WO2008052615A1 - Betatron mit einem joch aus pulververbundwerkstoff - Google Patents

Betatron mit einem joch aus pulververbundwerkstoff Download PDF

Info

Publication number
WO2008052615A1
WO2008052615A1 PCT/EP2007/007766 EP2007007766W WO2008052615A1 WO 2008052615 A1 WO2008052615 A1 WO 2008052615A1 EP 2007007766 W EP2007007766 W EP 2007007766W WO 2008052615 A1 WO2008052615 A1 WO 2008052615A1
Authority
WO
WIPO (PCT)
Prior art keywords
betatron
inner yoke
yoke
composite material
powder composite
Prior art date
Application number
PCT/EP2007/007766
Other languages
English (en)
French (fr)
Inventor
Jörg BERMUTH
Georg Geus
Gregor Hess
Urs VIEHBÖCK
Original Assignee
Smiths Heimann Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smiths Heimann Gmbh filed Critical Smiths Heimann Gmbh
Priority to EP07818057.7A priority Critical patent/EP2082628B1/de
Priority to CN2007800402440A priority patent/CN101530004B/zh
Priority to CA2668050A priority patent/CA2668050C/en
Publication of WO2008052615A1 publication Critical patent/WO2008052615A1/de
Priority to US12/431,626 priority patent/US7889839B2/en
Priority to HK09111315.6A priority patent/HK1133987A1/xx

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H11/00Magnetic induction accelerators, e.g. betatrons
    • H05H11/04Biased betatrons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma

Definitions

  • the present invention relates to a betatron, in particular for generating X-ray radiation in an X-ray inspection system, with a magnetic flux leading yoke, which consists at least partially of a powder composite material.
  • X-ray inspection systems When checking large-volume items such as containers and vehicles for inadmissible content such as weapons, explosives or contraband, X-ray inspection systems are known to be used. X-rays are generated and directed to the object. The X-radiation attenuated by the object is measured by means of a detector and analyzed by an evaluation unit. Thus, it can be concluded on the nature of the object.
  • Such an X-ray inspection system is known, for example, from European Patent EP 0 412 190 B1.
  • Betatrons are used to generate X-rays with the energy of more than 1 MeV necessary for the test.
  • These are circular accelerators in which electrons are held in a circular path by a magnetic field. A change in this magnetic field creates an electric field that accelerates the electrons in their orbit. From the so-called Wideröe condition, a stable nominal orbit radius is determined as a function of the course of the magnetic field and its temporal change. The accelerated electrons are directed to a target, where they produce a bremsstrahlung upon impact, the spectrum of which depends, among other things, on the energy of the electrons.
  • a well-known from the published patent DE 23 57 126 A1 betatron consists of a two-part inner yoke, in which the end faces of the two mecanicjochteiie spaced from each other. By means of two main field coils is a generated magnetic field in the inner yoke.
  • An outer yoke connects the two mutually remote ends of the inner yoke parts and closes the magnetic circuit.
  • an evacuated betatron tube is arranged, in which the electrons to be accelerated revolve.
  • the end faces of the inner yoke parts are formed in such a way that the magnetic field generated by the main field coil forces the electrons into a circular path and, moreover, focuses them on the plane in which this circular path lies.
  • the yokes consist of laminated cores, which are formed in particular from transformer sheets.
  • the inner yoke must be made very precisely in order to achieve the greatest possible homogeneity of the magnetic field in the area of the betatron tube.
  • the production of the yokes from laminated cores is therefore complicated and expensive, in addition, often result in the stratification of the sheets column.
  • a mechanical reworking of the laminated cores leads to a "smearing" of the surface, resulting in increased eddy current losses during operation
  • Cleaning of the surface for example by an etching process, is a common method to remove this layer, but disadvantageous for reasons of environmental protection and occupational safety ,
  • Claim 8 relates to an X-ray inspection system using a betatron according to the invention.
  • a betatron according to the present invention comprises a rotationally symmetrical inner yoke of two spaced-apart parts, an outer yoke connecting the two inner yoke parts, at least one main field coil and one between them Inner yoke parts arranged, Torus-shaped betatron tube.
  • the inner yoke and / or outer yoke consists at least partially of a powder composite material.
  • Powder composite materials are soft magnetic materials.
  • a powder in the context of this document is based on an iron or iron powder alloy and is pressed into shaped parts using a binder. These moldings have a high and isotropic resistivity. In addition, saturation phenomena are avoided even at high operating currents. A reduced noise development results when using magnetostriction-free alloys.
  • the choice of the composition of the powder composite material is left to the person skilled in the art, for example, depending on the requirements of the betatron.
  • the yokes or yoke parts which consist of a powder composite material, can be directly post-processed mechanically, without the need for further, for example etching, after-treatment.
  • the surfaces of the yokes or yoke parts become much smoother and more reproducible than when produced from laminated cores, resulting in greater homogeneity of the magnetic field formed by the yokes.
  • the isotropic material properties of the powder composite lead to lower eddy currents and thus to lower power losses and a higher efficiency in the operation of the betatrone.
  • the inner yoke is made entirely of a powder composite material. This is advantageous since the production of this rotationally symmetrical component made of a powder composite material, in contrast to the production from sheet metal, is less complicated and error-prone.
  • the outer yoke preferably consists of laminated cores, in particular of transformer sheets. Since the outer yoke does not have to be rotationally symmetrical and the requirements for the homogeneities of the magnetic field are small in comparison to the inner yoke, a production of the outer yoke is made of one or more Sheet metal packages possible. Alternatively, the outer yoke consists wholly or partly of a powder composite material.
