WO2008049629A1 - Steinträger - Google Patents

Steinträger Download PDF

Info

Publication number
WO2008049629A1
WO2008049629A1 PCT/EP2007/009316 EP2007009316W WO2008049629A1 WO 2008049629 A1 WO2008049629 A1 WO 2008049629A1 EP 2007009316 W EP2007009316 W EP 2007009316W WO 2008049629 A1 WO2008049629 A1 WO 2008049629A1
Authority
WO
WIPO (PCT)
Prior art keywords
stone
stabilized
arrangement according
fiber
matrix
Prior art date
Application number
PCT/EP2007/009316
Other languages
English (en)
French (fr)
Inventor
Kolja Kuse
Original Assignee
Kolja Kuse
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kolja Kuse filed Critical Kolja Kuse
Publication of WO2008049629A1 publication Critical patent/WO2008049629A1/de

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47BTABLES; DESKS; OFFICE FURNITURE; CABINETS; DRAWERS; GENERAL DETAILS OF FURNITURE
    • A47B96/00Details of cabinets, racks or shelf units not covered by a single one of groups A47B43/00 - A47B95/00; General details of furniture
    • A47B96/18Tops specially designed for working on
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/48Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5027Oxide ceramics in general; Specific oxide ceramics not covered by C04B41/5029 - C04B41/5051
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5076Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with masses bonded by inorganic cements
    • C04B41/5089Silica sols, alkyl, ammonium or alkali metal silicate cements

Definitions

  • the present invention relates to the stabilization of stone in a broad sense, that is natural stone, artificial stone of all kinds, concrete and other earthenware, as well as ceramics to glass-containing substances or glass itself, which are characterized by a brittle and fractured structure.
  • natural stones such as granite, basalt, granite-like rocks such as gneiss, and marble, limestone, high pressure resistant modern ceramics, glass ceramics or glass to mention, and all other materials made of stone or ceramic, natural or man-made stoneware, which are usually high pressure resistant are.
  • These materials are referred to as stone or earthenware.
  • Stone slabs are increasingly being used in façade construction and as countertops, in particular kitchen countertops, but also in other areas, such as furniture and fittings construction and in the construction industry, as stair steps, wall coverings and floor tiles, as well as generally in construction.
  • Stein as supplier for all possible mechanical parts, if he is stabilized with carbon fibers, as described in EP 106 20 92, have in the meantime also the
  • the present invention proposes a way to sustainably stabilize such thinly designed geometries of stone or stone rods and stone slabs or ceramic or artificial stone slabs on a low-cost with stone fibers on the one hand, on the other hand so that they remain stable over wide temperature ranges, that is that the stone in front
  • Breakage is protected. Under temperature-controlled expansion and to remain so stabilized during bending that the stone is protected from breakage, is the challenge for the solution described here. To stabilize thin, but also thicker flagstones in such a way that they remain as straight as possible is another goal of the present
  • Be invention To achieve this goal, it is not only necessary to stabilize the earthenware or ceramic plates against train and associated breakage, but also to set a pressure gradient on the stone side to be stabilized at the interface between stone to be stabilized and stabilizer, which approaches practically zero so that the stone slat is neither bent to one side, nor to the other side at changing temperatures and thus the visible or usable area over a large area remains straight and even.
  • a pressure gradient on the stone side to be stabilized at the interface between stone to be stabilized and stabilizer, which approaches practically zero so that the stone slat is neither bent to one side, nor to the other side at changing temperatures and thus the visible or usable area over a large area remains straight and even.
  • the feature of the flatness of the stone slab in wide temperature ranges is an important goal of the solution described here, in which one has the problem of inverse coefficients of expansion with pure carbon coating.
  • the invention is based on the stabilization of stone or ceramic by a partially or over the entire surface mounted on the stone fibrous carrier material, which has a Ausdehungs that comes as close as possible to the stone.
  • rock fibers in particular basalt fibers, are proposed in the present invention.
  • Aluminum, or such layers is determined, which consist of a similar or the same material as the material to be stabilized. More recent methods suggest glass fibers, aramid fibers or carbon fibers as a carrier material. Each of these fibers has a certain physical advantage, but also specific disadvantages, depending on the application.
  • the stone fiber itself More suitable of the total spectrum of physical properties seems to have the stone fiber itself to stabilize stone.
  • the coefficient of expansion, tensile strength and tensile elongation are closest to the physical properties of the stone.
  • Aluminum sheets, wood panels and steel or wooden frames, or used more stone slabs as support material the thin stone geometries may have a thickness of 5mm to 15 mm without breaking.
  • Such additional stabilizing measures are also proposed in this invention, wherein the characterizing feature of the basic use of stone fibers are proposed to be applied as a stabilizing layer on the stone.
  • An additional stabilization method is to apply in combination with stone fibers also the use of glass fiber, carbon or Aramidmaschinelaminaten, which together with the stone or basalt fiber stabilize the stone more or less large area or even over the entire area, one-sided or bilateral.
  • the result is a pressure and tension loadable stone geometry, which ensures in normal applications for sufficient stabilization of the stone for thermal and mechanical load cases. In most cases, sufficient stabilization is already achieved with a thin film of stone fiber matrix, which ensures stabilization in the thermal and / or mechanical load case.
  • Carrier material used which has a similar low
  • Expansion coefficient has, as the stone fiber stabilized stone plate, and which has a very low specific gravity.
  • the support material stabilizing the stone hereinafter referred to as support, consists of a fiber-reinforced matrix which is a synthetic resin or optionally itself a ceramic material. It comes here stone fibers, especially basalt fibers are used, which withstand high tensile loads and expand only minimally under heat, so have a very small coefficient of thermal expansion, which is usually less than or equal to that of the stone material to be stabilized. As a result, stone rods, stone slabs and other stone geometries are protected against cracks due to overstretching and heat, as well as mechanical fractures
  • Expanded glass is a foamed glass material, which is characterized by a high compressive strength, a low specific gravity and a very low
  • Thin stone slabs for example worktops - in particular kitchen worktops - and facade cladding, are by the invention in particular with simultaneous thermal and mechanical stress and the associated carrier material elongation, the
  • the advantage of the stone fiber unlike other fibers is that it has a very low price with very high tensile strength.
  • the Price / Ceiggkeitsverhaeltnis is 2 times better than carbon fibers.
  • the invention is also suitable for protecting the stone to be prestabilized with a very thin layer of carbon fiber in addition to the cheaper stone fiber by further layers against breakage, especially when the stone is to be bent. Since the stone fiber has an expansion coefficient which is almost identical to the stone, the component can be used over a wide temperature range. protected against breakage to replace steel and aluminum.
  • the stone has at the same specific
  • Weight like aluminum (about 2.6 g / mm 3 - 2.9 g / mm 3 ) the pressure stability of mild steel.
  • the ratio of pressure stability to specific gravity is about 2 times better than that of steel and aluminum and also concrete, which makes the new composite material made of stone and stone fiber the ideal lightweight construction material that is subject to significantly less CO 2 emissions during production, such as the metal production.
  • the new composite thus becomes a substitute for tensile and compression-resistant materials, which cause a high CO 2 emission, which the stone is already baked.
  • thermostable epoxy resins polyester resins
  • resins based on phenolic, polyimide resins based on phenolic, polyimide
  • Expansion coefficient of a stone rod or a stone plate in wide temperature ranges n in the stabilizing layer can be set to an equal or similar value in order to avoid the bowls of stone slabs and still realize a lightweight construction. At the moment where it succeeds in stretching the stabilizing layer
  • the invention is realized by the use of partial or total surface coating of the stone slab or a stone bar with a stone fiber laminate, wherein the mixing ratio of stone fiber and resin can be adjusted so that the expansion coefficients of stone to be stabilized and the stone fiber laminate are practically identical. This can also be achieved by a mixture of different additional fibers.
  • One of the many possible embodiments of the invention describes a plate of stoneware (1), which is stabilized on one side with a stone fiber roving (2) (Fig. 1).
  • the connection between stone and fiber is z. B. produced by a temperature-stable epoxy resin matrix, which can be thermally stable depending on the field of use and their Alter- Ausdehungskoeffizent of fiber and matrix should be similar to that of the stone plate to be stabilized.
  • z. B. expanded glass (3) the plate is additionally mechanically stabilized.
  • Fig. 2 shows this second embodiment of the invention as a more or less long, relatively thin stone rod (1) which is envelopingly provided with a layer of stone fiber matrix (2) whose coefficient of expansion is less than or equal to or at most only slightly larger than that the stone rod to be stabilized.
  • Fig. 3 shows one. Special variant of the stone slab (1), on whose
  • Stabilization layer of stone fiber matrix (2) a further layer (3) is made up of expanded glass, both in sum have an identical expansion behavior, as the stone slab to be stabilized (1).
  • Fig. 4 shows two single-sided coated plates (1 and 3), which are joined together so that they include the stabilizing stone fiber layer (2) in the middle layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

Die Erfindung beschreibt die Stabilisierung von mehr oder weniger dünnen Steinplatten oder Steinstäben oder sonstigen Geometrien aus Stein oder mit Carbonfasern vorstabilisiertem Stein, die so stabilisiert sind, dass sie für den mechanischen und temperaturbedingten Lastfall so nachhaltig mit Steinfasern einseitig oder umhüllend stabilisiert werden, dass sie nicht mehr brechen können, auch dann nicht, wenn die Bauteile aus Stein gebogen werden. Dabei wird ein den Stein tragender Steinfaser-Träger, ggfls. mit zusätzlicher Stabilisuerungsschicht, je nach Anwendung so dimsioniert, dass er den Stein hinreichend vor Bruch schützt.

