WO2008052839A1 - Verfahren und vorrichtung zum übertragen von wärme zwischen in einem behälter befindlichem abwasser und einer flüssigkeit - Google Patents

Verfahren und vorrichtung zum übertragen von wärme zwischen in einem behälter befindlichem abwasser und einer flüssigkeit Download PDF

Info

Publication number
WO2008052839A1
WO2008052839A1 PCT/EP2007/059606 EP2007059606W WO2008052839A1 WO 2008052839 A1 WO2008052839 A1 WO 2008052839A1 EP 2007059606 W EP2007059606 W EP 2007059606W WO 2008052839 A1 WO2008052839 A1 WO 2008052839A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
flow
waste water
wastewater
container
Prior art date
Application number
PCT/EP2007/059606
Other languages
English (en)
French (fr)
Inventor
Christian Frommann
Original Assignee
Hans Huber Ag Maschinen- Und Anlagenbau
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hans Huber Ag Maschinen- Und Anlagenbau filed Critical Hans Huber Ag Maschinen- Und Anlagenbau
Priority to US12/447,585 priority Critical patent/US8603336B2/en
Priority to AT07820162T priority patent/ATE460633T1/de
Priority to CN2007800402008A priority patent/CN101529192B/zh
Priority to DE502007003105T priority patent/DE502007003105D1/de
Priority to EP07820162A priority patent/EP2084479B1/de
Publication of WO2008052839A1 publication Critical patent/WO2008052839A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/0206Heat exchangers immersed in a large body of liquid
    • F28D1/0213Heat exchangers immersed in a large body of liquid for heating or cooling a liquid in a tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/06Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with the heat-exchange conduits forming part of, or being attached to, the tank containing the body of fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G1/00Non-rotary, e.g. reciprocated, appliances
    • F28G1/02Non-rotary, e.g. reciprocated, appliances having brushes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G9/00Cleaning by flushing or washing, e.g. with chemical solvents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0012Recuperative heat exchangers the heat being recuperated from waste water or from condensates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/30Relating to industrial water supply, e.g. used for cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Definitions

  • the present invention relates to a method for transferring heat between located in a container wastewater and a liquid by means of a heat exchanger through which flows through the heat exchanger with an outer surface touched by the wastewater, wherein in the waste water, a convective flow is generated, the waste water along the Outside surface moves and a device for carrying out the method.
  • the wastewater can be domestic, municipal, commercial or industrial wastewater.
  • the liquid may be, for example, water, an aqueous solution, alcohol or oil.
  • Heat is either transferred from the waste water to the liquid to cool the wastewater or to heat the liquid.
  • the heated liquid can be circulated through a heat pump to make the heat of the waste water usable for heating purposes.
  • heat can also be transferred from the liquid to the wastewater in order to warm it up and thereby make it easier to treat.
  • the container may be a closed tank or an open basin.
  • the container can be continuously flowed through by the wastewater, or waste water is added to the container batchwise and removed.
  • the heat exchanger is a hollow body, which is flowed through by the liquid inside and whose outer surface is in contact with the wastewater.
  • heat is transferred when the liquid and the wastewater have a different temperature.
  • the heat transfer capacity of the heat exchanger is proportional to the outer surface contacted with waste water, the temperature difference of the two fluids and a heat transfer coefficient (the k value).
  • the k value is the reciprocal of a heat transfer resistance. This resistance is the sum of the resistances against the heat transfer from the liquid to the wall, against the heat conduction through the wall and against the heat transfer from the wall into the surrounding waste water.
  • the resistance to the heat conduction through the wall is proportional to the thickness of the wall and inversely proportional to the thermal conductivity of the wall material, so due to the design of the heat exchanger.
  • the resistances against the transfer of heat from the fluids to the wall and vice versa are not only dependent on the properties of the fluids (in particular their thermal conductivities, viscosities and heat capacities), but in particular also dependent on their flow conditions.
  • the inverse of the internal and external heat transfer resistances are heat transfer coefficients (alpha values).
  • Alpha values are low, that is, heat transfer is poor when fluids are at rest. Then, the heat transfer relies on the moderate heat conduction due to diffusion and natural convection, which is a flow created by the altered density of the fluids as they are heated or cooled on the wall. Much better, ie higher alpha values are achievable by forced convection, which are artificially generated currents on the wall. Currents are characterized by their Reynolds number (Re), which is proportional to the flow velocity and a characteristic geometric length (eg, the diameter of a tube) and inversely proportional to the kinematic viscosity of the fluid.
  • Re Reynolds number
  • This flow should preferably sweep across the outer surface, i. it should have a roughly parallel direction to the outer surface.
  • European Patent Specification EP 0 174 554 B1 also discloses a heat exchanger installed in a dirty water tank wherein a purge gas is injected below the heat exchanger into the water to clean the outside surface of the heat exchanger and improve the heat transfer.
  • the object of the present invention is to provide a method and a device for carrying out the method which do not have the mentioned disadvantages and enable a simple and cost-effective use of the thermal energy present in waste waters.
  • wastewater flows through a container in which a heat exchanger is located, producing a convective flow which serves as an aid for cleaning the wastewater, but at the same time also for cleaning the outer surface of the heat exchanger and improving the heat transfer at the heat exchanger ,
  • Trapped containers are part of almost every wastewater treatment plant and can be made available in a simple manner in addition to the heat transfer between wastewater and service water.
  • Often devices for the generation of convective flows are already present in such containers, which are used as aids for the purification of waste water.
  • Such flows can be generated for example by stirrers or by blowing a gas such as air into the wastewater.
  • the benefits of these convective flows for wastewater treatment may include, for example, avoiding bottom deposits, mixing the wastewater, mixing chemicals into the wastewater, accelerating precipitation or flocculation, or aerating the wastewater.
  • different Flow conditions already exist in the very least points of a wastewater treatment plant which, in addition to their actual purpose, can be used to improve the heat transfer to a heat exchanger or to clean the heat exchanger surface.
  • the thermal energy of this wastewater can additionally be utilized by installing a heat exchanger at a suitable point in a container of a wastewater treatment plant through which it flows.
  • the energy to be expended here is limited only to the operation of any existing pumping device, which causes the transport of the liquid through the heat exchanger and possibly on the operation of an additional heat pump. Since the convective flows are used both for wastewater treatment and heat recovery, the costs for this only apply once. Also, the wastewater does not have to be cached in a complex manner in a tank. Rather, the installation of the heat exchanger is proposed within flowing through serving for wastewater treatment tanks, as this investment and energy costs can be further reduced.
  • the wastewater treatment can take place in an industrial plant or on a municipal sewage treatment plant.
  • it may also be a decentralized wastewater treatment in hotels, residential or office complexes, leisure facilities or districts.
  • a decentralized wastewater treatment is particularly suitable for the task of using the waste heat by means of a heat pump for heating, since in this case the wastewater is comparatively warm and close to the place there is a great need for heating heat.
  • the convective flow is generated in the waste water tank by a pressure ventilation.
  • a pressurized air is blown into the wastewater to supply microorganisms with oxygen and to discharge gaseous metabolites such as carbon dioxide or nitrogen gas.
  • gaseous metabolites such as carbon dioxide or nitrogen gas.
  • air bubbles rise up in the wastewater and entrain the surrounding wastewater.
  • the aeration device it is possible with low energy consumption to produce in the container a pronounced flow roll with flow rates of several meters per second.
  • the air is preferably supplied below or obliquely below the heat exchanger so that the upward flow is superimposed by turbulence around the rising air bubbles.
  • the heat exchanger in a place where the flow is directed downwards.
  • the outer surface of the heat exchanger should in both cases have an approximately vertical orientation, so that the wastewater with low flow resistance flows over the outer surface.
  • the convective flow in the container is generated by surface aeration.
  • Surface aerators are either vertical axis rotors or horizontal axis rollers which throw a mixture of sewage and activated sludge through the air or blow air bubbles into the mixture to aerate it.
  • the surface aerators generate the necessary strong convection flow in the aeration basin.
  • the wastewater be aerated with compressed air in a container, for example a sand trap, as will be described in more detail below, and ascending air bubbles produce a cylindrical flow of the waste water. witness.
  • a roller-shaped flow is generated in particular in elongate containers by blowing air in the vicinity of a side wall of the container.
  • a double flow roller can also be produced by pressing air in the vicinity of the central longitudinal axis of the container.
  • the heat exchanger is arranged in an area in which the injected air bubbles rise up and generate an upward flow of the wastewater.
  • a toroidal flow of the waste water is generated in the container.
  • a toroidal flow is preferably generated in containers having a circular or approximately square base.
  • the wastewater flows upwards in the center and downwards at the periphery.
  • the flow can also have the opposite direction.
  • the flow in the container is advantageously generated by an agitator.
  • agitators may be agitators that generate an axial or a radial flow.
  • the type of agitator and its arrangement are particularly dependent on the shape of the container.
  • For long rectangular containers it is preferable to employ horizontal propeller mixers which create a flow along the longitudinal axis of the container.
  • agitators will preferably be arranged on the vertical central axis. These have either impellers that produce a rotational flow or down or up propellers that produce a toroidal flow or annular roller flow in the container. Even in all these cases, the heat exchangers are preferably arranged so that their outer surfaces are aligned parallel to the flow.
  • Sand traps are used to separate solids of high specific gravity, such as sand, SpNt and stones.
  • a convective flow is generated, which is dimensioned so that on the one hand organics are held in suspension, on the other hand, a decline of mineral substances is not prevented.
  • This convective flow is additionally useful to increase the alpha value on the outer surface of heat exchangers disposed in the sand trap.
  • the convective flow generated in sand traps for the purpose of sand separation is very strong and clearly pronounced. Therefore, it can be used in a particularly good way for the flow of heat exchangers.
  • Sandboxes are often made of steel and supplied complete with all fittings. Therefore, it is particularly economical to integrate heat exchangers factory in sand trap.
  • the wastewater is biologically purified.
  • the biological treatment is usually carried out in a ventilation basin of an activation plant.
  • Part of each activated sludge plant is an aeration basin in which a mixture of wastewater and activated sludge is aerated to provide the microorganisms in the activated sludge with oxygen, and to discharge the metabolite carbon dioxide and optionally nitrogen.
  • aeration tanks are equipped with a pressure aeration, in which air is blown into the wastewater. It is particularly advantageous to install heat exchangers above the location at which air is injected. When installing a heat exchanger in an existing aeration basin with pressure ventilation, the already existing convective flow is shared with the heat exchange without additional costs.
  • aeration tanks of activated sludge plants can also be equipped with surface aerators that generate a convective flow.
  • a device for transferring heat between wastewater in a container and a liquid proposed by means of a heat exchanger through which flows through the liquid with an outer surface contacted by the wastewater, wherein in the waste water, a diffuser pipe for injecting air and / or an agitator is arranged, which serve to generate a convective flow.
  • the container is a basin of a wastewater treatment plant through which the wastewater flows. Such basins often already have devices for generating convective flows which support the action of mechanical, biological and / or chemical purification stages.
  • Wastewater tanks are tanks that have an inlet and a drain. They are part of virtually every wastewater treatment plant.
  • the pools can be open or closed at the top.
  • the diffuser pipe is a horizontally arranged pipe to which compressed air is supplied and which is provided with openings through which air in the form of coarse bubbles is pressed into the waste water.
  • the diffuser tube may alternatively be provided with porous or slotted aerating elements, through which the air is pressed in the form of more or less fine bubbles in the wastewater.
  • the flow-through basin is a ventilation basin of an activation plant, which serves the biological wastewater treatment and in the By convection a convective flow is generated.
  • activated sludge plants organic components in the wastewater are metabolised by microorganisms and thereby converted into biomass.
  • a secondary clarification for example a secondary clarifier, the biomass is separated as so-called activated sludge and returned to the aeration tank. The growth of biomass is taken from the secondary clarification as so-called excess sludge.
  • the basin is a sand trap.
  • sand traps a mechanical pre-treatment of waste water by separation of specific heavy particulate sediments.
  • a convective flow is generated which is so strong that it specifically holds less dense organic matter in suspension.
  • the sand trap is advantageously a Rundsandfang, in the center of which a toroidal flow generating agitator is arranged.
  • Stirrers are commonly installed in round sand traps to create a rotating and toroidal flow such that over the bottom of the sand trap the sewage flows on a spiral path to the center. From this flow, mineral solids are pushed towards the center and sink, for example, through an annular gap in a collecting space located below the ground. It is proposed to arrange heat exchangers on the circumference of the round sand trap, where the waste water flows downwards. Alternatively, they can also be arranged in a ring around the agitator, wherein the waste water flows upwards in these areas.
  • the sand trap is a long sand trap having a side wall and at least one diffuser tube arranged in the vicinity and along the longitudinal wall for blowing in air and for producing a roller-shaped flow.
  • a roll flow is usually achieved by blowing compressed air along one of the longitudinal walls. de generated. This roll flow is also used according to the invention to improve the heat transfer of the arranged in the ventilated sand trap heat exchanger.
  • the heat exchanger advantageously has an inlet and a drain for the liquid, which are interconnected by at least one flow channel, wherein outer surfaces of the flow channel form the outer surface of the heat exchanger.
  • the liquid preferably flows turbulently through the flow channel from the inlet to the outlet.
  • the flow channel should have a small hydraulic diameter and be long.
  • the flow channel is bounded by walls whose at least one outer surface forms the outer surface of the heat exchanger. Along the inner surfaces of the walls, the liquid flows, along the outer surfaces of the walls, the sewage flows.
  • the flow channel is formed from pipe sections with a circular, rectangular or square cross-sectional area.
  • the flow channel is thus produced by a sequence of commercially available tubular profiles whose outer surfaces form the outer surface of the heat exchanger.
  • the pipe sections are aligned substantially horizontally. This orientation is particularly advantageous when the container in which the heat exchanger is arranged, is flat. In this case, the pipes are flowed transversely.
  • the pipe sections are oriented substantially vertically.
  • the tubes are flowed longitudinally, which has the advantage that the tubes produce a low flow resistance and thus affecting the convective flow in the basin only slightly.
  • the pipe sections are arranged in parallel and have ends which are connected to each other on the liquid side so that the liquid flows in respectively adjacent pipe sections in the opposite direction.
  • the liquid thus flows back and forth in the pipe sections arranged in parallel.
  • the connection between adjacent pipe sections can be made by vertical connecting pipes. If rectangular or square pipe sections are arranged without spacing parallel to each other, their ends can be connected to each other through openings, for example bores.
  • the flow channel is formed by at least one hollow profile arranged in the form of a helix, wherein the helix has a vertical axis.
  • the hollow profile may for example be a circular or rectangular tube profile.
  • tubes are arranged in parallel to form a long flow channel. Because of the lack of sharp deflections of the liquid-side flow resistance is particularly low. This variant is particularly suitable for round containers.
  • the outer surface of the heat exchanger is substantially parallel to the convective flow and is flat or wavy.
  • the heat exchanger should have the lowest possible flow resistance for the convective flow. Therefore, its outer surface should be parallel to the flow, so that the waste water can flow unhindered over the outer surface. If rectangular profiles are arranged in parallel with little or no spacing, they will form a flat outer surface for the flow. If profiled sheets, as in modern radiators, are interconnected, these have a wavy outer surface. Even if round tubes are arranged in parallel, they form approximately a corrugated outer surface, even if there is a gap between the tubes. It is then an enveloping imaginary outer surface.
  • the outer surface of the heat exchanger is at the same time an inner surface of a container wall.
  • the heat exchanger is an integral part of a wall of the container. This has the advantage that the heat exchanger generates no or only a very small additional resistance to the convective flow.
  • the profiles are partial profiles such as half-tubes, U-profiles or L-profiles.
  • the profiles may be attached to the inside of the container wall. In metal containers, however, the profiles may also be mounted on the outside of the container wall, so that the container wall forms the heat-transmitting outer surface of the heat exchanger.
  • the device has movable brushes for cleaning the outer surface of the heat exchanger.
  • the brushes are moved by a drive over the outer surface of the heat exchanger to remove adhering solids or deposits.
  • the outer surface of the heat exchanger is advantageously cleaned by means of movable spray nozzles.
  • the spray is preferably removed from the drain of the wastewater treatment plant, so that it is largely free of solids and the nozzles do not clog. Further advantages of the invention are described in the following exemplary embodiments. Show it:
  • Figure 1 shows a longitudinal section schematically represented by a ventilated Langsandfang with a heat exchanger disposed therein;
  • FIG. 2 shows a schematically represented cross section through the aerated long sand trap of FIG. 1;
  • Figure 3 is a longitudinal section through a schematically illustrated
  • FIG. 4 is a longitudinal section through a venting basin ventilated with compressed air, in which a heat exchanger is arranged;
  • Figure 5 shows a schematic longitudinal section through another aeration tank with a surface ventilation, in which a heat exchanger is arranged
  • Figure 6 shows a device for cleaning the outer surface of a heat exchanger.
  • FIGS 1 and 2 show a grit 1 with a rectangular base.
  • the sand trap 1 consists of a tank 2 with an inlet 4 and a drain 6 for flowing through the sand trap 1 wastewater.
  • the basin 2 can be made of concrete, metal or plastic.
  • the basin 2 is filled with waste water to a certain water level 8.
  • the basin 2 has vertical end walls 10 and 12 and side walls 14 and 16 and inclined bottom surfaces 18 and 20, which are inclined to a groove 22, so that Sand, which settles in the sand trap 1, slips into the channel 22.
  • a screw conveyor 24 is arranged, which is driven by a motor 26 and pushes the separated sand to a sump 28.
  • the sand is discharged from the sump 28 and usually conveyed to a sand classifier or sand scrubber, not shown.
  • the pump 30 may be a centrifugal pump or a mammoth pump (a compressed air lift).
  • the illustrated sand trap 1 in this embodiment a long sand trap, is ventilated. Air is supplied from a blower, not shown, via a pressure line 32 to a horizontally disposed near the side wall 14 diffuser tube 34 which is provided with holes 36 through which the air is injected into the waste water. The injected air rises in the wastewater in the form of air bubbles 38 to the water level 8, thereby generating above the diffuser pipe 34 a strong Konvetechnischsströmung, which is directed parallel to the side wall 14 upwards. In the vicinity of the opposite side wall 16, the waste water flows down and back to the diffuser pipe 34. By the aeration thus a roughly cylindrical flow in the sand trap 1 is generated, which is indicated in the figures by arrows.
  • the flow over the bottom surfaces 18 and 20 is so strong that organic solids of low density, such as feces, are whirled up, whereas high density mineral substances remain on the bottom surfaces 18 and 20.
  • the waste water flows downwards and pushes sand deposited thereon to the channel 22. This prevents organic soil deposits and mixes the waste water, so that chemicals can also be better mixed into the wastewater. In addition, precipitations or flocculations are accelerated, whereby improved wastewater treatment can take place.
  • a partition wall 40 separates a fat catching chamber 42 from the sand trap 1.
  • the partition 40 has openings, not shown, which are not shown. get through the floating matter such as fats and oils in the shielded from the flow fat catching chamber 42, rise in it and form a floating layer 44 on the water level 8.
  • the floating layer 44 is pushed by a dozer blade, not shown, along the fat catching chamber 42 to a funnel, from which it can be discharged by means of a pump 30.
  • a heat exchanger 46 is arranged with an outer surface 48 contacted by the waste water below the water level 8 and above the diffuser pipe 34 and in the vicinity of the side wall 14 so that the air bubbles 38 together with the flow generated in the waste water on the outer surface 48 of the heat exchanger 46 rise along and contribute to the cleaning of the outer surface 48 of the heat exchanger 46.
  • the heat exchanger 46 could also be arranged in the vicinity of the opposite side wall 16 or the partition wall 40 or also above the bottom surface 20, so that the wastewater flows down there past the outer surface 48.
  • the heat exchanger 46 consists of a series of parallel tubes 50, between which intermediate spaces 52 exist.
  • the heat exchanger 46 may consist of other hollow profiles, such as square profiles. It is also possible to arrange hollow profiles horizontally or vertically and without gaps 52.
  • the heat exchanger 46 has a feed pipe 54 and a drain pipe 56 for liquid flowing inside through the heat exchanger 46 and its long flow channel 220 forming tubes 50.
  • the tubes 50 are connected at their ends by means of bends 58 so that the liquid flows in adjacent tubes 50 in the opposite direction. In this way, it is firstly achieved that the flow channel 220 through the tubes 50 is as long as possible and has a large outer surface 48. has. Secondly, it is achieved that the liquid flows quickly and thus turbulently, even at low flow through the heat exchanger 46 in the tubes 50 which flow one behind the other, so that the liquid-side alpha value is high. Third, this allows the heat exchanger 46 to be short and compact despite the large outer surface 48.
  • FIG. 3 shows a round sand trap 100 with a vertical axis 102, a circular basin 2, a peripheral wall 104, a bottom 106, an inlet channel 108 and a drainage channel 110.
  • the inlet channel 108 and the outlet channel 110 open into the basin 2 substantially tangentially that in this a rotating flow is generated and the pressure loss when flowing through wastewater through the round sand trap 100 remains low.
  • the collecting space 112 is separated by a bottom plate 114 from the tank 2 and has a sump 28, from which an axial riser 116 goes out, sucked by the deposited sand from the sump 28 by means of a pump device not shown or a compressed air lift vertically and through a line 118 is also fed to a sand classifier or sand scrubber, also not shown.
  • dense solids such as sand are driven to the center of the basin 2 by the rotational flow due to the so-called teacup effect and by the toroidal flow directed radially inwardly over the bottom 106. They set themselves on the floor 106 and the bottom blade 114 and are pushed in the direction of the axis 102. Between the bottom plate 114 and the hollow shaft 120, an annular gap 130 is arranged through which the sand sinks into the collecting space 112. On the other hand, less dense organic substances are held in suspension by the flow and pass mainly into the drainage channel 110 with the waste water. This ensures that the sand trap 1 has a good selectivity, which means that, on the one hand, little sand remains in the wastewater and, on the other hand, only small amounts Quantities of organic matter are discharged with the sand.
  • a heat exchanger 46 is arranged below the water level 8 and in the vicinity of the peripheral wall 104.
  • Liquid flows through an inlet pipe 54 and an annular tube 50 to a drain pipe 56.
  • the annular tube 50 forms a flow channel 220 of the heat exchanger 46.
  • the liquid flows from the drain pipe 56 in a circuit via a heating or cooling device, not shown, for example, a heat pump, wherein it is heated or cooled back to the feed pipe 54.
  • a heating or cooling device not shown, for example, a heat pump, wherein it is heated or cooled back to the feed pipe 54.
  • the heat exchanger 46 consists only of a single annular tube 50.
  • the heat exchanger 46 is arranged in the exemplary embodiment in the vicinity of the circumferential wall 104, where the waste water flows on the outer surface 48 of the heat exchanger 46 downwards.
  • the heat exchanger 46 can also be arranged elsewhere in the toroidal flow;
  • the guide ring 128 may be formed as a heat exchanger 46, wherein its axis 102 facing outer surface 48 is exposed to a very strong axial and rotating flow.
  • FIG. 4 shows a ventilation basin 200 with a surface aeration.
  • a basin 2 is a mixture of sewage and activated sludge.
  • the basin 2 shown in the embodiment is circular, has a vertical axis 202, a sole 204 and a peripheral wall 206, which is made in the embodiment of sheet metal.
  • a bridge 208 for receiving a motor 210, a gear 212 and a rotating about the vertical axis 202 ventilation gyroscope 214 is arranged above the basin 2, a bridge 208 for receiving a motor 210, a gear 212 and a rotating about the vertical axis 202 ventilation gyroscope 214 is arranged.
  • the aeration gyro 214 sucks the mixture of sewage and activated sludge in the region of the axis 202 upwards and hurls it over the water level 8 radially outward.
  • air bubbles 216 are introduced into the mixture of wastewater and activated sludge, which supply the mixture with oxygen.
  • a pronounced toroidal flow is generated in the basin 2, which is directed upwards in the area of the axis 202 and downwards in the vicinity of the peripheral wall 206.
  • Semi-tubular profiles 218 are mounted around the circumferential wall 206 such that a helical flow channel 220 is formed between the peripheral wall 206 and the half-tube profiles 218, through which liquid flows from an inlet 222 to a drain 224.
  • the inner wall of the circumferential wall 206 is at the same time an outer surface 48 of the heat exchanger 46.
  • the outer side of the circumferential wall 206 is at the same time an inner surface 228 of the flow channel 220 which extends through the heat exchanger 46.
  • the liquid flows through the Flow channel 220 of the heat exchanger 46 and the mixture of sewage and activated sludge flows along the outer surface 48 of the heat exchanger 46.
  • a portion of the peripheral wall 206 serves to transfer heat from the waste water into the liquid or vice versa.
  • the circumferential wall 206 in the region of the heat exchanger 46 should be as thin as possible in order to achieve a good heat conduction through the peripheral wall 206. Since the peripheral wall 206 is reinforced by the attached half-pipe profiles 218, the peripheral wall 206 in the region of the heat exchanger 46 can be made thin.
  • half-pipe profiles 218 are shown which touch each other. These can also be attached with intervals. It is of course also possible to use angular profiles.
  • FIG. 5 shows a ventilation basin 200 with pressure ventilation.
  • a rectangular basin 2 has a flat sole 204 and longitudinal walls 250 and 252. Above the sole 204 and in the vicinity of the longitudinal wall 250, diffuser tubes 34 are arranged, into which compressed air is blown in by a blower, not shown. At the diffuser tubes 34 Belsymmetricerieri 256 are arranged, which are plate-shaped in the embodiment. However, it is also possible to use other, for example tubular or plate-shaped aerating elements 256.
  • the aerator elements 256 have porous bodies or slotted membranes, is entered through the supplied compressed air in the form of fine air bubbles 216 in the wastewater. These rise to the water level 8 and create near the longitudinal wall 250 an upward convective wastewater flow.
  • a roller-shaped flow is generated, whose direction is indicated by arrows.
  • a heat exchanger 46 having a flow passage 220 for liquid passing therethrough is disposed at a position where sewage flows upward along an outer surface 48 of the heat exchanger 46.
  • the heat exchanger 46 of this embodiment is formed of two corrugated sheets 258 and 260, which are connected to each other so that elongated cavities 262 are formed between them, which form the flow channel 220. Adjacent cavities 262 are connected to each other at their ends so that the liquid successively flows through a plurality of cavities 262 in an alternating direction.
  • the sheets 258 and 260 are vertically aligned so that the rising waste water can flow along them without much resistance.
  • the heat exchanger 46 is oriented such that the cavities 262 extend horizontally. It would also be quite possible to arrange the heat exchanger 46 rotated by 90 degrees, so that the cavities 262 extend vertically.
  • FIG. 6 shows a heat exchanger 46 arranged in a basin 2 and a cleaning device 300 according to the invention.
  • the heat exchanger 46 is made up of a plurality of parallel and horizontally oriented square tubes 302, which form a flow channel 220 for liquid and at both ends with apertures, not shown, for example bores. are provided, through which the liquid flows from one into an adjacent square tube 302, so that the liquid flows in opposite square tubes 302 in the opposite direction.
  • the heat exchanger 46 has two parallel vertical outer surfaces 48, which are composed of opposite surfaces of the square tubes 302. Along the vertical outer surfaces 48 of the heat exchanger 46, the wastewater flows convectively upwards, the convection flow assisting For example, can be generated by blowing air below the heat exchanger 46.
  • the cleaning device 300 has brushes 308 which are horizontally movable over the outer surfaces 48 of the heat exchanger 46 to clean them of adhering solids and linings.
  • the brushes 308 are mounted in a fork-shaped bracket 310 which is connected to a gear 312. Horizontally through the gear 312 extends at least one wheel axle 314 with wheels 316 at both ends. The wheels 316 run on treads 318 of the pool wall 320 or on rails.
  • the cleaning device 300 is moved by rotation of a threaded rod 322 passing through the gear 312. Alternatively, it would of course also be possible to move the cleaning device 300 by means of a cable or chain drive. Instead of the brushes 308, spray nozzles could also be arranged in the cleaning device 300.

Abstract

Ein Verfahren zum Übertragen von Wärme zwischen in einem Behälter oder Becken (2) befindlichem Abwasser und einer Flüssigkeit mittels eines von der Flüssigkeit durchströmten Wärmetauschers (46) mit einer vom Abwasser berührten Außenfläche (48), wobei in dem Abwasser eine konvektive Strömung erzeugt wird, die das Abwasser entlang der Außenfläche (48) bewegt. Das Abwasser strömt hierbei durch den Behälter und die erzeugte konvektive Strömung wird als Hilfsmittel zur Reinigung des Abwassers und zugleich zur Reinigung der Außenfläche (48) des Wärmetauschers (46) genutzt. Die konvektive Strömung wird beispielsweise durch eine Druck- oder Oberflächenbelüftung des Abwassers oder durch ein Rührwerk erzeugt. Eine Vorrichtung zum Übertragen von Wärme zwischen in einem Behälter befindlichem Abwasser und einer Flüssigkeit mittels eines von der Flüssigkeit durchströmten Wärmetauschers (46) mit einer vom Abwasser berührten Außenfläche (48), wobei in dem Abwasser ein Diffusorrohr (34) zum Einpressen von Luft und/oder ein Rührwerk zum Erzeugen der konvektiven Strömung angeordnet ist, die das Abwasser entlang der Außenfläche (48) bewegt. Das Becken (2) ist insbesondere ein von dem Abwasser durchflossener Sandfang oder ein Belüftungsbecken (200) einer Abwasserreinigungsanlage.

Description

Verfahren und Vorrichtung zum Übertragen von Wärme zwischen in einem Behälter befindlichem Abwasser und einer Flüssigkeit
Die vorliegende Erfindung betrifft ein Verfahren zum Übertragen von Wärme zwischen in einem Behälter befindlichem Abwasser und einer Flüssigkeit mittels eines von der Flüssigkeit durchströmten Wärmetauschers mit einer vom Abwasser berührten Außenfläche, wobei in dem Abwasser eine konvek- tive Strömung erzeugt wird, die das Abwasser entlang der Außenfläche bewegt sowie eine Vorrichtung zur Durchführung des Verfahrens.
Das Abwasser kann häusliches, kommunales, gewerbliches oder industrielles Abwasser sein. Bei der Flüssigkeit kann es sich beispielsweise um Wasser, eine wässrige Lösung, Alkohol oder Öl handeln. Entweder wird Wärme vom Abwasser auf die Flüssigkeit übertragen, um das Abwasser zu kühlen oder die Flüssigkeit zu erwärmen. Insbesondere kann die aufgewärmte Flüssigkeit im Kreislauf durch eine Wärmepumpe geführt werden, um die Wärme des Abwassers für Heizzwecke nutzbar zu machen. Umgekehrt kann Wärme aber auch von der Flüssigkeit auf das Abwasser übertragen werden, um dieses aufzuwärmen und dadurch besser behandelbar zu machen.
Bei dem Behälter kann es sich um einen geschlossenen Tank oder um ein offenes Becken handeln. Der Behälter kann vom Abwasser kontinuierlich durchströmt sein, oder Abwasser wird dem Behälter chargenweise zu- und abgeführt.
Der Wärmetauscher ist ein Hohlkörper, der innen von der Flüssigkeit durchströmt wird und dessen Außenfläche mit dem Abwasser in Berührung steht. Durch zumindest eine Wand des Wärmetauschers, die vorzugsweise aus gut wärmeleitendem Blech besteht, wird Wärme übertragen, wenn die Flüssigkeit und das Abwasser eine unterschiedliche Temperatur aufweisen. Die Wärme- übertragungsleistung des Wärmetauschers ist proportional zu der mit Abwasser berührten Außenfläche, zur Temperaturdifferenz der beiden Fluide und zu einem Wärmeübertragungskoeffizienten (dem k-Wert). Der k-Wert ist der Kehrwert eines Wärmeübertragungswiderstandes. Dieser Widerstand ist die Summe der Widerstände gegen den Wärmeübergang von der Flüssigkeit auf die Wand, gegen die Wärmeleitung durch die Wand und gegen den Wärmeübergang von der Wand in das umgebende Abwasser. Der Widerstand gegen die Wärmeleitung durch die Wand ist proportional zur Stärke der Wand und umgekehrt proportional zur Wärmeleitfähigkeit des Wandmaterials, also bedingt durch die Bauart des Wärmetauschers. Die Widerstände gegen die Übertragung von Wärme von den Fluiden auf die Wand und umgekehrt sind hingegen nicht nur abhängig von den Eigenschaften der Fluide (insbesondere deren Wärmeleitfähigkeiten, Viskositäten und Wärmekapazitäten), sondern insbesondere auch abhängig von deren Strömungsverhältnissen. Die Kehrwerte der inneren und äußeren Wärmeübertragungswiderstände sind Wärmeübergangskoeffizienten (Alpha-Werte).
Alpha-Werte sind gering, das heißt, die Wärmeübertragung ist schlecht, wenn sich Fluide in Ruhe befinden. Dann ist der Wärmetransport angewiesen auf die mäßige Wärmeleitung infolge von Diffusion und auf natürliche Konvektion, die eine Strömung ist, die durch die veränderte Dichte der Fluide bei ihrer Erwärmung oder Abkühlung an der Wand entsteht. Wesentlich bessere, also höhere Alpha-Werte sind durch erzwungene Konvektion erreichbar, das sind künstlich erzeugte Strömungen an der Wand. Strömungen werden durch ihre Reynolds-Zahl (Re) charakterisiert, die proportional ist zur Strömungsgeschwindigkeit und einer charakteristischen geometrischen Länge (z. B. dem Durchmesser eines Rohres) und umgekehrt proportional zur kinematischen Viskosität des Fluids.
Bei geringer Re-Zahl ist eine Strömung laminar, beim Überschreiten einer kritischen Re-Zahl schlägt sie um in eine turbulente Strömung und der Alpha- Wert steigt sprunghaft an. Beim Einsatz von Wärmetauschern ist es deshalb anzustreben, dass beide Fluide turbulent strömen. Bei der Flüssigkeit, die durch den Wärmetauscher gepumpt wird, ist es einfach, eine turbulente Strömung zu erzeugen, indem man den Durchfluss und damit die Strömungsgeschwindigkeit ausreichend hoch wählt. Für den k-Wert nützt es wenig, den inneren Alpha-Wert immer weiter zu erhöhen, wenn der äußere Alpha-Wert gering bleibt. Dann kann man die erforderliche Wärmeübertragungsleistung nur durch eine ausreichend große Außenfläche des Wärmetauschers erreichen, was den Nachteil hat, dass der Wärmetauscher groß und teuer wird. Um das zu vermeiden, muss man im Abwasser eine konvektive Strömung, vorzugsweise eine turbulente Strömung entlang der Außenfläche des Wärmetauschers erzeugen.
Diese Strömung soll vorzugsweise über die Außenfläche hinwegstreichen, d.h. sie soll eine ungefähr parallele Richtung zur Außenfläche haben. Durch eine definierte und hohe Strömungsgeschwindigkeit über der Außenfläche des Wärmetauschers wird der Alpha-Wert erhöht und störende Feststoffe und Beläge werden von der Außenfläche abgespült, weshalb die Außenfläche klein dimensioniert werden kann und die Kosten des Wärmetauschers gering bleiben.
Es ist Stand der Technik, Wärmetauscher in Abwasserkanälen oder Gerinnen einzubauen, um Wärme zwischen dem Abwasser und einer durch den Wärmetauscher strömenden Flüssigkeit zu übertragen. In dem Kanal oder Gerinne strömt das Abwasser an der Außenfläche des Wärmetauschers vorbei. Allerdings ist die Strömungsgeschwindigkeit abhängig vom Abwasser- durchfluss durch den Kanal oder das Gerinne sowie vom Füllstand darin. Weder der Durchfluss noch der Füllstand sind konstant, so dass keine definierte Strömung vorliegt. Normalerweise ist die Strömung laminar. Nur dann, wenn der Durchfluss, beispielsweise nach einem Regenereignis, stark erhöht ist, herrschen turbulente Strömungsverhältnisse. Wegen des normalerweise geringen Alpha-Wertes an der Außenfläche der Wärmetauscher müssen diese eine große Oberfläche haben. Sie sind verschmutzungsanfällig, insbesondere dann, wenn sie in Rohabwasserkanälen eingebaut werden.
Aus der Offenlegungsschrift DE 101 56 253 A1 ist bekannt, einen Wärmetauscher in einen Brauchwassertank zu integrieren, um die im Brauchwasser vorhandene thermische Energie an anderer Stelle weiter nutzen zu können. Das Brauchwasser muss hierfür in dem Tank zwischengespeichert werden, wobei es vorzugsweise durch Einblasen von Luft umgewälzt wird. Durch diese Umwälzung strömt das Brauchwasser an der Außenfläche des Wärmetauschers vorbei, wodurch der Wärmeaustausch verbessert und gleichzeitig Verschmutzungen von der Außenfläche des Wärmetauschers abgespült werden sollen.
Auch aus der Offenlegungsschrift DE 36 05 585 A1 ist ein in einem Abwasserbehälter eingebauter Wärmetauscher bekannt, an dessen Außenfläche eine konvektive Strömung erzeugt wird. In diesem Fall wird die Strömung durch Bewegen von flexiblen Wandungen des Abwasserbehälters erzeugt.
Aus der Europäischen Patentschrift EP 0 174 554 B1 ist ebenfalls ein in einen Behälter für verschmutztes Wasser eingebauter Wärmetauscher bekannt, wobei ein Spülgas unterhalb des Wärmetauschers in das Wasser eingeblasen wird, um die Außenfläche des Wärmetauschers zu reinigen und den Wärmeübergang zu verbessern.
Gemäß diesen Druckschriften werden konvektive Strömungen an den Außenflächen von Wärmetauschern zu dem Zweck erzeugt, den Wärmeübergang zu verbessern und die Außenflächen von Verschmutzungen zu reinigen. Die Wärmetauscher sind dabei stets in einem extra für diesen Zweck angeordneten Behälter untergebracht, in dem das Wasser zwischengespeichert wird oder durch einen relativ aufwändigen Strömungskanal hindurchgeleitet werden muss, welcher wiederum aus einer Vielzahl von Wärmetau- scherplatten gebildet wird. Diese Einrichtungen erhöhen die Investitions- und Betriebskosten der Wärmetaucher jedoch beträchtlich.
Aufgabe der vorliegenden Erfindung ist es, ein Verfahren und eine Vorrichtung zur Durchführung des Verfahrens zur Verfügung zu stellen, welche die genannten Nachteile nicht aufweisen und eine einfache und kostengünstige Nutzung der in Abwässern vorhandenen thermischen Energie ermöglichen. Insbesondere ist es Aufgabe der Erfindung, bereits vorhandene Einrichtungen zusätzlich für den Wärmeaustausch zu nutzen, sodass die Energiebilanz weiter verbessert werden kann.
Diese Aufgabe wird durch das Verfahren sowie die Vorrichtung entsprechend den Merkmalen der unabhängigen Ansprüche gelöst.
Erfindungsgemäß strömt Abwasser durch einen Behälter, in dem sich ein Wärmetauscher befindet, wobei eine konvektive Strömung erzeugt wird, die zum einen als Hilfsmittel zur Reinigung des Abwassers dient, gleichzeitig aber auch zur Reinigung der Außenfläche des Wärmetauschers sowie der Verbesserung des Wärmeübergangs am Wärmetauscher genutzt wird.
Durchflossene Behälter sind Bestandteil beinahe jeder Abwasserreinigungsanlage und können in einfacher Weise zusätzlich für die Wärmeübertragung zwischen Abwasser und Brauchwasser nutzbar gemacht werden. Häufig sind in derartigen Behältern bereits Vorrichtungen zur Erzeugung von konvektiven Strömungen vorhanden, welche als Hilfsmittel zur Reinigung von Abwässern genutzt werden. Derartige Strömungen können beispielsweise durch Rührwerke oder durch Einblasen eines Gases wie Luft in das Abwasser erzeugt werden. Der Nutzen dieser konvektiven Strömungen für die Abwasserreinigung kann beispielsweise darin bestehen, dass Bodenablagerungen vermieden werden, dass das Abwasser durchmischt wird, dass Chemikalien in das Abwasser eingemischt werden, dass eine Fällung oder Flockung beschleunigt wird oder dass das Abwasser belüftet wird. Somit sind an unterschied- lichsten Stellen einer Abwasserreinigungsanlage bereits Strömungsverhält- nisse vorhanden, die zusätzlich zu ihrer eigentlichen Aufgabe zur Verbesserung des Wärmeübergangs an einem Wärmetauscher oder zur Reinigung der Wärmetauscheroberfläche genutzt werden können.
Bedient man sich dieser Vorraussetzungen, so kann in einfacher Weise erreicht werden, dass durch den Einbau eines Wärmetauschers an geeigneter Stelle eines durchflossenen Behälters einer Abwasserreinigungsanlage zusätzlich die thermische Energie dieses Abwassers genutzt werden kann. Die aufzuwendende Energie beschränkt sich hierbei lediglich auf den Betrieb einer eventuell vorhandenen Pumpvorrichtung, die den Transport der Flüssigkeit durch den Wärmetauscher bewirkt sowie möglicherweise auf den Betrieb einer zusätzlich vorhandenen Wärmepumpe. Da die konvektiven Strömungen sowohl der Abwasserreinigung als auch der Wärmerückgewinnung dienen, fallen die Kosten hierfür nur einmalig an. Auch muss das Abwasser nicht in aufwändiger Weise in einem Tank zwischengespeichert werden. Vielmehr wird der Einbau des Wärmetauschers innerhalb von durchflossenen, zur Abwasserreinigung dienenden Behältern vorgeschlagen, da hierdurch die Investitions- und Energiekosten weiter gesenkt werden können.
Die Abwasserreinigung kann dabei in einem Industriebetrieb oder auf einer kommunalen Kläranlage erfolgen. Es kann sich insbesondere auch um eine dezentrale Abwasserreinigung in Hotels, Wohn- oder Bürokomplexen, Freizeitanlagen oder Ortsteilen handeln. Eine dezentrale Abwasserbehandlung eignet sich besonders für die Aufgabe, die Abwasserwärme mittels einer Wärmepumpe zum Heizen zu nutzen, da in diesem Fall das Abwasser vergleichsweise warm ist und ortsnah ein großer Bedarf an Heizwärme besteht.
Gemäß einer besonders vorteilhaften Ausführung des erfindungsgemäßen Verfahrens wird die konvektive Strömung in dem Abwasserbehälter durch eine Druckbelüftung erzeugt. Bei einer Druckbelüftung wird Luft in das Abwasser eingeblasen, um Mikroorganismen mit Sauerstoff zu versorgen und um gasförmige Stoffwechsel produkte wie Kohlenstoffdioxid oder Stickstoffgas auszutragen. Wenn Luft in das Abwasser eingepresst wird, steigen Luftblasen im Abwasser nach oben und reißen das umgebende Abwasser mit. In dem Bereich des Behälters, in den die Luft eingepresst wird, entsteht eine starke Aufwärtsströmung und an anderer Stelle eine entsprechende Abwärtsströmung. Bei einer geeigneten Anordnung der Belüftungsvorrichtung kann man mit geringem Energieverbrauch in dem Behälter eine ausgeprägte Strömungswalze mit Strömungsgeschwindigkeiten von mehreren Metern pro Sekunde erzeugen. Die Luft wird vorzugsweise unterhalb oder schräg unterhalb des Wärmetauschers zugeführt, so dass die Aufwärtsströmung durch Turbulenz um die aufsteigenden Luftblasen herum überlagert wird. Es ist allerdings auch möglich, den Wärmetauscher an einem Ort anzuordnen, an dem die Strömung nach unten gerichtet ist. Die Außenfläche des Wärmetauschers sollte in beiden Fällen eine ungefähr vertikale Ausrichtung haben, so dass das Abwasser mit geringem Strömungswiderstand über die Außenfläche strömt. Schließlich ist es auch möglich, den Wärmetauscher an einer Stelle anzuordnen, an der die Strömung eine horizontale Komponente aufweist, wobei die Außenfläche vorzugsweise parallel zur Strömungsrichtung ausgerichtet wird.
Vorteilhafterweise und gegebenenfalls alternativ oder zusätzlich zu anderen Maßnahmen wird die konvektive Strömung in dem Behälter durch Oberflächenbelüftung erzeugt. Oberflächenbelüfter sind entweder Kreisel mit vertikaler Achse oder Walzen mit horizontaler Achse, die ein Gemisch aus Abwasser und Belebtschlamm durch die Luft schleudern oder Luftblasen in das Gemisch einschlagen, um es zu belüften. Dabei erzeugen die Oberflächenbelüfter die notwendige starke Konvektionsströmung im Belüftungsbecken..
In einer weiteren vorteilhaften Ausgestaltung der Erfindung wird vorgeschlagen, dass das Abwasser in einem Behälter, beispielsweise einem Sandfang, wie er im folgenden näher beschrieben wird, mit Druckluft belüftet wird und aufsteigende Luftblasen eine walzenförmige Strömung des Abwassers er- zeugen. Eine walzenförmige Strömung wird insbesondere in länglichen Behältern durch Einblasen von Luft in der Nähe einer Seitenwand des Behälters erzeugt. Bei breiten Behältern kann aber auch eine doppelte Strömungswalze erzeugt werden, indem Luft in der Nähe der zentralen Längsachse des Behälters eingepresst wird. Vorzugsweise wird der Wärmetauscher in einem Bereich angeordnet, in dem die eingeblasenen Luftblasen nach oben steigen und eine aufwärts gerichtete Strömung des Abwassers erzeugen. Es ist allerdings auch möglich, den Wärmetauscher an einem Ort anzubringen, an dem das Abwasser nach unten zurückströmt.
Gemäß einer besonders vorteilhaften Variante der Erfindung wird in dem Behälter eine torusförmige Strömung des Abwassers erzeugt. Eine torusför- mige Strömung wird vorzugsweise in Behältern mit kreisförmiger oder ungefähr quadratischer Grundfläche erzeugt. Zumeist strömt das Abwasser im Zentrum nach oben und an der Peripherie nach unten. Die Strömung kann aber auch die umgekehrte Richtung aufweisen.
In einer weiteren Ausgestaltung des erfindungsgemäßen Verfahrens wird die Strömung in dem Behälter vorteilhafterweise durch ein Rührwerk erzeugt. Dabei kann es sich um Rührwerke handeln, die eine axiale oder eine radiale Strömung erzeugen. Die Art des Rührwerkes und seine Anordnung sind insbesondere abhängig von der Form des Behälters. Bei langen rechteckigen Behältern wird man vorzugsweise horizontale Propellerrührwerke einsetzen, die eine Strömung entlang der Längsachse des Behälters erzeugen. Bei runden oder quadratischen Behältern wird man vorzugsweise Rührwerke auf der vertikalen Zentralachse anordnen. Diese verfügen entweder über Rührflügel, die eine Rotationsströmung erzeugen, oder über nach unten oder oben gerichtete Propeller, die eine torusförmige Strömung oder ringförmige Walzenströmung in dem Behälter erzeugen. Auch in all diesen Fällen werden die Wärmetauscher vorzugsweise so angeordnet, dass ihre Außenflächen parallel zur Strömung ausgerichtet sind. Vorteilhaft ist es zudem, wenn das Abwasser in einem Sandfang gereinigt wird. Sandfänge dienen zum Abtrennen von Feststoffen hoher spezifischer Dichte, also z.B. von Sand, SpNt und Steinen. In Sandfängen wird eine kon- vektive Strömung erzeugt, die so bemessen ist, dass einerseits organische Stoffe in Schwebe gehalten werden, andererseits ein Absinken mineralischer Stoffe nicht verhindert wird. Diese konvektive Strömung ist zusätzlich nutzbar, um den Alpha-Wert an der Außenfläche von in dem Sandfang angeordneten Wärmetauschern zu erhöhen. Die in Sandfängen zum Zwecke der Sandabscheidung erzeugte konvektive Strömung ist sehr stark und eindeutig ausgeprägt. Deshalb ist sie in besonders guter Weise zum Anströmen von Wärmetauschern nutzbar. Sandfangbehälter werden häufig aus Stahl hergestellt und komplett mit allen Einbauten geliefert. Deshalb ist es besonders wirtschaftlich, Wärmetauscher fabrikmäßig in Sandfangbehälter zu integrieren.
Gemäß einer weiteren vorteilhaften Variante wird das Abwasser biologisch gereinigt. Die biologische Reinigung erfolgt zumeist in einem Belüftungsbecken einer Belebungsanlage. Teil jeder Belebungsanlage ist ein Belüftungsbecken, in dem ein Gemisch aus Abwasser und Belebtschlamm belüftet wird, um die Mikroorganismen im Belebtschlamm mit Sauerstoff zu versorgen, und um das Stoffwechselprodukt Kohlenstoffdioxid und gegebenenfalls Stickstoff auszutragen. Zumeist sind Belüftungsbecken mit einer Druckbelüftung ausgerüstet, bei der Luft in das Abwasser eingeblasen wird. Es ist besonders vorteilhaft, Wärmetauscher über dem Ort einzubauen, an dem Luft einge- presst wird. Beim Einbau eines Wärmetauschers in ein bestehendes Belüftungsbecken mit Druckbelüftung wird die bereits vorhandene konvektive Strömung ohne Zusatzkosten für den Wärmeaustausch mitgenutzt. Belüftungsbecken von Belebungsanlagen können aber auch mit Oberflächenbelüf- tern ausgerüstet sein, die eine konvektive Strömung erzeugen.
Zur Durchführung des beschriebenen Verfahrens wird eine Vorrichtung zum Übertragen von Wärme zwischen in einem Behälter befindlichem Abwasser und einer Flüssigkeit mittels eines von der Flüssigkeit durchströmten Wärmetauschers mit einer vom Abwasser berührten Außenfläche vorgeschlagen, wobei in dem Abwasser ein Diffusorrohr zum Einpressen von Luft und/oder ein Rührwerk angeordnet ist, die der Erzeugung einer konvektiven Strömung dienen. Erfindungsgemäß ist der Behälter hierbei ein von dem Abwasser durchflossenes Becken einer Abwasserreinigungsanlage. Derartige Becken verfügen bereits häufig über Vorrichtungen zur Erzeugung von konvektiven Strömungen, welche die Wirkung von mechanischen, biologischen und/oder chemischen Reinigungsstufen unterstützen. Um die für den Wärmetausch benötigte Energie möglichst gering zu halten, wird vorgeschlagen, Wärmetauscher in derartige von Abwasser durchflossene Behälter zu integrieren, da in diesen bereits die für den Wärmeübergang günstigen Strömungsverhältnisse vorliegen. Zudem können diese konvektiven Strömungen für die Reinigung der Wärmetauscheroberfläche genutzt werden. Die erfindungsgemäße Vorrichtung verspricht somit eine besonders günstige Energiebilanz durch die Kombination von Abwasserreinigung und Wärmerückgewinnung. Außerdem werden erhebliche Investitionskosten gespart, weil für die Wärmerückgewinnung weder ein zusätzlicher Behälter, noch Vorrichtungen zur Strömungserzeugung erforderlich sind.
Von Abwasser durchflossene Becken sind Behälter, die mit einem Zulauf und einem Ablauf versehen sind. Sie sind Beststandteil praktisch jeder Abwasserreinigungsanlage. Die Becken können oben offen oder geschlossen sein. Das Diffusorrohr ist ein horizontal angeordnetes Rohr, dem Druckluft zugeführt wird, und das mit Öffnungen versehen ist, durch die Luft in Form von groben Blasen in das Abwasser gepresst wird. Das Diffusorrohr kann alternativ mit porösen oder geschlitzten Belüfterelementen versehen sein, durch welche die Luft in Form mehr oder weniger feiner Blasen in das Abwasser eingepresst wird.
Vorteilhafterweise ist das durchströmte Becken ein Belüftungsbecken einer Belebungsanlage, die der biologischen Abwasserreinigung dient und in dem durch Belüftungseinrichtungen eine konvektive Strömung erzeugt wird. In Belebungsanlagen werden organische Bestandteile im Abwasser durch Mikroorganismen verstoffwechselt und dabei in Biomasse umgewandelt. In einer Nachklärung, beispielsweise einem Nachklärbecken, wird die Biomasse als sogenannter Belebtschlamm abgetrennt und in das Belüftungsbecken zurückgeführt. Der Zuwachs von Biomasse wird der Nachklärung als sogenannter Überschussschlamm entnommen.
Gemäß einer besonders vorteilhaften Ausführungsform ist das Becken ein Sandfang. In Sandfängen erfolgt eine mechanische Vorreinigung von Abwässern durch Abtrennung spezifisch schwerer partikulärer Sinkstoffe. Hierfür wird eine konvektive Strömung erzeugt, die so stark ist, dass sie spezifisch weniger dichte organische Stoffe in Schwebe hält.
In einer weiteren Ausgestaltung ist der Sandfang vorteilhafterweise ein Rundsandfang, in dessen Zentrum ein eine torusförmige Strömung erzeugendes Rührwerk angeordnet ist. In Rundsandfängen sind üblicherweise Rührwerke eingebaut, um eine rotierende und torusförmige Strömung zu erzeugen, so dass über dem Boden des Sandfangs das Abwasser auf einer Spiralbahn zum Zentrum strömt. Von dieser Strömung werden mineralische Feststoffe in Richtung des Zentrums geschoben und sinken beispielsweise durch einen ringförmigen Spalt in einen unter dem Boden befindlichen Sammelraum ab. Es wird vorgeschlagen, Wärmetauscher am Umfang des Rundsandfangs anzuordnen, an dem das Abwasser nach unten strömt. Alternativ können sie auch ringförmig um das Rührwerk herum angeordnet werden, wobei das Abwasser in diesen Bereichen nach oben strömt.
Alternativ ist es vorteilhaft, wenn der Sandfang ein Langsandfang mit einer Seitenwand und zumindest einem in der Nähe und entlang der Längswand angeordneten Diffusorrohr zum Einblasen von Luft und zum Erzeugen einer walzenförmigen Strömung ist. Bei Langsandfängen wird üblicherweise eine Walzenströmung durch Einblasen von Druckluft entlang einer der Längswän- de erzeugt. Diese Walzenströmung wird erfindungsgemäß zusätzlich genutzt, um den Wärmeübergang des in dem belüfteten Sandfang angeordneten Wärmetauschers zu verbessern.
In einer weiteren Ausformung der Erfindung weist der Wärmetauscher in vorteilhafter weise einen Zulauf und einen Ablauf für die Flüssigkeit auf, die durch zumindest einen Strömungskanal miteinander verbunden sind, wobei äußere Oberflächen des Strömungskanals die Außenfläche des Wärmetauschers bilden. Die Flüssigkeit strömt vorzugsweise turbulent durch den Strömungskanal vom Zulauf zum Ablauf. Um den Durchfluss gering und die Tem- peraturdifferenz zwischen Einlauf und Auslauf hoch zu halten, sollte der Strömungskanal einen kleinen hydraulischen Durchmesser haben und lang sein. Der Strömungskanal wird durch Wände begrenzt, deren zumindest eine äußere Oberfläche die Außenfläche des Wärmetauschers bildet. Entlang innerer Oberflächen der Wände strömt die Flüssigkeit, entlang der äußeren Oberflächen der Wände strömt das Abwasser.
Besonders vorteilhaft ist es zudem, wenn der Strömungskanal aus Rohrabschnitten mit kreisförmiger, rechteckiger oder quadratischer Querschnittsfläche gebildet wird. Der Strömungskanal wird also durch eine Folge handelsüblicher Rohrprofile hergestellt, deren Mantelflächen die Außenfläche des Wärmetauschers bilden.
In einer besonders vorteilhaften Ausführung sind die Rohrabschnitte im wesentlichen horizontal ausgerichtet. Diese Ausrichtung ist insbesondere dann vorteilhaft, wenn der Behälter, in dem der Wärmetauscher angeordnet ist, flach ist. In diesem Fall werden die Rohre quer angeströmt.
In besonderen Fällen, beispielsweise in tiefen Behältern, kann es allerdings vorteilhaft sein, wenn die Rohrabschnitte im wesentlichen vertikal ausgerichtet sind. In diesem Fall werden die Rohre längs angeströmt, was den Vorteil hat, dass die Rohre einen geringen Strömungswiderstand erzeugen und somit die konvektive Strömung in dem Becken nur geringfügig beeinträchtigen.
Vorteilhafterweise sind die Rohrabschnitte parallel angeordnet und weisen Enden auf, die flüssigkeitsseitig so miteinander verbunden sind, dass die Flüssigkeit in jeweils benachbarten Rohrabschnitten in entgegengesetzter Richtung strömt. Die Flüssigkeit strömt also in den parallel angeordneten Rohrabschnitten hin und her. Hierdurch wird in einfacher Weise erreicht, dass der Wärmetauscher trotz geringer Ausmaße einen langen Strömungskanal aufweist. Die Verbindung zwischen benachbarten Rohrabschnitten kann durch senkrechte Verbindungsrohre erfolgen. Wenn rechteckige oder quadratische Rohrabschnitte ohne Abstand zueinander parallel angeordnet sind, können deren Enden durch Öffnungen, beispielsweise Bohrungen, miteinander verbunden sein.
Gemäß einer anderen vorteilhaften Variante der Erfindung wird der Strömungskanal durch zumindest ein in Form einer Wendel angeordnetes Hohlprofil gebildet, wobei die Wendel eine vertikale Achse aufweist. Das Hohlprofil kann beispielsweise ein kreisförmiges oder rechteckiges Rohrprofil sein. Auch bei dieser Variante sind Rohre parallel angeordnet, um einen langen Strömungskanal zu bilden. Wegen des Fehlens scharfer Umlenkungen ist der flüssigkeitsseitige Strömungswiderstand besonders gering. Diese Variante eignet sich besonders für runde Behälter.
In einer weiteren vorteilhaften Ausgestaltung verläuft die Außenfläche des Wärmetauschers im wesentlichen parallel zu der konvektiven Strömung und ist eben oder gewellt. Der Wärmetauscher sollte für die konvektive Strömung einen möglichst geringen Strömungswiderstand haben. Deshalb sollte seine Außenfläche parallel zur Strömung verlaufen, so dass das Abwasser ungehindert über die Außenfläche strömen kann. Wenn Rechteckprofile ohne oder mit geringem Abstand parallel angeordnet werden, formen diese eine für die Strömung ebene Außenfläche. Wenn profilierte Bleche, so wie bei neuzeitlichen Heizkörpern, miteinander verbunden werden, haben diese eine gewellte Außenfläche. Auch wenn runde Rohre parallel angeordnet werden, bilden diese näherungsweise eine gewellte Außenfläche, auch dann, wenn ein Abstand zwischen den Rohren besteht. Es handelt sich dann um eine einhüllende imaginäre Außenfläche.
Vorteilhaft ist es ebenso, wenn die Außenfläche des Wärmetauschers zugleich eine Innenfläche einer Behälterwand ist. Bei dieser Ausführungsform ist der Wärmetauscher integraler Bestandteil einer Wand des Behälters. Das hat den Vorteil, dass der Wärmetauscher keinen oder nur einen sehr geringen zusätzlichen Widerstand für die konvektive Strömung erzeugt.
Auch bringt es Vorteile mit sich, wenn der Strömungskanal des Wärmetauschers durch Hohlräume zwischen der Behälterwand und daran angebrachter Profile gebildet wird. Bei den Profilen handelt es sich um Teilprofile wie Halbrohre, U-Profile oder L-Profile. Die Profile können an der Innenseite der Behälterwand angebracht sein. Bei Metallbehältern können die Profile aber auch auf der Außenseite der Behälterwand angebracht sein, so dass die Behälterwand die wärmeübertragende Außenfläche des Wärmetauschers bildet.
In einer weiteren vorteilhaften Ausgestaltung weist die Vorrichtung verfahrbare Bürsten zum Reinigen der Außenfläche des Wärmetauschers auf. Dabei werden die Bürsten durch einen Antrieb über die Außenfläche des Wärmetauschers bewegt, um anhaftende Feststoffe oder Beläge zu entfernen.
Alternativ wird die Außenfläche des Wärmetauschers vorteilhafterweise mittels verfahrbarer Spritzdüsen gereinigt. Das Spritzwasser wird vorzugsweise dem Ablauf der Abwasserreinigungsanlage entnommen, so dass es weitgehend feststofffrei ist und die Düsen nicht verstopfen. Weitere Vorteile der Erfindung sind in den nachfolgenden Ausführungsbeispielen beschrieben. Es zeigen:
Figur 1 einen schematisch dargestellten Längsschnitt durch einen belüfteten Langsandfang mit einem darin angeordneten Wärmetauscher;
Figur 2 einen schematisch dargestellten Querschnitt durch den belüfteten Langsandfang der Figur 1 ;
Figur 3 einen schematisch dargestellten Längsschnitt durch einen
Rundsandfang mit einem Rührwerk und einem darin angeordneten Wärmetauscher;
Figur 4 einen schematisch dargestellten Längsschnitt durch ein mit Druckluft belüftetes Belüftungsbecken, in dem ein Wärmetauscher angeordnet ist;
Figur 5 einen schematisch dargestellten Längsschnitt durch eine anderes Belüftungsbecken mit einer Oberflächenbelüftung, in dem ein Wärmetauscher angeordnet ist, und
Figur 6 eine Vorrichtung zum Reinigen der Außenfläche eines Wärmetauschers.
Die Figuren 1 und 2 zeigen einen Sandfang 1 mit rechteckiger Grundfläche. Der Sandfang 1 besteht aus einem Becken 2 mit einem Zulauf 4 und einem Ablauf 6 für durch den Sandfang 1 fließendes Abwasser. Das Becken 2 kann aus Beton, Metall oder Kunststoff hergestellt sein. Das Becken 2 ist mit Abwasser bis zu einem gewissen Wasserspiegel 8 gefüllt. Das Becken 2 hat vertikale Stirnwände 10 und 12 und Seitenwände 14 und 16 sowie schräge Bodenflächen 18 und 20, die zu einer Rinne 22 hin geneigt sind, so dass Sand, der sich in dem Sandfang 1 absetzt, in die Rinne 22 rutscht. In der Rinne 22 ist eine Förderschnecke 24 angeordnet, die von einem Motor 26 angetrieben ist und den abgetrennten Sand zu einem Sumpf 28 schiebt. Mittels einer Pumpe 30 wird der Sand aus dem Sumpf 28 ausgetragen und üblicherweise zu einem nicht dargestellten Sandklassierer oder Sandwäscher gefördert. Bei der Pumpe 30 kann es sich um eine Kreiselpumpe oder auch um eine Mammutpumpe (einen Druckluftheber) handeln.
Der dargestellte Sandfang 1, in diesem Ausführungsbeispiel ein Langsandfang, wird belüftet. Luft wird von einem nicht dargestellten Gebläse über eine Druckleitung 32 einem horizontal in der Nähe der Seitenwand 14 angeordneten Diffusorrohr 34 zugeführt, das mit Löchern 36 versehen ist, durch welche die Luft in das Abwasser eingepresst wird. Die eingepresste Luft steigt im Abwasser in Form von Luftblasen 38 zum Wasserspiegel 8 auf und erzeugt dabei über dem Diffusorrohr 34 eine starke Konvektionsströmung, die parallel zu der Seitenwand 14 nach oben gerichtet ist. In der Nähe der gegenüberliegenden Seitenwand 16 strömt das Abwasser nach unten und zurück zum Diffusorrohr 34. Durch die Belüftung wird somit eine in etwa walzenförmige Strömung in dem Sandfang 1 erzeugt, die in den Figuren durch Pfeile angedeutet ist. Die Strömung über den Bodenflächen 18 und 20 ist dabei so stark, dass organische Feststoffe geringer Dichte, wie beispielsweise Fäkalien, aufgewirbelt werden, wohingegen mineralische Stoffe hoher Dichte auf den Bodenflächen 18 und 20 liegen bleiben. Über der schwächer geneigten Bodenfläche 20 strömt das Abwasser abwärts und schiebt darauf abgesetzten Sand zu der Rinne 22. Hierdurch werden organische Bodenablagerungen vermieden und das Abwasser wird durchmischt, so dass auch Chemikalien besser in das Abwasser eingemischt werden können. Zudem werden Fällungen oder Flockungen beschleunigt, wodurch eine verbesserte Abwasserreinigung erfolgen kann.
Eine Trennwand 40 trennt eine Fettfangkammer 42 vom Sandfang 1 ab. Die Trennwand 40 weist üblicherweise nicht dargestellte Durchbrechungen auf, durch die Schwimmstoffe wie Fette und Öle in die von der Strömung abgeschirmte Fettfang kammer 42 gelangen, darin aufsteigen und auf dem Wasserspiegel 8 eine Schwimmschicht 44 bilden. Die Schwimmschicht 44 wird von einem nicht dargestellten Räumschild entlang der Fettfangkammer 42 zu einem Trichter geschoben, aus dem sie mittels einer Pumpe 30 ausgetragen werden kann.
Im Ausführungsbeispiel ist in dem Sandfang 1 ein Wärmetauscher 46 mit einer vom Abwasser berührten Außenfläche 48 unter dem Wasserspiegel 8 und über dem Diffusorrohr 34 und in der Nähe der Seitenwand 14 so angeordnet, dass die Luftblasen 38 gemeinsam mit der im Abwasser erzeugten Strömung an der Außenfläche 48 des Wärmetauschers 46 entlang aufsteigen und zur Reinigung der Außenfläche 48 des Wärmetauschers 46 beitragen. Allerdings könnte der Wärmetauscher 46 auch in der Nähe der gegenüberliegenden Seitenwand 16 beziehungsweise der Trennwand 40 oder auch über der Bodenfläche 20 angeordnet sein, so dass das Abwasser dort abwärts an der Außenfläche 48 vorbeiströmt.
Im Ausführungsbeispiel besteht der Wärmetauscher 46 aus einer Reihe parallel angeordneter Rohre 50, zwischen denen Zwischenräume 52 bestehen. Alternativ kann der Wärmetauscher 46 allerdings auch aus anderen Hohlprofilen, wie beispielsweise Vierkantprofilen bestehen. Es ist auch möglich, Hohlprofile horizontal oder vertikal und ohne Zwischenräume 52 anzuordnen.
Der Wärmetauscher 46 weist ein Zulaufrohr 54 und ein Ablaufrohr 56 für Flüssigkeit auf, die innen durch den Wärmetauscher 46 und seine einen langen Strömungskanal 220 bildenden Rohre 50 strömt. Die Rohre 50 sind an ihren Enden mittels Rohrbögen 58 so miteinander verbunden, dass die Flüssigkeit in benachbarten Rohren 50 in entgegengesetzter Richtung strömt. Auf diese Weise wird erstens erreicht, dass der Strömungskanal 220 durch die Rohre 50 möglichst lang ist und eine große Außenfläche 48 auf- weist. Zweitens wird erreicht, dass die Flüssigkeit auch bei geringem Durch- fluss durch den Wärmetauscher 46 in den hintereinander durchflossenen Rohren 50 schnell und damit turbulent strömt, so dass der flüssigkeitsseitige Alpha-Wert hoch ist. Drittens ermöglicht dies, dass der Wärmetauscher 46 trotz großer Außenfläche 48 kurz und kompakt ist.
Figur 3 zeigt einen Rundsandfang 100 mit einer vertikalen Achse 102, einem kreisförmigen Becken 2, einer Umfangswand 104, einem Boden 106, einem Zulaufkanal 108 und einem Ablaufkanal 110. Der Zulaufkanal 108 und der Ablaufkanal 110 münden im wesentlichen tangential in das Becken 2, so dass in diesem eine rotierende Strömung erzeugt wird und der Druckverlust beim Durchströmen von Abwasser durch den Rundsandfang 100 gering bleibt. Unter dem Becken 2 ist ein Sammelraum 112 für abgeschiedenen Sand angeordnet. Der Sammelraum 112 ist durch eine Bodenplatte 114 vom Becken 2 abgetrennt und weist einen Sumpf 28 auf, von dem ein axiales Steigrohr 116 ausgeht, durch den der abgeschiedene Sand aus dem Sumpf 28 mittels einer nicht dargestellten Pumpvorrichtung oder einem Druckluftheber vertikal abgesaugt und durch eine Leitung 118 einem ebenfalls nicht dargestellten Sandklassierer oder Sandwäscher zugeführt wird.
Koaxial um das Steigrohr 116 herum ist eine rotierende Hohlwelle 120 angeordnet, an der propellerartige Flügel 122 angebracht sind. Die Hohlwelle 120 wird von einem Motor 124 über ein Getriebe 126 angetrieben. Durch Rotation der Flügel 122 wird in dem Becken 2 eine axiale Aufwärtsströmung des Abwassers erzeugt. Die Ausbildung dieser Aufwärtsströmung wird durch einen um die Flügel 122 herum koaxial angeordneten Leitring 128 unterstützt. Unter dem Wasserspiegel 8 strömt das Abwasser radial nach außen, in der Nähe der Umfangswand 104 strömt das Abwasser nach unten. Über dem Boden 106 und der Bodenplatte 114 strömt das Wasser radial zur Hohlwelle 120 und zu den Flügeln 122 zurück. Mit Pfeilen ist die Richtung der torusför- migen Strömung angedeutet. Dieser torusförmigen Strömung ist noch eine Rotationsströmung um die vertikale Achse 102 herum überlagert, die zum einen durch das tangential durch den Zulaufkanal 108 zufließende und durch den Abflusskanal 110 abfließende Wasser und zum anderen durch die Rotation der Flügel 122 erzeugt wird.
Spezifisch dichte Feststoffe wie Sand werden zum einen durch die Rotationsströmung infolge des sogenannten Teetasseneffektes und zum anderen durch die über dem Boden 106 radial nach innen gerichtete torusförmige Strömung zum Zentrum des Beckens 2 getrieben. Dabei setzen sie sich auf dem Boden 106 und der Bodenblatte 114 ab und werden in Richtung zur Achse 102 geschoben. Zwischen der Bodenplatte 114 und der Hohlwelle 120 ist ein Ringspalt 130 angeordnet, durch den der Sand in den Sammelraum 112 absinkt. Weniger dichte organische Stoffe werden hingegen durch die Strömung in Schwebe gehalten und gelangen überwiegend mit dem Abwasser in den Ablaufkanal 110. So wird erreicht, dass der Sandfang 1 eine gute Trennschärfe hat, was bedeutet, dass einerseits wenig Sand im Abwasser verbleibt und andererseits nur geringe Mengen organischer Stoffe mit dem Sand ausgetragen werden.
In dem Becken 2 ist unter dem Wasserspiegel 8 und in der Nähe der Um- fangswand 104 ein Wärmetauscher 46 angeordnet. Flüssigkeit strömt durch ein Zulaufrohr 54 und ein ringförmiges Rohr 50 zu einem Ablaufrohr 56. Das ringförmige Rohr 50 bildet einen Strömungskanal 220 des Wärmetauschers 46. Die Flüssigkeit strömt vom Ablaufrohr 56 in einem Kreislauf über eine nicht dargestellte Heiz- oder Kühleinrichtung, z.B. eine Wärmepumpe, worin sie erwärmt oder abgekühlt wird, zum Zulaufrohr 54 zurück. Während die Flüssigkeit durch das Rohr 50 strömt, kühlt sie sich ab oder wird erwärmt, indem sie durch eine Außenfläche 48 des Rohres 50 Wärme an das Abwasser abgibt oder vom Abwasser aufnimmt. Im Ausführungsbeispiel besteht der Wärmetauscher 46 nur aus einem einzigen ringförmigen Rohr 50. Er kann aber selbstverständlich auch aus einer wendeiförmig ausgebildeten Rohrleitung bestehen. Der Wärmetauscher 46 ist im Ausführungsbeispiel in der Nähe der Umfangs- wand 104 angeordnet, wo das Abwasser an der Außenfläche 48 des Wärmetauschers 46 nach unten strömt. Der Wärmetauscher 46 kann aber auch an anderer Stelle der torusförm igen Strömung angeordnet werden; beispielsweise kann der Leitring 128 als Wärmetauscher 46 ausgebildet sein, wobei seine der Achse 102 zugewandte Außenfläche 48 einer sehr starken axialen und rotierenden Strömung ausgesetzt ist.
Figur 4 zeigt ein Belüftungsbecken 200 mit einer Oberflächenbelüftung. In einem Becken 2 befindet sich ein Gemisch aus Abwasser und Belebtschlamm. Das im Ausführungsbeispiel dargestellte Becken 2 ist kreisförmig, hat eine vertikale Achse 202, eine Sohle 204 und eine Umfangswand 206, die im Ausführungsbeispiel aus Metallblech hergestellt ist. Über dem Becken 2 ist eine Brücke 208 zur Aufnahme eines Motors 210, eines Getriebes 212 und eines um die vertikale Achse 202 rotierenden Belüftungskreisels 214 angeordnet. Der Belüftungskreisel 214 saugt das Gemisch aus Abwasser und Belebtschlamm im Bereich der Achse 202 nach oben und schleudert es über den Wasserspiegel 8 radial nach außen. Dabei werden in das Gemisch aus Abwasser und Belebtschlamm Luftblasen 216 eingetragen, die das Gemisch mit Sauerstoff versorgen. Im Becken 2 wird eine ausgeprägte torus- förmige Strömung erzeugt, die im Bereich der Achse 202 nach oben und in der Nähe der Umfangswand 206 nach unten gerichtet ist.
Halbrohrprofile 218 sind um die Umfangswand 206 herum so angebracht, dass zwischen der Umfangswand 206 und den Halbrohrprofilen 218 ein wendeiförmiger Strömungskanal 220 ausgebildet ist, durch den hindurch Flüssigkeit von einem Zulauf 222 zu einem Ablauf 224 strömt. Die Umfangswand 206 und die an ihr angebrachten Halbrohrprofile 218 bilden einen Wärmetauscher 46. Die Innenseite der Umfangswand 206 ist zugleich eine Außenfläche 48 des Wärmetauschers 46. Die Außenseite der Umfangswand 206 ist zugleich eine Innenfläche 228 des Strömungskanals 220, welcher durch den Wärmetauscher 46 verläuft. Die Flüssigkeit strömt durch den Strömungskanal 220 des Wärmetauschers 46 und das Gemisch aus Abwasser und Belebtschlamm strömt entlang der Außenfläche 48 des Wärmetauschers 46. Somit dient ein Teil der Umfangswand 206 zur Übertragung von Wärme aus dem Abwasser in die Flüssigkeit oder umgekehrt.
Bei turbulenter Strömung der Flüssigkeit im Strömungskanal 220 und des Abwassers an der Außenfläche 48 werden hohe Alpha-Werte für den Wärmeübergang erreicht. Die Umfangswand 206 im Bereich des Wärmetauschers 46 sollte möglichst dünn sein, um eine gute Wärmeleitung durch die Umfangswand 206 zu erreichen. Da die Umfangswand 206 durch die angebrachten Halbrohrprofile 218 verstärkt wird, kann die Umfangswand 206 im Bereich des Wärmetauschers 46 dünn ausgeführt werden.
Im Ausführungsbeispiel sind Halbrohrprofile 218 dargestellt, die sich gegenseitig berühren. Diese können aber auch mit Abständen angebracht werden. Es ist selbstverständlich auch möglich, eckige Profile zu verwenden.
In Figur 5 ist ein Belüftungsbecken 200 mit einer Druckbelüftung dargestellt. Ein rechteckiges Becken 2 hat eine ebene Sohle 204 und Längswände 250 und 252. Über der Sohle 204 und in der Nähe der Längswand 250 sind Diffu- sorrohre 34 angeordnet, in die von einem nicht dargestellten Gebläse Druckluft eingeblasen wird. An den Diffusorrohren 34 sind Belüfterelemente 256 angeordnet, die im Ausführungsbeispiel tellerförmig sind. Es können allerdings auch andere, beispielsweise rohrförmige oder plattenförmige Belüfterelemente 256 verwendet werden. Die Belüfterelemente 256 weisen poröse Körper oder geschlitzte Membranen auf, durch die zugeführte Druckluft in Form feiner Luftblasen 216 in das Abwasser eingetragen wird. Diese steigen zum Wasserspiegel 8 auf und erzeugen in der Nähe der Längswand 250 eine aufwärts gerichtete konvektive Abwasserströmung. In der Nähe der gegenüberliegenden Längswand 252 strömt das Abwasser zurück nach unten. Im Becken 2 wird eine walzenförmige Strömung erzeugt, deren Richtung durch Pfeile angedeutet ist. Über den Belüfterelementen 256 ist ein Wärmetauscher 46 mit einem Strömungskanal 220 für hindurchströmende Flüssigkeit an einer Stelle angeordnet, an der Abwasser entlang einer Außenfläche 48 des Wärmetauschers 46 nach oben strömt.
Der Wärmetauscher 46 dieses Ausführungsbeispieles ist aus zwei gewellten Blechen 258 und 260 gebildet, die so miteinander verbunden sind, dass zwischen ihnen längliche Hohlräume 262 entstehen, die den Strömungskanal 220 bilden. Benachbarte Hohlräume 262 sind an ihren Enden so miteinander verbunden, dass die Flüssigkeit nacheinander mehrere Hohlräume 262 in alternierender Richtung durchströmt. Die Bleche 258 und 260 sind vertikal ausgerichtet, so dass das aufsteigende Abwasser ohne großen Widerstand an ihnen entlang strömen kann.
Im Ausführungsbeispiel ist der Wärmetauscher 46 so orientiert, dass sich die Hohlräume 262 horizontal erstrecken. Es wäre aber auch durchaus möglich, den Wärmetauscher 46 um 90 Grad verdreht anzuordnen, so dass die Hohlräume 262 vertikal verlaufen.
Figur 6 zeigt einen in einem Becken 2 angeordneten Wärmetauscher 46 sowie eine erfindungsgemäße Reinigensvorrichtung 300. Der Wärmetauscher 46 ist aus mehreren parallel und horizontal ausgerichteten Vierkantrohren 302 hergestellt, die einen Strömungskanal 220 für Flüssigkeit bilden und an beiden Enden mit nicht dargestellten Durchbrechungen, beispielsweise Bohrungen, versehen sind, durch die die Flüssigkeit jeweils von einem in ein benachbartes Vierkantrohr 302 strömt, so dass die Flüssigkeit in benachbarten Vierkantrohren 302 in entgegengesetzter Richtung strömt.
Der Wärmetauscher 46 hat zwei parallele vertikale Außenflächen 48, die aus entgegengesetzten Oberflächen der Vierkantrohre 302 zusammengesetzt sind. Entlang der vertikalen Außenflächen 48 des Wärmetauschers 46 strömt das Abwasser konvektiv nach oben, wobei die Konvektionsströmung bei- spielsweise durch Einblasen von Luft unterhalb des Wärmetauschers 46 erzeugt werden kann.
Die Reinigungsvorrichtung 300 weist Bürsten 308 auf, die horizontal über die Außenflächen 48 des Wärmetauschers 46 bewegbar sind, um diese von anhaftenden Feststoffen und Belägen zu reinigen. Die Bürsten 308 sind in einer gabelförmigen Halterung 310 angebracht, die mit einem Getriebe 312 verbunden ist. Horizontal durch das Getriebe 312 verläuft zumindest eine Radachse 314 mit Rädern 316 an beiden Enden. Die Räder 316 laufen auf Laufflächen 318 der Beckenwand 320 oder auf schienen. Die Reinigungsvorrichtung 300 wird durch Rotation einer Gewindestange 322 bewegt, die durch das Getriebe 312 verläuft. Alternativ wäre es natürlich auch möglich, die Reinigungsvorrichtung 300 mittels eines Seil- oder Kettentriebes zu bewegen. Anstelle der Bürsten 308 könnten bei der Reinigungsvorrichtung 300 auch Spritzdüsen angeordnet sein.
Die vorliegende Erfindung wurde anhand eines Ausführungsbeispiels näher erläutert. Sie ist jedoch nicht auf das dargestellte und beschriebene Beispiel beschränkt. Es sind Abwandlungen im Rahmen der Schutzansprüche jederzeit möglich.

Claims

P a t e n t a n s p r ü c h e
1. Verfahren zum Übertragen von Wärme zwischen in einem Behälter befindlichem Abwasser und einer Flüssigkeit mittels eines von der Flüssigkeit durchströmten Wärmetauschers (46) mit einer vom Abwasser berührten Außenfläche (48), wobei in dem Abwasser eine konvektive Strömung erzeugt wird, die das Abwasser entlang der Außenfläche (48) bewegt, dadurch gekennzeichnet, dass das Abwasser durch den Behälter strömt, und die erzeugte konvektive Strömung als Hilfsmittel zur Reinigung des Abwassers und gleichzeitig zur Reinigung der Außenfläche (48) des Wärmetauschers (46) genutzt wird.
2. Verfahren nach dem vorherigen Anspruch, dadurch gekennzeichnet, dass die konvektive Strömung in dem Behälter durch eine Druckbelüftung erzeugt wird.
3. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die konvektive Strömung in dem Behälter durch eine Oberflächenbelüftung erzeugt wird.
4. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass das Abwasser in dem Behälter, insbesondere in einem Sandfang (1 ) mit Druckluft belüftet wird und aufsteigende Luftblasen (38, 216) eine walzenförmige Strömung des Abwassers erzeugen.
5. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass in dem Behälter eine torusförmige Strömung des Abwassers erzeugt wird.
6. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die konvektive Strömung in dem Behälter durch ein Rührwerk erzeugt wird.
7. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass das Abwasser in einem Sandfang (1 ) gereinigt wird.
8. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass das Abwasser biologisch gereinigt wird.
9. Vorrichtung zum Übertragen von Wärme zwischen in einem Behälter befindlichem Abwasser und einer Flüssigkeit mittels eines von der Flüssigkeit durchströmten Wärmetauschers (46) mit einer vom Abwasser berührten Außenfläche (48), wobei in dem Abwasser ein Dif- fusorrohr (34) zum Einpressen von Luft und/oder ein Rührwerk angeordnet ist zur Erzeugung einer konvektiven Strömung, die das Abwasser entlang der Außenfläche (48) bewegt, dadurch gekennzeichnet, dass der Behälter ein von dem Abwasser durchflossenes Becken (2) einer Abwasserreinigungsanlage ist.
10. Vorrichtung nach dem vorherigen Anspruch, dadurch gekennzeichnet, dass das Becken (2) ein Belüftungsbecken (200) einer Belebungsanlage ist.
11. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass das Becken (2) ein Sandfang (1 ) ist.
12. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Sandfang (1 ) ein Rundsandfang (100) ist, in dessen Zentrum ein eine torusförmige Strömung erzeugendes Rührwerk angeordnet ist.
13. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Sandfang (1 ) ein Langsandfang mit einer Seitenwand (14, 16) und zumindest einem entlang der Seitenwand (14, 16) angeordneten Diffusorrohr (34) zum Einblasen von Luft und zum Erzeugen einer walzenförmigen Strömung ist.
14. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Wärmetauscher (46) einen Zulauf (4, 222) und einen Ablauf (6, 224) für die Flüssigkeit aufweist, die durch zumindest einen Strömungskanal (220) miteinander verbunden sind, und dass äußere Oberflächen des Strömungskanals (220) die Außenfläche (48) des Wärmetauschers (46) bilden.
15. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Strömungskanal (220) aus Rohrabschnitten mit kreisförmiger, rechteckiger oder quadratischer Querschnittsfläche gebildet ist.
16. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Rohrabschnitte im wesentlichen horizontal ausgerichtet sind.
17. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Rohrabschnitte im wesentlichen vertikal ausgerichtet sind.
18. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Rohrabschnitte parallel angeordnet sind und Enden aufweisen, die flüssigkeitsseitig so miteinander verbunden sind, dass die Flüssigkeit in jeweils benachbarten Rohrabschnitten in entgegengesetzter Richtung strömt.
19. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Strömungskanal (220) durch zumindest ein in Form einer Wendel angeordnetes Hohlprofil gebildet ist, wobei die Wendel eine vertikale Achse (102, 202) aufweist.
20. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Außenfläche (48) des Wärmetauschers (46) im wesentlichen parallel zu der konvektiven Strömung verläuft und eben oder gewellt ist.
21. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Außenfläche (48) des Wärmetauschers (46) zugleich eine Innenseite einer Behälterwand ist.
22. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Strömungskanal (220) des Wärmetauschers (46) durch Hohlräume (262) zwischen der Behälterwand und daran angebrachten Profilen gebildet ist.
23. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Außenfläche (48) des Wärmetauschers (46) mittels verfahrbarer Bürsten (308) abreinigbar ist.
24. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Außenfläche (48) des Wärmetauschers (46) mittels verfahrbarer Spritzdüsen abreinigbar ist.
PCT/EP2007/059606 2006-10-28 2007-09-12 Verfahren und vorrichtung zum übertragen von wärme zwischen in einem behälter befindlichem abwasser und einer flüssigkeit WO2008052839A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/447,585 US8603336B2 (en) 2006-10-28 2007-09-12 Method and device for transmitting heat between waste water located in a tank and a fluid
AT07820162T ATE460633T1 (de) 2006-10-28 2007-09-12 Verfahren und vorrichtung zum übertragen von wärme zwischen in einem behälter befindlichem abwasser und einer flüssigkeit
CN2007800402008A CN101529192B (zh) 2006-10-28 2007-09-12 用于在容器内的废水和液体之间进行热量传递的方法及装置
DE502007003105T DE502007003105D1 (de) 2006-10-28 2007-09-12 Verfahren und vorrichtung zum übertragen von wärme zwischen in einem behälter befindlichem abwasser und einer flüssigkeit
EP07820162A EP2084479B1 (de) 2006-10-28 2007-09-12 Verfahren und vorrichtung zum übertragen von wärme zwischen in einem behälter befindlichem abwasser und einer flüssigkeit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006050922.6 2006-10-28
DE102006050922A DE102006050922A1 (de) 2006-10-28 2006-10-28 Verfahren und Vorrichtung zum Übertragen von Wärme zwischen in einem Behälter befindlichem Abwasser und einer Flüssigkeit

Publications (1)

Publication Number Publication Date
WO2008052839A1 true WO2008052839A1 (de) 2008-05-08

Family

ID=38871775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/059606 WO2008052839A1 (de) 2006-10-28 2007-09-12 Verfahren und vorrichtung zum übertragen von wärme zwischen in einem behälter befindlichem abwasser und einer flüssigkeit

Country Status (6)

Country Link
US (1) US8603336B2 (de)
EP (1) EP2084479B1 (de)
CN (1) CN101529192B (de)
AT (1) ATE460633T1 (de)
DE (2) DE102006050922A1 (de)
WO (1) WO2008052839A1 (de)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008001518B4 (de) * 2008-04-30 2021-07-15 Huber Se Abwasser-Wärmetauscher
DE102009041595A1 (de) * 2009-09-15 2011-03-31 Uhrig Kanaltechnik Gmbh Wärmetauscheranordnung und Verfahren zum Transport von Wärmeenergie
EA028837B1 (ru) * 2009-11-30 2018-01-31 Петер Сентиваньи Способ и устройство для обработки газов
FR2959301B1 (fr) * 2010-04-21 2014-08-08 Lyonnaise Eaux France Installation pour extraire de la chaleur d'un effluent circulant dans une conduite, et echangeur de chaleur pour une telle installation.
DE102010029882A1 (de) * 2010-06-09 2011-12-15 BSH Bosch und Siemens Hausgeräte GmbH Vorrichtung zur Warmwasserbereitung insbesondere für Haushaltsanwendungen
CN101929809B (zh) * 2010-08-10 2011-12-28 丁杰 污水热能利用装置
DE102010050009A1 (de) 2010-11-02 2012-05-03 Gunter Behlendorf Anordnung zur Wärmerückgewinnung aus wässrigen Flüssigkeiten, insbesondere aus Abwasser
US9533903B2 (en) 2011-12-21 2017-01-03 Anaergia Inc. Organics and nutrient recovery from anaerobic digester residues
DE102012002706A1 (de) * 2012-02-14 2013-08-14 Rena Gmbh System und Verfahren zur Rückgewinnung von Wärme aus einer Flüssigkeit
RU2502022C1 (ru) * 2012-07-17 2013-12-20 Общество с ограниченной ответственностью "НПО ТЕРМЭК" Теплообменник - утилизатор тепла серых стоков
CA2901700C (en) * 2013-02-19 2022-04-19 Natural Systems Utilities, Llc Systems and methods for recovering energy from wastewater
WO2015053511A1 (ko) * 2013-10-10 2015-04-16 드림열처리 주식회사 폐수 재생장치 및 이를 포함한 폐수 재활용 세척설비
NL1040442C2 (nl) 2013-10-13 2015-04-14 Technologies Holding B V D Inrichting en werkwijze voor het persen van organisch materiaal uit afval.
CH709194A2 (de) 2014-01-17 2015-07-31 Joulia Ag Wärmetauscher für eine Dusche oder Badewanne.
DE102014201908A1 (de) * 2014-02-03 2015-08-06 Duerr Cyplan Ltd. Verfahren zur Führung eines Fluidstroms, Strömungsapparat und dessen Verwendung
FI126014B (fi) * 2014-03-04 2016-05-31 Uponor Infra Oy Matalan lämpötilan lämmönvaihdin
DK3215464T3 (da) * 2014-11-07 2023-03-27 Anaergia Inc Ammoniakstripper
WO2016100990A1 (en) * 2014-12-19 2016-06-23 Chaffee Kevin R Heat transfer wastewater treatment system
DE102015102648B4 (de) 2015-02-25 2021-07-01 ACO Severin Ahlmann GmbH & Co Kommanditgesellschaft Verfahren zur Reinigung einer zur Wärmeübertragung vorgesehenen Trennwand in einer Wärmerückgewinnungseinheit für Abwasser, sowie Wärmerückgewinnungseinheit
DE102015208694A1 (de) 2015-05-11 2016-11-17 Akvolution Gmbh Vorrichtung und Verfahren zum Erzeugen von Gasblasen in einer Flüssigkeit
US11193715B2 (en) 2015-10-23 2021-12-07 Hyfra Industriekuhlanlagen Gmbh Method and system for cooling a fluid with a microchannel evaporator
US10619932B2 (en) 2015-10-23 2020-04-14 Hyfra Industriekuhlanlagen Gmbh System for cooling a fluid with a microchannel evaporator
DE102016100991B9 (de) * 2016-01-21 2020-02-20 Reinhart Gottfried Domke Vorrichtung zur Energierückgewinnung aus Abwässern
FR3052540B1 (fr) * 2016-06-08 2019-08-02 Biofluides Systeme de recuperation de chaleur des eaux usees ameliore
DE102016212777A1 (de) * 2016-07-13 2018-01-18 KAE Kraftwerks- & Anlagen-Engineering GmbH Passiv-aktiver Wärmeübertrager
JP7107769B2 (ja) * 2017-12-19 2022-07-27 ジオシステム株式会社 熱交換装置
CZ2019111A3 (cs) * 2019-02-26 2020-05-13 Jan Topol Způsob využití tepelné energie komunálních odpadních vod z obytných domů a kondominií a zařízení k provádění způsobu
US11226139B2 (en) * 2019-04-09 2022-01-18 Hyfra Industriekuhlanlagen Gmbh Reversible flow evaporator system
KR20200125036A (ko) * 2019-04-25 2020-11-04 비씨태창산업(유) 폐수 재처리 기반 열교환기 번들 자동 세척 장치
US11493276B2 (en) 2019-04-29 2022-11-08 Noventa Energy Partners Inc. Feed water supplementary thermal exchange apparatus, system and method
CN111439855A (zh) * 2019-12-19 2020-07-24 华北水利水电大学 一种方便投入除异味的生活污水处理设备
GB202215279D0 (en) 2022-10-17 2022-11-30 Nadc Ltd Heat recovery apparatus and uses thereof.

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4671351A (en) * 1985-07-17 1987-06-09 Vertech Treatment Systems, Inc. Fluid treatment apparatus and heat exchanger
DE3605585A1 (de) * 1986-02-21 1987-08-27 Klaus Liepelt Anlage zur waermerueckgewinnung aus abwaessern
FR2788590A1 (fr) * 1999-01-14 2000-07-21 Sirven Echangeur de chaleur, notamment pour le prechauffage de lisier
EP1310602A2 (de) * 2001-11-09 2003-05-14 Hansgrohe AG Anlage zur Verwertung von Brauchwasser
WO2006097650A1 (fr) * 2005-03-16 2006-09-21 Bernard Beaulieu Installation de purification d'effluent a structure centralisée
EP1854524A1 (de) * 2006-05-13 2007-11-14 WTE Wassertechnik GmbH Abwasserreinigungsanlage mit verbesserter Belebtschlammabscheidung

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3433638C1 (de) * 1984-09-13 1986-04-17 Ulrich Dipl.-Ing. 2054 Geesthacht Klüe Waermeaustauscher zum UEbertragen von Waerme aus Abwasser
WO1995027873A1 (en) * 1994-04-08 1995-10-19 Winston Mackelvie Wastewater heat recovery apparatus
US6022474A (en) 1993-03-05 2000-02-08 Mackelvie; Winston R. Wastewater separator
EP1149619B1 (de) * 2000-04-20 2003-01-22 Martin Systems AG Filtereinrichtung zum Klären von verschmutzten Flüssigkeiten
US6517733B1 (en) * 2000-07-11 2003-02-11 Vermeer Manufacturing Company Continuous flow liquids/solids slurry cleaning, recycling and mixing system
KR100502514B1 (ko) * 2003-03-04 2005-07-25 정아라 폐열 회수기

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4671351A (en) * 1985-07-17 1987-06-09 Vertech Treatment Systems, Inc. Fluid treatment apparatus and heat exchanger
DE3605585A1 (de) * 1986-02-21 1987-08-27 Klaus Liepelt Anlage zur waermerueckgewinnung aus abwaessern
FR2788590A1 (fr) * 1999-01-14 2000-07-21 Sirven Echangeur de chaleur, notamment pour le prechauffage de lisier
EP1310602A2 (de) * 2001-11-09 2003-05-14 Hansgrohe AG Anlage zur Verwertung von Brauchwasser
WO2006097650A1 (fr) * 2005-03-16 2006-09-21 Bernard Beaulieu Installation de purification d'effluent a structure centralisée
EP1854524A1 (de) * 2006-05-13 2007-11-14 WTE Wassertechnik GmbH Abwasserreinigungsanlage mit verbesserter Belebtschlammabscheidung

Also Published As

Publication number Publication date
EP2084479B1 (de) 2010-03-10
US20100065250A1 (en) 2010-03-18
DE502007003105D1 (de) 2010-04-22
US8603336B2 (en) 2013-12-10
CN101529192A (zh) 2009-09-09
CN101529192B (zh) 2011-02-16
ATE460633T1 (de) 2010-03-15
EP2084479A1 (de) 2009-08-05
DE102006050922A1 (de) 2008-04-30

Similar Documents

Publication Publication Date Title
EP2084479B1 (de) Verfahren und vorrichtung zum übertragen von wärme zwischen in einem behälter befindlichem abwasser und einer flüssigkeit
US7494592B2 (en) Process for combining solids thickening and dewatering in one vessel
DE2032890A1 (de) Verfahren und Vorrichtung zur Be handlung von Abwasser
DE1584886A1 (de) Vorrichtung zum biologischen Reinigen von Abwaessern
EP1970660A2 (de) Anordnung und Verfahren zur Rückgewinnung von Wärmeenergie aus Abwässern
WO2007022899A1 (de) Vorrichtung zur abwasserreinigung
DE2303657B2 (de) Apparat zum Zustandebringen einer Berührung zwischen einer Flüssigkeit und einem Gas
DE3837852C2 (de)
WO1983002770A1 (en) Purification installation
EP2485985A1 (de) Verfahren und vorrichtung zum reinigen von abwasser
DE3916520A1 (de) Biologischer klaerreaktor nach dem aeroben/fakultativen prinzip
EP1031540B1 (de) Vorrichtung zum Behandeln von Abwasser
DE19533935C2 (de) Vorrichtung für die Reinigung von Abwasser
EP2297047B1 (de) Vorrichtung zum reinigen von abwasser
EP3891105A1 (de) Vorrichtung und verfahren zum trennen von suspensionen
DE102007034213B4 (de) Absetzbecken, insbesondere Geschiebeschacht
DE19807890A1 (de) Verfahren und Kleinkläranlage zum Behandeln von Schwarz und/oder Grauwasser
DE202011106449U1 (de) Einrichtung zur Gewinnung von Wärmeenergie aus sowohl in Abwasserkanälen als auch in Abwasserdruckleitungen fließendem Abwasser
DE2349218C2 (de) Kläranlage zum biologischen Reinigen von Abwasser
CH441140A (de) Anlage zur mechanisch-biologischen Reinigung von Abwasser
WO1997011033A2 (de) Kleinkläranlage zur behandlung von abwässern, insbesondere häuslichen abwässern
EP1132348B1 (de) Abwasserkläranlage und -verfahren
DE102004055151B4 (de) Festbettreaktor zur biologischen Reinigung eines Fluides und ein Verfahren hierzu
DE19951194A1 (de) Mehrzweckschacht, Kleinkläranlage und Abwasserbehandlungsverfahren
DE4122804C2 (de) Kläranlage

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780040200.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07820162

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007820162

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12447585

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE