EP2350404B1 - Wandkonstruktion aus platten - Google Patents

Wandkonstruktion aus platten Download PDF

Info

Publication number
EP2350404B1
EP2350404B1 EP08874021.2A EP08874021A EP2350404B1 EP 2350404 B1 EP2350404 B1 EP 2350404B1 EP 08874021 A EP08874021 A EP 08874021A EP 2350404 B1 EP2350404 B1 EP 2350404B1
Authority
EP
European Patent Office
Prior art keywords
stone
wall element
shear
supporting wall
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08874021.2A
Other languages
English (en)
French (fr)
Other versions
EP2350404A1 (de
Inventor
Mera Kuse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technocarbon Technologies GbR
Original Assignee
Technocarbon Technologies GbR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technocarbon Technologies GbR filed Critical Technocarbon Technologies GbR
Publication of EP2350404A1 publication Critical patent/EP2350404A1/de
Application granted granted Critical
Publication of EP2350404B1 publication Critical patent/EP2350404B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F13/00Coverings or linings, e.g. for walls or ceilings
    • E04F13/07Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor
    • E04F13/08Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements
    • E04F13/14Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements stone or stone-like materials, e.g. ceramics concrete; of glass or with an outer layer of stone or stone-like materials or glass
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
    • E04C2/284Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating
    • E04C2/288Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating composed of insulating material and concrete, stone or stone-like material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
    • E04C2/284Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating
    • E04C2/296Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating composed of insulating material and non-metallic or unspecified sheet-material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • E04C2/38Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure with attached ribs, flanges, or the like, e.g. framed panels
    • E04C2/382Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure with attached ribs, flanges, or the like, e.g. framed panels with a frame of concrete or other stone-like substance
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • E04C2/38Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure with attached ribs, flanges, or the like, e.g. framed panels
    • E04C2/386Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure with attached ribs, flanges, or the like, e.g. framed panels with a frame of unreconstituted or laminated wood

Definitions

  • the present invention relates to a novel wall construction.
  • This wall construction is used in the construction of, for example, buildings or houses.
  • Previous wall constructions have a massive construction with concrete or brick, which are equipped with insulating material from the outside .
  • the new wall is formed of a symmetrical sandwich of pressure-stable plates, which are held at a certain distance. Between the plates is the insulating layer, which stiffens the construction over the cross section.
  • the two plates absorb the compressive forces and are made of particularly pressure-resistant material such as natural stone, artificial stone of all kinds, concrete and other earthenware, as well as ceramics to glass-containing substances or glass - in the following stoneware - the pressure stable, but usually also by a brittle and fragile structure are characterized .
  • Naturally are especially natural stones such as granite, granite-like rocks such as gneiss, marble, limestone, high pressure-resistant modern ceramics, glass ceramic or glass to say, and all other stone materials or ceramic, natural or artificialdited earthenware.
  • the present invention relates to a load-bearing wall element and thus proposes a way to become such thinly laid stone or earthenware or ceramic or artificial stone slabs that are sustainably stabilized in a cost effective manner, and on the way proposed here for self-supporting wall element.
  • the stone, the ceramic or the glass and other pressure-resistant materials - generally drawn here as the stoneware - which previously meant purely as facade cladding additional weight for the construction of buildings, is now itself the load-bearing element of the house wall.
  • the invention proposes with a symmetrical wall structure, wherein the feature of the flatness of the flagstone in wide temperature and pressure ranges to an essential core of the invention, in combination with a second characteristic feature of the use of the facade element itself as a supporting part.
  • the way ensures that the earthenware is stabilized under a variety of thermally induced mechanical loads, as well as purely mechanical loads that they suitable for the respective use and loading cases, stabilization against mechanical destruction by tearing the wall plate on the one hand, and in particular be additionally protected against thermal bending.
  • the dimensional stability at temperature difference on the wall inside and outside of the wall and also related temperature changes on the wetted side is also of significant importance.
  • the core of the solution which is the most suitable stabilizing jacket for such self-supporting walls in sandwich construction, is to keep the overall expansion coefficient of the inner and outer plates as small as possible and, in particular, as equal as possible, ideally ideally close to zero.
  • the invention is based on the stabilization of a symmetrical structure of two earthenware plates by a partially or completely applied to the earthenware fiber-containing carrier material, which allows the need for the stabilization of thin earthenware materials earthenware material as thin as possible or to save material and by an additional light and insulating carrier layer in the middle over the cross section fascisteifen so that the overall construction can bend as little as possible in order to withstand and compensate for the acting buckling loads, including those caused by temperature differences or temperature changes.
  • Wall elements or precast concrete elements, masonry stone, glass or ceramic construction which must absorb static-dynamic loads, find use. Trusses made of steel structures and wood are already being used. So far, wall constructions are known which are made massive over the cross section to accommodate the pressure loads. Under certain circumstances, such walls are then additionally provided on one side with a heat-insulating layer; as a rule, the overall structure is then asymmetrical in cross-section. Such walls can be additionally upgraded visually by panels, which is often performed with natural stone slabs or other stoneware slabs.
  • the invention filed for registration relates to the construction sector, in particular the building construction, more precisely the house construction with service buildings, dwelling houses, pavilions, halls and any kind of buildings in general.
  • Core of the invention relates to a novel technique for creating a house wall as a building element, with the functions of static load transfer and the facade with all the functions of a building envelope and the corresponding physical requirements according to the current standards.
  • the wall elements are prefabricated and finished in construction.
  • the ceiling constructions are placed on the wall elements.
  • the wall elements combine all structural and structural requirements in a sandwich construction.
  • the outer thin slices of stoneware or other pressure-resistant materials mainly take over the normal forces (disk forces). They can be used directly as finished surfaces for visibility indoors and outdoors .
  • the core of the sandwich for example, a shear-resistant insulating foam, which is shear-resistant connected to the outer discs. With the core, the thrust forces are absorbed by bending stresses, it results in a sufficient bending stiffness across the element. The element is thus secured against buckling and it can be horizontally across the element occurring loads such as wind loads recorded.
  • the load introduction and load extraction design of the floor slabs on this sandwich element brings the vertical loads symmetrically on the discs without creating a physically unbearable thermal bridge.
  • the watertightness, vapor-tightness is ensured by interaction of the sandwich materials with special connection details.
  • the elements are of the static principle as Pendulum supports installed in the ceilings at the top and bottom.
  • the thermal insulation values can reach Minergiestandard.
  • the thin discs consist of a pressure- and shear-resistant, waterproof material such as concrete, natural stone, glass, ceramics. They are secured by reinforcements against tensile stresses from thermal asymmetric deformations and against tensile stresses in the area of stress distribution in the load introduction zones, which could lead to unannounced total collapse fractures. Similarly, imperfections can be bridged in the material and in the design and it is produced a good-natured, ductile material as possible behavior.
  • the sandwich core consists of a shear-resistant, highly heat-insulating construction, usually made of a sufficiently solid foam.
  • the load introduction consists of a thermally weakly conductive pressure- and shear-resistant element made of GRP or wood or a truss.
  • connections between the panes and the load introduction, the panes and the sandwich core are produced by means of permanent butt-resistant bonds. Commercially available bonds are used.
  • the element can be built in compliance with all requirements for a house wall with 15 - 20% of the usual weight and thus material consumption.
  • the element still saves 20 - 50% space over comparable constructions.
  • the element and the individual components are easy to separate and reuse for comparable use.
  • the element has a finished surface Finnish on sight.
  • technical installations can be flexibly accommodated.
  • the elements allow a very fast construction progress.
  • insulating layers it is possible to use all possible cross-section stiffening solutions, for example also straight, corrugated or honeycomb paper materials, a wide variety of pressure-stable foams, wood frames with cavities in combination with rock wool, sheep wool or straw.
  • the expanded glass to mention which is characterized by low specific weight by an additionally usable high pressure stability and thereby brings very good heat insulating properties with a very low expansion coefficient.
  • fiber materials with resin matrix such as glass fiber or aramid fiber laminates, carbon fibers or stone fibers, as well as natural fiber materials, which stabilize the stone over a large area and prevent it from expanding.
  • the natural stone itself has a very low expansion modulus, which can be brought to zero with the fiber stabilization, since natural stone is compressible due to its porous structure.
  • a corresponding bias voltage can be brought into the composite of fiber matrix and stone, a temperature-induced expansion of the flagstone is minimized.
  • this plate in the symmetrical overall composite - fiber-stabilized flagstone - insulation cross section - more fiber-stabilized flagstone - not only from the perspective of optics indoors and outdoors attractive, but it is a completely new Wall construction represents that with the same load capacity about twice lighter or can be kept thinner than conventional house walls and building structures.
  • the task of reliably counteracting the tendency of thin natural stone, glass and / or ceramic plates to break or tear by much lighter designs, is solved by improved stabilizing properties of the carrier.
  • a support material is used, which has a similar low expansion coefficient, as the stone plate to be stabilized and which has a very low specific gravity.
  • the low weight combined with a low coefficient of expansion also becomes the core of the invention of the invention of this new wall construction, such as the symmetrical overall construction.
  • the carrier material referred to below carrier, consists - as for example in the patent application EP 106 20 92 described - from a fiber-reinforced matrix, which is a synthetic resin or possibly even a ceramic material.
  • Carbon fibers are used, for example, which withstand high tensile loads and contract under the influence of heat, ie have a negative coefficient of thermal expansion and sustainably stabilize a more or less thin stone slab.
  • the plate is particularly protected against cracks due to overstretching and heat, and counteracted the breakage by mechanical stress perpendicular to the earthenware.
  • the invention describes a suitable solution using trusses made of GRP parts or solid material, for example made of carbon-reinforced wood, which on the one hand high compressive strength and on the other hand must have insulating properties as possible in order to initiate the force on the one hand effectively in the fiber-reinforced stone slabs and still avoid thermal bridges in order to allow any Konsenswasser- and thus mold.
  • the overall construction of the novel wall construction described here takes into account the fact that the necessary vapor barrier is incorporated by the fiber matrix.
  • the stone slabs themselves can absorb and release a certain amount of water and thus have a regulating effect on the moisture balance in the interior.
  • the stone slabs On the outside , the stone slabs have the same effect and can thus become a cooling surface in the summer, when the moisture in the stone evaporates. If suitable granite is used, then such house walls are absolutely frost-proof and corrosion-free and virtually do not age, especially if they polished on the outside .
  • One of the many possible embodiments of the invention describes a plate of stoneware (1), which is stabilized on one side with a carbon fiber roving (2) ( Fig. 1 , Construction in cross section).
  • the connection between stone and fiber is produced by a temperature-stable epoxy resin matrix, which can be subjected to thermally stable depending on the application and their total coefficient of expansion of fiber and matrix is, if possible, smaller than the stone plate to be stabilized.
  • a further layer of insulating material for example polyurethane foam (3)
  • the plate with the aid of an epoxy resin adhesive bond (4) additionally mechanically stabilized and with the help of an additional - if possible the same or identical - stabilized flagstone (1) in construction built symmetrically to a house wall.
  • Force introduction elements (5) made of GRP profiles ensure that the loads are absorbed in the stone slabs via the fiber matrix (2).
  • a tilting bearing (6) made of CFS (carbon fiber-coated stone) or steel (20/60), the loads of the overlying ceiling (7) and wall elements upper floors (8) are placed on the force introduction elements (5).
  • Additional stiffeners (9) can additionally stiffen the carrier or connect non-positively at intervals.
  • Fig.2 shows the in Fig. 1 shown embodiment of the invention with another solution for the introduction of force into the house wall, which is necessary by the pressure of the overlying ceilings and other floors.
  • the figure shows two more or less thin thin stabilized stone slabs (1) which are stiffened over an insulating layer of foam material (3) by the plates with a layer of building adhesive (4) are connected.
  • a plywood block (5) with a sheath of carbon fiber matrix forms over the fiber coating of the Stone slabs the introduction of force into the two stone slabs.
  • On a tilting bearing (6) is the weight of the concrete floor (7) and the wall (8) for the floor above .
  • Fig. 3 shows the same arrangement as Fig. 2 with a framework of carbon fiber reinforced stone (CFS) for the introduction of force.
  • CFS carbon fiber reinforced stone

Description

  • Die vorliegende Erfindung bezieht sich auf eine neuartige Wandkonstruktion. Diese Wandkonstruktion kommt zum Einsatz beim Bau von zum Beispiel Gebäuden oder Häusern. Bisherige Wandkonstruktionen weisen einen massiven Bau mit Beton oder Ziegel auf, die von außen mit Isoliermaterial bestückt werden. Im Unterschied hierzu wird die neue Wand aus einem symmetrischen Sandwich aus druckstabilen Platten gebildet, die in einem bestimmten Abstand gehalten sind. Zwischen den Platten befindet sich die isolierende Schicht, welche die Konstruktion über den Querschnitt aussteift. Die beiden Platten nehmen die Druckkräfte auf und bestehen aus besonders druckstabilem Material wie Naturstein, Kunststein aller Arten, Beton und sonstigem Steingut, sowie Keramik bis hin zu glashaltigen Substanzen oder Glas - im folgenden Steingut genannt - die zwar druckstabil, in der Regel aber auch durch eine spröde und bruchgefährdete Struktur gekennzeichnet sind. Hier sind besonders Natursteine wie Granit, granitähnliche Gesteine wie Gneis, sowie Marmor, Kalkstein, hochdruckfeste moderne Keramiken, Glaskeramik oder Glas zu erwähnen, sowie alle sonstigen Materialien aus Stein oder Keramik, natürlich oder künstlich entstandenem Steingut.
  • Diese Materialien zeichnen sich einerseits durch eine hohe Belastbarkeit bei Druckbeanspruchung bei einem vergleichsweise geringen spezifischen Gewicht aus, solche Materialien sind aber auch relativ instabil bei Zug- und Biegebelastung, insbesondere dann, wenn Sie möglichst dünn gehalten werden sollen und materialsparend und insbesondere so leichtgewichtig wie möglich ausgelegt werden sollen.
  • Dabei handelt es sich vorwiegend um dünne Steingutplatten, die bisher im Fassadenbau zu rein dekorativen Zwecken Verwendung finden und zusätzlich an tragenden Wandstrukturen angebracht werden.
  • Die vorliegende Erfindung betrifft ein tragendes Wandelement und schlägt damit einen Weg vor, solche dünn ausgelegten Stein bzw. Steingutplatten oder Keramik- bzw. Kunststeinplatten, die nachhaltig auf preiswerte Weise stabilisiert werden, und auf dem hier vorgeschlagenen Weg zum selbsttragenden Wandelement werden. Der Stein, die Keramik oder das Glas und sonstige druckstabile Materialien, - generell hier als das Steingut gezeichnet - welches bisher rein als Fassadenverkleidung zusätzliches Gewicht für den Bau von Gebäuden bedeutet, wird nunmehr selbst zum tragenden Element der Hauswand.
  • Wichtig ist dabei, dass solche Wandelemente in weiten Temperaturbereichen formstabil bleiben und der "Bi-Metalleffekt" unterdrückt wird. Um dieses Ziel zu erreichen ist es nicht nur nötig, die Steingutplatten oder Keramikplatten gegen Zug und damit verbundenen Bruch zu stabilisieren, sondern auch einen auf der zu stabilisierenden Steinseite an der Grenzfläche zwischen zu stabilisierendem Stein und Stabilisator einen Druckgradienten einzustellen, der praktisch gegen Null geht, damit die Steinlatte weder zu der einen Seite, noch zu der anderen Seite, auch bei wechselnden Temperaturen, gebogen wird und somit die sichtbare Fläche großflächig gerade und eben bleibt.
  • Einen solchen Weg schlägt die Erfindung mit einem symmetrischen Wandaufbau vor, wobei das Merkmal der Ebenheit der Steinplatte in weiten Temperatur- und Druckbereichen zu einem wesentlichen Kern der Erfindung wird, in Kombination mit einem zweiten kennzeichnenden Merkmal der Nutzung des Fassadenelements selbst als tragendes Teil.
  • Der Weg gewährleistet, daß das Steingut unter den unterschiedlichsten thermisch bedingten mechanischen Belastungen, sowie auch rein mechanischen Belastungen so stabilisiert wird, daß sie durch eine, für die jeweiligen Einsatz- und Belastungsfälle geeignete, Stabilisierung vor mechanischer Zerstörung durch Reißen der Wandplatte einerseits, und insbesondere auch zusätzlich vor thermisch bedingtes Verbiegen geschützt werden. Die Formstabilität bei Temperaturunterschied auf der Wandinnen- und Wandaußenseite und auch damit bedingter Temperaturänderungen auf der wettabhängigen Seite ist dabei ebenfalls von kennzeichnender Bedeutung.
  • Kern der Lösung, das für solche selbsttragenden Wände in Sandwichbauweise am besten geeignete Stabilisierungsmantel zu finden ist es, den Gesamtausdehnungskoeffizient der inneren und äußeren Platte möglich klein und insbesondere möglichst gleich, also idealerweise fast bei Null zu halten. Die Erfindung basiert auf der Stabilisierung von einem symmetrischen Aufbau von zwei Steingutplatten durch ein teilweise oder ganzflächig auf dem Steingut aufgebrachtes faserhaltiges Trägermaterial, welches ermöglicht, das für die Stabilisierung von dünnen Steingutmaterialien benötigte Steingutmaterial möglichst dünn bzw. leicht und materialsparend zu halten und durch eine zusätzliche leichte und isolierende Trägerschicht in der Mitte über den Querschnitt so auszusteifen, dass die Gesamtkonstruktion sich möglichst wenig biegen kann, um den einwirkenden Knickbelastungen, auch solchen , die durch Temperaturunterschiede oder Temperaturänderungen entstehen, zu widerstehen und auszugleichen.
  • Durch den Stand der Technik ist beschrieben, wie Ziegelbauweise mit aufgemauerten Steinen, vor Ort aus Beton gegossene
  • Wandelemente oder Fertigbauteile aus Beton, sowie gemauerter Stein-, Glas- oder Keramikbauweise, die statisch-dynamische Lasten aufnehmen müssen, Verwendung finden. Fachwerke aus Stahlkonstruktionen und Holz finden bereits Anwendung. Bekannt sind bisher Wandkonstruktionen, die über den Querschnitt massiv ausgeführt werden, um die Druckbelastungen aufzunehmen. Solche Wände werden dann unter Umständen zusätzlich einseitig mit einer wärmeisolierenden Schicht versehen, der Gesamt-Aufbau ist in der Regel dann im Querschnitt unsymmetrisch. Solche Wände können zusätzlich durch Verkleidungen optisch aufgewertet werden, was häufig mit Natursteinplatten oder anderen Steingutplatten ausgeführt wird.
  • Bisher nicht bekannt sind Bauformen, bei denen zum Beispiel die Natursteinplatte selbst zum tragenden Element wird und damit zwei Funktionen erfüllt, einmal die statischen Notwendigkeiten beim Hausbau optimal zu übernehmen und gleichzeitig eine optimale Optik zu bieten.
  • Die optimale Statik wird damit erreicht, dass eine solche Natursteinplatte zum Beispiel aus Granit eine doppelt so hohe Tragkraft besitzt, wie eine vergleichbare Betonplatte gleichen Gewichts. Dadurch wird leichteres, höheres und raumgewinnendes Bauen möglich, im Vergleich zur klassischen Beton und Ziegelbauweise. Auch im Vergleich zum Bauen mit Stahl wird Gewicht und Raum gespart, weil zum Beispiel Granit mit einem spezifischen Gewicht von Aluminium um einen Faktor 2,7 leichter ist als Stahl, dabei aber eine Druckstabilität besitzt, die dem von Baustahl sehr nahe kommt.
  • Es folgt eine bautechnische Beschreibung der Wandkonstruktion. Die zur Anmeldung gebrachte Erfindung betrifft den Bausektor, darin insbesondere den Hochbau, genauer den Hausbau mit Dienstleistungsgebäuden, Wohnhäusern, Pavillons, Hallen und jegliche Art von Gebäuden allgemein. Kern der Erfindung betrifft eine neuartige Technik zur Erstellung einer Hauswand als Gebäudeelement, mit den Funktionen der statischen Lastabtragung und der Fassade mit allen Funktionen einer Gebäudehülle und den entsprechenden physikalischen Anforderungen gemäss den aktuellen Normierungen.
  • Die Wandelemente werden vorfabriziert und am Bau fertig versetzt. Die Deckenkonstruktionen werden auf die Wandelemente aufgesetzt. Die Wandelemente vereinigen alle statischen und bauphysikalischen Anforderungen in einem Sandwichaufbau. Die äußeren dünnen Scheiben aus Steingut oder sonstigen druckstabilen Materialien übernehmen hauptsächlich die Normalkräfte (Scheibenkräfte). Sie können direkt als fertige Oberflächen auf Sicht im Innen- und Außenbereich genutzt werden. Den Kern des Sandwiches bildet zum Beispiel ein schubsteifer wärmedämmender Schaum, der schubsteif mit den äußeren Scheiben verbunden ist. Mit dem Kern werden die Schubkräfte aus Biegebeanspruchungen aufgenommen, es ergibt sich eine ausreichende Biegesteifigkeit quer zum Element. Das Element ist damit gegen Knicken gesichert und es können horizontal quer zum Element auftretende Lasten wie zum Beispiel Windlasten aufgenommen werden. Die Lasteinleitungs- und Lastausleitungskonstruktion von den Geschossdecken auf dieses Sandwichelement bringt die Vertikallasten symmetrisch auf die Scheiben ohne eine bauphysikalisch untragbare Wärmebrücke zu erzeugen. Die Wasserdichtigkeit, Dampfdichtigkeit wird durch Zusammenwirken der Sandwichmaterialien mit speziellen Verbindungsdetails gewährleistet. Das Lastniveau ohne zusätzliche statische Strukturen liegt bei Gebrauchslasten >= 75 kN/m. Die Elemente werden vom statischen Prinzip als Pendelstützen in den Decken oben und unten gehalten eingebaut. Die Wärmedämmwerte können Minergiestandard erreichen.
  • Die dünnen Scheiben bestehen aus einem druck- und schubfesten, wasserdichten Material wie zum Beispiel Beton, Naturstein, Glas, Keramik. Sie werden gesichert über Bewehrungen gegen Zugbeanspruchungen aus thermisch asymmetrischen Verformungen und gegen Zugspannungen im Bereich der Spannungsverteilung in den Lasteinleitungszonen, die zu unangekündigten Totalsprödbrüche führen könnten. Ebenso können Imperfektionen im Material und in der Konstruktion überbrückt werden und es wird ein gutmütiges, möglichst duktiles Materialverhalten erzeugt. Der Sandwichkern besteht aus einem schubsteifen, hoch wärmedämmenden Aufbau, in der Regel aus einem ausreichend festen Schaum.
  • Die Lasteinleitung besteht aus einem thermisch schwach leitenden druck- und schubsteifen Element aus GFK oder Holz oder einem Fachwerk.
  • Die Verbindungen zwischen den Scheiben und der Lasteinleitung, den Scheiben und des Sandwichkerns werden über dauerhafte schubsteife Verklebungen hergestellt. Es kommen handelsübliche Verklebungen zum Einsatz.
  • Das Element kann unter Erfüllung aller Anforderungen an eine Hauswand mit 15 - 20% des sonst üblichen Gewicht und damit Materialverbrauchs gebaut werden.
  • Das Element spart weiterhin 20 - 50% Platz gegenüber vergleichbaren Konstruktionen. Das Element und die einzelnen Bestandteile sind einfach zu trennen und einer vergleichbaren Nutzung wieder zuzuführen. Das Element hat ein fertiges Oberflächenfinnisch auf Sicht. Im Element können haustechnische Installationen flexibel untergebracht werden. Die Elemente erlauben einen sehr schnellen Baufortschritt.
  • Als isolierende Schichten können alle möglichen über den Querschnitt aussteifenden Lösungen angewendet werden, beispielsweise auch gerade, gewellte oder wabenförmige Papiermaterialien, die verschiedensten druckstabilen Schäume, Holzrahmen mit Hohlräumen in Verbindung mit Steinwolle, Schafswolle oder Stroh. Hier ist insbesondere auch das Blähglas zu erwähnen, welches sich bei geringem spezifischen Gewicht durch eine zusätzlich nutzbare große Druckstabilität auszeichnet und dabei sehr gute wärmeisolierende Eigenschaften bei einem sehr geringen Ausdehnungskoeffizienten mitbringt.
  • Für die Stabilisierung der Steinplatten selbst wird die Verwendung von Fasermaterialien mit Harzmatrix vorgeschlagen, wie Glasfaser- oder Aramidfaserlaminaten, Carbonfasern oder Steinfasern, sowie Naturfasermaterialien, die den Stein großflächig stabilisieren und an der Ausdehnung hindern. Der Naturstein selbst hat ein sehr geringes Ausdehnungsmodul, welches mit der Faserstabilisierung auf Null gebracht werden kann, da Naturstein aufgrund seiner porösen Struktur komprimierbar ist. In dem Fall, dass der Faserzug entsprechend groß wird und die richtige Faser verwendet wird, bzw. mit Hilfe der Faser eine entsprechende Vorspannung in den Verbund aus Fasermatrix und Stein gebracht werden kann, wird eine temperaturbedingte Ausdehnung der Steinplatte minimiert. Das Ergebnis ist eine druck- und zugspannungsbelastbare Platte, die in normalen Anwendungsfällen eine ausreichende Stabilisierung des Steinguts gegen Reißen und Bruch gewährleistet. Damit wird diese Platte im symmetrischen Gesamtverbund - faserstabilisierte Steinplatte - Isolationsquerschnitt - weitere faserstabilisierte Steinplatte - nicht nur aus Sicht der Optik im Innenbereich und Außenbereich attraktiv, sondern es wird eine völlig neuartige Wandkonstruktion darstellt, die bei gleicher Tragkraft etwa zweifach leichter ist bzw. dünner gehalten werden kann, als herkömmliche Hauswände und Gebäudekonstruktionen.
  • Die Aufgabe, der Neigung von dünnen Naturstein-, Glas- und/oder Keramikplatten zum Brechen oder Reißen durch wesentlich leichtere Bauformen sicher entgegenzuwirken, wird durch verbesserte stabilisierende Eigenschaften des Trägers gelöst. Zu diesem Zweck wird ein Trägermaterial eingesetzt, welches einen ähnlich geringen Ausdehnungskoeffizienten hat, wie die zu stabilisierende Steinplatte und welches ein sehr geringes spezifisches Gewicht hat. Das geringe Gewicht kombiniert mit einem geringen Ausdehnungskoeffizienten wird ebenso zum Kern der Erfindung der Erfindung dieser neuen Wandkonstruktion, wie der symmetrische Gesamtaufbau.
  • Das Trägermaterial, im folgenden Träger genannt, besteht - wie zum Beispiel in der Patentanmeldung EP 106 20 92 beschrieben - aus einer faserverstärkten Matrix, die ein Kunstharz oder gegebenenfalls selbst ein Keramikmaterial ist. Es kommen dabei z.B. Carbonfasern zum Einsatz, die hohe Zugbelastungen standhalten und sich unter Wärmeeinwirkung zusammenziehen, also einen negativen Temperaturausdehnungskoeffizienten besitzen und eine mehr oder weniger dünne Steinplatte nachhaltig stabilisieren. Dadurch wird die Platte insbesondere gegen Risse durch Überdehnung und Hitzeeinwirkung geschützt, sowie dem Bruch durch mechanische Belastung senkrecht auf das Steingut entgegengewirkt. Zusätzlich müssen solche Platten - je nach Anwendungsfall - zusätzlich für mechanische Beanspruchungen - wie in der EP 106 20 92 mit einer Sandwicheinlage beschrieben - statisch (auch gegen Knickkräfte) stabil gemacht werden. Dies geschieht bei dieser Erfindung durch eine Schicht, die aus den oben skizzierten Lösungen für Isolationsmaterialien besteht.
  • Mit Hilfe des Einsatzes von zum Beispiel temperaturstabilen Epoxidharzen, Polyesterharzen, Harzen auf Phenol-, Polyimid-, Cyanatester-, Melamin-, Polyurethan- oder Silikonbasis, genannt Matrix, in Kombination mit z. B. Carbonfasern, die einen negativen Temperaturausdehnungskoeffizienten haben, wird eine solche sichere Stabilisierung auch von sehr großen Steinplatten möglich. Es wird darüber hinaus die Forderung erfüllt, die mechanische Belastbarkeit und Temperaturbelastbarkeit von dünnen Steintragwerken so zu optimieren, daß der Gesamt-Ausdehnungskoeffizient der Platte in weiten Temperaturbereichen kontrolliert wird, um das Schüsseln der Gesamt-Platte zu vermeiden und trotzdem eine Leichtbauweise zu realisieren. Um die Druckkräfte, die von einer solchen Hauswand aufgenommen werden müssen, in die Wand einzuleiten, beschreibt die Erfindung eine geeignete Lösung mit Hilfe von Fachwerken aus GFK-Teilen oder Vollmaterial, zum Beispiel aus Carbon-verstärktem Holz, welches einerseits eine hohe Druckbelastbarkeit und andererseits möglichst isolierende Eigenschaften besitzen muss, um die Kraft einerseits wirkungsvoll in die faserverstärkten Steinplatten einzuleiten und trotzdem Wärmebrücken zu vermeiden, um keinerlei Konsenswasser- und damit Schimmelbildung zuzulassen. Die Gesamtkonstruktion der hier beschriebenen neuartigen Wandkonstruktion trägt dem Umstand Rechnung, dass die notwendige Dampfsperre durch die Fasermatrix eingebaut ist. Die Steinplatten selbst können eine gewisse Menge Wasser absorbieren und wieder abgeben und wirken damit regulierend auf den Feuchtigkeitshaushalt im Innenraum. Nach außen hin haben die Steinplatten die gleiche Wirkung und können damit im Sommer zur Kühlfläche werden, wenn die in dem Stein befindliche Feuchtigkeit verdunstet. Wenn geeigneter Granit zur Anwendung kommt, dann sind solche Hauswände absolut frostsicher und korrosionsfrei und altern quasi nicht, insbesondere dann, wenn sie an der Außenseite poliert sind.
  • Eine der vielen möglichen Ausführungen der Erfindung beschreibt eine Platte aus Steingut (1), die einseitig mit einem Carbonfaserroving (2) stabilisiert wird (Abb. 1, Aufbau im Querschnitt). Die Verbindung zwischen Stein und Faser wird durch eine temperaturstabile Epoxidharzmatrix hergestellt, welche sich je nach Einsatzgebiet entsprechend thermisch stabil belasten lässt und deren Gesamt-Ausdehnungskoeffizent von Faser und Matrix nach Möglichkeit kleiner dem der zu stabilisierenden Steinplatte ist. Durch eine weitere Schicht aus Isoliermaterial, zum Beispiel PUR-Schaum (3) wird die Platte mit Hilfe einem Epoxid-Harz Klebverbindung (4) zusätzlich mechanisch stabilisiert und mit Hilfe einer zusätzlichen - nach Möglichkeit gleichen oder identischen - stabilisierten Steinplatte (1) im Aufbau symmetrisch zu einer Hauswand aufgebaut. Krafteinleitungselemente (5) aus GFK-Profilen sorgen für die Aufnahme der Lasten in die Steinplatten über die Faser-Matrix (2). Über ein Kipplager (6) aus CFS (Carbonfaser ummanteltem Stein) oder Stahl (20/60) werden die Lasten der darüber liegenden Decke (7) und Wandelemente oberer Stockwerke (8) auf die Krafteinleitungselemente (5) gebracht. Zusätzliche Aussteifungen (9) können die Träger zusätzlich aussteifen oder auch kraftschlüssig in gewissen Abständen verbinden.
  • Abb.2 zeigt die in Abb. 1 gezeigt Ausführung der Erfindung mit einer anderen Lösung für die Krafteinleitung in die Hauswand, die durch den Druck der darüber liegenden Decken und weitere Stockwerke notwendig wird. Die Abb. zeigt zwei mehr oder weniger große dünne stabilisierte Steinplatten (1), die über eine isolierende Schicht aus Schaummaterial (3) ausgesteift werden, indem die Platten mit einer Schicht aus Baukleber (4) verbunden werden. Ein Schichtholzklotz (5) mit einem Mantel aus Carbonfasermatrix bildet über die Faserbeschichtung der Steinplatten die Krafteinleitung in die beiden Steinplatten. Auf einem Kipplager (6) liegt das Gewicht der Betondecke (7) und der Wand (8) für das darüber liegende Stockwerk. Abb. 3 zeigt die gleiche Anordnung, wie Abb. 2 mit einem Fachwerk aus Carbonfaser-verstärktem Stein (CFS) für die Krafteinleitung.

Claims (6)

  1. Tragendes Wandelement für Gebäude mit zwei symmetrisch angeordneten Träger-Platten (1) aus Stein, Naturstein, Kunststein, Keramik, Beton, Glas oder glashaltigem Material,
    - wobei eine zusätzliche, die Gesamtanordnung mechanisch über die Querschnittserhöhung stabilisierende Schicht aus schubsteifem Isolationsmaterial (3) zwischen beiden Träger-Platten (1) schubsteif mit diesen verklebt ist,
    - wobei die Träger-Platten (1) mit einer nur innenseitig angebrachten faserhaltigen Matrix (2) auf Epoxidharz-, Polyesterharz-, Phenolharz Polyamidharz, Cyanatesterharz-, Melaminharz-, Polyurethanharz- oder Silikonharzbasis, bzw. Keramik- oder Wasserglassbasis zusätzlich stabilisiert sind,
    - wobei die Matrix (2) Fasermaterialien wie Glasfasern, Carbonfasern, Aramidfasern, Steinfasem oder Natur-und Pflanzenfasern oder Holzfasern enthält,
    - wobei der Ausdehnungskoeffizient der Fasermatrix (2) kleiner als die der zu stabilisierenden Träger-Platten (1) ist und zusammen mit der Stabilisierungsschicht aus schubsteifem Isolationsmaterial (3) einen Ausdehnungskoeffizienten hat, der kleiner als der der zu stabilisierenden Träger-Platten (1) ist,
    - wobei die Träger-Platten (1) mit Hilfe der Fasermaterialien vorgespannt sind und
    - wobei das tragende Wandelement oben und unten eine Lasteinleitungskonstruktion (5) aufweist, die über dauerhafte
    schubsteife Verklebungen mit den Träger-Platten verbunden ist.
  2. Tragendes Wandelement nach Anspruch 1, dadurch gekennzeichnet, dass beide Trägerplatten (1) jeweils aus gleichartigem Plattenmaterial bestehen.
  3. Tragendes Wandelement nach Anspruch 1 und 2, dadurch gekennzeichnet, dass die Schicht aus schubsteifem Isolationsmaterial (3) aus einem schubsteifen, wärmedämmenden Schaum besteht,
  4. Tragendes Wandelement nach Anspruch 1 und 2, dadurch gekennzeichnet, dass die Schicht aus schubsteifem Isolationsmaterial (3) aus einem Holzrahmen mit Hohlräumen, die mit Steinwolle, Schafswolle, Stroh oder sonstigen Isoliermaterialien gefüllt sind, besteht.
  5. Tragendes Wandelement nach Anspruch 1 bis 4, dadurch gekennzeichnet, dass die Krafteinleitung (5) aus Holz, Vollholz oder einem Fachwerk aus faserverstärktem Steingut, Holz oder anderen druckfesten Materialien besteht.
  6. Tragendes Wandelement nach Anspruch 1 bis 5, dadurch gekennzeichnet, dass die Träger-Platten (1) je mit eigenen Aussteifungen, zum Beispiel in Form von Aussteifungsrippen, versehen sind, oder Aussteifungen in bestimmten Abständen zwischen den Träger-Platten - diese kraftschlüssig verbindend - angeordnet sind.
EP08874021.2A 2008-04-25 2008-12-21 Wandkonstruktion aus platten Active EP2350404B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200820005770 DE202008005770U1 (de) 2008-04-25 2008-04-25 Wandkonstruktion
PCT/EP2008/011002 WO2009129839A1 (de) 2008-04-25 2008-12-21 Wandkonstruktion aus platten

Publications (2)

Publication Number Publication Date
EP2350404A1 EP2350404A1 (de) 2011-08-03
EP2350404B1 true EP2350404B1 (de) 2018-06-20

Family

ID=40157781

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08874021.2A Active EP2350404B1 (de) 2008-04-25 2008-12-21 Wandkonstruktion aus platten

Country Status (3)

Country Link
EP (1) EP2350404B1 (de)
DE (1) DE202008005770U1 (de)
WO (1) WO2009129839A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020141185A1 (de) * 2019-01-06 2020-07-09 Ithaka Institute For Carbon Strategies Sandwichwandkontruktion aus beabstandeten platten mit dazwischenliegender isolation, die einen hohen kohlenstoffanteil besitzt

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2978178B1 (fr) * 2011-07-22 2013-07-05 Pierre Bois Habitat Dispositif de parement ou de construction, procede de fabrication du dispositif et son procede d'assemblage
DE102012215608B4 (de) * 2012-09-03 2015-02-19 Gerhard SEELE Statisch selbsttragendes fassadenelement
DE202013000375U1 (de) 2013-01-17 2013-04-12 Kolja Kuse Tragwerkskonstruktionen und Wandkonstruktionen aus Glasplatten
ITUB20152928A1 (it) * 2015-07-23 2017-01-23 Giacomo Ricci Utilizzo di pannelli in gres ceramico strutturale incollati tramite resina epossidica e rinforzati con una reti di fibre al carbonio quadridirezionale,denominati canbonfibergres, per la costruzione di parapetti, pensiline, porte, frangisole, recinzioni, divisori fissi e mobili.
DE202017006477U1 (de) * 2017-12-17 2018-07-20 Kolja Kuse Armierung für zementbasierte Strukturen
DE202018105997U1 (de) * 2018-10-19 2020-01-21 Rehau Ag + Co Leichtbau-Wandmodul
EP4001540A1 (de) 2020-11-12 2022-05-25 Steuler Holding GmbH Keramikverbundplatte
DE202023000788U1 (de) 2023-04-09 2023-08-30 Kolja Kuse Armierung für Zement-basierte Strukturen

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29818660U1 (de) * 1998-10-20 1999-03-04 Brauner Siegfried Steingutträger
NL1023445C1 (nl) * 2003-05-16 2004-11-17 Composieten Team B V Methode voor het verstijven en versterken van schaalconstructies met liggers.

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE692763A (de) * 1966-07-28 1967-07-03
DE6804188U (de) * 1968-10-26 1969-02-06 Incoop Gmbh Bauelement in plattenform
US6998359B2 (en) * 2004-01-13 2006-02-14 Mantex Corporation Article and process for maintaining orientation of a fiber reinforced matt layer in a sandwiched urethane construction
DE102005008200A1 (de) * 2005-02-22 2006-08-31 Intco Gmbh Schaumglasverbundelement
US20070256379A1 (en) * 2006-05-08 2007-11-08 Edwards Christopher M Composite panels
DE202006016659U1 (de) * 2006-10-27 2007-02-01 Kuse, Kolja Steinträger

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29818660U1 (de) * 1998-10-20 1999-03-04 Brauner Siegfried Steingutträger
NL1023445C1 (nl) * 2003-05-16 2004-11-17 Composieten Team B V Methode voor het verstijven en versterken van schaalconstructies met liggers.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020141185A1 (de) * 2019-01-06 2020-07-09 Ithaka Institute For Carbon Strategies Sandwichwandkontruktion aus beabstandeten platten mit dazwischenliegender isolation, die einen hohen kohlenstoffanteil besitzt

Also Published As

Publication number Publication date
WO2009129839A4 (de) 2009-12-23
WO2009129839A1 (de) 2009-10-29
EP2350404A1 (de) 2011-08-03
DE202008005770U1 (de) 2008-12-24

Similar Documents

Publication Publication Date Title
EP2350404B1 (de) Wandkonstruktion aus platten
US4224774A (en) Composite building elements
US6405509B1 (en) Lightweight structural element, especially for building construction, and construction technique thereon
EP1062092A1 (de) Steingutträger
EP1808538A2 (de) Bauwerk aus Einzelbauteilen
AT403599B (de) Fertigbauelement sowie verfahren zur herstellung und bauseitigen anwendung
DE202006010009U1 (de) Dünnsteinplatte
DE102008048800A1 (de) Tafelförmiges Bauelement
US20090301011A1 (en) Reinforced concrete ceiling and process for the manufacture thereof
DE102004018850B4 (de) Wärmedämmverbundsystem und Verfahren zum Herstellen eines Wärmedämmverbundsystems
EP3594425B1 (de) Lasttragende wandstruktur
DE202019000008U1 (de) Wandkonstruktion aus Platten mit hohem Kohlenstoffanteil
DE212009000162U1 (de) Außenwand für ein Niedrigenergiebauwerk
AT12147U1 (de) Wandelement
EP2369075B1 (de) Außenwandsystem eines Gebäudes
DE102016117032A1 (de) Deckschichtbauelement und Trockenbausystem
DE202023001382U1 (de) Wandkonstruktion aus Steinplatten als CO2 - Senke
DE202021001119U1 (de) Wandkonstruktion aus Stein-Platten
BG64654B1 (bg) Двойно напрегната съставна покривно-таванна хоризонтална софитна конструкция за индустриални сгради с голяма площ
DE202009015287U1 (de) Säule und Querträger aus Stein
DE202006009793U1 (de) Dünnstein-Stabilisator
EP3336274B1 (de) Wand für ein gebäude
WO2013026566A1 (de) Konstruktionsteile und bauteile aus faserverstärktem basaltgestein
AT503693B1 (de) Flächige beton-tragkonstruktion sowie verfahren zur herstellung derselben
US20190203468A1 (en) Method for assembling building elements and building thus produced

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110413

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20141208

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180108

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1010705

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008016147

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180920

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180920

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180921

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181020

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20181226

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008016147

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20081221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191221

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: KMC GBR, DE

Free format text: FORMER OWNER: TECHNOCARBON TECHNOLOGIES GBR, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008016147

Country of ref document: DE

Owner name: KMC GBR (VERTRETUNGSBERECHTIGTER GESELLSCHAFTE, DE

Free format text: FORMER OWNER: TECHNOCARBON TECHNOLOGIES GBR, 81925 MUENCHEN, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20210225 AND 20210303

REG Reference to a national code

Ref country code: BE

Ref legal event code: PD

Owner name: TECHNOCARBON TECHNOLOGIES FRANCE; FR

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: TECHNOCARBON TECHNOLOGIES GBR

Effective date: 20200528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20221222

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231130

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231213

Year of fee payment: 16

Ref country code: IE

Payment date: 20231228

Year of fee payment: 16

Ref country code: DE

Payment date: 20231213

Year of fee payment: 16

Ref country code: AT

Payment date: 20231213

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231130

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240101

Year of fee payment: 16