Description

Steinträger
Die vorliegende Erfindung bezieht sich auf die Stabilisierung von Stein im weiteren Sinn, das heißt Naturstein, Kunststein aller Art, Beton und sonstiges Steingut, sowie Keramik bis hin zu glashaltigen Substanzen oder Glas selbst, die durch eine spröde und bruchgefahrdete Struktur gekennzeichnet sind. Hier sind besonders Natursteine wie Granit, Basalt, granitähnliche Gesteine wie Gneis, sowie Marmor, Kalkstein, hochdruckfeste moderne Keramiken, Glaskeramik oder Glas zu erwähnen, sowie alle sonstigen Materialien aus Stein oder Keramik, natürlich oder künstlich entstandenes Steingut, die in der Regel hoch druckbelastbar sind. Diese Materialien werden im fügenden als Stein oder Steingut bezeichnet.
Sie zeichnen sich zwar einerseits durch eine hohe Belastbarkeit bei Druckbeanspruchung aus, sind dagegen aber fast völlig instabil bei Zug- und Biegebelastung, insbesondere dann, wenn Sie möglichst dünn und materialsparend, philigran und insbesondere leichtgewichtig ausgelegt werden sollen.
Dabei handelt es sich vorwiegend um dünne Steinplatten oder Steinstäbe, sowie jegliche vorstellbare Geometrie, die in Konstruktion, im Bau, im Maschinenbau und Anlagenbau angewendet wird. Vermehrt werden Steinplatten im Fassadenbau und als Arbeitsplatten, insbesondere Küchenarbeitsplatten Verwendung finden, aber auch in anderen Bereichen, wie dem Möbel- oder Armaturenbau und im Baugewerbe als Treppenstufen, Wandverkleidungen und Bodenfliesen, sowie generell im Baugewerbe eingesetzt werden. Stein als Lieferant für alle möglichen Maschinenbau-Teile, wenn er z.B. mit Carbonfasern stabilisiert wird, so wie in der EP 106 20 92 beschrieben, haben zwischenzeitlich auch den
Weg in die industrielle Anwendung gefunden.
Carbonfasern sind jedoch sehr teuer und energieaufwendig in der Herstellung und können - zumindest teilweise - durch moderne andere, z. B. Stein-Fasern ergänzt, oder je nach Anwendung auch ersetzt werden. Die vorliegende Erfindung schlägt einen Weg vor, solche dünn ausgelegten Geometrien aus Stein bzw. Steinstäbe und Steinplatten oder Keramik- bzw. Kunststeinplatten nachhaltig auf preiswerte Weise mit Steinfasern einerseits mechanisch zu stabilisieren, andererseits so auch, dass sie in weiten Temperaturbereichen stabil bleiben, das heisst, dass der Stein vor
Bruch geschützt ist. Unter temperaturbedigter Ausdehnung und beim Biegen so stabilisiert zu bleiben, dass der Stein vor Bruch geschützt ist, ist die Herausforderung für die hier beschriebene Lösung. Dünne, aber auch dickere Steinplatten so zu stabilisieren, dass sie moeglichst gerade bleiben, soll ein weiteres Ziel der vorliegenden
Erfindung sein. Um dieses Ziel zu erreichen ist es nicht nur nötig, die Steingutplatten oder Keramikplatten gegen Zug und damit verbundenen Bruch zu stabilisieren, sondern auch einen auf der zu stabilisierenden Steinseite an der Grenzfläche zwischen zu stablisierendem Stein und Stabilisator einen Druckgradienten einzustellen, der praktisch gegen Null geht, damit die Steinlatte weder zu der einen Seite, noch zu der anderen Seite bei wechselnden Temperaturen gebogen wird und somit die sichtbare bzw. nutzbare Fläche grossflächig gerade und eben bleibt. Einen solchen Weg schlägt die Erfindung vor, das Merkmal der Ebenheit der Steinplatte in weiten Temperaturbereichen ist ein wichtiges Ziel der hier beschriebenen Lösung, bei der man mit reiner Carbonbeschichtung das Problem der inversen Ausdehungskoeffizienten hat. Der Weg gewährleistet, daß sowohl Stein, als auch Keramik unter den unterschiedlichsten thermisch bedingten mechanischen Belastungen, sowie auch rein mechanischen Belastungen so stabilisiert wird, daß sie durch eine, für die jeweiligen Einsatz- und Belastungsfalle geeignete Stabilisierung, vor ir, cchani scher Zerstörung durch Reissen der Steinstäbe oder Steinplatten einerseits, und insbesondere vor mechanischem Bruch geschützt werden, unter Beibehaltung einer ebenen Formstabilität. Kern der Lösung, das für dünne Steinplatten am besten geeignete
Stabilisierungsmatel zu finden ist es, den Gesamtausdehnungskoeffizent des den Stein stabilisierenden Materialais auf der den Stein stabilisierenden Seite zwischen Steinplatte und Stabilisierungsmaterial so einzustellen, dass er ähnlich ist mit dem Gesamtausdehnungskoeoffizient der Steinplatte selbst.
Die Erfindung basiert auf der Stabilisierung von Stein oder Keramik durch ein teilweise oder ganzflächig auf dem Stein angebrachtes faserhaltiges Trägermaterial, welches ein Ausdehungsverhalten hat, der dem Stein möglichst nahe kommt. Dafür werden in der hier vorliegenden Erfindung Steinfasern, insbesondere Basaltfasern vorgeschlagen.
Bekannt sind bisher Leichtbauformen bei denen wie bei dieser neuen Erfindung auch eine möglichst dünne Natursteinschicht flächig durch einen Unterbau verschiedener Trägermaterialien und Trägerformen, wie Rahmen, Waben und ähnliche Konstruktionen verstärkt und dadurch belastbar gemacht wird, beziehungsweise erst ermöglicht Steingeometrien wie Steinplatten oder Steinstäbe entsprechend dünn auszuführen. Das Trägermaterial ist dabei in der Regel bisher unter dem Gesichtspunkt ausgewählt worden, daß es bei ausreichender mechanischer Festigkeit hauptsächlich von dem Einsatz herkömmlicher Materialien wie Stahl und
Aluminium, oder solchen Schichten bestimmt is, die aus einem ähnlichen oder gleichen Material, wie das zu stabilisierende Material bestehen. Neuere Methoden schlagen Glasfasern, Aramidfasern oder Kohlefasern als Trägermaterial vor. Jede dieser Fasern hat einen bestimmten phsikalischen Vorteil, aber auch spezifische Nachteile, je nach Anwendungsfall.
Geeigneter vom Gesamtspektrum der physikalischen Eigenschaften scheint die Steinfaser selbst zu haben, um Stein zu stabilisieren. Der Ausdehungskoeffizient, die Zugfestigkeit und Zugdehnung kommt dem den physikalischen Eigenschaften des Steins am nächsten. Es werden zusätzlich beispielsweise gerade, gewellte oder wabenförmige Metallbzw. Aluminiumbleche, Holzplatten und Stahl- oder Holzrahmen, oder weitere Steinplatten als Trägermaterial verwendet, wobei die dünne Steingeometrien eine Stärke von 5mm bis 15 mm haben können, ohne zu brechen. Solche zusätzlichen stabilisierenden Massnahmen werden auch bei dieser Erfindung vorgeschlagen, wobei das kennzeichnende Merkmal die grundsätzliche Verwendung von Steinfasern vorgeschlagen werden, um als Stabilisierungsschicht auf den Stein aufgebracht zu werden. Ein zusätzliches Stabilisierungsverfahren ist es, in Kombination mit Steinfasern auch die Verwendung von Glasfaser-, Carbon- oder Aramidfaserlaminaten zu applizieren, die zusammen mit der Stein- oder Basaltfaser den Stein mehr oder weniger grossflächig oder auch ganzflächig, einseitig oder beidseitig stabilisieren. Das Ergebnis ist eine druck- und zugspannungsbelastbare Steingeometrie, die in normalen Anwendungsfällen iür eine ausreichende Stabilisierung des Steins für thermische und mechanische Belastungsfälle sorgt. In den meisten Fällen ist eine ausreichende Stabilisierung bereits mit einem dünnen Film von Steinfasermatrix erreicht, die eine Stabilisierung im thermischen und/oder mechanischen Lastfall gewährleistet.
Durch den Stand der Technik ist beschrieben, wie Bauteile aus Stein oder Keramik, die extreme thermisch-statische, wie mechanisch-dynamische
Lasten aufnehmen müssen, mit Carbonfasern stabilisiert werden können. Ähnliche und teilweise sogar bessere Ergebnisse sind mit Steinfasern erreichbar, auch weg JH der geringeren Kosten.
Die Aufgabe, der Neigung von dünnen Naturstein- und/oder Keramikplatten zum Brechen oder Reißen durch wesentlich leichtere
Bauformen sicher entgegenzuwirken, wird durch zusätzliche stabilisierende
Trägers bzw. Trägermaterialien gelöst. Zu diesem Zweck wird ein
Trägermaterial eingesetzt, welches einen ähnlich geringen
Ausdehnungskoeffizienten hat, wie die mit Steinfasern stabilisierte Steinplatte, und welches ein sehr geringes spezifisches Gewicht hat. Das den Stein stabilisierende Trägermaterial, im folgenden Träger genannt, besteht aus einer eine faserverstärkten Matrix, die ein Kunstharz oder gegebenenfalls selbst ein Keramikmaterial ist. Es kommen dabei Steinfasern, insbesondere Basaltfasern zum Einsatz, die hohe Zugbelastungen standhalten und sich unter Wärmeeinwirkung nur minimal ausdehnen, also einen sehr kleinen Temperaturausdehnungskoeffizienten besitzen, der in der Regel kleiner oder gleich dem des zu stabilisierenden Steinmaterials ist. Dadurch werden Steinstäbe, Steinplatten und andere Geometrien aus Stein insbesondere gegen Risse durch Überdehnung und Hitzeeinwirkung geschützt, sowie dem Bruch durch mechanische
Belastung senkrecht auf das Steingut entgegengewirkt. Zusätzlich müssen soche Platten - je nach Anwendungsfall - zusätzlich für mechanische Beanspruchungen - wie inder EP 106 20 92 mit einer zusätzlichen Snadwicheinlage beschrieben - stabil gemacht werden. Dies geschieht auch bei dieser Erfindung durch eine Schicht, die aus einem Sandwich von
Eierkastengeometrie mit zusätzlichen Unterplatten, oder einer Bienenwabengeometrie, anderen Geometrien aus Zwischenlagen oder dem sogenannten Blähglas bestehen. Blähglas ist ein aufgeschäumtes Glasmaterial, welches sich durch eine hohe Druckbelastbarkeit, ein geringes spezifisches Gewicht und einen sehr geringen
Temperaturausdehungskoeffizienten auszeichnet.
Dünne Steinplatten, zum Beispiel Arbeitsplatten - insbesondere Küchenarbeitsplatten - und Fassadenverkleidungen, werden durch die Erfindung insbesondere bei gleichzeitiger thermischer und mechanischer Belastung und der damit verbundenen Träger-Materialdehnung, die zu
Rissen oder Oberflächenbrüchen des getragenen Stein-Materials führen würde, sicher gegen Rissbildung geschützt. Die üblicherweise entstehenden, unter Umständen mikroskopisch kleinen Haarrisse, die zum schnellen Verfall des Steins führen, insbesondere dann, wenn er im Außenbereich, oder als Arbeitsplatte im Küchenbereich ständig wechselnden Temperaturen, mechanischen Druckbelastungen und Wasser und Frost ausgesetzt ist, werden durch die Erfindung vollständig ausgeschlossen, ohne dass man auf eine masive Bauform zurückgreifen müsste. Die Gesamt-Platte inklusive der Stabilisierungsschicht kann somit extrem leichtgewichtig werden, ohne zu brechen oder sich zu verziehen bzw. zu schusseln, wie der Fachjorgon sagt. Selbst dünnste Steinplatten können mit Hilfe der Erfindung unter Beibehaltung der Stabilität hergestellt werden, die man von massivem Steinmaterial gewöhnt ist. Das gleiche gilt für Träger im Baubereich, im Automobilbau und ggfls. auch im Flugzeugbau in drucκbelasteten Zonen, wo Stahl und Alu ersetzt werden können. Allgemein kann der neu entstandene Verbundwerkstoff Stein mit
Steinfaser in vielen Bereichen Stahl und Aluminium ersetzen. Stein hat ein spezifisches Gewicht von Aluminium und die Druckfestigkeit von einem normalen Baustahl, was bedeutet, dass man Stein, insbesondere auch Naturstein, der nunmehr gegen Bruch durch die Steinfaser deshalb im thermischen und mechanischen Lastfall geschützt ist, weil sie einen ähnlichen Ausdehnungkoeffizienten hat, wie der Stein selbst, insbesondere nunmehr auch im Leichtbau einsetzen kann, was eine Neuheit in der Technik darstellt und deshalb wichtig wird, weil Stein in grenzenlosen Massen als billiges Material überall auf der Welt zur Verfugung steht und sehr energeischonend gewonnen werden kann. Der Vorteil der Steinfaser im Unterschied zu anderen Fasern ist, dass sie bei sehr hoher Zugfestigkeit einen sehr geringen Preis hat. Das Preis/Zugfestiggkeitsverhaeltnis ist 2 mal besser, als bei Carbonfasern. Unter Umständen ist die Erfindung auch dafür geeignet, um mit einer sehr dünnen Schicht Carbonfaser den vorzustabilisieren Stein zusätzlich mit der preiswerteren Steinfaser durch weitere Schichten gegen Bruch zu schützen, insbesondere dann, wenn der Stein gebogen werden soll. Da die Steinfaser einen dem Stein fast identischen Ausdehnungskoeffizienten hat, kann das Bauteil in weiten Temperaturbereichej. sicher gegen Bruch geschützt werden, um Stahl und Aluminium zu ersetzen. Der Stein hat bei dem gleichen spezifischen
Gewicht wie Aluminium (ca. 2,6 g/mm3 - 2,9 g/mm3) die Druckstabilität von Baustahl. Das Verhältnis von Druckstabilität zum spezifischen Gewicht ist ca. 2 mal besser als bei Stahl und Aluminium und auch Beton, was das neue Verbundmaterial aus Stein und Steinfaser zum idealen Leichtbaumaterial macht, welches bei der Herstellung mit deutlich weniger CO2 - Emissionen belastet ist, wie die Metallproduktion. Der neue Verbund wird damit zum Ersatz von zug- und druckstabilen Materialien, der eine hohe CO2 - Emission verursachen, der der Stein bereits fertig gebacken ist.
Mit Hilfe des Einsatzes von zum Beispiel temperatur-stabilen Epoxidharzen, Polyesterharzen, Harzen auf Phenol-, Polyimid-,
Cyanatester-, Melamin-, Polyurethan- oder Silikonbasis, genannt Matrix, in Kombination mit Steinfasern, die einen sehr kleinen
Temperaturausdehnungskoeffizienten hat, wird nun eine sichere
Stabilisierung von Steinstäben, die ihrerseits der Stabilisierung von faser strukturierten Bauteilen sowie auch Steinbauteilen selbst dienen können, möglich.
Es wird darüber hinaus die Forderung erfüllt, die mechanische Belastbarkeit und Temperaturbelastbarkeit von dünnen bis dünnsten Steingeometrien so zu optimieren, daß der Gesamt-
Ausdehnungskoeffizient eines Steinstabes oder einer Steinplatte in weiten Temperaturbereiche n in der Stabilisierungsschicht auf einen gleichen oder ähnlichen Wert eingestellt werden kann, um das Schüsseln von Stein- Platten zu vermeiden und trotzdem eine Leichtbauweise zu realisieren. In dem Moment, wo es gelingt die Dehnung der stabilisierenden Schicht aus
Steinfaser durch Einbringung einer gewissen Vorspannung kleiner zu halten, als die Dehnung des Steins selbst, wird man auf diese Weise stabilisierte Steinstäbe sogar in gewissen Grenzen biegen können, ohne dass diese brechen. Basis für diese Erkenntnis ist die im Zusammenhang mit dieser Erfindung gemachte Beobachtung, dass insbesondere Naturstein sich tatsächlich zerstörungsfrei komprimieren lässt, also z. B. ein Steinstab sich durch Druck in der Länge verkleinern lässt.
Die Erfindung wird realisiert durch die Verwendung von teil- oder ganzflächiger Beschichtiung der Steinplatte oder eines Steinstabes mit einem Steinfaserlaminat, wobei das Mischungsverhältnis von Steinfaser und Harz so eingestellt werden kann, dass die Ausdehungskoeffϊzienten von zu stabilisierendem Stein und dem Steinfaserlaminat praktisch identisch sind. Dies kann auch durch eine Mischung unterschiedlicher zusätzlicher Fasern erreicht werden.
Eine der vielen möglichen Ausführungen der Erfindung beschreibt eine Platte aus Steingut (1), die einseitig mit einem Steinfaserroving (2) stabilisiert wird (Abb. 1). Die Verbindung zwischen Stein und Faser wird z. B. durch eine temperaturstabile Epoxidharzmatrix hergestellt, welche sich je nach Einsatzgebiet entsprechend thermisch stabil belasten lässt und deren Gesamt- Ausdehungskoeffizent von Faser und Matrix ähnlich dem der zu stablisierenden Steinplatte sein sollte. Durch eine weitere Schicht aus z. B. Blähglas (3) wird die Platte zusätzlich mechanisch stabilisiert.
Abb. 2 zeigt diese zweite Ausführung der Erfindung als einen mehr oder weniger langen, relativ dünnen Steinstab (1), der umhüllend mit einer Schicht aus Steinfasermatrix (2) versehen ist, deren Ausdehnungskoeffizient kleiner oder gleich oder maximal nur etwas größer ist, als der der zu stabilisierenden Steinstab. Abb. 3 zeigt eint. Sondervariante der Steinplatte (1), auf deren
Stabil sierungsschicht aus Steinfasermatrix (2) eine weitere Schicht (3) aus Blähglas aufgeracht ist, die beide in Summe ein identisches Ausdehungverhalten haben, wie die zu stabilisierende Steinplatte (1). Abb. 4 zeigt zwei einseitig beschichtete Platten (1 und 3), die so zusammengefügt sind, dass sie die stabilisierende Steinfaserschicht (2) in der Mittellage einschliessen.

Claims

Patentansprüche
1) Anordnung mit einer Platte, einem Stab oder einer sonstigen Geometrie aus Naturstein, Steingut, Kunststein, Beton, Keramik, glashaltigem Material, Glas und deren bereits mit Carbonfasern vorstabilisierten Varianten - im folgenden Stein genannt - welche einseitig oder beidseitig teilweise oder ganz, oder ganz umhüllend mit einer faserhaltigen Matrix - im folgenden Träger genannt - stabilisiert ist,
dadurch gekennzeichnet, daß der Träger Steinfasern enthält.
2) Anordnung nach Anspruch 1, dadurch gekennzeichnet, daß die
Steinfaser eine Basaltfaser ist.
3) Anordnung nach Anspruch 1 , dadurch gekennzeichnet, daß die Matrix des Trägers eine Epoxidharz-, Polyesterharz-, Phenolharz-, Polyimidharz-, Cyanatesterharz-, Melaminharz-, Polyurethanharz- oder Silikonharzbasis oder eine thermoplastische Harz-Basis hat.
4) Anordnung nach Anspruch 1 , dadurch gekennzeichnet, daß die Matrix eine Keramik- oder Wasserglassbasis hat.
5) Anordnung nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß der Träger ein Gemisch unterschiedlicher zusätzlicher Fasermaterialien, z.B. Glasfasern, Carbonfasern oder Aramidfasern ist oder aus meheren unterschiedlichen Faserschichten besteht, die in unterschiedlichster Reihenfolge aufgebracht sein können. 6) Anordnung nach Anspruch 1 bis 5, dadurch gekennzeichnet, daß unter der stabilisierenden Faser-Matrix ein weiterer Träger - z.B. in Form einer Eierkastengeometrie, eines gepfalzten phenolharzgetränkten Papiers, einer Bienenwabenstruktur oder aus Blähglas - zur zusätzlichen mechanischen Stabilisierung angebracht ist.
7) Anordnung nach Anspruch 1 bis 6, dadurch gekennzeichnet, daß die
Matrix und Faser - ggfls auch zusammen mit der zusätzlichen Stabilisierungsschicht - einen Gesamt-Ausdehungskoeffizineten ähnlich dem des zu stabilisierenden Steins haben.
8) Anordnung nach Ansprüchen 1 bis 6, dadurch gekennzeichnet, dass der Ausdehungskoeffizent der Steinfasermatrix quasi gleich oder exakt gleich dem des zu stabilisierenden Steins ist.
9) Anordnung nach Ansprüchen 1 bis 6, dadurch gekennzeichnet, dass der Ausdehungskoeffizent der Steinfasermatrix kleiner als derjenige des zu stabilisierenden Steins ist.
10) Anordnung nach Anspruch 1 bis 8, dadurch gekennzeichnet, daß der
Steinfaser-stabilisieive Stein in stabförmiger, T-Träger-förmiger oder in Form von beidseitig geschichtetem Plattenmaterial als tragendes Bauteil im Bau und Maschinenbau Verwendung findet.
1 1) Anordnung nach Anspruch 1 bis 9, dadurch gekennzeichnet, daß eine mit Steinfasern stabilisierte Steinplatte als Arbeitsplatte, insbesondere als Küchenarbeitsplatte Verwendung findet.
PCT/EP2007/009316 2006-10-27 2007-10-26 Steinträger WO2008049629A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202006016659.9 2006-10-27
DE202006016659U DE202006016659U1 (de) 2006-10-27 2006-10-27 Steinträger

Publications (1)

Publication Number Publication Date
WO2008049629A1 true WO2008049629A1 (de) 2008-05-02

Family

ID=37736012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/009316 WO2008049629A1 (de) 2006-10-27 2007-10-26 Steinträger

Country Status (2)

Country Link
DE (1) DE202006016659U1 (de)
WO (1) WO2008049629A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009062705A3 (de) * 2007-11-13 2009-07-02 Kolja Kuse Steinträger mit vorspannung
WO2013026566A1 (de) * 2011-08-19 2013-02-28 Kolja Kuse Konstruktionsteile und bauteile aus faserverstärktem basaltgestein

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202006016659U1 (de) * 2006-10-27 2007-02-01 Kuse, Kolja Steinträger
DE202008005770U1 (de) * 2008-04-25 2008-12-24 Ernst Basler + Partner Ag Wandkonstruktion

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29818660U1 (de) * 1998-10-20 1999-03-04 Brauner, Siegfried, 86660 Tapfheim Steingutträger
DE202006008100U1 (de) * 2006-05-18 2006-08-31 Kuse, Kolja Steinstabilisator
DE202006010009U1 (de) * 2006-06-26 2006-10-26 Kuse, Kolja Dünnsteinplatte
DE202006016659U1 (de) * 2006-10-27 2007-02-01 Kuse, Kolja Steinträger
DE202006018280U1 (de) * 2006-12-01 2007-03-15 Kuse, Kolja Stabilisierte Dünn-Platte mit 11 mm

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29818660U1 (de) * 1998-10-20 1999-03-04 Brauner, Siegfried, 86660 Tapfheim Steingutträger
DE202006008100U1 (de) * 2006-05-18 2006-08-31 Kuse, Kolja Steinstabilisator
DE202006010009U1 (de) * 2006-06-26 2006-10-26 Kuse, Kolja Dünnsteinplatte
DE202006016659U1 (de) * 2006-10-27 2007-02-01 Kuse, Kolja Steinträger
DE202006018280U1 (de) * 2006-12-01 2007-03-15 Kuse, Kolja Stabilisierte Dünn-Platte mit 11 mm

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009062705A3 (de) * 2007-11-13 2009-07-02 Kolja Kuse Steinträger mit vorspannung
WO2013026566A1 (de) * 2011-08-19 2013-02-28 Kolja Kuse Konstruktionsteile und bauteile aus faserverstärktem basaltgestein

Also Published As

Publication number Publication date
DE202006016659U1 (de) 2007-02-01

Similar Documents

Publication Publication Date Title
EP1062092B1 (de) Steingutträger
EP2350404B1 (de) Wandkonstruktion aus platten
DE202006010009U1 (de) Dünnsteinplatte
EP2739471B1 (de) Steinträger mit vorspannung
WO2008049629A1 (de) Steinträger
EP2288497B1 (de) Steinblock aus schichten
DE202006008100U1 (de) Steinstabilisator
DE202006016598U1 (de) Steinplatte mit Stabilisierungsschicht
DE202007002676U1 (de) Steinträger mit pflanzlichen Fasern
DE202009017666U1 (de) Steinträger
DE202006009793U1 (de) Dünnstein-Stabilisator
DE202009015073U1 (de) Stabilisierte 3 mm Dünn-Platte
DE202006018135U1 (de) Stabilisierte Dünn-Platte
DE202006018069U9 (de) Stablisierte Dünn-Platte
DE202006018610U1 (de) Stabilisierte Dünn-Platte mit Holzrand
DE60211412T2 (de) Tragkonstruktion für Gebäudeherstellung
DE202019000008U1 (de) Wandkonstruktion aus Platten mit hohem Kohlenstoffanteil
DE202006018280U1 (de) Stabilisierte Dünn-Platte mit 11 mm
DE102005019038A1 (de) Bauelement aus Stein oder Glas
DE202006017023U1 (de) Steinplatte mit mehreren sich gegenseitig unterstützenden Stabilisierungsschichten
DE202018104840U1 (de) Hybrider Verbundwerkstoff
DE202017002426U1 (de) Stabilisierungsstäbe für Steinplatten mit unidirektionalem Fasergelege
DE102004035011A1 (de) Verbundelement
DE202024000312U1 (de) Wandkonstruktion aus Steinplatten und CO2-basierten Kohlenstofffasern als Kohlenstoff-Senke
DE202023001382U1 (de) Wandkonstruktion aus Steinplatten als CO2 - Senke

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07819361

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07819361

Country of ref document: EP

Kind code of ref document: A1