WO2008050380A1 - Display panel testing apparatus and testing method - Google Patents

Display panel testing apparatus and testing method Download PDF

Info

Publication number
WO2008050380A1
WO2008050380A1 PCT/JP2006/321037 JP2006321037W WO2008050380A1 WO 2008050380 A1 WO2008050380 A1 WO 2008050380A1 JP 2006321037 W JP2006321037 W JP 2006321037W WO 2008050380 A1 WO2008050380 A1 WO 2008050380A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
voltage
cathode
display panel
current
Prior art date
Application number
PCT/JP2006/321037
Other languages
French (fr)
Japanese (ja)
Inventor
Masato Togashi
Keisuke Moriya
Original Assignee
Pioneer Corporation
Tohoku Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation, Tohoku Pioneer Corporation filed Critical Pioneer Corporation
Priority to PCT/JP2006/321037 priority Critical patent/WO2008050380A1/en
Publication of WO2008050380A1 publication Critical patent/WO2008050380A1/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/395Linear regulators
    • H05B45/397Current mirror circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3216Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using a passive matrix
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present invention relates to a display panel inspection apparatus and inspection method using a capacitive element such as an organic EL (elect mouth luminescence) element as a display pixel.
  • a capacitive element such as an organic EL (elect mouth luminescence) element as a display pixel.
  • the organic EL element described above is basically a transparent electrode constituting an anode (anode) on a transparent substrate, a light emitting functional layer containing an organic compound, and a cathode (force sword), for example, a metal electrode.
  • this organic EL element can be electrically replaced with a light emitting element having a diode characteristic and a parasitic capacitance component coupled in parallel to the light emitting element, and the organic EL element is a capacitive light emitting element. Can do.
  • the organic layer functioning as a light emitting layer is laminated unevenly in the manufacturing process, or when a thin film such as a cathode electrode is laminated. In some cases, dot defects are generated by damaging the organic layer or by oxidizing the cathode electrode itself with impurities.
  • the above-described dot defects are electrically short-circuited.
  • the EL element in the defective state is connected to the anode line or the cathode line connected thereto.
  • an inspection process is performed to detect EL elements with dot defects.
  • each EL element is a matrix.
  • the scanning lines hereinafter also referred to as cathode lines
  • the drive lines hereinafter also referred to as anode lines
  • a defective EL element can be detected by applying a reverse bias voltage.
  • Patent Document 1 discloses a detection means for applying a reverse bias voltage to each EL element connected in a matrix.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-229262
  • an ammeter is connected to each of the scanning lines and to each of the drive lines, and each ammeter is monitored to detect defective elements. It tries to detect the exact position.
  • the position of the short-circuited element can be easily determined from the connection position of the ammeter on the drive line side where the predetermined current value is measured and the connection position of the ammeter on the scan line side where the predetermined current value is also measured. It is explained that can be known.
  • FIG. 1 illustrates the above-described problem.
  • Reference numeral 1 denotes a display panel, and a configuration other than the display panel 1 constitutes a display panel inspection apparatus.
  • display panel 1 m anode lines Al to Am are arranged in the vertical direction, and n cathode lines Kl to ⁇ are arranged in the horizontal direction, and at each intersecting portion (a total of m X n locations), Display elements (EL elements) E11 to Emn indicated by a parallel combination of diode and capacitor symbol marks constitute display panel 1.
  • the anode lines Al to Am in the display panel 1 are connected to an anode line drive circuit having a constant current source, and the cathode lines Kl to Kn have cathode line drive circuits. Connected.
  • the cathode line scanning circuit sequentially sets the cathode lines to be scanned to the scanning potential, and in synchronization with this, the anode line drive circuit selectively supplies a forward current to the anode lines Al to Am, thereby displaying the display.
  • the display elements arranged in panel 1 are controlled to be lit so that they can emit light continuously. In the inspection circuit shown in FIG.
  • each of the cathode side switches Skl to Skn is connected to each of the cathode lines Kl to ⁇ , and the cathode side switches Skl to Skn are connected to the display panel 1 described above.
  • the positive terminal of the power source E is connected to the other end via the current measuring means 2.
  • One end of each of the anode side switches Sal to Sam is connected to each anode line Al to Am of the display panel 1, and the other end of each of the anode side switches Sal to Sam is connected to the negative terminal of the power source E. RU
  • the power source E functions to apply a voltage having a reverse polarity to the forward voltage applied when the EL element in the display panel 1 is driven to emit light, that is, a reverse bias voltage.
  • the cathode side switch Sk3 and the anode side switch Sa3 are turned on, and the other cathode side All switches and anode switches are set to the off state.
  • a reverse bias voltage from the power source E is applied to the display element indicated by E33.
  • the current measuring means 2 does not detect the current value. Further, if the display element E33 is in a short circuit state, the current measuring means 2 detects a large current value and detects that this is a defect state.
  • the display element may cause a leakage phenomenon in which a current leaking in a reverse direction is slightly leaked in a completely short-circuited state.
  • a leak occurs in the display elements E13 and E32, a wraparound leak current flows through the display element E12 as indicated by the dashed arrow, and similarly the display element E33 is normal.
  • erroneous detection occurs as if the display element E33 is in a leak state.
  • each positive electrode corresponding to one cathode line is necessary for accurately grasping a defective element.
  • the inspection for detecting the current value for each polar line is repeated, and the inspection for detecting the current value for each anode line is similarly repeated by changing the cathode line.
  • each of the display elements has a parasitic capacitance. Therefore, when the reverse bias voltage is charged for each of the elements as described above, It is necessary to detect the value of the current flowing through the display element after a sufficient time to charge the parasitic capacitance.
  • the present invention has been made by paying attention to the above-mentioned problems, and it is possible to eliminate the standby time for charging the parasitic capacitance and to eliminate the occurrence of the sneak current as described above. It is an object of the present invention to provide an inspection apparatus and an inspection method capable of inspecting an element with high accuracy.
  • a display panel inspection apparatus which has been made to solve the above-mentioned problems, as described in claim 1, at each intersection position of a plurality of anode lines and a plurality of cathode lines intersecting each other.
  • a display panel inspection apparatus comprising: a display element connected between the anode line and the cathode line, wherein a display operation is performed when the anode line force forward current is passed through the display element.
  • an inspection power source that is electrically connected to the cathode line of the display panel and outputs an inspection voltage, and is electrically connected to all anode lines and negative lines of the display panel, and all the anode lines and Electrode for setting the potential of the cathode line and the measurement target cathode line and the potential setting means connected to the display element to be measured
  • It is characterized in that it includes a current measuring means that is selectively connected to Z or a measurement target anode line and measures a current flowing in the display element to be measured.
  • the display panel is inspected according to the present invention.
  • a display panel inspection method in which a display operation is performed by applying a forward current of the anode line force to an element, wherein an inspection voltage is applied to at least one of the cathode lines, and the potential of the cathode line is The electrode potential setting step for setting the potentials of all the anode lines and the cathode lines so as to have a relationship equal to or higher than the potentials of the anode lines, and the measurement target cathode lines and Z or measurement objects to which the display elements to be measured are connected
  • the method is characterized in that a current measuring step is performed which is selectively connected to a positive electrode and measures the current flowing through the display element to be measured.
  • FIG. 1 is a circuit configuration diagram showing an example of a conventional inspection apparatus together with a display panel.
  • FIG. 2 is a circuit configuration diagram showing a first embodiment of an inspection apparatus according to the present invention together with a display panel.
  • FIG. 3 is a circuit configuration diagram showing the second embodiment together with the display panel.
  • FIG. 4 is a circuit configuration diagram showing the third embodiment together with the display panel.
  • FIG. 5 is a circuit configuration diagram showing the fourth embodiment together with the display panel.
  • FIG. 6 is a circuit configuration diagram showing the fifth embodiment together with the display panel.
  • FIG. 7 is an explanatory view showing a defect state determination means performed in the inspection apparatus shown in FIG. 6.
  • FIG. 2 shows the first embodiment.
  • Reference numeral 1 denotes the display panel already described with reference to FIG. 1, and therefore the description thereof is omitted.
  • an inspection power source E1 for individually applying a reverse bias voltage to a display element (EL element) to be measured is provided, and a positive terminal of the inspection power source E1 One end of the current measuring means 2 is connected in series.
  • the other end of the current measuring means 2 is configured to be selectively connectable to the cathode lines Kl to Kn arranged on the display panel 1 through the switches Ski 1, Sk21, Sk31, ... Sknl.
  • the positive voltage of the inspection power source E1 acts so as to be applied alternatively to the cathode lines ⁇ 1 to ⁇ .
  • the negative terminal of the inspection power supply E1 is set to the ground potential.
  • the switches Sai l, Sa21, Sa 31, ... Saml force are respectively connected to the anode lines Al to Am arranged on the display panel 1, and these switches Sai l, Sa21, Sa31, ... • ••
  • the other end of Saml is connected to a measurement anode power source that can output a measurement anode voltage whose voltage value is lower than the positive voltage value of the inspection power source E1.
  • the measurement anode voltage is set to the ground potential.
  • the switches Sail, Sa21, Sa31,... Saml are selectively turned on, so that the measured anode voltage (grounding) with respect to any deviation of the anode lines Al to Am is detected. It works like an electric potential.
  • the cathode lines Kl to Kn arranged on the display panel 1 are further connected to switches Skl2, Sk22, Sk32,... Skn2, and via these switches, the positive voltage of the measurement power source E2 Is supplied to the cathode lines Kl to Kn.
  • the negative terminal of the non-measuring power source 2 is set to the ground potential.
  • the switches Ski 1, Sk21, Sk31, ... Sk nl connected to the cathode lines Kl to Kn and the switches Skl2, Sk22, Sk32, ... Skn2 are connected to each cathode line as shown in the figure. Accordingly, a pair is formed, and each switch constituting the pair is controlled so that one of them is turned on.
  • switches Sal2, Sa22, Sa32,... Sam2 are further connected to the anode lines Al to Am arranged in the display panel 1, and the non-measurement power source E2 is connected to these switches via these switches.
  • a positive voltage is configured to be supplied to the anode lines Al to Am.
  • the negative terminal of inspection power supply E1 and the negative terminal of non-measurement power supply E2 are both grounded, and the positive voltage value of inspection power supply E1 is The value of the positive voltage of the measuring power supply E2 is set to the relation, etc.!
  • the switch that forms a pair connected to the cathode lines Kl to Kn of the display panel 1 and the switch that forms a pair connected to the anode lines Al to Am each include a plurality of cathode lines.
  • a plurality of selection means for selectively setting a plurality of types of potentials for 1 to Kn and a plurality of anode lines A 1 to Am are configured.
  • the electrode potential setting means includes a plurality of selection means by each switch, the non-measurement power source E2, and the measurement anode power source (in this embodiment, the ground potential).
