JP4566502B2 - Solar cell module inspection method - Google Patents

Solar cell module inspection method Download PDF

Info

Publication number
JP4566502B2
JP4566502B2 JP2002204930A JP2002204930A JP4566502B2 JP 4566502 B2 JP4566502 B2 JP 4566502B2 JP 2002204930 A JP2002204930 A JP 2002204930A JP 2002204930 A JP2002204930 A JP 2002204930A JP 4566502 B2 JP4566502 B2 JP 4566502B2
Authority
JP
Japan
Prior art keywords
solar cell
cell module
current
voltage
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002204930A
Other languages
Japanese (ja)
Other versions
JP2004047838A (en
Inventor
将史 平石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2002204930A priority Critical patent/JP4566502B2/en
Publication of JP2004047838A publication Critical patent/JP2004047838A/en
Application granted granted Critical
Publication of JP4566502B2 publication Critical patent/JP4566502B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【0001】
【発明の属する技術分野】
本発明は、太陽電池モジュールの製造工程におけるモジュール検査方法に関する。
【0002】
【従来の技術】
薄膜半導体層を用いる太陽電池は、主として、ガラス基板上に透明電極層、半導体層、および裏面電極層を順次積層し、これらの成膜ごとにスクライブして、複数の太陽電池セルを形成、集積化され、裏面を封止樹脂やカバーフィルムで封止されて作製されている。さらにモジュールの形状に応じて、端子箱やフレームの取り付けなど組立工程を経て太陽電池モジュールが生産されている。
【0003】
太陽電池モジュールについては、検査工程においてIV特性を測定する。IV特性からは、太陽電池の性能を評価する上で必要な、開放電圧、短絡電流、曲線因子を求めることが出来る。
【0004】
IV特性は通常、ソーラーシミュレータと呼ばれる装置により測定される。ソーラーシミュレータは、光源系と、直流電流源および電圧計を備えた測定系とにより構成され、太陽電池モジュールの裏面に設けられた一対の端子に測定系を接続した状態で、光源からパルス光を太陽電池モジュールに照射し、それに同期して測定系の直流電流源の電流を変化させて、順次、電圧を測定することにより、太陽電池としてのIV特性を得るものである。
【0005】
従来、太陽電池モジュール製造においては、太陽電池セルの封止後やモジュール組立後など工程途中の数箇所でソーラーシミュレータによるIV特性の検査を実施し、特性を確認しながら製造していた。モジュール組立後の検査についてはシミュレータによるIV特性測定を省略し、光照射下における電圧測定のみを実施していることもある。この場合、照度による影響を受けるほか、直列抵抗増大の不良モードでは検知できない可能性がある。
【0006】
また、検査工程では耐電圧試験や絶縁抵抗による絶縁性能も検査する。耐電圧試験は太陽電池モジュールの一対の端子を短絡させて、これと太陽電池モジュールのフレーム等との間に所定の直流電圧を印加し、絶縁破壊等の有無を調べる。
絶縁抵抗は、太陽電池モジュールの素子部とフレームなど露出金属部との絶縁抵抗を測定する。
【0007】
従来、太陽電池モジュールのIV特性の測定と耐電圧試験等の絶縁性試験は、それぞれ個別に、例えば最初に太陽電池モジュールをソーラーシミュレータに接続してIV特性を測定し、次いで太陽電池モジュールをパルスソーラーシミュレータから外した後、太陽電池モジュールを耐電圧試験機に接続して耐電圧試験を行い、ついで耐電圧試験機からはずして絶縁抵抗計に接続して絶縁抵抗を測定する、というようになされていた。
【0008】
これに対し、ソーラーシミュレータと絶縁性測定装置とを切り替え手段を介して接続した特性測定装置が提案されている(特開2001−102609)。この技術はソーラーシミュレータによるIV測定を行うものである。
【0009】
太陽電池のIV特性の測定法としては、暗状態で電流注入する方法も一般に知られている(特開2001−174530)。ただし、特にアモルファス太陽電池では実際に太陽電池として発電する性能とは必ずしも一致せず、異なることが知られている。
【0010】
【発明が解決しようとする課題】
ソーラーシミュレータは、工程各所に設置するには非常に高価であるだけでなく、精度良く測定できるように維持するには多数のシミュレータに対して照度管理や頻繁な校正業務などメンテナンスが必要であり、負荷が非常に大きい。
【0011】
また、上述のようなIV特性および絶縁性試験の仕方によると、いちいち太陽電池モジュールと測定装置の接続および取り外しを繰り返す必要があるため、手間や時間がかかり、煩雑であった。
【0012】
本発明は、このような事情の下になされ、太陽電池モジュールのIV検査を、簡易な装置で簡単に行うことができる方法と装置を提供することを目的とする。
さらに、太陽電池モジュールのIV検査と絶縁試験を、簡単にかつ短時間で容易に行うことを可能とする検査装置を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明者らは、上記問題点を解決するため、鋭意検討を重ねた結果、暗状態の太陽電池モジュールに対し複数水準の所定電流を注入し、そのときの電圧値により判定するIV検査によりモジュールの良否を判定できることを見出した。また、このIV検査装置と絶縁試験装置を相互に切替え可能に接続しておくことにより、太陽電池モジュールに対する複数の検査や試験を、簡単に、かつ短時間で容易に行うことが可能であることを見出した。本発明は、かかる知見に基づくものである。
【0014】
即ち、本発明は、照度1000ルクス以下の暗状態の太陽電池に所定電流を注入、または所定電圧を印加し、そのときの電圧値または電流値により、ソーラーシミュレータを用いずに暗状態のみで太陽電池モジュールの良否を判定する検査方法とその検査装置を提供する。本発明の一実施形態によれば、このIV検査装置と、太陽電池モジュールの絶縁性試験装置と、前記IV検査装置と前記絶縁性試験装置とを切替える切替手段とを備え、前記切替手段は、太陽電池モジュールのIV検査の際には、前記太陽電池モジュールの一対の端子を前記IV検査装置に接続し、前記太陽電池モジュールの絶縁性試験の際には、前記太陽電池モジュールの一対の端子を短絡させ、この短絡端子と前記太陽電池モジュールのフレームなど露出金属部とを、前記絶縁性試験装置に接続することを特徴とする太陽電池モジュールの検査装置、またはこのような測定方法提供される
【0015】
絶縁性試験としては絶縁抵抗と耐電圧試験があるが、本発明においては、IV検査装置と絶縁抵抗測定装置とを切替え手段を介して接続した装置、IV検査装置と耐電圧測定装置とを切替え手段を介して接続した装置とすることが出来るとともに、IV検査装置、絶縁抵抗測定装置、および耐電圧測定装置の3者を切替え手段を介して接続した装置とすることも可能である。
【0016】
また、IV検査装置と耐電圧測定装置とを切替え手段を介して接続した装置であって、絶縁抵抗を直接測定する代用として、耐電圧試験において高電圧印加時のリーク電流値を測定判定する機構を設けた装置とすることも可能である。
【0017】
これらにより、3つの検査試験を単一の装置で測定することが可能となる。
【0018】
以上のように構成される本発明の太陽電池モジュールの検査装置によると、各検査装置との接続と取り外しを繰り返すことなく、切替えスイッチによる切替えだけで、単一の検査装置により、複数の検査試験を、短時間で容易に行うことが可能である。またこの様な測定方法により簡易に太陽電池モジュールの良否を検査することができる。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態について、図を参照して説明する。
【0020】
まず、IV検査について詳細に説明する。図1に太陽電池モジュールの明状態と暗状態におけるIV特性を示す。ここで、電流値は太陽電池として発電する向きとは逆を正として表現している。太陽電池に照射される光が強くなるに従い、暗状態から明状態へとIV特性曲線が変化する。両状態におけるIV特性は平行移動した同様の形状であるが、特にアモルファス太陽電池ではいくらか異なる。
【0021】
たとえば、裏面封止後、正常に作動する太陽電池が、正常に組立工程を経て太陽電池モジュールに組み立てられると、その太陽電池モジュールの電流注入によるIV特性は、元の太陽電池が示す電流注入によるIV特性のままでで不変である。しかし、組立工程において接続不良や断線など不具合があった場合、電流注入によるIV特性が正常品とは異なるものになる。組立工程で発生可能性のある不具合によるIV特性の例を、不良1〜4として図2に示す。これより適当な電流値を2点選び、そのときの電圧により判定することにより不具合品を検知することができる。図2中の2つの両矢印の区間は、それぞれ電流I1、I2における電圧の良品判定範囲の例である。
【0022】
電流値が1点では、判定値の設定によっては図中の接続不良1や2を良品と誤判定する可能性があり、好ましくない。多点になると太陽電池のIV特性曲線の測定精度は向上するが、本発明ではIV特性曲線を得るのが目的ではないので10点以上は時間の無駄である。2〜10点が好ましく、2〜3点がさらに好ましく、2点がもっとも好ましい。
【0023】