  • the betatron has at least one round plate between the inner yoke parts, wherein the round plate is arranged so that its longitudinal axis coincides with the rotational symmetry axis of the inner yoke. Due to the permeability of the blank material, the magnetic field in the area of the blanks is stronger than in the blank-free air gap between the end faces of the inner yoke parts. This results in the possibility of influencing the Wideröe condition and thus the orbital radius of the accelerated electron within the betatron tube by the design of the Ronde (n).
  • the blanks preferably consist of a powder composite material.
  • the inner yoke parts are configured and arranged such that their opposite end faces are mirror-symmetrical to each other.
  • the plane of symmetry is advantageously oriented so that the rotational symmetry axis of the inner yoke is perpendicular to it. This leads to an advantageous field distribution in the air gap between the end faces, through which the electrons in the betatron tube are held in a circular path.
  • the betatron according to the invention is advantageously used in an X-ray inspection system for security checking of objects. Electrons are injected into the betatron and accelerated before being directed to a target made of tantalum, for example. There, the electrons generate X-radiation with a known spectrum. The X-radiation is directed to the object, preferably a container and / or a vehicle, and modified there, for example, by scattering or transmission attenuation. The modified X-radiation is measured by an X-ray detector and analyzed by means of an evaluation unit. From the result, the nature or content of the object is deduced.
  • Figure 1 is a schematic sectional view of an inventive
  • FIG. 1 shows the schematic structure of a preferred betatrone 1 in cross section. It consists inter alia of a rotationally symmetrical inner yoke of two spaced-apart parts 2a, 2b, an outer yoke 4 connecting the two inner yoke parts 2a, 2b, a torus-shaped betatron tube 5 arranged between the inner yoke parts 2a, 2b and two main field coils 6a and 6b.
  • the réellejochteile 2a, 2b are made entirely of a powder composite material, while the outer yoke is designed as a package of transformer sheet.
  • the outer yoke 4 is made of a powder composite material.
  • the main field coils 6a and 6b are arranged on shoulders of the inner yoke parts 2a and 2b, respectively.
  • the magnetic field generated by them passes through the inner yoke parts 2a and 2b, the magnetic circuit being closed by the outer yoke 4.
  • the shape of the inner and / or outer yoke can be selected by the skilled person depending on the application and deviate from the shape shown in Figure 1. Also, only one or more than two main field coils may be present.
  • the betatron 1 further comprises optional blanks 3 between the inner yoke parts 2a, 2b, wherein the longitudinal axis of the blanks 3 corresponds to the rotational symmetry axis of the inner yoke.
  • the number and / or shape of the blanks is left to the person skilled in the art.
  • the magnetic field passes partially through the blanks 3 and otherwise through an air gap.
  • the betatron tube 5 is arranged. It is an evacuated tube in which the electrons are accelerated.
  • the end faces of the inner yoke parts 2a and 2b have a shape selected such that the magnetic field between them focuses the electrons on a circular path. The design of the end faces is known in the art and is therefore not explained in detail.
  • the electrons strike a target and thereby generate X-radiation whose spectrum depends, among other things, on the final energy of the electrons and the material of the target.
  • the electrons are injected into the betatron tube 5 with an initial energy.
  • the magnetic field in the betatron 1 is continuously increased by the main field coils 6a and 6b. This creates an electric field that exerts an accelerating force on the electrons.
  • the electrons are forced due to the Lorentz force on a Soll Vietnamesebahn within the betatron tube 5.
  • the acceleration of the electrons is repeated periodically, resulting in a pulsed X-radiation.
  • the electrons are injected into the betatron tube 5 in a first step.
  • the electrons are accelerated by an increasing current in the main field coil 6a and 6b and thus an increasing magnetic field in the air gap between the inner yoke parts 2a and 2b in the circumferential direction of their circular path.
  • the accelerated electrons are ejected to generate the X-radiation on the target. This is followed by an optional pause before electrons are again injected into the betatron tube 5.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • X-Ray Techniques (AREA)
  • Particle Accelerators (AREA)

Abstract

Betatron (1), insbesondere in einer Röntgenprüfanlage, mit einem rotationssymmetrischen Innenjoch aus zwei beabstandet angeordneten Teilen (2a, 2b), einem die beiden Innenjochteile (2a, 2b) verbindenden Außenjoch (4), mindestens einer Hauptfeldspule (6a, 6b) sowie einer zwischen den Innenjochteilen (2a, 2b) angeordneten, Torus-förmigen Betatronröhre (5), wobei das Innenjoch und/oder das Außenjoch zumindest teilweise aus einem Pulververbundwerkstoff besteht.

Description

B E S C H R E I B U N G
Betatron mit einem Joch aus Pulververbundwerkstoff
Die vorliegende Erfindung betrifft ein Betatron, insbesondere zur Erzeugung von Röntgenstrahlung in einer Röntgenprüfanlage, mit einem den magnetischen Fluss führenden Joch, das zumindest teilweise aus einem Pulververbundwerkstoff besteht.
Bei der Überprüfung von großvolumigen Gegenständen wie Containern und Fahrzeugen auf unzulässige Inhalte wie Waffen, Sprengstoff oder Schmuggelware werden bekannterweise Röntgenprüfanlagen eingesetzt. Dabei wird Röntgenstrahlung erzeugt und auf den Gegenstand gerichtet. Die von dem Gegenstand abgeschwächte Röntgenstrahlung wird mittels eines Detektors gemessen und von einer Auswerteeinheit analysiert. Somit kann auf die Beschaffenheit des Gegenstandes geschlossen werden. Eine solche Röntgenprüfanlage ist beispielsweise aus der Europäischen Patentschrift EP 0 412 190 B1 bekannt.
Zur Erzeugung von Röntgenstrahlung mit der für die Überprüfung notwendigen Energie von mehr als 1 MeV werden Betatrons eingesetzt. Dabei handelt es sich um Kreisbeschleuniger, in denen Elektronen durch ein Magnetfeld auf einer Kreisbahn gehalten werden. Eine Veränderung dieses Magnetfeldes erzeugt ein elektrisches Feld, das die Elektronen auf ihrer Kreisbahn beschleunigt. Aus der sogenannten Wideröe-Bedingung bestimmt sich ein stabiler Sollbahnradius in Abhängigkeit vom Verlauf des Magnetfeldes und dessen zeitlicher Änderung. Die beschleunigten Elektronen werden auf ein Target gelenkt, wo sie beim Auftreffen eine Bremsstrahlung erzeugen, deren Spektrum unter anderem abhängig ist von der Energie der Elektronen.
Ein aus der Offenlegungsschrift DE 23 57 126 A1 bekanntes Betatron besteht aus einem zweiteiligen Innenjoch, bei dem sich die Stirnseiten der beiden Innenjochteiie beabstandet gegenüberstehen. Mittels zweier Hauptfeldspulen wird ein magnetisches Feld im Innenjoch erzeugt. Ein Außenjoch verbindet die beiden voneinander entfernten Enden der Innenjochteile und schließt den magnetischen Kreis.
Zwischen den Stirnseiten der beiden Innenjochteile ist eine evakuierte Betatronröhre angeordnet, in der die zu beschleunigenden Elektronen kreisen. Die Stirnseiten der Innenjochteile sind derart ausgeformt, dass das von der Hauptfeldspule erzeugte Magnetfeld die Elektronen auf eine Kreisbahn zwingt und sie darüber hinaus auf die Ebene, in der diese Kreisbahn liegt, fokussiert. Zur Steuerung des magnetischen Flusses ist es bekannt, zwischen den Stirnseiten der Innenjochteile innerhalb der Betatronröhre einen ferromagnetischen Einsatz anzuordnen.
Bei bekannten Betatrons bestehen die Joche aus Blechpaketen, die insbesondere aus Transformatorblechen gebildet werden. Dabei muss besonders das Innenjoch sehr präzise gefertigt sein, um eine größtmögliche Homogenität des Magnetfeldes im Bereich der Betatronröhre zu erzielen. Die Herstellung der Joche aus Blechpaketen ist daher aufwändig und teuer, darüber hinaus ergeben sich bei der Schichtung der Bleche oftmals Spalte. Eine mechanische Nachbearbeitung der Blechpakete führt zu einer „Verschmierung" der Oberfläche, was im Betrieb erhöhte Wirbelstromverluste zur Folge hat. Eine Reinigung der Oberfläche beispielsweise durch einen Ätzprozess ist ein übliches Verfahren um diese Schicht zu entfernen, jedoch aus Gründen des Umweltschutzes und der Arbeitssicherheit nachteilig.
Es ist daher die Aufgabe der vorliegenden Erfindung, ein Betatron mit magnetischen Jochen bereitzustellen, die die vorgenannten Nachteile nicht aufweisen.
Gelöst wird diese Aufgabe erfindungsgemäß durch die Merkmale des Patentanspruches 1. Vorteilhafte Ausgestaltungsformen sind den abhängigen Patentansprüchen 2 bis 7 zu entnehmen. Patentanspruch 8 betrifft eine Röntgenprüfanlage unter Verwendung eines erfindungsgemäßen Betatrons.
Ein Betatron nach der vorliegenden Erfindung weist ein rotationssymmetrisches Innenjoch aus zwei beabstandet angeordneten Teilen, ein die beiden Innenjochteile verbindendes Außenjoch, mindestens eine Hauptfeldspule sowie eine zwischen den Innenjochteilen angeordnete, Torus-förmige Betatron röhre auf. Erfindungsgemäß besteht das Innenjoch und/oder Außenjoch zumindest teilweise aus einem Pulververbundwerkstoff.
Bei Pulververbundwerkstoffen handelt es sich um weichmagnetische Werkstoffe. Ein Pulver im Rahmen dieses Dokuments basiert auf einer Eisen- oder Eisenpulverlegierung und wird unter Verwendung eines Binders zu Formteilen verpresst. Diesen Formteilen ist ein hoher und isotroper spezifischer Widerstand zu eigen. Darüber hinaus werden auch bei hohen Betriebsströmen Sättigungserscheinungen vermieden. Eine reduzierte Geräuschentwicklung ergibt sich bei Verwendung magnetostriktionsfreier Legierungen. Die Wahl der Zusammensetzung des Pulververbundwerkstoffes bleibt dem ausführenden Fachmann überlassen, beispielsweise in Abhängigkeit von den Anforderungen an das Betatron.
Die aus einem Pulververbundwerkstoff bestehenden Joche beziehungsweise Jochteile können direkt mechanisch nachbearbeitet werden, ohne dass dadurch eine weitere, beispielsweise ätztechnische Nachbehandlung notwendig wird. Die Oberflächen der Joche beziehungsweise Jochteile werden deutlich glatter und reproduzierbarer als bei einer Herstellung aus Blechpaketen, wodurch sich eine größere Homogenität des durch die Joche geformten Magnetfeldes ergibt. Darüber hinaus führen die isotropen Materialeigenschaften des Pulververbundwerkstoffs zu geringeren Wirbelströmen und damit zu geringeren Verlustleistungen und einem höheren Wirkungsgrad beim Betrieb des Betatrons.
In einer Ausgestaltungsform der Erfindung besteht das Innenjoch vollständig aus einem Pulververbundwerkstoff. Dies ist vorteilhaft, da die Herstellung dieses rotationssymmetrischen Bauteils aus einem Pulververbundwerkstoff im Gegensatz zur Herstellung aus Blechen weniger aufwändig und fehleranfällig ist. Bevorzugt besteht das Außenjoch aus Blechpaketen, insbesondere aus Transformatorblechen. Da das Außenjoch nicht rotationssymmetrisch ausgestaltet sein muss und die Anforderungen an die Homogenitäten des Magnetfeldes im Vergleich zum Innenjoch gering sind, ist eine Herstellung des Außenjochs aus einem oder mehreren Blechpaketen möglich. Alternativ besteht auch das Außenjoch ganz oder teilweise aus einem Pulververbundwerkstoff.
Optional weist das Betatron mindestens eine Ronde zwischen den Innenjochteilen auf, wobei die Ronde so angeordnet ist, dass ihre Längsachse mit der Rotationssymmetrieachse des Innenjochs zusammenfällt. Aufgrund der Permeabilität des Rondenwerkstoffes ist das Magnetfeld im Bereich der Ronden stärker als im rondenfreien Luftspalt zwischen den Stirnseiten der Innenjochteile. Dadurch ergibt sich die Möglichkeit, durch die Ausgestaltung der Ronde(n) die Wideröe-Bedingung und damit den Bahnradius des beschleunigten Elektrons innerhalb der Betatronröhre zu beeinflussen. Dabei bestehen die Ronden bevorzugt aus einem Pulververbundwerkstoff.
In einer Ausgestaltungsform der Erfindung sind die Innenjochteile derart ausgestaltet und angeordnet, dass ihre gegenüberliegenden Stirnseiten zueinander spiegelsymmetrisch sind. Die Symmetrieebene ist dabei vorteilhaft so orientiert, dass die Rotationssymmetrieachse des Innenjochs senkrecht auf ihr steht. Dies führt zu einer vorteilhaften Feldverteilung im Luftspalt zwischen den Stirnseiten, durch die die Elektronen in der Betatronröhre auf einer Kreisbahn gehalten werden.
Das erfindungsgemäße Betatron wird vorteilhaft in einer Röntgenprüfanlage zur Sicherheitsüberprüfung von Objekten eingesetzt. Es werden Elektronen in das Betatron injiziert und beschleunigt, bevor sie auf ein beispielsweise aus Tantal bestehendes Target gelenkt werden. Dort erzeugen die Elektronen Röntgenstrahlung mit einem bekannten Spektrum. Die Röntgenstrahlung wird auf das Objekt, vorzugsweise einen Container und/oder ein Fahrzeug, gerichtet und dort beispielsweise durch Streuung oder Transmissionsdämpfung modifiziert. Die modifizierte Röntgenstrahlung wird von einem Röntgendetektor gemessen und mittels einer Auswerteeinheit analysiert. Aus dem Ergebnis wird auf die Beschaffenheit oder den Inhalt des Objekts geschlossen.
Die vorliegende Erfindung soll anhand eines Ausführungsbeispiels näher erläutert werden. Dabei zeigt Figur 1 eine schematische Schnittdarstellung eines erfindungsgemäßen
Betatrons.
Figur 1 zeigt den schematischen Aufbau eines bevorzugten Betatrons 1 im Querschnitt. Es besteht unter anderem aus einem rotationssymmetrischen Innenjoch aus zwei beabstandet angeordneten Teilen 2a, 2b, einem die beiden Innenjochteile 2a, 2b verbindenden Außenjoch 4, einer zwischen den Innenjochteilen 2a, 2b angeordneten, Torus-förmigen Betatronröhre 5 sowie zwei Hauptfeldspulen 6a und 6b. Die Innenjochteile 2a, 2b bestehen vollständig aus einem Pulververbundwerkstoff, während das Außenjoch als Paket aus Transformatorblech ausgeführt ist. Alternativ besteht auch das Außenjoch 4 aus einem Pulververbundwerkstoff.
Aufgrund der Herstellung aus einem Pulververbundwerkstoff lassen sich auch komplexe Geometrien der Joche oder Jochteile präzise fertigen. Darüber hinaus verringern die isotropen Materialeigenschaften die Wirbelstromverluste im Joch.
Die Hauptfeldspulen 6a und 6b sind auf Absätzen der Innenjochteile 2a beziehungsweise 2b angeordnet. Das von ihnen erzeugte Magnetfeld durchsetzt die Innenjochteile 2a und 2b, wobei der magnetische Kreis durch das Außenjoch 4 geschlossen wird. Die Form des Innen- und/oder Außenjochs kann vom Fachmann je nach Anwendungsfall gewählt werden und von der in Figur 1 angegeben Form abweichen. Auch können nur eine oder mehr als zwei Hauptfeldspulen vorhanden sein.
Das Betatron 1 weist weiterhin optionale Ronden 3 zwischen den Innenjochteilen 2a, 2b auf, wobei die Längsachse der Ronden 3 der Rotationssymmetrieachse des Innenjochs entspricht. Durch die Ausgestaltung Ronden 3 lässt sich das Magnetfeld zwischen den Stirnseiten der Innenjochteile und damit die Wideröe-Bedingung beeinflussen. Die Anzahl und/oder Form der Ronden ist dem implementierenden Fachmann überlassen.
Zwischen den Stirnseiten der Innenjochteile 2a und 2b verläuft das Magnetfeld teilweise durch die Ronden 3 und ansonsten durch einen Luftspalt. In diesem Luftspalt ist die Betatronröhre 5 angeordnet. Dabei handelt es sich um eine evakuierte Röhre, in der die Elektronen beschleunigt werden. Die Stirnseiten der Innenjochteile 2a und 2b weisen eine Form auf, die so gewählt ist, dass das Magnetfeld zwischen ihnen die Elektronen auf eine Kreisbahn fokussiert. Die Ausgestaltung der Stirnflächen ist dem Fachmann bekannt und wird daher nicht näher erläutert. Die Elektronen treffen am Ende des Beschleunigungsvorgangs auf ein Target und erzeugen dadurch eine Röntgenstrahlung, deren Spektrum unter anderem von der Endenergie der Elektronen und dem Material des Targets abhängt.
Zur Beschleunigung werden die Elektronen mit einer Anfangsenergie in die Betatronröhre 5 eingeschossen. Während der Beschleunigungsphase wird das Magnetfeld im Betatron 1 durch die Hauptfeldspulen 6a und 6b fortlaufend erhöht. Dadurch wird ein elektrisches Feld erzeugt, das eine beschleunigende Kraft auf die Elektronen ausübt. Gleichzeitig werden die Elektronen auf Grund der Lorentzkraft auf eine Sollkreisbahn innerhalb der Betatronröhre 5 gezwungen.
Die Beschleunigung der Elektronen erfolgt periodisch wiederholt, wodurch sich eine gepulste Röntgenstrahlung ergibt. In jeder Periode werden in einem ersten Schritt die Elektronen in die Betatronröhre 5 injiziert. In einem zweiten Schritt werden die Elektronen durch einen steigenden Strom in den Hauptfeldspule 6a und 6b und somit ein ansteigendes Magnetfeld im Luftspalt zwischen den Innenjochteilen 2a und 2b in Umfangsrichtung ihrer Kreisbahn beschleunigt. In einem dritten Schritt werden die beschleunigten Elektronen zur Erzeugung der Röntgenstrahlung auf das Target ausgeschleust. Anschließend erfolgt eine optionale Pause, bevor erneut Elektronen in die Betatronröhre 5 injiziert werden.

Claims

P a t e n t a n s p r ü c h e
1.
Betatron (1), insbesondere in einer Röntgenprüfanlage, mit einem rotationssymmetrischen Innenjoch aus zwei beabstandet angeordneten
Teilen (2a, 2b), einem die beiden Innenjochteile (2a, 2b) verbindenden Außenjoch (4), mindestens einer Hauptfeldspule (6a, 6b) sowie einer zwischen den Innenjochteilen (2a, 2b) angeordneten, Torus-förmigen
Betatron röhre (5), wobei das Innenjoch und/oder das Außenjoch zumindest teilweise aus einem Pulververbundwerkstoff besteht.
2.
Betatron (1) nach Anspruch 1 , dadurch gekennzeichnet, dass das Innenjoch vollständig aus einem Pulververbundwerkstoff besteht.
3.
Betatron (1) nach Anspruch 2, dadurch gekennzeichnet, dass das Außenjoch (4) aus
Blechpaketen besteht.
4.
Betatron (1) nach Anspruch 2, dadurch gekennzeichnet, dass das Außenjoch (4) aus einem Pulververbundwerkstoff besteht.
5.
Betatron (1) nach einem der Ansprüche 1 bis 4, gekennzeichnet durch mindestens eine Ronde (3) zwischen den Innenjochteilen (2a, 2b), wobei die Ronde (3) so angeordnet ist, dass ihre Längsachse mit der Rotationssymmetrieachse des Innenjochs zusammenfällt.
6.
Betatron (1) nach Anspruch 5, dadurch gekennzeichnet, dass mindestens einer der Ronden (3) aus einem Pulververbundwerkstoff besteht.
7.
Betatron (1) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass Innenjochteile (2a, 2b) derart ausgestaltet und angeordnet sind, dass ihre gegenüberliegenden Stirnseiten zueinander spiegelsymmetrisch sind.
8.
Röntgenprüfanlage zur Sicherheitsüberprüfung von Objekten, aufweisend ein Betatron (1) nach einem der Ansprüche 1 bis 7 und ein Target zur Erzeugung von Röntgenstrahlung sowie einen Röntgendetektor und eine Auswerteeinheit.
PCT/EP2007/007766 2006-10-28 2007-09-06 Betatron mit einem joch aus pulververbundwerkstoff WO2008052615A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP07818057.7A EP2082628B1 (de) 2006-10-28 2007-09-06 Betatron mit einem joch aus pulververbundwerkstoff
CN2007800402440A CN101530004B (zh) 2006-10-28 2007-09-06 具有由粉末复合材料制成的磁轭的电子回旋加速器
CA2668050A CA2668050C (en) 2006-10-28 2007-09-06 Betatron comprising a yoke made of composite powder
US12/431,626 US7889839B2 (en) 2006-10-28 2009-04-28 Betatron with a yoke made of composite powder
HK09111315.6A HK1133987A1 (en) 2006-10-28 2009-12-03 Betatron comprising a yoke made of composite powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006050949.8 2006-10-28
DE102006050949A DE102006050949A1 (de) 2006-10-28 2006-10-28 Betatron mit einem Joch aus Pulververbundwerkstoff

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/431,626 Continuation US7889839B2 (en) 2006-10-28 2009-04-28 Betatron with a yoke made of composite powder

Publications (1)

Publication Number Publication Date
WO2008052615A1 true WO2008052615A1 (de) 2008-05-08

Family

ID=38828253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/007766 WO2008052615A1 (de) 2006-10-28 2007-09-06 Betatron mit einem joch aus pulververbundwerkstoff

Country Status (8)

Country Link
US (1) US7889839B2 (de)
EP (1) EP2082628B1 (de)
CN (1) CN101530004B (de)
CA (1) CA2668050C (de)
DE (1) DE102006050949A1 (de)
HK (1) HK1133987A1 (de)
RU (1) RU2009119595A (de)
WO (1) WO2008052615A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3030670C (en) * 2012-04-27 2020-07-28 Triumf Processes, systems, and apparatus for cyclotron production of technetium-99m

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2297305A (en) * 1940-11-13 1942-09-29 Gen Electric Magnetic induction accelerator
EP0412190A1 (de) * 1989-08-09 1991-02-13 Heimann Systems GmbH & Co. KG Vorrichtung zum Durchstrahlen von Gegenständen mittels fächerförmiger Strahlung
US5122662A (en) * 1990-10-16 1992-06-16 Schlumberger Technology Corporation Circular induction accelerator for borehole logging

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3841870A (en) * 1973-03-07 1974-10-15 Carpenter Technology Corp Method of making articles from powdered material requiring forming at high temperature
US3975689A (en) * 1974-02-26 1976-08-17 Alfred Albertovich Geizer Betatron including electromagnet structure and energizing circuit therefor
US5115459A (en) * 1990-08-15 1992-05-19 Massachusetts Institute Of Technology Explosives detection using resonance fluorescence of bremsstrahlung radiation
CN1209037A (zh) * 1997-08-14 1999-02-24 深圳奥沃国际科技发展有限公司 大跨度回旋加速器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2297305A (en) * 1940-11-13 1942-09-29 Gen Electric Magnetic induction accelerator
EP0412190A1 (de) * 1989-08-09 1991-02-13 Heimann Systems GmbH & Co. KG Vorrichtung zum Durchstrahlen von Gegenständen mittels fächerförmiger Strahlung
US5122662A (en) * 1990-10-16 1992-06-16 Schlumberger Technology Corporation Circular induction accelerator for borehole logging

Also Published As

Publication number Publication date
EP2082628B1 (de) 2018-01-31
CA2668050C (en) 2015-05-19
CA2668050A1 (en) 2008-05-08
RU2009119595A (ru) 2010-12-10
CN101530004A (zh) 2009-09-09
HK1133987A1 (en) 2010-04-09
EP2082628A1 (de) 2009-07-29
US7889839B2 (en) 2011-02-15
CN101530004B (zh) 2011-08-03
US20090262899A1 (en) 2009-10-22
DE102006050949A1 (de) 2008-04-30

Similar Documents

Publication Publication Date Title
DE69821278T2 (de) Magnetkern und Herstellungsverfahren
DE102009004879B4 (de) Kreisbeschleuniger
WO2020119840A1 (de) Rotor für einen elektromotor, elektromotor sowie verfahren zur herstellung eines rotors
EP1849169A1 (de) Transformatorkern mit magnetischer abschirmung
EP2082628B1 (de) Betatron mit einem joch aus pulververbundwerkstoff
EP2082626B1 (de) Betatron mit herausnehmbaren beschleunigerblock
EP2082624B1 (de) Betatron mit veränderbarem bahnradius
EP2082625B1 (de) Betatron mit contraction- und expansion-spule
EP3599619A1 (de) Target zum erzeugen von röntgenstrahlung, röntgenemitter und verfahren zum erzeugen von röntgenstrahlung
WO2016045984A1 (de) Kinematische kette für ein elektrisches schaltgerät sowie verfahren zur einstellung eines relativabstandes von schaltkontaktstücken
DE102008012761B4 (de) Bauelement einer Wälzlagerung und Verfehren zum Herstellen des Bauelements
EP2082627B1 (de) Bleiabschirmung für ein betatron
CH664045A5 (en) Quasi-optical gyro-klystron for producing milli-meter waves - comprising resonator, drift-zone, second resonator and two annular field-coils to generate magnetic field
DE102010040615A1 (de) Teilchenbeschleuniger mit in die Beschleunigerzelle integriertem Spannungsvervielfacher
WO2013127721A1 (de) Berührungslose magnetisierung von hohlwellen
DE102010019577A1 (de) Strukturelement für ein Kraftfahrzeug
EP4075461A1 (de) Verfahren zum herstellen eines elektrischen bauteils
EP3373417A1 (de) Flussführungselement mit schichtaufbau
EP4189709A1 (de) Transformator
DE102019200862A1 (de) Kabelanordnung
WO2019129491A1 (de) Magnetkern mit rückschlussschenkel
WO2019114848A1 (de) Induktor und verfahren zum härten von zahnstangen
DE2029534A1 (de) Elektronenmikroskop

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780040244.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07818057

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007818057

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2668050

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2009119595

Country of ref document: RU

Kind code of ref document: A