  • the current measuring means 2 is selectively connected to the measurement target cathode line and the measurement target anode line, to which the display element to be measured is connected, via the selection means, and the measurement is performed. It fulfills the function of measuring the current flowing through the target display element.
  • the state shown in FIG. 2 shows an example in which a display element indicated by E33 indicated by a circle in the display panel 1 is inspected as an example! That is, when the switch Sk31 is turned on, the positive voltage of the inspection power supply E1, that is, the inspection voltage is applied to the cathode line K3 corresponding to the display element to be measured. In this case, display elements other than the measurement target are connected.
  • Each of the switches Skl 1, Sk 21,... Sknl interposed between the non-measured cathode line and the inspection power supply El is put into a state of talent.
  • the switch Sa31 when the switch Sa31 is turned on to the anode line A3 corresponding to the display element to be measured, the measurement anode voltage (in this embodiment, the ground potential) from the measurement anode power source is set. Supplied. In this case, each of the switches Sal 1, Sa21,... Saml interposed between the non-measurement anode line connected to the display element other than the measurement object and the measurement anode power source is turned off.
  • a closed circuit including the inspection power source E1 and the current measuring means 2 is formed via the switch Sk31, the cathode line K3, the display element ⁇ 33 to be measured, the anode line A3, and the switch Sa31, and the display element A reverse bias voltage is applied to E33 by the inspection power supply E1 (electrode potential setting step).
  • the switch Sk32 interposed between the cathode line K3 corresponding to the display element E33 to be measured and the positive terminal of the non-measurement power supply E2 is turned off, and the display elements other than the measurement object are connected.
  • Each of the switches Ski 2, Sk22,... Skn2 interposed between the cathode line not measured and the positive terminal of the non-measuring power supply E2 is brought into a stale state.
  • the switch Sa32 interposed between the anode wire A3 corresponding to the display element E33 to be measured and the positive terminal of the non-measurement power supply E2 is turned off, and display elements other than the measurement object are connected.
  • Each switch Sal2, Sa22,... Sam2 interposed between the measured non-measurement anode wire and the positive terminal of the non-measuring power supply E2 is brought into a stale state.
  • the reverse bias voltage from the inspection power supply E1 is applied only to the display element E33 to be measured, and the potentials at both ends of the display element that is not to be measured become the same potential. For this reason, even if a display element that is not to be measured is short-circuited, no current flows through the display element, as described with reference to FIG. Almost no "current" occurs!
  • FIG. 3 shows a second embodiment of an inspection apparatus according to the present invention.
  • parts that perform the same functions as those shown in FIG. 2 are denoted by the same reference numerals, and therefore detailed description thereof is omitted.
  • the non-measurement power supply E2 shown in FIG. 2 is configured by an operational amplifier OP1. That is, the non-inverting input terminal of the operational amplifier OP1 is connected to the positive terminal of the inspection power supply E1, and the output terminal of the operational amplifier OP1 is connected to the inverting input terminal. That is, the operational amplifier OP1 functions as a buffer amplifier.
  • the output terminal of the operational amplifier OP1 performs the same function as the positive terminal of the non-measurement power supply E2 shown in FIG. 2, and the test voltage of the inspection power supply E 1 is connected to the output terminal of the operational amplifier OP 1.
  • the same voltage value will be produced.
  • FIG. 4 shows a third embodiment of an inspection apparatus according to the present invention.
  • parts that perform the same functions as those shown in FIG. 3 are denoted by the same reference numerals, and thus detailed description thereof is omitted.
  • the non-inverting input terminal of the operational amplifier OP1 is connected at the connection position between the current measuring means 2 and the switches Ski 1, Sk21, Sk31,. The rest is the same as the configuration shown in FIG.
  • the non-measurement voltage in which the voltage drop by the current measuring means 2 is compensated for the output voltage from the inspection power supply E1 can be output to the output terminal of the operational amplifier OP1. Also in the third embodiment shown in FIG. 4, it is possible to obtain the same effects as those in the embodiment shown in FIG.
  • FIG. 5 shows a fourth embodiment of an inspection apparatus according to the present invention.
  • parts that perform the same functions as those shown in FIG. 3 are denoted by the same reference numerals, and therefore detailed description thereof is omitted.
  • the inspection power source E 1 is replaced with the constant current source 3. ing.
  • the output terminal of the constant current source 3 is connected to the non-inverting input terminal of the operational amplifier OP1, so that the voltage value at the output terminal of the operational amplifier OP1 always matches the voltage value at the output terminal of the constant current source 3. Controlled.
  • voltage measuring means 4 is provided that can measure the voltage value across the constant current source 3 including the current measuring means 2 as necessary. Also in the fourth embodiment shown in FIG. 5, the same effects as those of the embodiment shown in FIG. 2 can be obtained.
  • FIG. 6 shows a fifth embodiment of the inspection apparatus according to the present invention, and reference numeral 1 denotes the display panel already described based on FIG. The explanation is omitted.
  • the output of the inspection power source E 1 can be applied to the cathode lines Kl to Kn arranged on the display panel 1 via the main switch SW.
  • a resistance element Rrl is connected in series to the main switch SW, and each switch Ski, Sk2, Sk3,... Having one end connected to the cathode lines Kl to Kn via the resistance element Rrl. ... Commonly connected to the other end of Skn.
  • Each switch Ski, Sk2, Sk3, ... Skn connected to each cathode line Kl to Kn acts so as to be turned on alternatively during the execution of the inspection, so that the positive voltage of the inspection power source E 1 is reduced to the cathode line Kl to Acts as an alternative to Kn.
  • each of the anode lines Al to Am arranged in the display panel 1 is connected to the switch Sal, Sa2, Sa3, ... 'Sam, and the other end is connected in common to the resistance element Rr2. It is connected to a measurement anode power source capable of outputting a measurement anode voltage having a voltage value lower than that of the inspection power source E1. In the embodiment shown in FIG. 6, the measurement anode voltage is set to the ground potential.
  • the switches Sal, Sa2, Sa3,... Sam connected to the anode lines Al to Am act so as to be selectively turned on when the inspection is performed. Acts so that pressure (ground potential) is applied alternatively to the anode wires Al to Am
  • the inspection power supply is provided on each of the cathode lines Kl to Kn.
  • the resistance element Rrl connected in series with El is equipped with a voltmeter that can measure the voltage at both ends of the resistance element Rrl. This is a cathode current that substantially measures the amount of current flowing through the resistance element Rrl.
  • the measuring means 7 is configured as follows.
  • a voltmeter capable of measuring the voltage at both ends of the resistance element Rr2 connected in series with the measurement anode power supply (ground potential) across the anode lines Al to Am. This constitutes a cathode current measuring means 8 that substantially measures the amount of current flowing through the resistance element Rr2.
  • resistance elements Rkl, Rk2, Rk3,... Rkn are connected between the inspection power source E1 and the cathode lines Kl to Kn, respectively, and the cathode lines Kl to The inspection voltage from the inspection power supply El is applied to ⁇ .
  • resistance elements Ral, Ra2, Ra3,... Ram are connected between the measurement anode power source (ground potential) and each of the anode lines Al to Am, and each anode is connected to each anode via these resistance elements. The voltage (ground potential) from the measurement anode power supply is applied to the wires Al to Am! Speak.
  • each switch Ski, Sk2, Sk3, ... Skn and each resistance element Rkl, Rk2, Rk3, ... Rkn each connected to the cathode lines Kl to Kn of the display panel 1, the display panel
  • Each of the switches Sal, Sa2, Sa3,... Sam and each of the resistance elements Ral, Ra2, Ra3,... Ram connected to one anode line Al to Am constitutes an electrode potential setting means.
  • the state shown in FIG. 6 shows an example in which a display element indicated by E33 indicated by a circle in the display panel 1 is inspected as an example! That is, the inspection voltage from the inspection power source E1 is applied to the cathode line K3 corresponding to the display element E33 to be measured by turning on the switch Sk3.
  • the switches Ski, Sk2,... Sknl interposed between the non-measuring cathode line to which the display element other than the measuring object is connected and the inspection power source E1 are turned off.
  • the switch Sa3 since the switch Sa3 is turned on to the anode line A3 corresponding to the display element E33 to be measured, the measurement anode voltage (ground potential) from the above-described measurement anode power source is supplied. .
  • each of the switches Sal, Sa2,... Saml interposed between the non-measuring anode line to which the display element other than the measuring object is connected and the measuring anode power source is turned off. Made.
  • measurement is performed with the inspection power source E1 via the cathode current measuring means 7, the switch Sk3, the cathode line K3, the display element ⁇ 33 to be measured, the anode line A3, the switch Sa3, and the anode current measuring means 8.
  • a closed circuit is formed with the anode power source, and a reverse noise voltage is applied to the display element E33 based on the potential difference between the inspection power source E1 and the measurement anode power source.
  • the voltage from the inspection power supply El is applied to all the cathode lines in the display panel 1 through the resistance elements Rkl, Rk 2, Rk3,.
  • a voltage from the measurement positive electrode power source is applied to the anode wire through the resistance elements Ral, Ra2, Ra3,.
  • the voltage value from the inspection power source E1 is set to a value V higher than the voltage value of the measurement anode power source, so that each display element in the display panel 1 has a forward direction. No current will flow. Therefore, almost no “sneak current” is generated through a defective element that is not measured, and the state of the display element E33 to be inspected is acquired by the cathode current measuring means 7 and the anode current measuring means 8. The current value can be verified with high accuracy.
  • the calculating means 9 has a force that causes the display panel 1 to be defective. It is configured to determine whether or not, and also determine the type of defect and the location of the defect.
  • FIG. 7 illustrates a defect state determination unit performed by the calculation unit 9 shown in FIG.
  • an inspection voltage (E1) is applied to each cathode line of a non-defective display panel, and the measured anode voltage is selectively applied to each anode line.
  • a statistically defined maximum value and minimum value when is applied is used. That is, the maximum value of the current flowing through each cathode line in a normal display panel is shown as IKmax, the minimum value is shown as IKmin, the maximum value of current flowing through each anode line is shown as IAmax, and the minimum value is shown as IAmin. Therefore, it is judged as bad when the value is out of the range.
  • the arithmetic means 9 shown in FIG. 6 has a No. 1 circuit according to the relationship between the current value flowing through the anode wire obtained by the anode current measuring means 8 and the current value flowing through the cathode wire obtained by the cathode current measuring means 7. As shown in 1 to 7, the determination is made according to the presence / absence of a defective display element, the location of the defective element, and the type of defect.
  • separation failure means a separation failure between adjacent electrodes, that is, a short state.
  • Dark line means that the electrode is disconnected (electrically open).
  • the current measuring means 2 is connected in series to the inspection power source E1, but this is connected to the inspection power source E1. It is also possible to adopt a configuration in which a resistance element is connected in series and the current value is obtained by measuring the voltage across the resistance element, that is, a configuration similar to the cathode current measuring means 7 shown in FIG.
  • the inspection apparatus and the inspection method have been described for a display panel using an organic EL element as a display element.
  • the present invention is not limited to a display panel using an organic EL element.
  • Other display panels having display elements having diode characteristics and capacitive properties can be targeted, and similar effects can be obtained.

Abstract

An apparatus for testing a display panel (1) in which display elements (E11-Emn) are connected in a matrix at respective ones of the intersections of a plurality of anode lines (A1-Am) and a plurality of cathode lines (K1-Kn). A voltage from a test power supply (E1) is applied to the cathode line connected to a display element to be tested, while a voltage (ground potential) from a determination anode power supply, which is lower in voltage value than the test power supply (E1), is applied to the anode line connected to the display element to be tested. In the meantime, the voltage of a non-determination power supply (E2), which has the same voltage value as the test power supply (E1), is applied to each of the cathode and anode lines that are not connected to the display element to be tested. In the structure described heretofore, the value of a current flowing from the test power supply (E1) is determined by a current determining means (2), whereby the potentially defective state of the display element to be tested can be examined with precision without receiving the affection of a 'sneak current' via an defective element that is not the display element to be tested.

Description

明 細 書  Specification
表示パネルの検査装置および検査方法  Display panel inspection apparatus and inspection method
技術分野  Technical field
[0001] この発明は、例えば有機 EL (エレクト口'ルミネッセンス)素子などの容量性素子を 表示画素として用いた表示パネルの検査装置および検査方法に関する。  TECHNICAL FIELD [0001] The present invention relates to a display panel inspection apparatus and inspection method using a capacitive element such as an organic EL (elect mouth luminescence) element as a display pixel.
背景技術  Background art
[0002] 発光素子をマトリクス状に配列して構成される発光表示パネルを用いたディスプレ ィの開発が広く進められている。この様な表示パネルに用いられる発光素子として、 有機材料を発光層に用いた有機 EL素子が注目されており、すでに一部において商 品化がなされている。これは EL素子の発光層に、良好な発光特性を期待することが できる有機化合物を使用することによって、実用に耐え得る高効率ィ匕および長寿命 化が進んだことも背景にある。  [0002] The development of a display using a light-emitting display panel formed by arranging light-emitting elements in a matrix has been widely promoted. As a light-emitting element used in such a display panel, an organic EL element using an organic material for a light-emitting layer has attracted attention, and a part of it has already been commercialized. This is also due to the fact that the use of organic compounds that can be expected to have good light-emitting characteristics for the light-emitting layer of EL devices has led to higher efficiency and longer life that can withstand practical use.
[0003] 前記した有機 EL素子は、基本的には透明基板上に陽極 (アノード)を構成する透 明電極、有機化合物を含む発光機能層、および陰極 (力ソード)を構成する例えば金 属電極が積層されて形成されている。したがって、この有機 EL素子は電気的には、 ダイオード特性を有する発光エレメントと、この発光エレメントに並列に結合する寄生 容量成分に置き換えることができ、有機 EL素子は容量性の発光素子であるということ ができる。  [0003] The organic EL element described above is basically a transparent electrode constituting an anode (anode) on a transparent substrate, a light emitting functional layer containing an organic compound, and a cathode (force sword), for example, a metal electrode. Are stacked. Therefore, this organic EL element can be electrically replaced with a light emitting element having a diode characteristic and a parasitic capacitance component coupled in parallel to the light emitting element, and the organic EL element is a capacitive light emitting element. Can do.
[0004] ところで、前記した有機 EL素子をマトリクス状に配列した表示パネルは、その製造 工程において発光層として機能する有機層が不均一に積層されたり、陰極電極など の薄膜を積層する際に前記有機層にダメージを与えたり、さらに前記陰極電極自体 に不純物が混入して酸ィ匕するなどして、ドット欠陥を発生させる場合がある。  [0004] By the way, in the display panel in which the organic EL elements are arranged in a matrix, the organic layer functioning as a light emitting layer is laminated unevenly in the manufacturing process, or when a thin film such as a cathode electrode is laminated. In some cases, dot defects are generated by damaging the organic layer or by oxidizing the cathode electrode itself with impurities.
[0005] 前記したドット欠陥は、 EL素子が電気的に短絡状態になされている場合が多ぐこ の様な場合においては欠陥状態の EL素子が接続された陽極線または陰極線に接 続された他の EL素子に対しても点灯障害を及ぼすという問題が発生する。このため にドット欠陥が発生している EL素子を検出する検査工程が実行される。  [0005] In many cases, the above-described dot defects are electrically short-circuited. In such cases, the EL element in the defective state is connected to the anode line or the cathode line connected thereto. There is also a problem of causing lighting failures to other EL elements. For this purpose, an inspection process is performed to detect EL elements with dot defects.
[0006] EL素子は前記したとおりダイオード特性を有しているので、各 EL素子がマトリクス 状に接続された各走査線 (以下、陰極線ともいう。)と各ドライブ線 (以下、陽極線とも いう。)との間に、発光駆動時に印加される順方向電圧とは逆極性の電圧、すなわち 逆バイアス電圧を印加することで、欠陥状態の EL素子を検出することができる。前記 したようにマトリクス状に接続された各 EL素子に対して逆バイアス電圧を印加する検 查手段は、特許文献 1に開示されている。 [0006] Since EL elements have diode characteristics as described above, each EL element is a matrix. Between the scanning lines (hereinafter also referred to as cathode lines) and the drive lines (hereinafter also referred to as anode lines) connected in the form of a voltage having a polarity opposite to the forward voltage applied during light emission driving, In other words, a defective EL element can be detected by applying a reverse bias voltage. As described above, Patent Document 1 discloses a detection means for applying a reverse bias voltage to each EL element connected in a matrix.
特許文献 1:特開 2003 - 229262号公報  Patent Document 1: Japanese Patent Laid-Open No. 2003-229262
[0007] ところで、前記特許文献 1に示された検査装置においては、各走査線の各々と、各 ドライブ線の各々にそれぞれ電流計が接続され、それぞれの電流計を監視すること で欠陥素子の正確な位置を検出しょうとするものである。この場合、所定の電流値が 計測されるドライブ線側における電流計の接続位置と、同じく所定の電流値が計測さ れる走査線側における電流計の接続位置から、短絡状態の素子の位置を容易に知 ることができると説明されている。  [0007] By the way, in the inspection apparatus disclosed in Patent Document 1, an ammeter is connected to each of the scanning lines and to each of the drive lines, and each ammeter is monitored to detect defective elements. It tries to detect the exact position. In this case, the position of the short-circuited element can be easily determined from the connection position of the ammeter on the drive line side where the predetermined current value is measured and the connection position of the ammeter on the scan line side where the predetermined current value is also measured. It is explained that can be known.
[0008] し力しながら、各発光素子がマトリックス状に配列された表示パネルにおいては、表 示パネル上に 2個以上の欠陥素子が存在する場合には、他の正常な素子との組み 合わせにより、表示パネル内に後述する回り込み電流が発生し、このために欠陥素 子の正確な位置を把握することが困難となる。  [0008] However, in a display panel in which the light emitting elements are arranged in a matrix, if there are two or more defective elements on the display panel, the display panel is combined with other normal elements. As a result, a sneak current described later is generated in the display panel, which makes it difficult to grasp the exact position of the defect element.
[0009] 図 1は、前記した問題点を説明するものである。なお、符号 1は表示パネルを示して おり、この表示パネル 1以外の構成が表示パネルの検査装置を構成している。ここで 表示パネル 1は、 m本の陽極線 Al〜Amが縦方向に配列され、 n本の陰極線 Kl〜 Κηが横方向に配列され、各々の交差した部分 (計 m X n箇所)に、ダイオードおよび コンデンサのシンボルマークによる並列結合体で示した表示素子(EL素子) E11〜 Emnが配置されて、表示パネル 1を構成している。  FIG. 1 illustrates the above-described problem. Reference numeral 1 denotes a display panel, and a configuration other than the display panel 1 constitutes a display panel inspection apparatus. Here, in display panel 1, m anode lines Al to Am are arranged in the vertical direction, and n cathode lines Kl to Κη are arranged in the horizontal direction, and at each intersecting portion (a total of m X n locations), Display elements (EL elements) E11 to Emn indicated by a parallel combination of diode and capacitor symbol marks constitute display panel 1.
[0010] そして、図には示していないが、前記表示パネル 1における陽極線 Al〜Amには 定電流源を備えた陽極線ドライブ回路が接続され、陰極線 Kl〜Knには陰極線走 查回路が接続される。前記陰極線走査回路は走査対象となる陰極線を順次走査電 位に設定し、これに同期して陽極線ドライブ回路は陽極線 Al〜Amに対して選択的 に順方向電流を供給することにより、表示パネル 1に配列された各表示素子は、あた カゝも連続発光して ヽるように点灯制御される。 [0011] 前記した表示パネル 1に対して、図 1に示した検査回路においては各陰極線 Kl〜 Κηに対して陰極側スィッチ Skl〜Sknの一端がそれぞれ接続され、当該陰極側スィ ツチ Skl〜Sknの他端には電源 Eの正極端子が電流計測手段 2を介して接続されて いる。また表示パネル 1の各陽極線 Al〜Amに対して陽極側スィッチ Sal〜Samの 一端がそれぞれ接続されており、当該陽極側スィッチ Sal〜Samの他端は前記電源 Eの負極端子に接続されて 、る。 [0010] Although not shown in the figure, the anode lines Al to Am in the display panel 1 are connected to an anode line drive circuit having a constant current source, and the cathode lines Kl to Kn have cathode line drive circuits. Connected. The cathode line scanning circuit sequentially sets the cathode lines to be scanned to the scanning potential, and in synchronization with this, the anode line drive circuit selectively supplies a forward current to the anode lines Al to Am, thereby displaying the display. The display elements arranged in panel 1 are controlled to be lit so that they can emit light continuously. In the inspection circuit shown in FIG. 1, one end of each of the cathode side switches Skl to Skn is connected to each of the cathode lines Kl to Κη, and the cathode side switches Skl to Skn are connected to the display panel 1 described above. The positive terminal of the power source E is connected to the other end via the current measuring means 2. One end of each of the anode side switches Sal to Sam is connected to each anode line Al to Am of the display panel 1, and the other end of each of the anode side switches Sal to Sam is connected to the negative terminal of the power source E. RU
[0012] すなわち、前記電源 Eは、表示パネル 1における EL素子の発光駆動時に印加され る順方向電圧とは逆極性の電圧、すなわち逆バイアス電圧を印加する機能を果たす  That is, the power source E functions to apply a voltage having a reverse polarity to the forward voltage applied when the EL element in the display panel 1 is driven to emit light, that is, a reverse bias voltage.
[0013] 前記した検査回路の構成において、一例として丸印で示した E33として示す表示 素子を検査する場合においては、陰極側スィッチ Sk3と、陽極側スィッチ Sa3をオン 状態にして、他の陰極側スィッチおよび陽極側スィッチは全てオフ状態に設定する。 これにより E33として示す表示素子に前記電源 Eによる逆バイアス電圧が印加される 。この時、表示素子 E33が正常であるならば、電流計測手段 2は電流値を検出しな い。また、表示素子 E33が短絡状態であれば、電流計測手段 2は大きな電流値を検 出し、これが欠陥状態であることが検知される。 In the configuration of the inspection circuit described above, in the case of inspecting the display element indicated by E33 indicated by a circle as an example, the cathode side switch Sk3 and the anode side switch Sa3 are turned on, and the other cathode side All switches and anode switches are set to the off state. As a result, a reverse bias voltage from the power source E is applied to the display element indicated by E33. At this time, if the display element E33 is normal, the current measuring means 2 does not detect the current value. Further, if the display element E33 is in a short circuit state, the current measuring means 2 detects a large current value and detects that this is a defect state.
[0014] 一方、一例として図 1に示す表示パネル 1における表示素子 E23および E31が X 印で示すように短絡状態である場合にお!ヽては、陰極側スィッチ Sk3から表示素子 E 23、 E21、 E31を介して陽極側スィッチ Sa3に至る鎖線で示す回り込み電流が流れ る。この場合、表示素子 E33は正常であっても、表示素子 E33が短絡状態であるか のような誤検出が発生する。  On the other hand, as an example, when the display elements E23 and E31 in the display panel 1 shown in FIG. On the other hand, a sneak current indicated by a chain line from the cathode side switch Sk3 to the anode side switch Sa3 via the display elements E23, E21, E31 flows. In this case, even if the display element E33 is normal, an erroneous detection as if the display element E33 is in a short-circuit state occurs.
[0015] さらに、表示素子は前記したように完全な短絡状態ではなぐ電流が逆方向に多少 リークするリーク現象が発生することもある。この場合、例えば表示素子 E13、 E32に リークが発生している場合には、表示素子 E12を仲介して破線の矢印で示すように 回り込みのリーク電流が流れ、同様に表示素子 E33は正常であっても、表示素子 E3 3はリーク状態であるかのような誤検出が発生する。  [0015] Further, as described above, the display element may cause a leakage phenomenon in which a current leaking in a reverse direction is slightly leaked in a completely short-circuited state. In this case, for example, when a leak occurs in the display elements E13 and E32, a wraparound leak current flows through the display element E12 as indicated by the dashed arrow, and similarly the display element E33 is normal. However, erroneous detection occurs as if the display element E33 is in a leak state.
[0016] 前記した誤検出は、前記した特許文献 1に示された検査装置においても同様に出 現するために、欠陥状態の素子を正確に把握するには 1つの陰極線に対応して各陽 極線毎に電流値を検出する検査を繰り返えし、また陰極線を変えて同様に各陽極線 毎に電流値を検出する検査を繰り返えすことを余儀なくされる。 [0016] Since the erroneous detection described above also occurs in the inspection apparatus disclosed in Patent Document 1 described above, each positive electrode corresponding to one cathode line is necessary for accurately grasping a defective element. The inspection for detecting the current value for each polar line is repeated, and the inspection for detecting the current value for each anode line is similarly repeated by changing the cathode line.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0017] ところで、前記した表示素子 (EL素子)は先に説明したとおり、それぞれに寄生容 量を有しており、したがって前記したように素子の個々に対して逆バイアス電圧をカロ えた場合、前記寄生容量に対して十分に電荷が充電される時間の経過後に、表示 素子に流れる電流値を検出する必要が生ずる。 [0017] By the way, as described above, each of the display elements (EL elements) has a parasitic capacitance. Therefore, when the reverse bias voltage is charged for each of the elements as described above, It is necessary to detect the value of the current flowing through the display element after a sufficient time to charge the parasitic capacitance.
[0018] すなわち、 1つ毎の素子の検査に際して、その寄生容量に十分な逆バイアスの電 圧が充電された後に電流値の検出を行う必要があるために、素子数の大きな表示パ ネルになると、個々の素子に逆バイアス電圧をカ卩えた後にその都度待機しなければ ならない時間の累計が増大し、多くの検査時間が必要となる。 That is, when each element is inspected, it is necessary to detect the current value after a reverse bias voltage sufficient for the parasitic capacitance is charged, so that a display panel having a large number of elements is used. In this case, the cumulative total time that must be waited for after each device is provided with a reverse bias voltage increases, and a lot of inspection time is required.
[0019] この発明は前記した問題点に着目してなされたものであり、寄生容量に充電を行う 待機時間をほとんど無くすことができると共に、前記したような回り込み電流の発生を 無くすことで、各素子を精度よくの検査することが可能な検査装置および検査方法を 提供することを課題とするものである。 [0019] The present invention has been made by paying attention to the above-mentioned problems, and it is possible to eliminate the standby time for charging the parasitic capacitance and to eliminate the occurrence of the sneak current as described above. It is an object of the present invention to provide an inspection apparatus and an inspection method capable of inspecting an element with high accuracy.
課題を解決するための手段  Means for solving the problem
[0020] 前記した課題を解決するためになされたこの発明に力かる表示パネルの検査装置 は、請求項 1に記載のとおり、互いに交差する複数の陽極線と複数の陰極線の各交 点位置に、前記陽極線と前記陰極線との間に接続された表示素子を備え、前記表 示素子に対して前記陽極線力 順方向電流が流されることによって表示動作がなさ れる表示パネルの検査装置であって、前記表示パネルの前記陰極線に電気的に接 続され、検査電圧を出力する検査電源と、前記表示パネルの全ての陽極線および陰 極線に電気的に接続され、前記全ての陽極線および陰極線の電位を設定する電極 電位設定手段と、測定対象となる表示素子が接続されて!ヽる測定対象陰極線および[0020] A display panel inspection apparatus according to the present invention, which has been made to solve the above-mentioned problems, as described in claim 1, at each intersection position of a plurality of anode lines and a plurality of cathode lines intersecting each other. A display panel inspection apparatus comprising: a display element connected between the anode line and the cathode line, wherein a display operation is performed when the anode line force forward current is passed through the display element. And an inspection power source that is electrically connected to the cathode line of the display panel and outputs an inspection voltage, and is electrically connected to all anode lines and negative lines of the display panel, and all the anode lines and Electrode for setting the potential of the cathode line and the measurement target cathode line and the potential setting means connected to the display element to be measured
Zまたは測定対象陽極線に選択的に接続され、前記測定対象となる表示素子に流 れる電流を計測する電流計測手段を備えた点に特徴を有する。 It is characterized in that it includes a current measuring means that is selectively connected to Z or a measurement target anode line and measures a current flowing in the display element to be measured.
[0021] また、前記した課題を解決するためになされたこの発明に力かる表示パネルの検査 方法は、請求項 11に記載のとおり、互いに交差する複数の陽極線と複数の陰極線と の各交点位置に、前記陽極線と前記陰極線との間に接続された表示素子を備え、前 記表示素子に対して前記陽極線力 順方向電流が流されることにより表示動作がな される表示パネルの検査方法であって、少なくとも 1つの前記陰極線に検査電圧を 印加し、且つ前記陰極線の電位が前記陽極線の電位以上の関係になるように、全て の前記陽極線および前記陰極線の電位を設定する電極電位設定ステップと、測定 対象となる表示素子が接続されている測定対象陰極線および Zまたは測定対象陽 極線に選択的に接続され、前記測定対象となる表示素子に流れる電流を計測する 電流計測ステップとが実行される点に特徴を有する。 [0021] Further, in order to solve the above-described problems, the display panel is inspected according to the present invention. The method according to claim 11, further comprising a display element connected between the anode line and the cathode line at each intersection position of the plurality of anode lines and the plurality of cathode lines intersecting each other. A display panel inspection method in which a display operation is performed by applying a forward current of the anode line force to an element, wherein an inspection voltage is applied to at least one of the cathode lines, and the potential of the cathode line is The electrode potential setting step for setting the potentials of all the anode lines and the cathode lines so as to have a relationship equal to or higher than the potentials of the anode lines, and the measurement target cathode lines and Z or measurement objects to which the display elements to be measured are connected The method is characterized in that a current measuring step is performed which is selectively connected to a positive electrode and measures the current flowing through the display element to be measured.
図面の簡単な説明 Brief Description of Drawings
[図 1]従来の検査装置の一例を表示パネルと共に示した回路構成図である。 FIG. 1 is a circuit configuration diagram showing an example of a conventional inspection apparatus together with a display panel.
[図 2]この発明にかかる検査装置の第 1の形態を表示パネルと共に示した回路構成 図である。  FIG. 2 is a circuit configuration diagram showing a first embodiment of an inspection apparatus according to the present invention together with a display panel.
[図 3]同じく第 2の形態を表示パネルと共に示した回路構成図である。  FIG. 3 is a circuit configuration diagram showing the second embodiment together with the display panel.
[図 4]同じく第 3の形態を表示パネルと共に示した回路構成図である。  FIG. 4 is a circuit configuration diagram showing the third embodiment together with the display panel.
[図 5]同じく第 4の形態を表示パネルと共に示した回路構成図である。  FIG. 5 is a circuit configuration diagram showing the fourth embodiment together with the display panel.
[図 6]同じく第 5の形態を表示パネルと共に示した回路構成図である。  FIG. 6 is a circuit configuration diagram showing the fifth embodiment together with the display panel.
[図 7]図 6に示した検査装置においてなされる欠陥状態の判定手段を示す説明図で ある。  FIG. 7 is an explanatory view showing a defect state determination means performed in the inspection apparatus shown in FIG. 6.
符号の説明 Explanation of symbols
1 表 ノ 不ノレ  1 Table No
2 電流計測手段  2 Current measurement means
3 定電流源  3 Constant current source
4 電圧計測手段  4 Voltage measurement means
7 陰極電流計測手段  7 Cathode current measurement means
8 陽極電流計測手段  8 Anode current measuring means
9 演算手段  9 Calculation means
E1 検査電源 E2 非測定電源 E1 Inspection power supply E2 Non-measurement power supply
El l〜Emn 表示素子  El l ~ Emn Display element
OP1 オペアンプ  OP1 operational amplifier
SW メインスィッチ  SW main switch
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0024] 以下、この発明に力かる表示パネルの検査装置について、図に示す実施の形態に 基づいて説明する。図 2はその第 1の実施の形態を示したものであり、符号 1は図 1に 基づいてすでに説明した表示パネルを示しており、したがってその説明は省略する。 図 1に示す実施の形態においては、測定対象となる表示素子 (EL素子)に対して個 々に逆バイアス電圧を印加するための検査電源 E1が備えられており、この検査電源 E1の正極端子に直列に電流計測手段 2の一端が接続されている。  Hereinafter, an inspection apparatus for a display panel that is useful for the present invention will be described based on the embodiments shown in the drawings. FIG. 2 shows the first embodiment. Reference numeral 1 denotes the display panel already described with reference to FIG. 1, and therefore the description thereof is omitted. In the embodiment shown in FIG. 1, an inspection power source E1 for individually applying a reverse bias voltage to a display element (EL element) to be measured is provided, and a positive terminal of the inspection power source E1 One end of the current measuring means 2 is connected in series.
[0025] 前記電流計測手段 2の他端は、スィッチ Ski 1, Sk21, Sk31,…… Sknlを介して 表示パネル 1に配列された陰極線 Kl〜Knに対して択一的に接続できるように構成 され、これにより検査電源 E1の正極電圧が陰極線 Κ1〜Κηに対して択一的に印加さ れるように作用する。なお、この実施の形態においては前記検査電源 E1の負極端子 は接地電位に設定されて 、る。  [0025] The other end of the current measuring means 2 is configured to be selectively connectable to the cathode lines Kl to Kn arranged on the display panel 1 through the switches Ski 1, Sk21, Sk31, ... Sknl. Thus, the positive voltage of the inspection power source E1 acts so as to be applied alternatively to the cathode lines Κ1 to Κη. In this embodiment, the negative terminal of the inspection power supply E1 is set to the ground potential.
[0026] また、表示パネル 1に配列された陽極線 Al〜Amには、スィッチ Sai l, Sa21, Sa 31,…… Saml力それぞれ接続されており、これらスィッチ Sai l, Sa21, Sa31,… •••Samlの他端は、前記検査電源 E1の正極電圧値よりも電圧値が低い測定陽極電 圧を出力することができる測定陽極電源に接続されている。なお、この図 2に示した 実施の形態にお!ヽては、前記測定陽極電圧は接地電位に設定されて!ヽる。  [0026] Further, the switches Sai l, Sa21, Sa 31, ... Saml force are respectively connected to the anode lines Al to Am arranged on the display panel 1, and these switches Sai l, Sa21, Sa31, ... • •• The other end of Saml is connected to a measurement anode power source that can output a measurement anode voltage whose voltage value is lower than the positive voltage value of the inspection power source E1. In the embodiment shown in FIG. 2, the measurement anode voltage is set to the ground potential.
[0027] そして、前記スィッチ Sai l, Sa21, Sa31,…… Samlは、択一的にオン動作され ることで、前記陽極線 Al〜Amの ヽずれかに対して前記した測定陽極電圧 (接地電 位)が印加されるように作用する。  [0027] Then, the switches Sail, Sa21, Sa31,... Saml are selectively turned on, so that the measured anode voltage (grounding) with respect to any deviation of the anode lines Al to Am is detected. It works like an electric potential.
[0028] 一方、表示パネル 1に配列された前記陰極線 Kl〜Knには、さらにスィッチ Skl2, Sk22, Sk32,…… Skn2力接続されており、これらのスィッチを介して 測定電源 E 2の正極電圧が前記陰極線 Kl〜Knに供給されるように構成されている。なお、前記 非測定電源 Ε2の負極端子は接地電位に設定されている。 [0029] そして、前記陰極線 Kl〜Knに接続されたスィッチ Ski 1, Sk21, Sk31,…… Sk nlと、スィッチ Skl2, Sk22, Sk32,…… Skn2とは、図に示すように各陰極線に対 応してそれぞれペアを構成しており、このペアを構成した各スィッチは、そのいずれ か一方がオン動作されるように制御される。 On the other hand, the cathode lines Kl to Kn arranged on the display panel 1 are further connected to switches Skl2, Sk22, Sk32,... Skn2, and via these switches, the positive voltage of the measurement power source E2 Is supplied to the cathode lines Kl to Kn. The negative terminal of the non-measuring power source 2 is set to the ground potential. [0029] The switches Ski 1, Sk21, Sk31, ... Sk nl connected to the cathode lines Kl to Kn and the switches Skl2, Sk22, Sk32, ... Skn2 are connected to each cathode line as shown in the figure. Accordingly, a pair is formed, and each switch constituting the pair is controlled so that one of them is turned on.
[0030] また、表示パネル 1に配列された前記陽極線 Al〜Amには、さらにスィッチ Sal2, Sa22, Sa32,…… Sam2が接続されており、これらのスィッチを介して前記非測定 電源 E2の正極電圧が前記陽極線 Al〜Amに供給されるように構成されている。  [0030] Further, switches Sal2, Sa22, Sa32,... Sam2 are further connected to the anode lines Al to Am arranged in the display panel 1, and the non-measurement power source E2 is connected to these switches via these switches. A positive voltage is configured to be supplied to the anode lines Al to Am.
[0031] そして、前記陽極線 Al〜Amに接続されたスィッチ Sai l, Sa21, Sa31,…… Sk mlと、スィッチ Sal2, Sa22, Sa32,…… Sam2とは、図に示すように各陽極線に対 応してそれぞれペアを構成しており、このペアを構成した各スィッチは、そのいずれ か一方がオン動作されるように制御される。  [0031] The switches Sai l, Sa21, Sa31,... Sk ml connected to the anode lines Al to Am, and the switches Sal2, Sa22, Sa32,. A pair is formed corresponding to each of the switches, and each switch constituting the pair is controlled so that one of them is turned on.
[0032] なお、図 2に示した実施の形態においては、検査電源 E1の負極端子および非測定 電源 E2の負極端子は、共に接地されており、また検査電源 E1の正極電圧の値と、 非測定電源 E2の正極電圧の値は等 、関係に設定されて!、る。  In the embodiment shown in FIG. 2, the negative terminal of inspection power supply E1 and the negative terminal of non-measurement power supply E2 are both grounded, and the positive voltage value of inspection power supply E1 is The value of the positive voltage of the measuring power supply E2 is set to the relation, etc.!
[0033] 以上説明した構成において、表示パネル 1の陰極線 Kl〜Knにそれぞれ接続され たペアをなす前記スィッチ、および陽極線 Al〜Amにそれぞれ接続されたペアをな す前記スィッチは、複数の陰極線 1〜Knおよび複数の陽極線 A 1〜 Amに対して 複数種類の電位を選択的に設定するための複数の選択手段を構成している。また、 前記各スィッチによる複数の選択手段と、前記非測定電源 E2、前記測定陽極電源( この実施の形態にお!、ては、接地電位)を含めて電極電位設定手段を構成して 、る  [0033] In the configuration described above, the switch that forms a pair connected to the cathode lines Kl to Kn of the display panel 1 and the switch that forms a pair connected to the anode lines Al to Am each include a plurality of cathode lines. A plurality of selection means for selectively setting a plurality of types of potentials for 1 to Kn and a plurality of anode lines A 1 to Am are configured. The electrode potential setting means includes a plurality of selection means by each switch, the non-measurement power source E2, and the measurement anode power source (in this embodiment, the ground potential).
[0034] また、前記した電流計測手段 2は測定対象となる表示素子が接続されて ヽる測定 対象陰極線および測定対象陽極線に対して前記選択手段を介して選択的に接続さ れ、前記測定対象となる表示素子に流れる電流を計測する機能を果たす。 [0034] Further, the current measuring means 2 is selectively connected to the measurement target cathode line and the measurement target anode line, to which the display element to be measured is connected, via the selection means, and the measurement is performed. It fulfills the function of measuring the current flowing through the target display element.
[0035] 図 2に示した状態は、一例として表示パネル 1における丸印で示した E33として示 す表示素子を検査する場合の例が示されて!/、る。すなわち測定対象となる表示素子 に対応した陰極線 K3にはスィッチ Sk31がオンされることにより検査電源 E1の正極 電圧、すなわち検査電圧が印加される。この場合、測定対象以外の表示素子が接続 された測定対象外の陰極線と前記検査電源 Elとの間に介在される各スィッチ Skl l , Sk21,…… Sknlは才フ状態になされる。 The state shown in FIG. 2 shows an example in which a display element indicated by E33 indicated by a circle in the display panel 1 is inspected as an example! That is, when the switch Sk31 is turned on, the positive voltage of the inspection power supply E1, that is, the inspection voltage is applied to the cathode line K3 corresponding to the display element to be measured. In this case, display elements other than the measurement target are connected. Each of the switches Skl 1, Sk 21,... Sknl interposed between the non-measured cathode line and the inspection power supply El is put into a state of talent.
[0036] また、測定対象となる表示素子に対応した陽極線 A3にはスィッチ Sa31がオンされ ることにより、前記した測定陽極電源からの測定陽極電圧 (この実施の形態において は、接地電位)が供給される。この場合、測定対象以外の表示素子が接続された測 定対象外の陽極線と前記測定陽極電源との間に介在される各スィッチ Sal 1, Sa21 ,…… Samlはオフ状態になされる。  [0036] Further, when the switch Sa31 is turned on to the anode line A3 corresponding to the display element to be measured, the measurement anode voltage (in this embodiment, the ground potential) from the measurement anode power source is set. Supplied. In this case, each of the switches Sal 1, Sa21,... Saml interposed between the non-measurement anode line connected to the display element other than the measurement object and the measurement anode power source is turned off.
[0037] これにより、スィッチ Sk31、陰極線 K3、測定対象となる表示素子 Ε33、陽極線 A3 、スィッチ Sa31を介して、検査電源 E1と電流計測手段 2を含めた閉回路が形成され 、前記表示素子 E33には検査電源 E1により逆バイアス電圧が印加されることになる( 電極電位設定ステップ)。  Thereby, a closed circuit including the inspection power source E1 and the current measuring means 2 is formed via the switch Sk31, the cathode line K3, the display element Ε33 to be measured, the anode line A3, and the switch Sa31, and the display element A reverse bias voltage is applied to E33 by the inspection power supply E1 (electrode potential setting step).
[0038] 一方、測定対象となる表示素子 E33に対応した陰極線 K3と前記非測定電源 E2の 正極端子との間に介在されたスィッチ Sk32はオフ状態になされ、測定対象以外の 表示素子が接続された測定対象外の陰極線と前記非測定電源 E2の正極端子との 間に介在される各スィッチ Ski 2, Sk22,…… Skn2は才ン状態になされる。  [0038] On the other hand, the switch Sk32 interposed between the cathode line K3 corresponding to the display element E33 to be measured and the positive terminal of the non-measurement power supply E2 is turned off, and the display elements other than the measurement object are connected. Each of the switches Ski 2, Sk22,... Skn2 interposed between the cathode line not measured and the positive terminal of the non-measuring power supply E2 is brought into a stale state.
[0039] また、測定対象となる表示素子 E33に対応した陽極線 A3と非測定電源 E2の正極 端子との間に介在されたスィッチ Sa32がオフされると共に、測定対象以外の表示素 子が接続された測定対象外の陽極線と前記非測定電源 E2の正極端子との間に介 在される各スィッチ Sal2, Sa22,…… Sam2は才ン状態になされる。  [0039] In addition, the switch Sa32 interposed between the anode wire A3 corresponding to the display element E33 to be measured and the positive terminal of the non-measurement power supply E2 is turned off, and display elements other than the measurement object are connected. Each switch Sal2, Sa22,... Sam2 interposed between the measured non-measurement anode wire and the positive terminal of the non-measuring power supply E2 is brought into a stale state.