選定する電流値は、IV曲線の立ち上がり部分で選定すると不具合品を精度良く検知することが可能で好ましい。選定する2点の注入電流値としては、第1の注入電流値が検査する太陽電池のIscの0.5〜10倍が好ましく、0.5〜5倍がさらに好ましく、0.6〜2倍がもっとも好ましい。Iscの10倍を超える場合は、必要な定電流源の容量が大きくなりすぎるため無駄である。第2の注入電流値は前記第1注入電流値未満であり、且つ前記Iscの0.2〜0.8倍が好ましく、0.3〜0.7倍がさらに好ましく、0.4〜0.6倍がもっとも好ましい。ここでIscはJIS C 8935の太陽電池出力測定法により基準状態で測定した短絡電流である。
【0024】
逆に、所定電圧値に対する電流値により、同様の判定をすることも可能ではあるが、IV曲線の立ち上がり部分で判定する場合、電流値の変動が大きいため、良品判定の範囲設定が非常に広くなり、不具合品検出の感度が低下し好ましくない。また、検査時のモジュールに当たる光の照度による影響も大きく、照度管理が必要である。
【0025】
電流値に対する電圧値で判定する場合、検査環境の明るさによる電圧変動が小さく、検査時のモジュールに当たる光の照度管理は非常に簡略化することが可能である。検査時のモジュールに当たる光の照度は通常の屋内照明以下であればよく、1000ルクス以下である。1000ルクスを超えると、IV特性に及ぼす光の影響が無視できなくなる。
【0026】
正常に動作する太陽電池が、組立工程を経てできた太陽電池モジュールの組立検査としては、上述のような検査方法により、高価なシミュレータを使用することなく、また厳重な検査環境の管理をすることなしに、精度良く組立不良を検出することができる。
【0027】
さらに本発明の実施の形態について、図3を参照して説明する。図3は、本発明の1実施形態に係る太陽電池モジュールの検査装置を示す図である。図3に示す検査装置は、IV検査系11と耐電圧試験機12とが、切替え手段13を介して組み合わされて構成されている。
【0028】
IV検査系11は、直流電流源21と電流計22、電圧計23とを備えている。IV検査に際しては、IV検査系11の一対の端子は、切替え手段13を介して、太陽電池モジュール1に設けられた一対の端子2a,2bに接続される。
【0029】
耐電圧試験機12は、リーク電流を測定する電流計14を備えており、太陽電池モジュール1の素子部3と、露出金属部との間の電圧を印加して耐電圧性能を試験するものであって、図3では太陽電池モジュール1に設けられた一対の端子2a,2bを短絡させ、露出金属部としてフレーム4との間に電圧を印加することによって、素子部3とフレーム4との間のリーク電流を測定し耐電圧性能を検査する。
【0030】
切替え手段13は、例えば、図4に示すような構成とすることが出来る。即ち、切替え手段13は、第1の切替えスイッチ13aと、第2の切替えスイッチ13bを備え、第1の切替えスイッチ13aは、太陽電池モジュール1のプラス端子2aに接続されているとともに、IV検査系11の一方の端子11aと、耐電圧試験機12の一方の端子12aとに切替え可能に構成されている。
【0031】
また、第2の切替えスイッチ13aは、太陽電池モジュール1のマイナス端子2bに接続されているとともに、IV検査系11の他方の端子11bと、絶縁抵抗測定装置12の一方の端子12aとに切替え可能に構成されている。
【0032】
次に、以上のように構成される、図3および図4に示す太陽電池モジュール検査装置を用いて、太陽電池モジュール1のIV検査と耐電圧試験を実施する手順について説明する。
【0033】
まず、切替え手段13の第1の切替えスイッチ13aと第2の切替えスイッチ13bを、図4において実線で示す位置に置く。即ち、第1の切替えスイッチ13aおよび第2の切替えスイッチ13bにより、太陽電池モジュール1のプラス端子2aマイナス端子2bとを短絡させるとともに、それを、耐電圧試験機12の一方の端子12aに接続する。
【0034】
この状態で、太陽電池モジュール1の耐電圧試験を実施する。試験に際しては、太陽電池モジュール1の端子とフレームとの間に所定電圧を印加し、リーク電流の測定と絶縁破壊の有無を試験する。
【0035】
次に、耐電圧試験機12からIV検査系11に接続を切替え、太陽電池モジュール1のIV検査を実施する。即ち、切替え手段13の第1の切替えスイッチ13aと第2の切替えスイッチ13bを、図4において破線で示す位置に置く。即ち、第1の切替えスイッチ13aにより太陽電池モジュール1のプラス端子2aとIV検査系の一方の端子11aに接続する。
【0036】
このような切替えは、手動で行うことも出来るが、リレーまたは電子スイッチを用いて自動的に行うことも可能である。
【0037】
この状態で、IV検査系11により太陽電池モジュール1のIV検査を実施する。IV検査は次のように実施する。直流電流源21により第1の水準の所定電流I1を太陽電池モジュールが発電する極性方向に対して逆方向に注入し、その時の電圧V1を測定し、次に第2の水準の所定電流I2を同様に注入して電圧V2を測定する。V1、V2が各々の所定範囲内の値であることを判定する。または両測定点間の傾きR=(V1−V2)/(I1−I2)により判定する。
【0038】
このようにして、本実施形態に係る測定装置によると、個別の測定装置との接続と取り外しを繰り返すことなく、切替えスイッチによる切替えだけで、単一の装置により、複数の検査を順次行うことが可能である。
【0039】
なお、以上の実施形態では、IV検査系11と耐電圧試験機12とを切替え手段13を介して接続した例について説明したが、本発明は、これに限られるものではない。例えば、耐電圧試験機12に代わって、また耐電圧試験機12とともに、絶縁抵抗計を、切替え手段13を介してIV検査系11に接続し、一体化した装置として用いることも可能である。
【0040】
絶縁抵抗値は耐電圧試験においては、たとえばアモルファス太陽電池モジュールではJIS C 8939にて絶縁抵抗100MΩ以上(DC1000V印加時)と規定されている。耐電圧試験では印加電圧が1000V以上になるが、オームの法則が成立つ仮定の元で、印加電圧に応じて100MΩに相当するリーク電流値を指標とし、耐電圧試験において印加電圧が安定した状態でのリーク電流を電流計14で測定し、その値による判定で絶縁抵抗測定を代用することもできる。
【0041】
【発明の効果】
以上、詳細に説明したように、本発明の太陽電池モジュールのIV検査装置、または太陽電池モジュールの良否を判定する検査方法によると、太陽電池モジュールの組立の良否がソーターシミュレータを使うことなく簡便な装置で判定することができるので、従来のように高価で、多大な負荷を伴うメンテナンスが不可欠な装置を複数台そろえる必要がなく、負荷軽減とコストダウンが可能となる。
【0042】
さらに、本発明による検査装置を使用すると、ソーターシミュレータが不要なだけでなく、各検査装置との接続と取り外しを繰り返すことなく、切替えスイッチによる切替えだけで、単一の検査装置により、複数の検査試験を、短時間で容易に行うことが可能で、検査工程の大幅な工数削減とコストダウンが実現できる。
【図面の簡単な説明】
【図1】太陽電池モジュールの暗状態、明状態のIV特性を示す図。
【図2】太陽電池モジュールの良品および不良品のIV特性を示す図。
【図3】本発明の1形態にかかわる太陽電池モジュールの検査装置を示す説明図。
【図4】図3に示す太陽電池検査装置の切り替え手段を拡大して示す図。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a module test how in the manufacturing process of the solar cell module.
[0002]
[Prior art]
Solar cells using thin-film semiconductor layers are mainly formed by stacking a transparent electrode layer, a semiconductor layer, and a back electrode layer on a glass substrate in order, and scribing for each film formation to form and integrate multiple solar cells. It is manufactured by sealing the back surface with a sealing resin or a cover film. Furthermore, according to the shape of the module, solar cell modules are produced through assembly processes such as attachment of terminal boxes and frames.
[0003]
About a solar cell module, IV characteristic is measured in an inspection process. From the IV characteristics, an open circuit voltage, a short circuit current, and a fill factor necessary for evaluating the performance of the solar cell can be obtained.
[0004]
The IV characteristic is usually measured by a device called a solar simulator. The solar simulator is composed of a light source system and a measurement system equipped with a direct current source and a voltmeter, and pulse light is emitted from the light source with the measurement system connected to a pair of terminals provided on the back surface of the solar cell module. By irradiating the solar cell module and changing the current of the direct current source of the measurement system in synchronization therewith, the voltage is sequentially measured to obtain IV characteristics as a solar cell.
[0005]
Conventionally, in solar cell module manufacturing, the IV characteristics are inspected by a solar simulator at several points in the middle of the process such as after sealing of the solar cells and after module assembly, and manufactured while confirming the characteristics. For the inspection after the module assembly, the IV characteristic measurement by the simulator may be omitted, and only the voltage measurement under light irradiation may be performed. In this case, in addition to being affected by the illuminance, there is a possibility that it cannot be detected in the failure mode of increasing series resistance.
[0006]
In the inspection process, a dielectric strength test and an insulation performance by an insulation resistance are also inspected. In the withstand voltage test, a pair of terminals of the solar cell module is short-circuited, a predetermined DC voltage is applied between the terminal and the frame of the solar cell module, and the presence or absence of dielectric breakdown or the like is examined.
The insulation resistance measures the insulation resistance between the element part of the solar cell module and an exposed metal part such as a frame.
[0007]
Conventionally, measurement of IV characteristics of a solar cell module and insulation tests such as a withstand voltage test are performed individually, for example, by first connecting the solar cell module to a solar simulator and measuring the IV characteristics, and then pulsing the solar cell module. After removing from the solar simulator, the solar cell module is connected to a withstand voltage tester to perform a withstand voltage test, and then removed from the withstand voltage tester and connected to an insulation resistance meter to measure the insulation resistance. It was.
[0008]
On the other hand, a characteristic measuring apparatus in which a solar simulator and an insulating measuring apparatus are connected via switching means has been proposed (Japanese Patent Laid-Open No. 2001-102609). This technology performs IV measurement with a solar simulator.
[0009]
As a method for measuring the IV characteristic of a solar cell, a method of injecting current in a dark state is generally known (Japanese Patent Laid-Open No. 2001-174530). However, it is known that, in particular, an amorphous solar cell does not necessarily match the performance of actually generating power as a solar cell and is different.
[0010]
[Problems to be solved by the invention]
Solar simulators are not only very expensive to install in various parts of the process, but also to maintain accurate measurements, many simulators require maintenance such as illuminance management and frequent calibration operations. The load is very large.
[0011]
Further, according to the above IV characteristics and insulation test methods, it is necessary to repeatedly connect and remove the solar cell module and the measuring device, which is troublesome and time consuming.
[0012]
This invention is made | formed under such a situation, and it aims at providing the method and apparatus which can perform IV test | inspection of a solar cell module easily with a simple apparatus.
Furthermore, it aims at providing the test | inspection apparatus which makes it possible to perform IV test | inspection and insulation test of a solar cell module easily in a short time.
[0013]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors inject a plurality of levels of predetermined current into a dark solar cell module, and determine the module by IV inspection that is determined by the voltage value at that time. It was found that it was possible to judge the quality of In addition, by connecting the IV inspection device and the insulation test device so as to be switchable with each other, it is possible to easily perform a plurality of inspections and tests on the solar cell module in a short time. I found. The present invention is based on such knowledge.
[0014]
That is, according to the present invention, a predetermined current is injected or a predetermined voltage is applied to a solar cell in a dark state with an illuminance of 1000 lux or less, and the solar cell only in the dark state without using a solar simulator depending on the voltage value or current value at that time. An inspection method and an inspection apparatus for determining whether a battery module is good or bad are provided. According to an embodiment of the present invention, the IV inspection apparatus, the solar cell module insulation test apparatus, and the switching means for switching between the IV inspection apparatus and the insulation test apparatus, the switching means, In the case of IV inspection of the solar cell module, a pair of terminals of the solar cell module are connected to the IV inspection device, and in the case of an insulation test of the solar cell module, the pair of terminals of the solar cell module are connected. It is short-circuited, and a frame including the exposed metal section of the short-circuit terminal and the solar cell module, the inspection apparatus, or such a measurement method of a solar cell module, characterized by connecting to said insulating test device is provided .
[0015]
The insulation test includes an insulation resistance and a withstand voltage test. In the present invention, the IV inspection apparatus and the insulation resistance measurement apparatus are connected via a switching means, and the IV inspection apparatus and the withstand voltage measurement apparatus are switched. In addition to a device connected through the means, it is also possible to make a device in which three members of the IV inspection device, the insulation resistance measuring device, and the withstand voltage measuring device are connected through the switching means.
[0016]
Also, a device in which an IV inspection device and a withstand voltage measuring device are connected via a switching means, and a mechanism for measuring and determining a leakage current value when a high voltage is applied in a withstand voltage test as an alternative to directly measuring insulation resistance It is also possible to provide an apparatus provided with
[0017]
These allow three inspection tests to be measured with a single device.
[0018]
According to the inspection apparatus of the solar cell module of the present invention configured as described above, a plurality of inspection tests can be performed by a single inspection apparatus only by switching with a changeover switch without repeating connection and disconnection with each inspection apparatus. Can be easily performed in a short time. Moreover, the quality of the solar cell module can be easily inspected by such a measuring method.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0020]
First, the IV test will be described in detail. FIG. 1 shows IV characteristics of the solar cell module in a bright state and a dark state. Here, the current value is expressed as positive in the opposite direction to the direction of power generation as a solar cell. As the light applied to the solar cell becomes stronger, the IV characteristic curve changes from the dark state to the bright state. The IV characteristics in both states are similar in shape, but are somewhat different, especially for amorphous solar cells.
[0021]
For example, when a normally operating solar cell is assembled into a solar cell module through the assembly process after backside sealing, the IV characteristics of the solar cell module due to current injection are due to current injection indicated by the original solar cell. The IV characteristic remains unchanged. However, if there are problems such as poor connection or disconnection in the assembly process, the IV characteristics due to current injection will be different from normal products. Examples of IV characteristics due to problems that may occur in the assembly process are shown in FIG. From this, it is possible to detect a defective product by selecting two appropriate current values and making a determination based on the voltage at that time. 2 are examples of non-defective product determination ranges of voltages at the currents I1 and I2, respectively.
[0022]
If the current value is one point, connection failure 1 or 2 in the figure may be erroneously determined as a good product depending on the setting of the determination value, which is not preferable. The measurement accuracy of the IV characteristic curve of the solar cell is improved when the number of points is increased. However, in the present invention, since the purpose is not to obtain the IV characteristic curve, more than 10 points are wasted time. 2-10 points are preferable, 2-3 points are more preferable, and 2 points are most preferable.
[0023]
If the current value to be selected is selected at the rising portion of the IV curve, it is preferable because a defective product can be detected with high accuracy. The injection current value at two points to be selected is preferably 0.5 to 10 times, more preferably 0.5 to 5 times, and 0.6 to 2 times the Isc of the solar cell to be inspected by the first injection current value. Is most preferred. If it exceeds 10 times Isc, the necessary capacity of the constant current source becomes too large, which is useless. The second injection current value is less than the first injection current value and is preferably 0.2 to 0.8 times, more preferably 0.3 to 0.7 times the Isc, and 0.4 to 0.00. Six times is most preferable. Here, Isc is a short-circuit current measured in a reference state by the solar cell output measurement method of JIS C 8935.
[0024]
On the contrary, it is possible to make the same determination based on the current value with respect to the predetermined voltage value. However, when the determination is made at the rising portion of the IV curve, the current value fluctuates so much that the non-defective product determination range setting is very wide. This is not preferable because the sensitivity of defective product detection is lowered. In addition, the influence of the illuminance of light hitting the module at the time of inspection is large, and illuminance management is necessary.
[0025]
When the determination is made based on the voltage value with respect to the current value, the voltage fluctuation due to the brightness of the inspection environment is small, and the illuminance management of the light hitting the module at the time of inspection can be greatly simplified. Illuminance of light impinging on the module at the time of inspection may be any conventional indoor lighting or less, 1000 lux or less. If it exceeds 1000 lux, the influence of light on the IV characteristics cannot be ignored.
[0026]
As for the assembly inspection of the solar cell module that the solar cell that operates normally has undergone the assembly process, the above inspection method should be used to manage the strict inspection environment without using an expensive simulator Without assembly, it is possible to detect an assembly failure with high accuracy.
[0027]
Further, an embodiment of the present invention will be described with reference to FIG. FIG. 3 is a diagram showing a solar cell module inspection apparatus according to an embodiment of the present invention. The inspection apparatus shown in FIG. 3 is configured by combining an IV inspection system 11 and a withstand voltage test machine 12 via a switching means 13.
[0028]
The IV inspection system 11 includes a direct current source 21, an ammeter 22, and a voltmeter 23. In the IV inspection, the pair of terminals of the IV inspection system 11 are connected to the pair of terminals 2 a and 2 b provided in the solar cell module 1 via the switching unit 13.
[0029]
The withstand voltage test machine 12 includes an ammeter 14 for measuring a leakage current, and tests the withstand voltage performance by applying a voltage between the element part 3 of the solar cell module 1 and the exposed metal part. In FIG. 3, the pair of terminals 2 a and 2 b provided in the solar cell module 1 are short-circuited, and a voltage is applied between the frame 4 as the exposed metal portion, thereby the element portion 3 and the frame 4. The leakage current is measured and the withstand voltage performance is inspected.
[0030]
For example, the switching means 13 can be configured as shown in FIG. That is, the switching means 13 includes a first changeover switch 13a and a second changeover switch 13b, and the first changeover switch 13a is connected to the positive terminal 2a of the solar cell module 1 and is used in the IV inspection system. 11 can be switched to one terminal 11 a and one terminal 12 a of the withstand voltage tester 12.
[0031]
The second changeover switch 13 a is connected to the negative terminal 2 b of the solar cell module 1 and can be switched to the other terminal 11 b of the IV inspection system 11 and one terminal 12 a of the insulation resistance measuring device 12. It is configured.
[0032]
Next, a procedure for performing an IV inspection and a withstand voltage test of the solar cell module 1 using the solar cell module inspection apparatus shown in FIGS. 3 and 4 configured as described above will be described.
[0033]
First, the first change-over switch 13a and the second change-over switch 13b of the change-over means 13 are placed at positions indicated by solid lines in FIG. That is, the first changeover switch 13a and the second changeover switch 13b are used to short-circuit the plus terminal 2a and minus terminal 2b of the solar cell module 1 and connect it to one terminal 12a of the withstand voltage tester 12. .
[0034]
In this state, a withstand voltage test of the solar cell module 1 is performed. In the test, a predetermined voltage is applied between the terminal of the solar cell module 1 and the frame, and leakage current is measured and tested for the presence or absence of dielectric breakdown.
[0035]
Next, the connection is switched from the withstand voltage tester 12 to the IV inspection system 11, and the IV inspection of the solar cell module 1 is performed. That is, the first change-over switch 13a and the second change-over switch 13b of the change-over means 13 are placed at positions indicated by broken lines in FIG. That is, the first changeover switch 13a connects to the positive terminal 2a of the solar cell module 1 and one terminal 11a of the IV inspection system.
[0036]
Such switching can be performed manually or automatically using a relay or an electronic switch.
[0037]
In this state, the IV inspection system 11 performs an IV inspection of the solar cell module 1. The IV test is performed as follows. The DC current source 21 injects a first level predetermined current I1 in a direction opposite to the polarity direction in which the solar cell module generates power, measures the voltage V1 at that time, and then supplies the second level predetermined current I2 Injection is performed in the same manner, and the voltage V2 is measured. It is determined that V1 and V2 are values within respective predetermined ranges. Alternatively, the determination is made by the slope R = (V1−V2) / (I1−I2) between the two measurement points.
[0038]
In this way, according to the measurement apparatus according to the present embodiment, a plurality of inspections can be sequentially performed by a single apparatus by simply switching with the changeover switch without repeating connection and disconnection with individual measurement apparatuses. Is possible.
[0039]
In addition, although the above embodiment demonstrated the example which connected IV test | inspection system 11 and the withstand voltage test machine 12 via the switching means 13, this invention is not limited to this. For example, instead of the withstand voltage tester 12 or together with the withstand voltage tester 12, an insulation resistance meter can be connected to the IV inspection system 11 via the switching means 13 and used as an integrated device.
[0040]
In the withstand voltage test, the insulation resistance value is defined as, for example, an insulation resistance of 100 MΩ or more (when DC 1000 V is applied) in JIS C 8939 for an amorphous solar cell module. In the withstand voltage test, the applied voltage is 1000 V or more, but on the assumption that Ohm's law is established, the applied voltage is stable in the withstand voltage test using the leak current value corresponding to 100 MΩ as an index according to the applied voltage. It is also possible to substitute the insulation resistance measurement by measuring the leak current at the ampere meter 14 and determining by the value.
[0041]
【The invention's effect】
As described above in detail, according to the solar cell module IV inspection device of the present invention or the inspection method for determining the quality of a solar cell module, the quality of the assembly of the solar cell module is simple without using a sorter simulator. Since the determination can be made by the apparatus, it is not necessary to prepare a plurality of apparatuses that are expensive and indispensable for maintenance with a large load as in the prior art, and the load can be reduced and the cost can be reduced.
[0042]
Furthermore, when the inspection apparatus according to the present invention is used, not only a sorter simulator is required, but also a plurality of inspections can be performed by a single inspection apparatus only by switching with a changeover switch without repeating connection and disconnection with each inspection apparatus. The test can be easily performed in a short time, and the inspection process can be greatly reduced in cost and cost.
[Brief description of the drawings]
FIG. 1 is a diagram showing IV characteristics of a dark state and a bright state of a solar cell module.
FIG. 2 shows a good and IV characteristics of defective solar cell module.
FIG. 3 is an explanatory view showing a solar cell module inspection apparatus according to one embodiment of the present invention.
4 is an enlarged view showing switching means of the solar cell inspection apparatus shown in FIG. 3;

Claims (5)

太陽電池モジュール、電流計、直流電流源を直列接続するとともに、電圧計を該太陽電池モジュールに対し並列に接続し、照度1000ルクス以下の暗状態で、太陽電池が発電する極性方向に対して逆方向に一定電流を注入した時の電圧を測定する操作を、注入する電流値を2水準以上10水準以下変更して行い、各々の電流注入時の電圧により、ソーラーシミュレータを用いずに暗状態のみで太陽電池モジュールの良否を判定する検査方法。  A solar cell module, an ammeter, and a direct current source are connected in series, and a voltmeter is connected in parallel to the solar cell module. In a dark state with an illuminance of 1000 lux or less, the polarity is reversed with respect to the polarity direction generated by the solar cell. The operation to measure the voltage when a constant current is injected in the direction is performed by changing the injected current value between 2 and 10 levels, and only the dark state without using the solar simulator, depending on the voltage at each current injection. Inspection method to judge the quality of solar cell module. 注入電流値が2水準であり、第1の注入電流値が検査する太陽電池のIscの0.5〜10倍であり、第2の注入電流値が前記Iscの0.2倍以上であり、且つ前記第1注入電流値未満である請求項1に記載の太陽電池モジュールの良否を判定する検査方法。  The injection current value is 2 levels, the first injection current value is 0.5 to 10 times the Isc of the solar cell to be inspected, and the second injection current value is 0.2 or more times the Isc, And the test | inspection method which determines the quality of the solar cell module of Claim 1 which is less than the said 1st injection current value. 太陽電池モジュール、電流計、直流電流源を直列接続するとともに、電圧計を該太陽電池モジュールに対し並列に接続し、照度1000ルクス以下の暗状態で、太陽電池が発電する極性方向に対して逆方向に電流が注入されるように一定電圧を印加した時の電流を測定する操作を、印加する電圧値を2水準以上10水準以下変更して行い、各々の電圧印加時の電流により、ソーラーシミュレータを用いずに暗状態のみで太陽電池モジュールの良否を判定する検査方法。  A solar cell module, an ammeter, and a direct current source are connected in series, and a voltmeter is connected in parallel to the solar cell module. In a dark state with an illuminance of 1000 lux or less, the polarity is reversed with respect to the polarity direction generated by the solar cell. The operation of measuring the current when a constant voltage is applied so that the current is injected in the direction is performed by changing the applied voltage value from 2 levels to 10 levels, and the solar simulator uses the current at each voltage application. Inspection method for determining whether a solar cell module is good or bad only in a dark state without using a laser. 各水準における電圧または電流が良品判定範囲内の値であるか否かにより前記判定をおこなう、請求項1〜3のいずれか1項に記載の太陽電池モジュールの良否を判定する検査方法。  The inspection method for determining pass / fail of the solar cell module according to any one of claims 1 to 3, wherein the determination is performed based on whether the voltage or current at each level is a value within a non-defective product determination range. 各水準間の電流変化量に対する電圧変化量の傾きにより前記判定をおこなう、請求項1〜3のいずれか1項に記載の太陽電池モジュールの良否を判定する検査方法。  The inspection method for determining the quality of the solar cell module according to any one of claims 1 to 3, wherein the determination is performed based on a slope of a voltage change amount with respect to a current change amount between levels.
JP2002204930A 2002-07-12 2002-07-12 Solar cell module inspection method Expired - Fee Related JP4566502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002204930A JP4566502B2 (en) 2002-07-12 2002-07-12 Solar cell module inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002204930A JP4566502B2 (en) 2002-07-12 2002-07-12 Solar cell module inspection method

Publications (2)

Publication Number Publication Date
JP2004047838A JP2004047838A (en) 2004-02-12
JP4566502B2 true JP4566502B2 (en) 2010-10-20

Family

ID=31710359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002204930A Expired - Fee Related JP4566502B2 (en) 2002-07-12 2002-07-12 Solar cell module inspection method

Country Status (1)

Country Link
JP (1) JP4566502B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102269795A (en) * 2011-04-25 2011-12-07 清华大学 Judging method of large-area dye-sensitized solar cell (DSSC) module design performance
CN103033731A (en) * 2011-10-08 2013-04-10 致茂电子股份有限公司 Solar cell detection method and relevant device
CN103812443A (en) * 2014-02-28 2014-05-21 张家港市互惠光电有限公司 Photovoltaic testing device
CN105379107A (en) * 2013-05-27 2016-03-02 伏科技有限公司 Regenerating and/or preventing defects in a solar panel installation

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100014920A (en) * 2007-02-15 2010-02-11 디 오스트레일리언 내셔널 유니버시티 A substrate assembly, an assembly process, and an assembly apparatus
DE102008019703C5 (en) 2008-04-18 2024-02-15 Harrexco Ag Method and device for carrying out an electrical insulation test on photovoltaic modules
JP2010010327A (en) * 2008-06-26 2010-01-14 Nisshinbo Holdings Inc Device and method for inspecting solar cell module
DE102009049705B3 (en) * 2009-10-18 2011-05-12 Harrexco Ag Test device for a photovoltaic module plate, test equipment and methods for testing
US20110156719A1 (en) * 2009-12-31 2011-06-30 Du Pont Apollo Limited Electrical insulation test apparatus
US10615743B2 (en) * 2010-08-24 2020-04-07 David Crites Active and passive monitoring system for installed photovoltaic strings, substrings, and modules
JP2014099425A (en) * 2011-03-07 2014-05-29 Sharp Corp Inspection apparatus, inspection method, manufacturing method, and manufacturing system for thin-film solar cell
JP2014011429A (en) * 2012-07-03 2014-01-20 Jx Nippon Oil & Energy Corp Conduction failure detection device, conduction failure detection system, and conduction failure detection method
CN103048599A (en) * 2012-11-13 2013-04-17 中国科学院电工研究所 Characteristic test device for photovoltaic cell
KR101516344B1 (en) * 2014-02-20 2015-05-04 (주)온테스트 Apparatus of the performance verification for renewable energy module by a unit module and method thereof
KR101904502B1 (en) * 2016-03-04 2018-10-05 (재)구미전자정보기술원 Apparatus for measuring characteristic for solar cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102269795A (en) * 2011-04-25 2011-12-07 清华大学 Judging method of large-area dye-sensitized solar cell (DSSC) module design performance
CN102269795B (en) * 2011-04-25 2013-04-03 清华大学 Judging method of large-area dye-sensitized solar cell (DSSC) module design performance
CN103033731A (en) * 2011-10-08 2013-04-10 致茂电子股份有限公司 Solar cell detection method and relevant device
CN105379107A (en) * 2013-05-27 2016-03-02 伏科技有限公司 Regenerating and/or preventing defects in a solar panel installation
CN105379107B (en) * 2013-05-27 2018-09-14 伏科技有限公司 The defect repair of solar panels in solar pane arrangement
CN103812443A (en) * 2014-02-28 2014-05-21 张家港市互惠光电有限公司 Photovoltaic testing device

Also Published As

Publication number Publication date
JP2004047838A (en) 2004-02-12

Similar Documents

Publication Publication Date Title
JP4566502B2 (en) Solar cell module inspection method
McMahon et al. Cell shunt resistance and photovoltaic module performance
TWI467202B (en) Evaluation device and evaluation method of flake battery
CN106656037B (en) Welding photovoltaic component apparatus for measuring quality and the method that quality testing is carried out using the device
US20110204900A1 (en) Method and device for detecting underperforming pv modules in a pv system by using disconnect switches
US20100236035A1 (en) System and method for detecting defects in a solar cell and repairing and characterizing a solar cell
KR20120027181A (en) Method of diagnosing the failure of a photovoltaic generator
Vorasayan et al. Limited laser beam induced current measurements: a tool for analysing integrated photovoltaic modules
JP2012231006A (en) Evaluation device and evaluation method
JP2004363196A (en) Inspection method of solar cell module
JP2011127983A (en) Insulation resistance measuring method, inspection method and insulation resistance measuring apparatus
CN109037091B (en) Sliced battery reference piece and calibration method thereof
JP2001102609A (en) Device for measuring characteristic of photoelectric conversion device
CN115066834A (en) Electrical path intermittent fault detection
JPS5817377A (en) Continuity testing device for flat cable
JP3439038B2 (en) Inspection method and apparatus for liquid crystal display substrate
JP3281164B2 (en) Foot Lift Detection Method Using IC In-Circuit Tester
JPS5968978A (en) Method for inspecting solar battery
CN219715663U (en) High-precision detection device of LED grain tester
CN216122351U (en) IV test probe row test detection system
JP4069755B2 (en) Circuit inspection apparatus and circuit inspection method
CN117031334A (en) Test method and device for evaluating thermal cycle durability of single-chip battery
JP2000214423A (en) Method and device for inspecting liquid crystal display device
CN114114044A (en) Method for evaluating welding overcurrent reliability of tab-busbar module
CN109427926A (en) The detection device and method of solar battery sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080805

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080922

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100716

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100804

R150 Certificate of patent or registration of utility model

Ref document number: 4566502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees