロファイルに基づき、直線透過率の最大値である最大直線透過率および当該最大直線透過率での入射光角度を得た。
また、散乱中心軸を2つ有する異方性光拡散フィルムのとき、光拡散性が略対称性を有する入射光角度で、0°よりもプラス側に位置する角度(直線透過率極小値間に挟まれた略中央部(拡散領域の中央部)の角度)を、散乱中心軸Aの散乱中心軸角度θAとして得て、0°よりもマイナス側に位置する角度(直線透過率極小値間に挟まれた略中央部(拡散領域の中央部)の角度)を、散乱中心軸Bの散乱中心軸角度θBとして得た。
さらに、散乱中心軸を1つ有する異方性光拡散フィルムのとき、光拡散性が略対称性を有する入射光角度(直線透過率極小値間に挟まれた略中央部(拡散領域の中央部)の角度)を、散乱中心軸Aの散乱中心軸角度θAとして得た。
そして、散乱中心軸を2つ有する異方性光拡散フィルムのとき、散乱中心軸Aと、異方性光拡散フィルム平面法線との間の角度における極小直線透過率をTminAと、散乱中心軸Bと、異方性光拡散フィルム平面法線との間の角度における極小直線透過率をTminBとを得て、|TminA-TminB|を算出した。
さらに、散乱中心軸を1つ有する異方性光拡散フィルムのとき、散乱中心軸と、異方性光拡散フィルム平面法線との間の角度における極小直線透過率をTminAとして得た。 <Linear Transmittance, Scattering Central Axis Angle>
As shown in FIG. 6, the anisotropic light diffusion film obtained in the example and the The linear transmitted light amount of the anisotropic light diffusion film laminate was measured. A detector was fixed at a position where it received rectilinear light from the light source, and the anisotropic light-diffusing film and the anisotropic light-diffusing film laminate obtained in Examples were set on a sample holder therebetween. The straight line V was arranged so as to be a line on the anisotropic light diffusion film perpendicular to the tilt direction of the central axis of scattering.
Further, the incident side of the light from the light source is the irradiation surface side in the anisotropic light diffusion film, the laminate surface side in the anisotropic light diffusion film laminate, and the scattering center axis angle θ of the anisotropic light diffusion film having the laminate surface. It was set so that A was a positive value.
As shown in FIG. 6, the sample is rotated with the straight line V as the axis of rotation, the amount of linear transmitted light corresponding to each incident light angle is measured, the linear transmittance is calculated, the linear transmittance is plotted for each angle, An optical profile was created. With this evaluation method, it is possible to evaluate in which range of angles the incident light is diffused. The amount of linearly transmitted light was measured at a wavelength in the visible light region using a visibility filter.
Based on the optical profile obtained as a result of the above measurements, the maximum linear transmittance, which is the maximum value of the linear transmittance, and the incident light angle at the maximum linear transmittance were obtained.
In the case of an anisotropic light diffusion film having two scattering central axes, the incident light angle at which the light diffusion property is approximately symmetrical is an angle located on the positive side of 0° (between the minimum values of linear transmittance The angle of the central portion (the central portion of the diffusion region)) is obtained as the scattering central axis angle θ A of the scattering central axis A, and the angle located on the minus side of 0° (between the minimum values of the linear transmittance) The angle of the approximate central portion (the central portion of the diffusion region)) was obtained as the scattering central axis angle θ B of the scattering central axis B.
Furthermore, in the case of an anisotropic light diffusion film having one central scattering axis, the angle of incident light (substantially central portion sandwiched between the minimum values of linear transmittance (central portion of the diffusion region) at which the light diffusion property has approximately symmetry angle) was obtained as the scattering central axis angle θ A of the scattering central axis A.
In the case of an anisotropic light diffusion film having two scattering central axes, the minimum linear transmittance at the angle between the scattering central axis A and the plane normal of the anisotropic light diffusing film is Tmin A , the scattering central axis B, |Tmin A −Tmin B | was calculated by obtaining Tmin B and the minimum linear transmittance at the angle between the anisotropic light diffusion film and the normal to the plane.
Furthermore, in the case of an anisotropic light-diffusing film having one scattering central axis, the minimum linear transmittance at the angle between the scattering central axis and the plane normal of the anisotropic light-diffusing film was obtained as Tmin A.
実施例で得られた異方性光拡散フィルムおよび異方性光拡散フィルム積層体の複数の柱状構造体の、柱軸に垂直な断面(紫外線照射時の照射光側)を光学顕微鏡で観察し、柱状領域における柱状構造体の長径LAおよび短径SAを測定した。平均長径LAおよび平均短径SAの算出には、任意の20個の柱状構造体の平均値とした。また、求めた平均長径LAおよび平均短径SAに対し、平均長径LA/平均短径SAをアスペクト比として算出した。 <Aspect Ratio of Columnar Structure>
A plurality of columnar structures of the anisotropic light-diffusing film and the anisotropic light-diffusing film laminate obtained in Examples were observed with an optical microscope for cross sections perpendicular to the columnar axis (irradiation light side during ultraviolet irradiation). A major axis LA and a minor axis SA of the columnar structure were measured. An average value of 20 arbitrary columnar structures was used to calculate the average major axis LA and average minor axis SA. Also, the average major axis LA/average minor axis SA was calculated as an aspect ratio with respect to the obtained average major axis LA and average minor axis SA.
ヘイズメーターNDH-2000(日本電色工業社製)を用いてJIS K7136-1:2000に準拠し、実施例で得られた異方性光拡散フィルムおよび異方性光拡散フィルム積層体のヘイズ値の測定を行った。
なお、光の入射側は、異方性光拡散フィルムでは照射表面、異方性光拡散フィルム積層体では、積層体表面とした。 <Haze value (Hz)>
Using a haze meter NDH-2000 (manufactured by Nippon Denshoku Industries Co., Ltd.), the haze values of the anisotropic light diffusion films and anisotropic light diffusion film laminates obtained in Examples were measured according to JIS K7136-1:2000. rice field.
The incident side of light was the irradiated surface for the anisotropic light diffusion film, and the surface of the laminate for the anisotropic light diffusion film laminate.
引き続き、実施例で作製した異方性光拡散フィルム1~5および異方性光拡散フィルム積層体1~3を、表2に示す実施例1~5の異方性光拡散フィルム1~5および比較例1~3の異方性光拡散フィルム積層体1~3とし、以下の評価を行った。 <<Evaluation>>
Subsequently, the anisotropic light-diffusing
実施例で得た異方性光拡散フィルムまたは異方性光拡散フィルム積層体を、TNモードの液晶ディスプレイ表面に貼合した。より詳細には、液晶ディスプレイの平面を正面から見たときに右側となる3時の方位をφ=0°とし、0時の方位をφ=90°、9時の方位をφ=180°、6時の方位をφ=270°とする。
これに対し、実施例1~5の異方性光拡散フィルム1~5では、散乱中心軸Aの傾斜方位をφ=0°に合わせて積層貼合し、比較例1~3の異方性光拡散フィルム積層体1~3では積層体表面の散乱中心軸Aの傾斜方位をφ=0°に合わせて積層貼合した。
続いて、視野角測定装置Conometer80(Westboro社製)を用いて、液晶ディスプレイに白を表示したときの、液晶ディスプレイの法線方向に対する極角0~80°の範囲における白輝度を測定した。
液晶ディスプレイの法線方向(極角θ=0°)である正面の白輝度と、ディスプレイ平面の左右方向(φ=0°、180°)における視野角30°および70°(極角θ=30°および70°)での白輝度とを測定し、対ブランク比との対比である白輝度比として表3にまとめた。
なお、白輝度比は、液晶ディスプレイ表面に異方性光拡散フィルムまたは異方性光拡散フィルム積層体を貼合していない状態を1とする対ブランク比として算出した。 <White luminance ratio>
The anisotropic light-diffusing film or the anisotropic light-diffusing film laminate obtained in the example was attached to the surface of a TN mode liquid crystal display. More specifically, when the plane of the liquid crystal display is viewed from the front, the azimuth at 3 o'clock on the right side is φ = 0°, the azimuth at 0 o'clock is φ = 90°, the azimuth at 9 o'clock is φ = 180°, Assume that the azimuth at 6 o'clock is φ=270°.
On the other hand, in the anisotropic
Subsequently, using a viewing angle measuring device Conometer 80 (manufactured by Westboro), white luminance was measured in a polar angle range of 0 to 80° with respect to the normal direction of the liquid crystal display when white was displayed on the liquid crystal display.
The white luminance at the front, which is the normal direction of the liquid crystal display (polar angle θ = 0°), and the viewing angles of 30° and 70° (polar angle θ = 30°) in the horizontal direction of the display plane (φ = 0°, 180°) and 70°) were measured and summarized in Table 3 as the white luminance ratio, which is a comparison with the blank ratio.
The white luminance ratio was calculated as a ratio to a blank, with 1 being the state in which the anisotropic light-diffusing film or the anisotropic light-diffusing film laminate was not attached to the surface of the liquid crystal display.
白輝度の評価に用いた構成(液晶ディスプレイ表面に異方性光拡散フィルムまたは異方性光拡散フィルム積層体を貼合)において、液晶ディスプレイに白を表示させ、ルーペを用いて表面からRGBの画素を確認した。 <bokeh>
In the configuration used for the evaluation of white luminance (an anisotropic light diffusion film or an anisotropic light diffusion film laminate was attached to the surface of the liquid crystal display), white was displayed on the liquid crystal display, and RGB pixels were confirmed from the surface using a loupe. .
白輝度およびぼけの評価基準は以下とした。 <<Evaluation Criteria>>
The evaluation criteria for white brightness and blur are as follows.
極角θ=0°または30°のとき
0.8以上:○
0.8未満:×
極角θ=70°のとき
1.30以上:○
1.30未満:× <Evaluation Criteria for White Luminance Ratio>
When the polar angle θ = 0° or 30° 0.8 or more: ○
Less than 0.8: ×
1.30 or more when polar angle θ = 70°: ○
Less than 1.30: ×
RGBの画素が、その境界であるブラックマトリクスもくっきりと視認できるもの:◎
RGBがそれぞれ識別できるもの:○
少なくともRGBの一部が混ざって見えるもの:× <Bokeh Evaluation Criteria>
The RGB pixels and the black matrix, which is the boundary between them, can be clearly seen: ◎
RGB can be identified respectively: ○
At least part of RGB looks mixed: ×
実施例1~5に示されるとおり、本発明の散乱中心軸を2つ有する異方性光拡散フィルムは、正面(極角θ=0°)や、比較的浅い視野角(極角θ=30°)での液晶ディスプレイ平面の左右方向(φ=0°、180°)の輝度低下を抑えつつ、深い視野角(極角θ=70°)において、当該正面および比較的浅い視野角よりも、輝度が向上していた。すなわち、相対する2方位への視野角拡大の効果が現れているといえる。また、同時に画像ボケも抑えられていた。
一方、比較例1~3は、散乱中心軸を1つ有する異方性光拡散フィルムを2枚準備し、2枚の散乱中心軸が互い違いとなるよう、傾斜方位を180°ずらし、透明粘着を介して積層したものであるが、液晶ディスプレイの光が段階的に拡散されることで、左右の拡散性に差が生じてしまい、当該比較的浅い視野角又は深い視野角で、液晶ディスプレイ平面の左右方向いずれかの輝度が低くなってしまっていた。さらに比較例2および3では、当該正面の輝度が低下や、ぼけが強くなってしまった。
また、本発明の異方性光拡散フィルム積層体は、比較例の異方性光拡散フィルム積層体よりも、1層で本評価結果をえることができるので、厚みやコストの観点からも、有利であるものと考える。 <<Evaluation result>>
As shown in Examples 1 to 5, the anisotropic light diffusion film having two scattering central axes of the present invention can be viewed from the front (polar angle θ = 0°) or at a relatively shallow viewing angle (polar angle θ = 30°). While suppressing the decrease in brightness in the horizontal direction (φ = 0 °, 180 °) of the liquid crystal display plane, at a deep viewing angle (polar angle θ = 70 °), the brightness is higher than the front and relatively shallow viewing angles. was improving. In other words, it can be said that the effect of widening the viewing angle in two opposite directions has appeared. At the same time, image blurring was also suppressed.
On the other hand, in Comparative Examples 1 to 3, two anisotropic light diffusion films having one scattering central axis were prepared, and the tilted orientation was shifted by 180° so that the scattering central axes of the two sheets were alternated. Although it is laminated, the light of the liquid crystal display is diffused step by step, causing a difference in diffusion between the left and right. The brightness of one of them had become low. Furthermore, in Comparative Examples 2 and 3, the front luminance decreased and the blur increased.
In addition, the anisotropic light-diffusing film laminate of the present invention is more advantageous in terms of thickness and cost than the anisotropic light-diffusing film laminate of the comparative example, since it is possible to obtain this evaluation result with a single layer. I think.
Claims (6)
- 光の入射角度により拡散性が変化する異方性光拡散フィルムであって、
前記異方性光拡散フィルムは、マトリックス領域と、前記マトリックス領域とは屈折率の異なる複数の柱状構造体である柱状領域とを有し、
前記異方性光拡散フィルムの法線角度を0°としたとき、0°超90°未満の角度範囲に散乱中心軸Aおよび散乱中心軸Bを有し、
前記散乱中心軸Aの方位角φAを0°としたとき、前記散乱中心軸Bの方位角φBは、170°~190°であり、
前記法線と、前記散乱中心軸Aとのなす角度を散乱中心軸角度θAとし、前記法線と前記散乱中心軸Bとのなす角度を散乱中心軸角度θBとすると、θB=θA±10°であることを特徴とする、異方性光拡散フィルム。 An anisotropic light diffusion film whose diffusibility changes depending on the incident angle of light,
The anisotropic light diffusion film has a matrix region and a columnar region that is a plurality of columnar structures having a different refractive index from the matrix region,
When the normal angle of the anisotropic light diffusion film is 0°, the scattering central axis A and the scattering central axis B are in an angle range of more than 0° and less than 90°,
When the azimuth angle φ A of the scattering central axis A is 0°, the azimuth angle φ B of the scattering central axis B is 170° to 190°,
Let the angle formed by the normal line and the scattering center axis A be the scattering center axis angle θ A , and let the angle between the normal line and the scattering center axis B be the scattering center axis angle θ B , then θ B =θ A An anisotropic light-diffusing film characterized by ±10°. - 前記散乱中心軸Aと法線との間の角度における極小直線透過率をTminAとし、前記散乱中心軸Bと法線との間の角度における極小直線透過率をTminBとすると、
|TminA-TminB|≦5パーセントポイント
であることを特徴とする、請求項1に記載の異方性光拡散フィルム。 Let Tmin A be the minimum linear transmittance at the angle between the scattering central axis A and the normal, and Tmin B be the minimum linear transmittance at the angle between the scattering central axis B and the normal.
The anisotropic light-diffusing film of claim 1, wherein |Tmin A - Tmin B |≤5 percentage points. - 前記散乱中心軸角度θAが10°~60°であることを特徴とする、請求項1又は2に記載の異方性光拡散フィルム。 3. The anisotropic light-diffusing film according to claim 1, wherein the scattering central axis angle θ A is 10° to 60°.
- ヘイズ値が、40%以上であることを特徴とする、請求項1~3のいずれか一項に記載の異方性光拡散フィルム。 The anisotropic light-diffusing film according to any one of claims 1 to 3, which has a haze value of 40% or more.
- 前記複数の柱状構造体の配向方向に垂直な断面における短径と長径のアスペクト比が2未満であることを特徴とする、請求項1~4のいずれか一項に記載の異方性光拡散フィルム。 The anisotropic light-diffusing film according to any one of claims 1 to 4, characterized in that the aspect ratio of the minor axis to the major axis in a cross section perpendicular to the alignment direction of the plurality of columnar structures is less than 2.
- 請求項1~5のいずれか一項に記載の異方性光拡散フィルムを含むことを特徴とする、表示装置。 A display device comprising the anisotropic light diffusion film according to any one of claims 1 to 5.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023510716A JPWO2022209567A1 (en) | 2021-03-31 | 2022-03-03 | |
CN202280012694.3A CN116802525A (en) | 2021-03-31 | 2022-03-03 | Anisotropic light diffusion film and display device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021062387 | 2021-03-31 | ||
JP2021-062387 | 2021-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022209567A1 true WO2022209567A1 (en) | 2022-10-06 |
Family
ID=83458558
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/009244 WO2022209567A1 (en) | 2021-03-31 | 2022-03-03 | Anisotropic light-diffusing film and display device |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPWO2022209567A1 (en) |
CN (1) | CN116802525A (en) |
TW (1) | TW202246860A (en) |
WO (1) | WO2022209567A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009116127A (en) * | 2007-11-07 | 2009-05-28 | Tomoegawa Paper Co Ltd | Anisotropic diffusion medium and light source unit using the same |
WO2014156420A1 (en) * | 2013-03-29 | 2014-10-02 | リンテック株式会社 | Light diffusion film and light diffusion film manufacturing method |
WO2015111523A1 (en) * | 2014-01-21 | 2015-07-30 | 株式会社巴川製紙所 | Anisotropic optical film |
JP2017097357A (en) * | 2016-12-19 | 2017-06-01 | リンテック株式会社 | Method for manufacturing light diffusion film |
-
2022
- 2022-03-03 CN CN202280012694.3A patent/CN116802525A/en active Pending
- 2022-03-03 WO PCT/JP2022/009244 patent/WO2022209567A1/en active Application Filing
- 2022-03-03 JP JP2023510716A patent/JPWO2022209567A1/ja active Pending
- 2022-03-24 TW TW111111163A patent/TW202246860A/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009116127A (en) * | 2007-11-07 | 2009-05-28 | Tomoegawa Paper Co Ltd | Anisotropic diffusion medium and light source unit using the same |
WO2014156420A1 (en) * | 2013-03-29 | 2014-10-02 | リンテック株式会社 | Light diffusion film and light diffusion film manufacturing method |
WO2015111523A1 (en) * | 2014-01-21 | 2015-07-30 | 株式会社巴川製紙所 | Anisotropic optical film |
JP2017097357A (en) * | 2016-12-19 | 2017-06-01 | リンテック株式会社 | Method for manufacturing light diffusion film |
Also Published As
Publication number | Publication date |
---|---|
CN116802525A (en) | 2023-09-22 |
JPWO2022209567A1 (en) | 2022-10-06 |
TW202246860A (en) | 2022-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6288672B2 (en) | Anisotropic optical film | |
JP6433638B1 (en) | Light guide laminate using anisotropic optical film and planar light source device using the same | |
KR102530917B1 (en) | Anti-glare film and display device | |
JP5670601B2 (en) | Anisotropic optical film | |
JP6716313B2 (en) | Method for producing anisotropic optical film | |
CN112074771B (en) | Head-mounted display | |
JP6093113B2 (en) | Anisotropic optical film | |
JP5977955B2 (en) | Anisotropic optical film and method for producing the same | |
JP2015222441A (en) | Anisotropic optical film | |
JP7191537B2 (en) | anisotropic optical film | |
JP6542007B2 (en) | Anisotropic optical film and method for producing the same | |
CN112088578B (en) | Head-mounted display | |
WO2022209567A1 (en) | Anisotropic light-diffusing film and display device | |
JP6902895B2 (en) | Anisotropic optical film and its manufacturing method | |
WO2021200891A1 (en) | Anisotropic light-diffusing film and display device | |
JP7475182B2 (en) | Anisotropic light-diffusing film laminate and display device | |
JP7475333B2 (en) | Reflective display device using anisotropic optical film | |
JP2022157897A (en) | Anisotropic light diffusion film laminate and display device | |
JP6581329B1 (en) | Head mounted display | |
JP2023130815A (en) | Liquid crystal photomask laminate and exposure device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22779792 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280012694.3 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023510716 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22779792 Country of ref document: EP Kind code of ref document: A1 |