[0040] この結果、測定対象となる表示素子 E33のみに対して、検査電源 E1による逆バイ ァス電圧が印加され、測定対象外となる表示素子の両端電位は同電位となる。この ために測定対象外となる表示素子がたとえ短絡状態であっても、当該表示素子に電 流が流れることはなぐ図 1に基づいて説明したように測定対象外の欠陥素子を介し た「回り込み電流」はほとんど発生しな!、。  As a result, the reverse bias voltage from the inspection power supply E1 is applied only to the display element E33 to be measured, and the potentials at both ends of the display element that is not to be measured become the same potential. For this reason, even if a display element that is not to be measured is short-circuited, no current flows through the display element, as described with reference to FIG. Almost no "current" occurs!
[0041] この結果、測定対象とされる表示素子 E33に流れる電流値を正確に計測(電流計 測ステップ)することが可能となり、表示素子が短絡状態であるかリーク状態であるか の識別も精度よく検知することができる。  As a result, it is possible to accurately measure the current value flowing through the display element E33 to be measured (current measurement step), and to identify whether the display element is in a short-circuited state or a leaked state. It can be detected with high accuracy.
[0042] カロえて、測定対象外の表示素子の両端電位が同電位に固定されているため、測定 対象外となる表示素子の寄生容量の充電に費やされる電流が無くなり、測定対象素 子の寄生容量に対する充電のみで済むために、計測開始までの時間を短縮すること が可能となる。 [0042] Since the potentials at both ends of the display element that is not the measurement target are fixed to the same potential, Since the current consumed for charging the parasitic capacitance of the display element that is not the target is eliminated and only the charging of the parasitic capacitance of the element to be measured is required, the time to start measurement can be shortened.
[0043] 図 3はこの発明に力かる検査装置の第 2の実施の形態を示したものである。なお、 図 3においては図 2に示した各部と同一の機能を果たす部分を同一符号で示してお り、したがってその詳細な説明は省略する。  [0043] Fig. 3 shows a second embodiment of an inspection apparatus according to the present invention. In FIG. 3, parts that perform the same functions as those shown in FIG. 2 are denoted by the same reference numerals, and therefore detailed description thereof is omitted.
[0044] 図 3に示す実施の形態においては、図 2に示した非測定電源 E2を、オペアンプ OP 1により構成している。すなわちオペアンプ OP1の非反転入力端は、検査電源 E1の 正極端子に接続され、オペアンプ OP1の出力端は反転入力端に接続されている。 すなわち、オペアンプ OP1はバッファアンプとして機能する。  In the embodiment shown in FIG. 3, the non-measurement power supply E2 shown in FIG. 2 is configured by an operational amplifier OP1. That is, the non-inverting input terminal of the operational amplifier OP1 is connected to the positive terminal of the inspection power supply E1, and the output terminal of the operational amplifier OP1 is connected to the inverting input terminal. That is, the operational amplifier OP1 functions as a buffer amplifier.
[0045] したがって、オペアンプ OP1の出力端は、図 2に示した非測定電源 E2の正極端子 と同等の機能を果たすことになり、オペアンプ OP 1の出力端には検査電源 E 1の検査 電圧と同一の電圧値力もたらされることになる。これにより、図 3に示した第 2の実施の 形態においても、図 2に示した実施の形態と同様の作用効果を得ることができる。  Accordingly, the output terminal of the operational amplifier OP1 performs the same function as the positive terminal of the non-measurement power supply E2 shown in FIG. 2, and the test voltage of the inspection power supply E 1 is connected to the output terminal of the operational amplifier OP 1. The same voltage value will be produced. Thereby, also in the second embodiment shown in FIG. 3, it is possible to obtain the same effects as those in the embodiment shown in FIG.
[0046] 図 4はこの発明に力かる検査装置の第 3の実施の形態を示したものである。なお、 図 4においては図 3に示した各部と同一の機能を果たす部分を同一符号で示してお り、したがってその詳細な説明は省略する。  [0046] Fig. 4 shows a third embodiment of an inspection apparatus according to the present invention. In FIG. 4, parts that perform the same functions as those shown in FIG. 3 are denoted by the same reference numerals, and thus detailed description thereof is omitted.
[0047] 図 4に示す実施の形態においては、オペアンプ OP1の非反転入力端が、電流計測 手段 2と選択手段を構成するスィッチ Ski 1, Sk21, Sk31,…… Sknlとの接続位置 において接続されており、他は図 3に示した構成と同一である。  [0047] In the embodiment shown in FIG. 4, the non-inverting input terminal of the operational amplifier OP1 is connected at the connection position between the current measuring means 2 and the switches Ski 1, Sk21, Sk31,. The rest is the same as the configuration shown in FIG.
[0048] この構成によると、オペアンプ OP1の出力端には、検査電源 E1からの出力電圧に 対して電流計測手段 2による電圧降下分を補償した非測定電圧を出力させることが できる。そして、図 4に示した第 3の実施の形態においても、図 2に示した実施の形態 と同様の作用効果を得ることができる。  [0048] According to this configuration, the non-measurement voltage in which the voltage drop by the current measuring means 2 is compensated for the output voltage from the inspection power supply E1 can be output to the output terminal of the operational amplifier OP1. Also in the third embodiment shown in FIG. 4, it is possible to obtain the same effects as those in the embodiment shown in FIG.
[0049] 図 5はこの発明に力かる検査装置の第 4の実施の形態を示したものである。なお、 図 5においては図 3に示した各部と同一の機能を果たす部分を同一符号で示してお り、したがってその詳細な説明は省略する。  [0049] Fig. 5 shows a fourth embodiment of an inspection apparatus according to the present invention. In FIG. 5, parts that perform the same functions as those shown in FIG. 3 are denoted by the same reference numerals, and therefore detailed description thereof is omitted.
[0050] 図 5に示す実施の形態においては、検査電源 E1を定電流源 3に代えた構成にされ ている。そして、定電流源 3の出力端がオペアンプ OP1の非反転入力端に接続され ており、したがってオペアンプ OP1の出力端の電圧値は、定電流源 3の出力端の電 圧値に常時一致するように制御される。 In the embodiment shown in FIG. 5, the inspection power source E 1 is replaced with the constant current source 3. ing. The output terminal of the constant current source 3 is connected to the non-inverting input terminal of the operational amplifier OP1, so that the voltage value at the output terminal of the operational amplifier OP1 always matches the voltage value at the output terminal of the constant current source 3. Controlled.
[0051] なお、この実施の形態においては必要に応じて電流計測手段 2を含めた定電流源 3の両端電圧値を計測することができる電圧計測手段 4が設けられる。この図 5に示し た第 4の実施の形態においても、図 2に示した実施の形態と同様の作用効果を得るこ とがでさる。 In this embodiment, voltage measuring means 4 is provided that can measure the voltage value across the constant current source 3 including the current measuring means 2 as necessary. Also in the fourth embodiment shown in FIG. 5, the same effects as those of the embodiment shown in FIG. 2 can be obtained.
[0052] 図 6はこの発明にかかる検査装置の第 5の実施の形態を示したものであり、符号 1 は図 1に基づ!/、てすでに説明した表示パネルを示しており、したがってその説明は省 略する。図 6に示す実施の形態においては検査電源 E 1の出力がメインスィッチ SW を介して表示パネル 1に配列された陰極線 Kl〜Knに対して印加できるように構成さ れている。  FIG. 6 shows a fifth embodiment of the inspection apparatus according to the present invention, and reference numeral 1 denotes the display panel already described based on FIG. The explanation is omitted. In the embodiment shown in FIG. 6, the output of the inspection power source E 1 can be applied to the cathode lines Kl to Kn arranged on the display panel 1 via the main switch SW.
[0053] すなわち、前記メインスィッチ SWには直列に抵抗素子 Rrlが接続されており、この 抵抗素子 Rrlを介して前記各陰極線 Kl〜Knに一端が接続された各スィッチ Ski , Sk2, Sk3,…… Sknの他端側に共通接続されている。各陰極線 Kl〜Knに接続さ れた各スィッチ Ski, Sk2, Sk3,…… Sknは検査の実行に際して択一的にオンする ように作用し、これにより検査電源 E 1の正極電圧が陰極線 Kl〜Knに対して択一的 に印加されるように作用する。  That is, a resistance element Rrl is connected in series to the main switch SW, and each switch Ski, Sk2, Sk3,... Having one end connected to the cathode lines Kl to Kn via the resistance element Rrl. ... Commonly connected to the other end of Skn. Each switch Ski, Sk2, Sk3, ... Skn connected to each cathode line Kl to Kn acts so as to be turned on alternatively during the execution of the inspection, so that the positive voltage of the inspection power source E 1 is reduced to the cathode line Kl to Acts as an alternative to Kn.
[0054] また、表示パネル 1に配列された陽極線 Al〜Amには、スィッチ Sal, Sa2, Sa3, …' Samに一端が接続されており、これらの他端は共通接続され、抵抗素子 Rr2を 介して前記検査電源 E1よりも電圧値が低い測定陽極電圧を出力することができる測 定陽極電源に接続されている。なお、この図 6に示した実施の形態においては、前記 測定陽極電圧は接地電位にされて 、る。  [0054] One end of each of the anode lines Al to Am arranged in the display panel 1 is connected to the switch Sal, Sa2, Sa3, ... 'Sam, and the other end is connected in common to the resistance element Rr2. It is connected to a measurement anode power source capable of outputting a measurement anode voltage having a voltage value lower than that of the inspection power source E1. In the embodiment shown in FIG. 6, the measurement anode voltage is set to the ground potential.
[0055] そして、前記各陽極線 Al〜Amに接続された各スィッチ Sal, Sa2, Sa3,…… Sa mは検査の実行に際して択一的にオンするように作用し、これにより前記測定陽極電 圧 (接地電位)が前記陽極線 Al〜Amに対して択一的に印加されるように作用する  [0055] The switches Sal, Sa2, Sa3,... Sam connected to the anode lines Al to Am act so as to be selectively turned on when the inspection is performed. Acts so that pressure (ground potential) is applied alternatively to the anode wires Al to Am
[0056] なお、図 6に示す実施の形態においては、各陰極線 Kl〜Kn側において検査電源 Elに対して直列に接続された抵抗素子 Rrlには、その両端電圧を計測することがで きる電圧計が備えられており、これは実質的に抵抗素子 Rrlに流れる電流量を計測 する陰極電流の計測手段 7を構成して 、る。 [0056] In the embodiment shown in FIG. 6, the inspection power supply is provided on each of the cathode lines Kl to Kn. The resistance element Rrl connected in series with El is equipped with a voltmeter that can measure the voltage at both ends of the resistance element Rrl. This is a cathode current that substantially measures the amount of current flowing through the resistance element Rrl. The measuring means 7 is configured as follows.
[0057] また、前記各陽極線 Al〜Am側にぉ ヽて測定陽極電源 (接地電位)に対して直列 に接続された抵抗素子 Rr2には、その両端電圧を計測することができる電圧計が備 えられており、これは実質的に抵抗素子 Rr2に流れる電流量を計測する陰極電流の 計測手段 8を構成している。  [0057] In addition, a voltmeter capable of measuring the voltage at both ends of the resistance element Rr2 connected in series with the measurement anode power supply (ground potential) across the anode lines Al to Am. This constitutes a cathode current measuring means 8 that substantially measures the amount of current flowing through the resistance element Rr2.
[0058] 一方、前記検査電源 E1と各陰極線 Kl〜Knとの間には、それぞれ抵抗素子 Rkl, Rk2, Rk3,…… Rknが接続されており、これらの抵抗素子を介して各陰極線 Kl〜 Κηには検査電源 Elからの検査電圧が印加されている。また、前記測定陽極電源( 接地電位)と各陽極線 Al〜Amとの間には、それぞれ抵抗素子 Ral, Ra2, Ra3, …… Ramが接続されており、これらの抵抗素子を介して各陽極線 Al〜Amには、測 定陽極電源からの電圧 (接地電位)が印加されて!ヽる。  On the other hand, resistance elements Rkl, Rk2, Rk3,... Rkn are connected between the inspection power source E1 and the cathode lines Kl to Kn, respectively, and the cathode lines Kl to The inspection voltage from the inspection power supply El is applied to Κη. Also, resistance elements Ral, Ra2, Ra3,... Ram are connected between the measurement anode power source (ground potential) and each of the anode lines Al to Am, and each anode is connected to each anode via these resistance elements. The voltage (ground potential) from the measurement anode power supply is applied to the wires Al to Am! Speak.
[0059] 以上説明した構成において、表示パネル 1の陰極線 Kl〜Knにそれぞれ接続され た各スィッチ Ski, Sk2, Sk3,…… Sknおよび各抵抗素子 Rkl, Rk2, Rk3,…… R kn、表示パネル 1の陽極線 Al〜Amにそれぞれ接続された各スィッチ Sal, Sa2, S a3,…… Samおよび各抵抗素子 Ral, Ra2, Ra3,…… Ramは、電極電位設定手 段を構成している。  [0059] In the configuration described above, each switch Ski, Sk2, Sk3, ... Skn and each resistance element Rkl, Rk2, Rk3, ... Rkn, each connected to the cathode lines Kl to Kn of the display panel 1, the display panel Each of the switches Sal, Sa2, Sa3,... Sam and each of the resistance elements Ral, Ra2, Ra3,... Ram connected to one anode line Al to Am constitutes an electrode potential setting means.
[0060] 図 6に示した状態は、一例として表示パネル 1における丸印で示した E33として示す 表示素子を検査する場合の例が示されて!/、る。すなわち測定対象となる表示素子 E 33に対応した陰極線 K3には、スィッチ Sk3がオンされることにより検査電源 E1から の検査電圧が印加される。この場合、測定対象以外の表示素子が接続された測定 対象外の陰極線と前記検査電源 E1との間に介在される各スィッチ Ski, Sk2,…… Sknlはオフ状態になされる。  The state shown in FIG. 6 shows an example in which a display element indicated by E33 indicated by a circle in the display panel 1 is inspected as an example! That is, the inspection voltage from the inspection power source E1 is applied to the cathode line K3 corresponding to the display element E33 to be measured by turning on the switch Sk3. In this case, the switches Ski, Sk2,... Sknl interposed between the non-measuring cathode line to which the display element other than the measuring object is connected and the inspection power source E1 are turned off.
[0061] また、測定対象となる表示素子 E33に対応した陽極線 A3にはスィッチ Sa3がオン されること〖こより、前記した測定陽極電源力ゝらの測定陽極電圧 (接地電位)が供給さ れる。この場合、測定対象以外の表示素子が接続された測定対象外の陽極線と前 記測定陽極電源との間に介在される各スィッチ Sal, Sa2,…… Samlはオフ状態に なされる。 [0061] Further, since the switch Sa3 is turned on to the anode line A3 corresponding to the display element E33 to be measured, the measurement anode voltage (ground potential) from the above-described measurement anode power source is supplied. . In this case, each of the switches Sal, Sa2,... Saml interposed between the non-measuring anode line to which the display element other than the measuring object is connected and the measuring anode power source is turned off. Made.
[0062] これにより、陰極電流の計測手段 7、スィッチ Sk3、陰極線 K3、測定対象となる表 示素子 Ε33、陽極線 A3、スィッチ Sa3、陽極電流の計測手段 8を介して、検査電源 E1と測定陽極電源との間で閉回路が形成され、前記表示素子 E33には検査電源 E 1と測定陽極電源との電位差に基づいて逆ノ ィァス電圧が印加されることになる。  [0062] Thus, measurement is performed with the inspection power source E1 via the cathode current measuring means 7, the switch Sk3, the cathode line K3, the display element Ε33 to be measured, the anode line A3, the switch Sa3, and the anode current measuring means 8. A closed circuit is formed with the anode power source, and a reverse noise voltage is applied to the display element E33 based on the potential difference between the inspection power source E1 and the measurement anode power source.
[0063] この時、前記した表示パネル 1における全ての陰極線には前記抵抗素子 Rkl, Rk 2, Rk3,…… Rknを介して検査電源 Elからの電圧が印加され、また表示パネル 1に おける全ての陽極線には前記抵抗素子 Ral, Ra2, Ra3,…… Ramを介して測定陽 極電源からの電圧が印加される。  At this time, the voltage from the inspection power supply El is applied to all the cathode lines in the display panel 1 through the resistance elements Rkl, Rk 2, Rk3,. A voltage from the measurement positive electrode power source is applied to the anode wire through the resistance elements Ral, Ra2, Ra3,.
[0064] 前記したとおり、検査電源 E1からの電圧値は、測定陽極電源力ゝらの電圧値よりも高 V、値になされて 、るので、表示パネル 1における各表示素子には順方向に電流が流 れることはない。したがって、測定対象外の欠陥素子を介した「回り込み電流」はほと んど発生せず、検査対象となる表示素子 E33の状態を、前記陰極電流計測手段 7お よび陽極電流計測手段 8により取得される電流値により、精度よく検証することができ る。  [0064] As described above, the voltage value from the inspection power source E1 is set to a value V higher than the voltage value of the measurement anode power source, so that each display element in the display panel 1 has a forward direction. No current will flow. Therefore, almost no “sneak current” is generated through a defective element that is not measured, and the state of the display element E33 to be inspected is acquired by the cathode current measuring means 7 and the anode current measuring means 8. The current value can be verified with high accuracy.
[0065] カロえて、図 6に示す構成によると、メインスィッチ SWをオンさせた時に、検査電源 E [0065] According to the configuration shown in FIG. 6, when the main switch SW is turned on, the inspection power source E
1より、全ての表示素子の寄生容量に対して一斉に充電が行われるので、個々の表 示素子の計測に際して寄生容量に充電を行うことはなぐ多数の表示素子を備える 表示パネルの検査時間を大幅に短縮させることができる。 As shown in Fig. 1, since the parasitic capacitance of all display elements is charged all at once, it is not necessary to charge the parasitic capacitance when measuring individual display elements. It can be greatly shortened.
[0066] そして、図 6に示した実施の形態においては、陰極電流計測手段 7および陽極電 流計測手段 8によって得られる電流測定値に基づいて、演算手段 9が表示パネル 1 に欠陥がある力否かを判定すると共に、欠陥の種類および欠陥の場所も判定するよ うに構成されている。  [0066] In the embodiment shown in FIG. 6, based on the current measurement values obtained by the cathode current measuring means 7 and the anode current measuring means 8, the calculating means 9 has a force that causes the display panel 1 to be defective. It is configured to determine whether or not, and also determine the type of defect and the location of the defect.
[0067] 図 7は、図 6に示した演算手段 9によってなされる欠陥状態の判定手段を説明する ものである。この図 7に示す欠陥状態の判定手段を採用するにあたっては、良品の表 示パネルの各陰極線に択一的に検査電圧 (E1)を印加し、各陽極線に択一的に測 定陽極電圧を印加した場合における各最大値と最小値を統計的に定めたものが利 用される。 [0068] すなわち、正常な表示パネルにおける各陰極線に流れる電流の最大値を IKmax、 最小値を IKminとして示し、各陽極線に流れる電流の最大値を IAmax、最小値を I Aminとして示している。したがって、前記範囲を外れる値を示す場合においては不 良と判定される。 FIG. 7 illustrates a defect state determination unit performed by the calculation unit 9 shown in FIG. In adopting the defect state determination means shown in FIG. 7, an inspection voltage (E1) is applied to each cathode line of a non-defective display panel, and the measured anode voltage is selectively applied to each anode line. A statistically defined maximum value and minimum value when is applied is used. That is, the maximum value of the current flowing through each cathode line in a normal display panel is shown as IKmax, the minimum value is shown as IKmin, the maximum value of current flowing through each anode line is shown as IAmax, and the minimum value is shown as IAmin. Therefore, it is judged as bad when the value is out of the range.
[0069] そして、図 6に示した演算手段 9は陽極電流計測手段 8によって得られる陽極線に 流れる電流値と、陰極電流計測手段 7によって得られる陰極線に流れる電流値との 関係によって、 No. 1〜7に示すように欠陥表示素子の有無、欠陥素子の場所、欠 陥の種類にっ 、て判定するようになされる。  [0069] Then, the arithmetic means 9 shown in FIG. 6 has a No. 1 circuit according to the relationship between the current value flowing through the anode wire obtained by the anode current measuring means 8 and the current value flowing through the cathode wire obtained by the cathode current measuring means 7. As shown in 1 to 7, the determination is made according to the presence / absence of a defective display element, the location of the defective element, and the type of defect.
[0070] なお、図 7に示した不良の種類において、「セパ不良」とは隣接電極同士のセパレ ート不良、すなわちショート状態であることを意味する。また「暗線」とは電極の断線( 電気的にオープン)状態であることを意味する。  Note that, in the type of failure shown in FIG. 7, “separation failure” means a separation failure between adjacent electrodes, that is, a short state. “Dark line” means that the electrode is disconnected (electrically open).
[0071] なお、図 2〜図 5に示した実施の形態においては、検査電源 E1に対して直列に電 流計測手段 2が接続された構成にされているが、これは検査電源 E1に対して直列に 抵抗素子を接続し、その抵抗素子の両端電圧を測定することで電流値を求める構成 、すなわち図 6に示した陰極電流計測手段 7と同様の構成を採用することもできる。  In the embodiment shown in FIGS. 2 to 5, the current measuring means 2 is connected in series to the inspection power source E1, but this is connected to the inspection power source E1. It is also possible to adopt a configuration in which a resistance element is connected in series and the current value is obtained by measuring the voltage across the resistance element, that is, a configuration similar to the cathode current measuring means 7 shown in FIG.
[0072] また、以上においては表示素子として有機 EL素子を用いた表示パネルを対象にし て、その検査装置および検査方法について説明したが、この発明は有機 EL素子を 用いた表示パネルに限らず、ダイオード特性ならびに容量性を有する表示素子を備 えたその他の表示パネルを対象とすることができ、同様の作用効果を得ることができ る。  [0072] In the above, the inspection apparatus and the inspection method have been described for a display panel using an organic EL element as a display element. However, the present invention is not limited to a display panel using an organic EL element. Other display panels having display elements having diode characteristics and capacitive properties can be targeted, and similar effects can be obtained.

Claims

請求の範囲 The scope of the claims
[1] 互いに交差する複数の陽極線と複数の陰極線の各交点位置に、前記陽極線と前 記陰極線との間に接続された表示素子を備え、前記表示素子に対して前記陽極線 力 順方向電流が流されることによって表示動作がなされる表示パネルの検査装置 であって、  [1] A display element connected between the anode line and the cathode line is provided at each intersection position of the plurality of anode lines and the plurality of cathode lines intersecting with each other, and the anode line force order with respect to the display element A display panel inspection device that performs display operation by flowing a directional current,
前記表示パネルの前記陰極線に電気的に接続され、検査電圧を出力する検査電 源と、  An inspection power source that is electrically connected to the cathode line of the display panel and outputs an inspection voltage;
前記表示パネルの全ての陽極線および陰極線に電気的に接続され、前記全ての 陽極線および陰極線の電位を設定する電極電位設定手段と、  Electrode potential setting means that is electrically connected to all anode lines and cathode lines of the display panel and sets potentials of all anode lines and cathode lines;
測定対象となる表示素子が接続されている測定対象陰極線および Zまたは測定対 象陽極線に選択的に接続され、前記測定対象となる表示素子に流れる電流を計測 する電流計測手段と、  A current measuring means that is selectively connected to the measurement target cathode line and the Z or measurement target anode line to which the display element to be measured is connected, and measures the current flowing through the display element to be measured;
を備えたことを特徴とする表示パネルの検査装置。  A display panel inspection apparatus, comprising:
[2] 前記電極電位設定手段には、前記複数の陰極線および複数の陽極線に複数種類 の電位を選択的に設定するための複数の選択手段が備えられていることを特徴とす る請求項 1に記載の表示パネルの検査装置。  [2] The electrode potential setting means includes a plurality of selection means for selectively setting a plurality of types of potentials to the plurality of cathode lines and the plurality of anode lines. The display panel inspection apparatus according to 1.
[3] 前記電極電位設定手段では、  [3] In the electrode potential setting means,
前記測定対象陰極線に前記検査電源が接続され、  The inspection power supply is connected to the measurement target cathode line,
前記測定対象陽極線に前記検査電圧よりも電圧値が低い測定陽極電圧を出力す る測定陽極電源が接続され、  A measuring anode power source that outputs a measuring anode voltage having a voltage value lower than the inspection voltage is connected to the measuring object anode wire,
測定対象となる表示素子が接続されて!ヽな ヽ測定対象外陰極線と、測定対象とな る表示素子が接続されて!ヽな ヽ測定対象外陽極線に、非測定電圧を出力する非測 定電源が接続されることを特徴とする講求項 1または請求項 2に記載の表示パネルの 検査装置。  A non-measurement voltage that outputs a non-measurement voltage to an unmeasured cathode line and a non-measuring display element connected to a non-measurement anode element. 3. The display panel inspection device according to claim 1, wherein a constant power source is connected.
[4] 前記電流計測手段は、前記選択手段を介して前記測定対象陰極線に選択的に接 続されることを特徴とする請求項 1な 、し請求項 3の 、ずれかに記載の表示パネルの 検査装置。  [4] The display panel according to any one of claims 1 and 3, wherein the current measuring unit is selectively connected to the measurement target cathode line via the selection unit. Inspection equipment.
[5] 前記測定陽極電圧の電位は接地電位であり、 前記非測定電圧と前記検査電圧の電圧値は等 、ことを特徴とする請求項 1な 、 し請求項 4のいずれかに記載の表示パネルの検査装置。 [5] The potential of the measurement anode voltage is a ground potential, 5. The display panel inspection apparatus according to claim 1, wherein voltage values of the non-measurement voltage and the inspection voltage are equal to each other.
[6] 前記電極電位設定手段は、 [6] The electrode potential setting means includes:
全ての前記陰極線に前記検査電源を接続し、  Connect the inspection power supply to all the cathode lines,
全ての前記陽極線に前記検査電圧よりも電圧値が低い測定陽極電圧を出力する 測定陽極電源を接続することを特徴とする請求項 1に記載の表示パネルの検査装置  2. The display panel inspection apparatus according to claim 1, wherein a measurement anode power source that outputs a measurement anode voltage whose voltage value is lower than the inspection voltage is connected to all the anode lines.
[7] 前記電流計測手段には、 [7] The current measuring means includes
前記測定対象陰極線に選択的に接続され、前記測定対象陰極線に流れる電流を 計測する陰極電流計測手段と、  A cathode current measuring means which is selectively connected to the measurement target cathode line and measures a current flowing through the measurement target cathode line;
前記測定対象陽極線に選択的に接続され、前記測定対象陽極線に流れる電流を 計測する陽極電流計測手段が備えられていることを特徴とする請求項 1または請求 項 6に記載の表示パネルの検査装置。  7. The display panel according to claim 1, further comprising an anode current measuring unit that is selectively connected to the measurement target anode line and that measures a current flowing through the measurement target anode line. 8. Inspection device.
[8] 前記測定陽極電圧の電位は接地電位であることを特徴とする請求項 1、請求項 6ま たは請求項 7のいずれかに記載の表示パネルの検査装置。 8. The display panel inspection apparatus according to claim 1, wherein the potential of the measured anode voltage is a ground potential.
[9] 前記陽極電流計測手段により計測された陽極電流値と前記陰極電流計測手段に より計測された陰極電流値を取得し、 [9] Obtain an anode current value measured by the anode current measuring means and a cathode current value measured by the cathode current measuring means,
取得された前記陽極電流値と前記陰極電流値を用いて演算を実行し、 前記演算の結果に基づいて前記表示パネルにおける欠陥表示素子の有無および 前記欠陥素子の場所、欠陥の種類の判断を行う演算手段がさらに備えられているこ とを特徴とする請求項 1、請求項 6な 、し請求項 8の 、ずれかに記載の表示パネルの 検査装置。  Calculation is performed using the obtained anode current value and cathode current value, and the presence / absence of a defective display element in the display panel, the location of the defective element, and the type of defect are determined based on the result of the calculation. 9. The display panel inspection apparatus according to claim 1, further comprising a calculation means.
[10] 前記電流計測手段は、前記測定対象陽極線もしくは前記測定対象陰極線に接続 された抵抗素子の両端の電圧を測定し、測定した電圧値を電流値に換算すること〖こ よって電流の計測を実行することを特徴とする請求項 1な!ヽし請求項 9の ヽずれかに 記載の表示パネルの検査装置。  [10] The current measurement means measures the voltage across the resistance element connected to the measurement target anode line or the measurement target cathode line, and converts the measured voltage value into a current value, thereby measuring the current. Claim 1 characterized by executing! 10. The display panel inspection device according to claim 9.
[11] 互いに交差する複数の陽極線と複数の陰極線との各交点位置に、前記陽極線と前 記陰極線との間に接続された表示素子を備え、前記表示素子に対して前記陽極線 力 順方向電流が流されることにより表示動作がなされる表示パネルの検査方法で あって、 [11] A display element connected between the anode line and the cathode line is provided at each intersection position of the plurality of anode lines and the plurality of cathode lines intersecting each other, and the anode line is connected to the display element. A method for inspecting a display panel in which a display operation is performed by applying a forward current.
少なくとも 1つの前記陰極線に検査電圧を印加し、且つ前記陰極線の電位が前記 陽極線の電位以上の関係になるように、全ての前記陽極線および前記陰極線の電 位を設定する電極電位設定ステップと、  An electrode potential setting step in which an inspection voltage is applied to at least one of the cathode lines, and the potentials of all the anode lines and the cathode lines are set so that the potential of the cathode lines is equal to or higher than the potential of the anode lines; ,
測定対象となる表示素子が接続されている測定対象陰極線および Zまたは測定対 象陽極線に選択的に接続され、前記測定対象となる表示素子に流れる電流を計測 する電流計測ステップとが実行されることを特徴とする表示パネルの検査方法。  A current measurement step of measuring a current flowing in the measurement target display element, which is selectively connected to the measurement target cathode line and Z or the measurement target anode line, to which the measurement target display element is connected, is executed A display panel inspection method characterized by the above.
[12] 前記電極電位設定ステップでは、  [12] In the electrode potential setting step,
前記測定対象陰極線に前記検査電圧が印加され、  The inspection voltage is applied to the measurement target cathode line,
前記測定対象陽極線に、前記検査電圧よりも電圧値が低!、測定陽極電圧が印加 され、  A voltage value lower than the inspection voltage is applied to the measurement target anode wire, a measurement anode voltage is applied,
測定対象となる表示素子が接続されて!ヽな ヽ測定対象外陰極線と、測定対象とな る表示素子が接続されていない測定対象外陽極線に非測定電圧が印加されることを 特徴とする請求項 11に記載の表示パネルの検査方法。  A non-measuring voltage is applied to the non-measuring cathode line connected to the display element to be measured and the non-measuring anode line to which the display element to be measured is not connected. The method for inspecting a display panel according to claim 11.
[13] 前記電流計測ステップでは、前記検査電圧が印加された前記測定対象陰極線に 流れる電流の計測が行われることを特徴とする請求項 11または請求項 12に記載の 表示パネルの検査方法。 13. The display panel inspection method according to claim 11, wherein in the current measurement step, a current flowing through the measurement target cathode line to which the inspection voltage is applied is measured.
[14] 前記測定陽極電圧の電位は接地電位であり、  [14] The potential of the measurement anode voltage is a ground potential,
前記非測定電圧と前記検査電圧の電圧値は等し ヽことを特徴とする請求項 11な 、 し講求項 13のいずれかに記載の表示パネルの検査装置。  14. The display panel inspection apparatus according to claim 11, wherein the non-measurement voltage and the inspection voltage are equal in voltage value.
[15] 前記電極電位設定ステップでは、 [15] In the electrode potential setting step,
全ての前記陰極線に前記検査電圧が印加され、  The inspection voltage is applied to all the cathode lines,
全ての前記陽極線に、前記検査電圧よりも電圧値が低!、前記測定陽極電圧が印加 され、  The voltage value is lower than the inspection voltage for all the anode wires! The measurement anode voltage is applied,
前記電流計測ステップでは、  In the current measurement step,
前記測定対象陰極線に流れる電流を計測する陰極電流計測ステップと、 前記測定対象陽極線に流れる電流を計測する陽極電流計測ステップが実行される ことを特徴とする講求項 11に記載の表示パネルの検査方法。 A cathode current measurement step for measuring a current flowing through the measurement target cathode line, and an anode current measurement step for measuring a current flowing through the measurement target anode line are executed. 12. The display panel inspection method according to claim 11, characterized in that:
[16] 前記測定陽極電圧の電位は接地電位であることを特徴とする請求項 11または請求 項 15に記載の表示パネルの検査方法。 16. The display panel inspection method according to claim 11, wherein the potential of the measurement anode voltage is a ground potential.
[17] 前記陽極電流計測ステップで計測された陽極電流値と、前記陰極電流計測ステツ プで計測された陰極電流値を取得し、 [17] Obtain the anode current value measured in the anode current measurement step and the cathode current value measured in the cathode current measurement step;
取得された前記陽極電流値と前記陰極電流値を用いて演算を行 、、  An operation is performed using the obtained anode current value and the cathode current value,
前記演算の結果に基づいて前記表示パネルにおける欠陥表示素子の有無および 前記欠陥素子の場所、欠陥の種類の判断を行う演算ステップがさらに実行されること を特徴とする請求項 11、請求項 15または請求項 16のいずれかに記載の表示パネ ルの検査方法。  16. The calculation step of determining the presence / absence of a defective display element in the display panel, the location of the defective element, and the type of defect based on the result of the calculation is further executed. The display panel inspection method according to claim 16.
[18] 前記電流計測ステップでは、前記測定対象陰極線もしくは前記測定対象陽極線に 接続された抵抗素子の両端の電圧を計測し、計測した電圧値を電流値に換算するこ とによって電流の計測を実行することを特徴とする請求項 11ないし請求項 17のいず れかに記載の表示パネルの検査方法。  [18] In the current measurement step, the current is measured by measuring the voltage across the resistance element connected to the measurement target cathode line or the measurement target anode line, and converting the measured voltage value into a current value. 18. The display panel inspection method according to claim 11, wherein the display panel inspection method is executed.
PCT/JP2006/321037 2006-10-23 2006-10-23 Display panel testing apparatus and testing method WO2008050380A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/321037 WO2008050380A1 (en) 2006-10-23 2006-10-23 Display panel testing apparatus and testing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/321037 WO2008050380A1 (en) 2006-10-23 2006-10-23 Display panel testing apparatus and testing method

Publications (1)

Publication Number Publication Date
WO2008050380A1 true WO2008050380A1 (en) 2008-05-02

Family

ID=39324195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321037 WO2008050380A1 (en) 2006-10-23 2006-10-23 Display panel testing apparatus and testing method

Country Status (1)

Country Link
WO (1) WO2008050380A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2487994A3 (en) * 2011-02-11 2013-11-20 Tai-Her Yang LED device with voltage-limiting unit and shunt current-limiting resistance
WO2016030081A1 (en) * 2014-08-26 2016-03-03 Osram Oled Gmbh Method for identifying a short circuit in a first light emitting diode element, and optoelectronic subassembly
WO2019219366A1 (en) * 2018-05-18 2019-11-21 Arcelik Anonim Sirketi Circuit configuration canceling out reverse voltage drop in a light emitting diode (led)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002090408A (en) * 2000-09-12 2002-03-27 Tdk Corp Method and apparatus for inspection of matrix
JP2003229262A (en) * 2002-01-31 2003-08-15 Toyota Industries Corp Test method of short-circuited pixel of organic el panel, and test device of the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002090408A (en) * 2000-09-12 2002-03-27 Tdk Corp Method and apparatus for inspection of matrix
JP2003229262A (en) * 2002-01-31 2003-08-15 Toyota Industries Corp Test method of short-circuited pixel of organic el panel, and test device of the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2487994A3 (en) * 2011-02-11 2013-11-20 Tai-Her Yang LED device with voltage-limiting unit and shunt current-limiting resistance
WO2016030081A1 (en) * 2014-08-26 2016-03-03 Osram Oled Gmbh Method for identifying a short circuit in a first light emitting diode element, and optoelectronic subassembly
US10578665B2 (en) 2014-08-26 2020-03-03 Osram Oled Gmbh Method for identifying a short circuit in a first light emitting diode element, and optoelectronic subassembly
WO2019219366A1 (en) * 2018-05-18 2019-11-21 Arcelik Anonim Sirketi Circuit configuration canceling out reverse voltage drop in a light emitting diode (led)

Similar Documents

Publication Publication Date Title
KR100799161B1 (en) Non-contact type single side probe and inspection apparatus and method for open/short test of pattern electrodes used thereof
KR100939188B1 (en) Inspection method and inspection device for active matrix substrate, computer readable medium recorded inspection program used therefor
TW200515357A (en) Inspection method and inspection device for display device and active matrix substrate used for display device
TWI496227B (en) Method and system for improved testing of transistor arrays
EP2634588B1 (en) System and method for testing electrical circuits using a photoelectrochemical effect
JP2008002823A (en) Substrate inspecting device and substrate inspection method
KR102050123B1 (en) Insulation inspection method and insulation inspection device
JP4566502B2 (en) Solar cell module inspection method
WO2008050380A1 (en) Display panel testing apparatus and testing method
JP2000348861A (en) Evaluation device of organic electroluminescent display
WO2005010600A1 (en) Inspection equipment and inspection method of liquid crystal display panel
KR101308456B1 (en) Flat panel display device and method for testing the same and manufacturing method
CN104090167B (en) Impedance measuring device and method of liquid crystal module
JP5032892B2 (en) Circuit board inspection method and apparatus
KR102250982B1 (en) Electrical inspection apparatus and method of display panel
JP2005003606A (en) Inspection device of display panel
CN112415419A (en) LED module protective adhesive layer detection tool and method
KR101904550B1 (en) A System and Method for Inspection of Electrical Circuits
JP2000214423A (en) Method and device for inspecting liquid crystal display device
KR940004874B1 (en) Method and apparatus for measuring the characteristics of lcd module
KR20060063107A (en) Display panel inspection device
JP2004286669A (en) Device for inspecting substrate
JP2003161757A (en) Voltage measuring method
JP2629213B2 (en) Inspection method and inspection apparatus for active matrix array
JP2004342809A (en) Method and device for inspecting deterioration of led

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06822057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06822057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP