WO2008049471A1 - Wasserlösliche hydroxyfunktionelle, copolymerisierbare polyalkylenglykol-makromonomere, deren herstellung und verwendung - Google Patents

Wasserlösliche hydroxyfunktionelle, copolymerisierbare polyalkylenglykol-makromonomere, deren herstellung und verwendung Download PDF

Info

Publication number
WO2008049471A1
WO2008049471A1 PCT/EP2007/005326 EP2007005326W WO2008049471A1 WO 2008049471 A1 WO2008049471 A1 WO 2008049471A1 EP 2007005326 W EP2007005326 W EP 2007005326W WO 2008049471 A1 WO2008049471 A1 WO 2008049471A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
mol
ethylene oxide
water
conjugated
Prior art date
Application number
PCT/EP2007/005326
Other languages
English (en)
French (fr)
Inventor
Klaus Pöllmann
Anton Strasser
Sieglinde Müller
Original Assignee
Clariant International Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clariant International Ltd. filed Critical Clariant International Ltd.
Publication of WO2008049471A1 publication Critical patent/WO2008049471A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/42Ethers, e.g. polyglycol ethers of alcohols or phenols
    • C09K23/44Ether carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • C08F290/142Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2603Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen
    • C08G65/2606Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups
    • C08G65/2609Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups containing aliphatic hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2603Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen
    • C08G65/2615Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen the other compounds containing carboxylic acid, ester or anhydride groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2642Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
    • C08G65/2645Metals or compounds thereof, e.g. salts
    • C08G65/2663Metal cyanide catalysts, i.e. DMC's
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/005Modified block copolymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents

Definitions

  • the present invention relates to a process for the preparation of water-soluble ⁇ -hydroxy-polyalkylene glycol block copolymers which ⁇ -permanently have an unsaturated conjugated ester group, in particular of ⁇ -hydroxy-methacryloyl or ⁇ -hydroxy- ⁇ -acryloyl-polyalkylene glycol block copolymers and their use as copolymerizable Macromonomers for the emulsification, dispersion and steric stabilization of polymers in aqueous systems.
  • Polyalkylene glycols are usually industrially produced by anionic, alkali-catalyzed, ring-opening polymerization of epoxides (ethylene oxide, propylene oxide, butylene oxide) under high pressure and high temperature (see Ulimann Encyclopedia of Industrial Chemistry 5th ed VCH, ISBN 3-527-20100-9).
  • epoxides ethylene oxide, propylene oxide, butylene oxide
  • R'-OH as initiator, such as with methanol, arise so very specific according to equation 1 ⁇ -methoxy- ⁇ -hydroxy polyalkylene glycols
  • Polyalkylene glycol macromonomers are those polyalkylene glycols which, in addition to the polyether chain, contain a reactive, copolymerizable, terminal double bond. They are used for the production of so-called comb polymers with polyalkylene glycol side groups (DE-A-100 17 667) or as reactive emulsifiers in emulsion polymerization (EP-A-1 531 933).
  • ⁇ -hydroxy- ⁇ -allyloxy or ⁇ -hydroxy- ⁇ -vinyloxy-functional polyalkylene glycol macromonomers described there have the disadvantage that they can not be used as hydroxy-functional macromonomers due to the unfavorable copolymerization tendency with many common comonomers .
  • More generally usable and thus substantially more advantageous are ⁇ -hydroxy-functional polyalkylene glycol macromonomers which have in the ⁇ -position the ester group of a conjugated unsaturated acid, in particular ⁇ -hydroxy-functional - ⁇ -methacryloyl or ⁇ -acryloyl-polyalkylene glycol macromonomers.
  • derivatives of conjugated unsaturated acids especially the acrylic and methacrylic acid derivatives
  • have a high propensity for homopolymerization so that the reactions with the alkylene oxides can only be carried out in the presence of high concentrations of polymerization inhibitors (JP-63284146, US Pat.
  • the prior art uses phenolic or aminic polymerization inhibitors, for example hydroquinone, methylhydroquinone, tert-butylhydroquinone, benzoquinone, BHA, p-phenylenediamine or phenothiazine. These inhibitors react by their active OH or NH end groups in turn with the epoxides to other unwanted by-products. Often, their inhibitory action is also insufficient to completely prevent the polymerization of the conjugated unsaturated acid / ester group. Therefore, it is obtained in reactions with alkylene oxides Macromonomers contaminated with high molecular weight polymers formed by polymerization on the conjugated unsaturated acid group. Such high polymer impurities are by means of
  • GPC Gel permeation chromatography
  • EP-A-1 012 203 describes the reaction of propylene oxide and mixtures of propylene oxide and ethylene oxide with conjugated unsaturated carboxylic acids and hydroxy esters in the presence of so-called DMC catalysts (DMC double metal cyanide catalysts).
  • DMC catalysts DMC double metal cyanide catalysts
  • DMC catalysts avoids the disadvantages of Equation 3, since the reaction does not proceed in alkaline medium and thus the hydrolysis of the resulting esters is not catalyzed.
  • DMC catalysts are industrially used exclusively for the polymerization of propylene oxide or propylene oxide-rich alkylene oxide mixtures with more than 50 mol% of propylene oxide, so that in general only water-insoluble or poorly water-soluble polyalkylene glycols can be prepared (EP-O 992 523 A1).
  • polyalkylene glycol macromonomers having good emulsification and stabilization properties, they must have good water solubility. This is achieved by the fact that the proportion of
  • Ethylene oxide monomer units at least 70 mol%, ideally at least 80 mol%.
  • the high proportion of ethylene oxide units causes a high cloud point of at least 75 ° C, determined in 1% aqueous solution according to DIN 53917, and thus good water solubility.
  • EP-A-1 012 203 describes only ⁇ -methacryloyl or ⁇ -acryloyl macromonomers prepared with pure propylene oxide monomer units or with a random mixture of ethylene oxide and propylene oxide monomer units with less than 50 mol% of ethylene oxide.
  • Such macromonomers have too low cloud points, that is, too low water solubility, in order to achieve sufficient dispersing and emulsifying properties in aqueous solutions.
  • these ⁇ -methoxy- ⁇ -methacryloyl-polyalkylene glycol macromonomers no longer contain any free hydroxy groups and therefore also have less favorable solubility in water and poorer emulsifying properties and are no longer accessible to further reactions owing to the terminal non-reactive ⁇ -methoxy group.
  • the object of the present invention was therefore to provide a process for the preparation of readily water-soluble ⁇ -hydroxyl-functional polyalkylene glycol macromonomers which carry in ⁇ -position the structural unit of a conjugated, unsaturated carboxylic acid ester, in particular of readily water-soluble ⁇ -hydroxy- ⁇ -methacryloyl- or ⁇ -hydroxy- ⁇ -acryloyl-polyalkylene glycols, in which the hydrolysis and transesterification according to Equation 3 does not take place, so that pure linear ⁇ -hydroxy- ⁇ - (meth) acryloyl-polyalkylene glycols having an ethylene oxide content of at least 70 molar % arise.
  • the invention thus provides a process for the preparation of water-soluble block alkoxylates ⁇ , ß-ethylenically unsaturated mono- or dicarboxylic acids by the ⁇ , ß-ethylenically unsaturated mono- or
  • Dicarboxylic acid or an alkoxylatable derivative thereof is first alkoxylated with 1 to 4 moles of propylene oxide per carboxylic acid group, and after this propoxylation a further alkoxylation with ethylene oxide or a mixture of alkylene oxides containing at least 70 mol% of ethylene oxide is carried out, so that according to DIN 53917 certain cloud point of the obtained block alkoxylate is at least at 75 ° C, wherein the alkoxylations are carried out in the presence of DMC catalysts.
  • the invention preferably provides a process for the preparation of the compounds of the formulas 2, 3, 4 or 5.
  • the preferred process according to the invention comprises a two-stage reaction of the corresponding conjugated ⁇ , ⁇ -ethylenically unsaturated acids or conjugated ⁇ , ⁇ -ethylenically unsaturated hydroxyalkyl esters or Hydroxyalkylethoxy and Hydroxyalkylpropoxyester with first 1 to 4 moles of propylene oxide in stage 1 and then ethylene oxide or a mixture of at least 70 mol% of ethylene oxide and propylene oxide in stage 2 catalyzed by a DMC catalyst.
  • n is a number from 1 to 3
  • R, R 1 independently of one another are H or methyl
  • A is C 2 - to C 3 -alkylene, with at least 70 mol% of C 2 -alkylene, and m is a number from 7 to 500.
  • (AO) n may stand for pure polyethylene oxide groups or polyethylene oxide-propylene oxide groups in random arrangement with at least 70 mol% of ethylene oxide.
  • Reactive derivatives of ⁇ , ß-ethylenically unsaturated carboxylic acids are in particular their esters, especially their hydroxyalkyl esters.
  • Suitable conjugated ⁇ , ⁇ -unsaturated acids are in particular acrylic acid, methacrylic acid, fumaric acid, maleic acid, itaconic acid.
  • Suitable conjugated, unsaturated hydroxyalkyl esters or hydroxyalkylethoxy and hydroxyalkylpropoxy esters are, in particular, hydroxyethyl methacrylate, hydroxypropyl methacrylate, hydroxyethyl acrylate, hydroxypropyl acrylate,
  • polymerization inhibitors there can be used 2,2,6,6-tetramethylpiperidine-1-oxyl or 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl or other known polymerization inhibitors which inhibit the formation of high polymers by polymerization of the conjugated ones unsaturated acid / ester group in the starting materials and the copolymerizable macromonomers during their production by addition of the alkylene oxides at technically interesting reaction temperatures of 80 - 13O 0 C effectively prevent.
  • DMC catalysts double-unsaturated.
  • Suitable DMC catalysts are also known in the literature with other complexing ligands.
  • EP-A-1 244 519 Their preparation and composition are described inter alia in EP-A-1 244 519, EP-A-0 761 708, EP-A-654 302 and EP-A-1 276 563.
  • DMC catalysts described in Example 2 of EP-A-1 276 563 are suitable.
  • the alkylene oxides are metered in a two-stage manner to obtain di- or triblock copolymers with different statistical distribution of the alkylene oxide units in the blocks. All block copolymers have in common that directly to the conjugated ⁇ .ß-ethylenically unsaturated carboxylic acid or the conjugated ⁇ , ß-ethylenically unsaturated hydroxyalkyl ester or hydroxyalkylethoxy or hydroxyalkylpropoxy ester is first added 1 to 4 MoJ propylene oxide, and then a block ethylene oxide units or randomly mixed Alkylene oxide units having an ethylene oxide content of at least 70 mol% follows.
  • reaction of the conjugated ⁇ , ß-ethylenically unsaturated carboxylic acid or its reactive derivatives and the alkylene oxides optionally in the presence of polymerization inhibitors, under the usual reaction conditions of a technical, DMC-catalyzed alkoxylation, ie in the temperature range 80-150 0 C preferably 100th -130 0 C and pressures between 2 and 20 bar under nitrogen, optionally in the presence of inert, aprotic solvents such as toluene, xylene or THF.
  • a technical, DMC-catalyzed alkoxylation ie in the temperature range 80-150 0 C preferably 100th -130 0 C and pressures between 2 and 20 bar under nitrogen, optionally in the presence of inert, aprotic solvents such as toluene, xylene or THF.
  • Crucial for the production of high-quality water-soluble macromonomers in the process according to the invention is the alkoxylation with 1 to 4 moles of propylene oxide per mole of ⁇ , ß-ethylenically unsaturated carboxylic acid or its reactive derivatives before the subsequent alkoxylation with ethylene oxide or a mixture of alkylene oxides with at least 70 mol% ethylene oxide.
  • the molecular weight of the reaction products of the invention such as ⁇ -hydroxy- ⁇ -methacryloyl or ⁇ -hydroxy- ⁇ -acryloyl-polyalkylene glycol macromonomers or mixtures thereof with the polymerization inhibitors can by determining the OH number (according to DIN 53240 determination of the number average Mn) and determined by GPC analysis with PEG calibration (determination of the molecular weight distribution).
  • the molecular weight is generally between 500 and 10,000 g / mol, preferably between 750 and 7000 g / mol.
  • the ratio of conjugated unsaturated carboxylic acid to propylene oxide, ethylene oxide units and hydroxyl end groups in the macromonomer can be determined by NMR spectroscopy.
  • the water solubility of the reaction products according to the invention can be determined by determining the cloud point in accordance with DIN 53917 in 1% aqueous solution.
  • the water-soluble reaction products obtained according to the invention in particular those of the formulas 2, 3, 4 or 5, can with a variety of radically polymerizable monomers such as styrene, vinyl acetate, acrylic acid, methacrylic acid and their alkyl esters in substance and aqueous solution by using conventional initiators of free-radical polymerization be copolymerized.
  • the resulting comb polymers with polyalkylene side chains are sterically stabilized by the polyalkylene glycol side chains and thus form stable aqueous polymer dispersions.
  • a 1 l pressure reactor is charged with 0.625 mol (90 g) of hydroxypropyl methacrylate and 0.045 g of 2,2,6,6-tetramethylpiperidine-1-oxyl and 0.045 g of the DMC catalyst described in EP-A-1 276 563.
  • the mixture is heated to 110 ° C. under nitrogen and, at a pressure of about 3 bar, an amount of 72.5 g of propylene oxide is metered in so that the heat of reaction formed can be removed.
  • the reaction of the propylene oxide recognizable by the pressure drop 560 g of ethylene oxide is metered again so that the resulting reaction heat can be dissipated.
  • the product is analyzed by means of OH number titration, NMR spectroscopy and GPC molecular weight determination.
  • a 1 l pressure reactor is charged with 0.625 mol (90 g) of hydroxypropyl methacrylate and 0.045 g of 2,2,6,6-tetramethylpiperidine-1-oxyl and 0.045 g of the DMC catalyst described in EP-A-1 276 563.
  • the mixture is heated to 120 ° C. under nitrogen and, at a pressure of about 3 bar, an amount of 72.5 g of propylene oxide is metered in so that the resulting
  • Heat of reaction can be dissipated. After the reaction of the propylene oxide visible from the pressure drop 560 g of ethylene oxide is metered again so that the resulting heat of reaction can be dissipated. After Abresure recognizable by the pressure drop to the outlet pressure, the product by OH number titration, NMR spectroscopy and GPC molecular weight determination is analyzed.
  • a 3 l pressure reactor is charged with 1 mol (144 g) of hydroxypropyl methacrylate and 0.05 g of 2,2,6,6-tetramethylpiperidine-i-oxyl and 0.15 g of the DMC catalyst described in EP-A-1 276 563.
  • the mixture is heated to 100 ° C. under nitrogen and, at a pressure of about 3 bar, an amount of 58 g of propylene oxide is metered in so that the heat of reaction formed can be removed.
  • 1994 g of ethylene oxide is again metered so that the resulting heat of reaction can be removed.
  • the product by OH number titration, NMR spectroscopy and GPC molecular weight determination is analyzed.
  • the macromonomer of Example 1 is used as coemulsifier in the emulsion polymerization of n-butyl acrylate, methyl methacrylate and methacrylic acid in aqueous liquor.
  • the in situ forming copolymer of butyl acrylate, methyl methacrylate, methacrylic acid and the product of Example 1 has good emulsion stabilizing properties.
  • a monomer emulsion is metered in under nitrogen consisting of 470 ml of water, 16 g of sodium alkylsulfonate, 8 g of the product of Example 1, 440 g of n-butyl acrylate, 440 g of methyl methacrylate, 8.8 g of methacrylic acid and 2.85 G Ammonium peroxodisulfate exists.
  • the polymer dispersion is cooled and adjusted to a neutral pH.
  • the in situ forming copolymer of butyl acrylate, methyl methacrylate, methacrylic acid and the product of Example 1 is a stable aqueous polymer dispersion.
  • Example 5 The macromonomer of Example 2 is used as coemulsifier in the
  • Emulsion polymerization of a styrene / acrylate dispersion used.
  • Emulsion polymerization started. At a reaction temperature of 80 0 C, the remaining monomer emulsion (1) and the initiator solution (2) are metered in over 3 hours under cooling. The mixture is then heated for a further hour and the product is neutralized to pH 6 to 8.
  • the result is a stable polymer dispersion having a solids content of 50%.

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von wasserlöslichen Blockalkoxylaten α,ß-ethylenisch ungesättigter Mono- oder Dicarbonsäuren, indem die α,ß-ethylenisch ungesättigte Mono- oder Dicarbonsäure oder ein alkoxylierbares Derivat davon zunächst mit 1 bis 4 mol Propylenoxid pro Carbonsäuregruppe alkoxyliert wird, und nach dieser Propoxylierung eine weitere Alkoxylierung mit Ethylenoxid oder einem Gemisch von Alkylenoxiden, das mindestens 70 mol-% Ethylenoxid enthält, durchgeführt wird, so dass der nach DIN 53917 bestimmte Trübungspunkt des erhaltenen Blockalkoxylats mindestens bei 75°C liegt, wobei die Alkoxylierungen in Gegenwart von DMC-Katalysatoren erfolgen.

Description

Beschreibung
Wasserlösliche hydroxyfunktionelle, copolymerisierbare Polyalkylenglykol- Makromonomere, deren Herstellung und Verwendung
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von wasserlöslichen Ω-Hydroxy-Polyalkylenglykolblockcopolymeren, die α-ständig eine ungesättigte, konjugierte Estergruppe aufweisen, insbesondere von Ω-Hydroxy-methacryloyl- oder Ω-Hydroxy-α-acryloyl- Polyalkylenglykolblockcopolymeren und deren Verwendung als copolymerisierbare Makromonomere zur Emulgierung, Dispergierung und sterischen Stabilisierung von Polymeren in wässrigen Systemen.
Polyalkylenglykole werden großtechnisch üblicherweise durch anionische, alkalisch katalysierte, ringöffnende Polymerisation von Epoxiden (Ethylenoxid, Propylenoxid, Butylenoxid) unter hohem Druck und hoher Temperatur hergestellt (siehe Ulimann Encyclopedia of Industrial Chemistry 5. ed VCH, ISBN 3-527- 20100-9). Mit Alkoholen R'-OH als Initiator, wie zum Beispiel mit Methanol, entstehen so sehr spezifisch entsprechend Gleichung 1 α-Methoxy-Ω-hydroxy- Polyalkylenglykole
N iNaaOυHti R I
UH
R1— OH + n H2C-CHR R IX^ *O7n Gleichung 1
Mit Carbonsäuren als Initiator findet eine ähnliche Reaktion gemäß Gleichung 2 statt.
R Gleichung 2
Figure imgf000002_0001
Die so entstehenden Ester unterliegen allerdings im alkalischen Reaktionsmedium einer parallel zur ringöffnenden Polymerisation verlaufenden permanenten Hydrolyse- und Umesterungsreaktion gemäß Gleichung 3, die zu einem Produktgemisch von α-Ω-Dihydroxy-Polyalkylenglykolen, α-Ω-Di-Estern und dem Zielprodukt (Verbindung 1 ) führt.
Figure imgf000003_0001
Polyalkylenglykol-Makromonomere sind solche Polyalkylenglykole, die zusätzlich zur Polyetherkette eine reaktive, copolymerisierbare, endständige Doppelbindung enthalten. Sie werden zur Herstellung von so genannten Kammpolymeren mit Polyalkylenglykolseitengruppen (DE-A-100 17 667) oder als reaktive Emulgatoren in der Emulsionspolymerisation (EP-A-1 531 933) eingesetzt. Die dort beschrieben Ω-Hydroxy-α-Allyloxy- bzw. Ω-Hydroxy-α-Vinyloxy-funktionellen Polyalkylenglykol-makromonomere weisen jedoch den Nachteil auf, dass sie bedingt durch die ungünstige Copolymerisationsneigung mit vielen gängigen Comonomeren nicht als hydroxy-funktionelle Makromonomere einsetzbar sind. Allgemeiner einsetzbar und damit wesentlich vorteilhafter sind Ω-hydroxy- funktionelle Polyalkylenglykol-Makromonomere, die in α-Stellung die Estergruppe einer konjugierten ungesättigten Säure aufweisen, insbesondere Ω-hydroxy- funktionelle -α-methacryloyl- oder α-acryloyl-Polyalkylenglykol-Makromonomere. Unter konjugiert ungesättigten Carbonsäuren und Estern werden Verbindungen mit einer C=C-Doppelbindung in ct,ß-Position zum C-Atom der Carbonylgruppe verstanden, die also das folgende Strukturelement enthalten:
Figure imgf000003_0002
Die Herstellung solcher Ω-hydroxy-funktioneller Polyalkylenglykol- Makromonomere in reiner Form, die in α,ß-Stellung den Ester einer konjugierten ungesättigten Säure aufweisen, ist jedoch aus zwei Gründen schwierig.
Erstens sind bedingt durch die unter Gleichung 3 beschriebene
Umesterungsreaktion solche Makromonomere rein nicht mittels anionisch, alkalisch katalysierter, ringöffnende Polymerisation von Epoxiden direkt zugänglich. Es wurden daher verschieden Versuche mit nicht-alkalischen Katalysatoren unternommen, Polyalkylenglykolester-Makromonomere (Verbindung 1) herzustellen. Insbesondere wurden Chrom- und Zinnsalze (JP-2006-070147, JP-2003073331 , CAS AN 103: 215878), Bortrifluorid- (US-3 689 532) und ZnCo-Komplexe (US-6 034 208) als Katalysatoren vorgeschlagen um vor allen Polyalkylenglykol-Makromonomere ausgehend von ungesättigten Carbonsäuren wie Methacrylsäure, Acrylsäure oder Maleinsäure herzustellen (JP-2006-070147). Dabei konnten jedoch entweder nur niedrige Molmassen erreicht werden oder aber die Produkte enthielten bedingt durch stattfindende Umesterungsreaktionen gemäß Gleichung 3 einen hohen Anteil an vernetzend wirkendem Di-Ester (Ali, Stover, Macromolecules pp. 5219 ff, VoI 37, 2004).
Zweitens weisen Derivate von konjugierten, ungesättigten Säuren, insbesondere die Acryl- und Methacrylsäurederivate, eine große Neigung zur Homopolymerisation auf, so dass die Umsetzungen mit den Alkylenoxiden wenn überhaupt nur in Gegenwart von hohen Konzentrationen an Polymerisationsinhibitoren durchgeführt werden können (JP-63284146,
JP-2005-281274). Nach dem Stand der Technik werden dazu phenolische oder aminische Polymerisationsinhibitoren wie beispielsweise Hydroquinon, Methylhydroquinon, tert-Butylhydroquinon, Benzoquinon, BHA, p-Phenylendiamin oder Phenothiazin eingesetzt. Diese Inhibitoren reagieren durch Ihre aktiven OH- oder NH-Endgruppen ihrerseits mit den Epoxiden zu anderen unerwünschten Nebenprodukten. Häufig ist ihre Inhibitorwirkung auch nicht ausreichend um die Polymerisation der konjugierten ungesättigten Säure-/Estergruppe vollständig zu verhindern. Man erhält deshalb bei Umsetzungen mit Alkylenoxiden Makromonomere, die mit hochmolekularen Polymeren verunreinigt sind, die durch Polymerisation an der konjugierten ungesättigten Säurengruppe entstanden sind. Solche hochpolymeren Verunreinigungen sind mittels
Gelpermeationschromatographie (GPC) als Komponenten mit Molmassen größer 20000 g/mol zu erkennen.
EP-A-1 012 203 beschreibt die Umsetzung von Propylenoxid und Gemischen aus Propylenoxid und Ethylenoxid mit konjugiert ungesättigten Carbonsäuren und Hydroxyestern in Gegenwart von so genannten DMC-Katalysatoren (DMC- Doppel-Metal-Cyanid-Katalysatoren).
Die Verwendung der DMC-Katalysatoren vermeidet die Nachteile von Gleichung 3, da die Reaktion nicht in alkalischem Medium abläuft und so die Hydrolyse der entstehenden Ester nicht katalysiert wird. DMC-Katalysatoren kommen jedoch industriell ausschließlich zur Polymerisation von Propylenoxid oder Propylenoxid- reichen Alkylenoxidgemischen mit mehr als 50 mol-% Propylenoxid zum Einsatz, so dass so im Allgemeinen nur wasserunlösliche oder schlecht wasserlösliche Polyalkylenglykole hergestellt werden können (EP-O 992 523 A1 ). Um Polyaikylenglykolmakromonomere mit guten Eigenschaften bei Emulgierung und Stabilisierung herzustellen, müssen diese eine gute Wasserlöslichkeit aufweisen. Dies erreicht man dadurch, dass der Anteil an
Ethylenoxidmonomereinheiten bei mindestens 70 mol-%, idealerweise bei mindestens 80 mol-% liegt. Der hohe Anteil Ethylenoxideinheiten bewirkt einen hohen Trübungspunkt von mindestens 75°C, bestimmt in 1 %iger wässriger Lösung gemäß DIN 53917, und damit gute Wasserlöslichkeit. EP-A-1 012 203 beschreibt hingegen nur α-Methacryloyl- bzw. α-Acryloylmakromonomere, die mit reinen Propylenoxidmonomereinheiten oder mit einem statistischen Gemisch aus Ethylenoxid- und Propylenoxidmonomereinheiten mit weniger als 50 mol-% Ethylenoxid hergestellt sind. Solche Makromonomere weisen zu niedrige Trübungspunkte, das heißt zu geringe Wasserlöslichkeit auf, um ausreichende Dispergier- und Emulgiereigenschaften in wässrigen Lösungen zu erreichen. Die Herstellung von rein auf Ethylenoxid basierenden Makromonomeren oder die Herstellung von Blockcopolymeren mit einem überwiegenden Anteil von Ethylenoxid gelingt nach EP-A-1 012 203 nicht. Eine andere Methode um α-Methacryloyl- oder α-Acryloyl-Polyalkylenglykol- makromonomere herzustellen ist deshalb der aufwendigere, zweistufige Prozess, zunächst α-Methoxy-Ω-hydroxy-Polyalkylenglykole (M-PEGs) herzustellen und diese durch Veresterung mit Acrylsäure oder Methacrylsäure in die α-Methoxy-Ω- Methacryloyl-Polyalkylenglykolester (WO-A-00/012 577, EP-A-O 965 605) überzuführen (Gleichung 4)
H3C-OH n H2
Figure imgf000006_0001
Gleichung 4
Figure imgf000006_0002
Diese α-Methoxy-Ω-Methacryloyl-Polyalkylenglykol-makromonomere enthalten jedoch keine freien Hydroxygruppen mehr, weisen deshalb auch ungünstigere Wasserlöslichkeit und schlechtere Emulgiereigenschaften auf und sind bedingt durch die endständige nicht-reaktive Ω-Methoxy-Gruppe keinen weiteren Reaktionen mehr zugänglich.
Aufgabe der vorliegende Erfindung war es deshalb, ein Verfahren zur Herstellung von gut wasserlöslichen Ω-hydroxyl-funktionellen Polyalkylenglykol- Makromonomeren, die in α-Stellung die Struktureinheit eines konjugierten, ungesättigten Carbonsäureesters tragen, insbesondere von gut wasserlöslichen Ω-Hydroxy-α-methacryloyl- oder Ω-Hydroxy-α-acryloyl-Polyalkylenglykolen zu finden, bei dem nicht die Hydrolyse- und Umesterung gemäß Gleichung 3 stattfindet, so dass reine lineare Ω-Hydroxy-α-(meth)acryloyl-Polyalkylenglykole mit einem Ethylenoxidanteil von mindestens 70 mol-% entstehen. Insbesondere war es Aufgabe der vorliegenden Erfindung, gut wasserlösliche lineare Ω-Hydroxy-α-(meth)acryloyl-Polyalkylenglykolblockcopolymere mit langen Polyethylenoxidblöcken auf diese Weise herzustellen. Es wurde überraschenderweise gefunden, dass im Gegensatz zu den Beschreibungen in EP-A-1 012 203 und EP-A-O 992 523 die Herstellung von gut wasserlöslichen Ω-Hydroxy-α-methacryloyl- oder Ω-Hydroxy-α-acryloyl- Polyalkylenglykol-makromonomeren mit DMC-Katalysatoren möglich ist. Bei der Herstellung von Makromonomeren mit einem Ethylenoxidanteil von mehr als 70 mol-% in Gegenwart eines DMC-Katalysators und von Polymerisationsinhibitoren geht man von konjugierten ungesättigten Säuren oder konjugierten ungesättigten Hydroxyalkylestem aus. Die Polymerisation des Alkylenoxids erfolgt zweistufig, so dass Blockcopolymere entstehen. Im ersten Schritt werden die konjugierten ungesättigten Säuren oder konjugierten ungesättigten Hydroxyalkylester in Gegenwart von DMC-Katalysator und Polymerisationsinhibitor mit ein bis vier Einheiten Propylenoxid umgesetzt, woran anschließend ein Polyetherblock mit einem hohen Ethylenoxid-Anteil anpolymerisiert wird. Dadurch kann bezogen auf das Makromonomermolekül der Anteil an Polyethylenoxidgruppen auf mehr als 70 mol-% erhöht und damit die Wasserlöslichkeit und der Trübungspunkt der Makromonomeren erhöht werden.
Gegenstand der Erfindung ist somit ein Verfahren zur Herstellung von wasserlöslichen Blockalkoxylaten α,ß-ethylenisch ungesättigter Mono- oder Dicarbonsäuren, indem die α,ß-ethylenisch ungesättigte Mono- oder
Dicarbonsäure oder ein alkoxylierbares Derivat davon zunächst mit 1 bis 4 mol Propylenoxid pro Carbonsäuregruppe alkoxyliert wird, und nach dieser Propoxylierung eine weitere Alkoxylierung mit Ethylenoxid oder einem Gemisch von Alkylenoxiden, das mindestens 70 mol-% Ethylenoxid enthält, durchgeführt wird, so dass der nach DIN 53917 bestimmte Trübungspunkt des erhaltenen Blockalkoxylats mindestens bei 75°C liegt, wobei die Alkoxylierungen in Gegenwart von DMC-Katalysatoren erfolgen.
Gegenstand der Erfindung ist vorzugsweise ein Verfahren zur Herstellung der Verbindungen der Formeln 2, 3, 4 oder 5. Das bevorzugte erfindungsgemäße Verfahren umfasst eine zweistufige Umsetzung der entsprechenden konjugierten α,ß-ethylenisch ungesättigten Säuren oder konjugierten α,ß-ethylenisch ungesättigten Hydroxyalkylester bzw. Hydroxyalkylethoxy- und Hydroxyalkylpropoxyester mit zunächst 1 bis 4 mol Propylenoxid in Stufe 1 und sodann Ethylenoxid oder einem Gemisch aus mindestens 70 mol-% Ethylenoxid und Propylenoxid in Stufe 2 katalysiert durch einen DMC-Katalysator.
Weiterhin vorzugsweise wird in Gegenwart von Polymerisationsinhibitoren gearbeitet.
Die Verbindungen der Formeln 2, 3, 4 und 5 sind
Verbindung 2)
Figure imgf000008_0001
(Verbindung 3)
Figure imgf000008_0002
Figure imgf000008_0003
(Verbindung 4)
Figure imgf000008_0004
(Verbindung 5)
worin k für eine Zahl von 1 bis 4, n für eine Zahl von 1 bis 3,
R, R1 unabhängig voneinander für H oder Methyl, A für C2- bis C3-Alkylen, mit mindestens 70 mol-% C2-Alkylen , und m für eine Zahl von 7 bis 500 stehen.
(A-O)n kann für reine Polyethylenoxidgruppen oder Polyethylenoxid- Propylenoxidgruppen in statistischer Anordnung mit mindestens 70 mol-% Ethylenoxid stehen.
Reaktive Derivate von α,ß-ethylenisch ungesättigten Carbonsäuren sind insbesondere deren Ester, speziell deren Hydroxyalkylester.
Geeignete konjugierte, α,ß-ungesättigte Säuren sind insbesondere Acrylsäure, Methacrylsäure, Fumarsäure, Maleinsäure, Itaconsäure. Geeignete konjugierte, ungesättigte Hydroxyalkylester bzw. Hydroxyalkylethoxy- und Hydroxyalkylpropoxyester sind insbesondere Hydroxyethylmethacrylat, Hydroxypropylmethacrylat, Hydroxyethylacrylat, Hydroxypropylacrylat,
Diethylenglykol-monomethacrylsäureester, Diethylenglykol-monoacrylsäureester, Dipropylenglykol-monomethacrylsäureester, Dipropylenglykol- monoacrylsäureester, Triethylenglykol-monomethacrylsäureester, Triethylenglykol-monoacrylsäureester, Tripropylenglykol- monomethacrylsäureester, Tripropylenglykol-monoacrylsäureester.
Als Polymerisationsinhibitoren können 2,2,6,6-Tetramethylpiperidin-1-oxyl oder 4-Hydroxy-2,2,6,6-Tetramethylpiperidin-1-oxyl oder andere bekannte Polymerisationsinhibitoren verwendet werden, die die Bildung von Hochpolymeren durch Polymerisation der konjugierten ungesättigten Säure-/Estergruppe in den Edukten und den copolymerisierbaren Makromonomeren während ihrer Herstellung durch Anlagerung der Alkylenoxide bei technisch interessanten Reaktionstemperaturen von 80 - 13O0C wirksam verhindern.
Die erfindungsgemäße Umsetzung der konjugierten ungesättigten Säuren oder reaktiven Derivate wie konjugierte ungesättigte Hydroxyalkylester mit Alkylenoxiden muss in Gegenwart von so genannten DMC-Katalysatoren (Doppel- Metal-Cyanid-Katalysatoren) erfolgen. Diese Katalysatoren haben zum Beispiel die allgemeinen Formel Zn3[Co(CN)6]2'xZnCl2'yH2θ«z Glyme mit x = 0,2 bis 3, y = 1 bis 10 und z = 0,5 bis 10, wie in EP-B-O 555 053 offenbart. Geeignete DMC- Katalysatoren sind in der Literatur auch mit anderen Komplexliganden bekannt. Ihre Herstellung und Zusammensetzung wird unter anderem in EP-A-1 244 519, EP-A-O 761 708, EP-A-654 302 und EP-A-1 276 563 beschrieben. Insbesondere sind die in Beispiel 2 von EP-A-1 276 563 beschriebenen DMC Katalysatoren geeignet.
Die Alkylenoxide werden in einer zweistufigen Art dosiert um Di- oder Triblockcopolymere mit unterschiedlicher statistischer Verteilung der Alkylenoxideinheiten in den Blöcken zu erzielen. Allen Blockcopolymeren ist gemeinsam, dass direkt an der konjugierten α.ß-ethylenisch ungesättigten Carbonsäure oder dem konjugierten α,ß-ethylenisch ungesättigten Hydroxyalkylester bzw. Hydroxyalkylethoxy- oder Hydroxyalkylpropoxyester zunächst 1 bis 4 MoJ Propylenoxid angelagert wird, und anschließend ein Block Ethylenoxideinheiten oder statistisch gemischte Alkylenoxideinheiten mit einem Ethylenoxidanteil von mindestens 70 mol-% folgt. Die Umsetzung der konjugierten α,ß-ethylenisch ungesättigten Carbonsäure oder deren reaktiven Derivate und den Alkylenoxiden, ggf. in Gegenwart von Polymerisationsinhibitoren, erfolgt unter den üblichen Reaktionsbedingungen einer technischen, DMC-katalysierten Alkoxylierung, das heißt im Temperaturbereich 80 -1500C bevorzugt 100-1300C und Drücken zwischen 2 und 20 bar unter Stickstoff gegebenenfalls in Gegenwart von inerten, aprotischen Lösungsmitteln wie beispielsweise Toluol, XyIoI oder THF.
Entscheidend für die Herstellung qualitativ hochwertiger wasserlöslicher Makromonomere ist im erfindungsgemäßen Verfahren die Alkoxylierung mit 1 bis 4 Mol Propylenoxid pro Mol α,ß-ethylenisch ungesättigten Carbonsäure oder deren reaktiven Derivate vor der anschließenden Alkoxylierung mit Ethylenoxid oder einem Gemisch von Alkylenoxiden mit mindestens 70 mol-% Ethylenoxid. Die Molmasse der erfindungsgemäßen Reaktionsprodukte wie Ω-Hydroxy-α- methacryloyl- oder Ω-Hydroxy-α-acryloyl-Polyalkylenglykol-Makromonomere bzw. deren Gemische mit den Polymerisationsinhibitoren kann mittels Bestimmung der OH-Zahl (nach DIN 53240 Bestimmung des Zahlenmittels Mn) und durch GPC- Analyse mit PEG-Eichung (Bestimmung der Molmassenverteilung) ermittelt werden. Die Molmasse liegt im Allgemeinen zwischen 500 und 10000 g/mol, bevorzugt zwischen 750 und 7000 g/mol. Das Verhältnis konjugiert ungesättigter Carbonsäure zu Propylenoxid-, Ethylenoxid-Einheiten und Hydroxylendgruppen im Makromonomer kann mittels NMR-Spektroskopie ermittelt werden. Die Wasserlöslichkeit der erfindungsgemäßen Reaktionsprodukte kann durch Bestimmung des Trübungspunkt gemäß DIN 53917 in 1 % wässriger Lösung bestimmt werden.
Die erfindungsgemäß erhaltenen wasserlöslichen Reaktionsprodukte, insbesondere die der Formeln 2, 3, 4 oder 5, können mit einer Vielzahl von radikalisch polymerisierbaren Monomeren wie beispielsweise Styrol, Vinylacetat, Acrylsäure, Methacrylsäure und deren Alkylester in Substanz und wässriger Lösung durch Verwendung gängiger Initiatoren der radikalischen Polymerisation copolymerisiert werden. Die resultierenden Kammpolymere mit Polyalkylenseitenketten sind durch die Polyalkylenglykolseitenketten sterisch stabilisiert und bilden so stabile wässrige Polymerdispersionen.
Die Erfindung und Anwendungen davon soll nun anhand von Beispielen weiter erläutert werden.
Beispiel 1 :
In einem 1 I Druckreaktor wird 0,625 mol (90 g) Hydroxypropylmethacrylat und 0,045 g 2,2,6,6-Tetramethylpiperidin-1-oxyl und 0,045 g des in EP-A-1 276 563 beschriebenen DMC-Katalysators vorgelegt. Das Gemisch wird unter Stickstoff auf eine Temperatur auf 1100C aufgeheizt und bei einem Druck von etwa 3 bar eine Menge von 72,5 g Propylenoxid so dosiert, dass die entstehende Reaktionswärme abgeführt werden kann. Nach der Abreaktion des Propylenoxids erkennbar am Druckabfall wird 560 g Ethylenoxid erneut so dosiert, dass die entstehende Reaktionswärme abgeführt werden kann. Nach der Abreaktion erkennbar am Druckabfall auf den Ausgangsdruck wird das Produkt mittels OH- Zahl-Titration, NMR-Spektroskopie und GPC- Molmassenbestimmung analysiert.
Figure imgf000012_0001
Es ist damit ein Methacrylsäureester-(PO)3(EO)2o-OH Blockcopolymer entstanden. Der Trübungspunkt gemäß DIN 53917 in 1 % wässriger Lösung betrug mehr als 95°C
Beispiel 2:
In einem 1 I Druckreaktor wird 0,625 mol (90 g) Hydroxypropylmethacrylat und 0,045 g 2,2,6,6-Tetramethylpiperidin-1-oxyl und 0,045 g des in EP-A-1 276 563 beschriebenen DMC Katalysators vorgelegt. Das Gemisch wird unter Stickstoff auf eine Temperatur auf 1200C aufgeheizt und bei einem Druck von etwa 3 bar eine Menge von 72,5 g Propylenoxid so dosiert, dass die entstehende
Reaktionswärme abgeführt werden kann. Nach der Abreaktion des Propylenoxids erkennbar am Druckabfall wird 560 g Ethylenoxid erneut so dosiert, dass die entstehende Reaktionswärme abgeführt werden kann. Nach der Abreaktion erkennbar am Druckabfall auf den Ausgangsdruck wird das Produkt mittels OH- Zahl-Titration, NMR-Spektroskopie und GPC-Molmassenbestimmung analysiert.
Figure imgf000013_0001
Es ist damit ein Methacrylsäureester-(PO)3(EO)2o-OH Blockcopolymer entstanden
Hochpolymere Anteile mit Molmassen > 10000 g/mol wie sie durch Polymerisation der konjugierten Doppelbindung der Methacrylsäuregruppe entstehen würden, sind nicht vorhanden.
Der Trübungspunkt gemäß DIN 53917 in 1 % wässriger Lösung betrug mehr als
95°C
Beispiel 3:
In einem 3 I Druckreaktor wird 1 mol (144 g) Hydroxypropylmethacrylat und 0,05 g 2,2,6,6-Tetramethylpiperidin-i-oxyl und 0,15 g des in EP-A-1 276 563 beschriebenen DMC Katalysators vorgelegt. Das Gemisch wird unter Stickstoff auf eine Temperatur auf 1000C aufgeheizt und bei einem Druck von etwa 3 bar eine Menge von 58 g Propylenoxid so dosiert, dass die entstehende Reaktionswärme abgeführt werden kann. Nach der Abreaktion des Propylenoxids erkennbar am Druckabfall wird 1994 g Ethylenoxid erneut so dosiert, dass die entstehende Reaktionswärme abgeführt werden kann. Nach der Abreaktion erkennbar am Druckabfall auf den Ausgangsdruck wird das Produkt mittels OH- Zahl-Titration, NMR-Spektroskopie und GPC-Molmassenbestimmung analysiert.
Es ist damit ein Methacrylsäureester-(PO)2(EO)37-OH Blockcopolymer entstanden
Hochpolymere Anteile mit Molmassen > 10000 g/mol wie sie durch Polymerisation der konjugierten Doppelbindung der Methacrylsäuregruppe entstehen würden, sind nicht vorhanden.
Der Trübungspunkt gemäß DIN 53917 in 1 % wässriger Lösung betrug mehr als
95°C.
Beispiel 4:
Das Makromonomer aus Beispiel 1 wird als Coemulgator bei der Emulsionspolymerisation von n-Butylacrylat, Methylmethacrylat und Methacrylsäure in wässriger Flotte verwendet. Das sich in situ bildende Copolymer aus Butylacrylat, Methylmethacrylat, Methacrylsäure und dem Produkt aus Beispiel 1 hat gute emulsionsstabilisierende Eigenschaften.
500 ml deionisiertes Wasser werden in einem Glaskolben vorgelegt und 15 g Natriumalkylsulfat, 15 g 3,75 %ige Ammoniumperoxodisulfatlösung, 11 ,5 g n-Butylacrylat, 11 ,8 g Methylmethacrylat und 0,48 g Methacrylsäure zugegeben, gerührt und unter Stickstoff auf 8O0C aufgeheizt. Über einen Zeitraum von 4 Stunden wird eine Monomeremulsion unter Stickstoff zudosiert, die aus 470 ml Wasser, 16 g Natriumalkylsulfonat, 8 g des Produkts aus Beispiel 1 , 440 g n-Butylacrylat, 440 g Methylmethacrylat, 8,8 g Methacrylsäure und 2,85 g Ammoniumperoxodisulfat besteht. Nach vollständiger Dosierung der Monomeremulsion und Nachpolymerisation von einer Stunde bei 80°C wird die Polymerdispersion abgekühlt und auf einen neutralen pH-Wert eingestellt.
Das sich in situ bildende Copolymer aus Butylacrylat, Methylmethacrylat, Methacrylsäure und dem Produkt aus Beispiel 1 ist eine stabile wässrige Polymerdispersion.
Beispiel 5: Das Makromonomer aus Beispiel 2 wird als Coemulgator bei der
Emulsionspolymerisation einer Styrol/Acrylat-Dispersion eingesetzt.
Dazu wird eine Monomerlösung (1 ) aus 332 g ml deionisiertem Wasser, 4,8 g
Natriumalkylsulfat, 15 g des Produkts aus Beispiel 2, 3,6 g
Natriumhydrogencarbonat, 216 g Styrol, 300 g n-Butylacrylat, 144 g Methylacrylat und 6,6 g Methacrylsäure hergestellt. Ebenso wird eine Initiatorlösung (2) aus
3,33 g Ammoniumperoxodisulfat und 85,5 ml deionisiertem Wasser hergestellt.
204 g deionisiertes Wasser wird in einem 2 Liter Reaktionsgefäß vorgelegt, 6,6 g des Produkts aus Beispiel 2 werden zugegeben. Unter Stickstoffatmosphäre und
Rühren wird die Mischung auf 800C aufgeheizt, dann werden 22 ml der Initiatorlösung (2) und 25 ml der Monomerlösung zugegeben und so die
Emulsionspolymerisation gestartet. Bei einer Reaktionstemperatur von 800C werden unter Kühlung die restliche Monomerlösung (1 ) und die Initiatorlösung (2) innerhalb von 3 Stunden zudosiert. Anschließend wird eine weitere Stunde geheizt und das Produkt auf pH-Wert 6 bis 8 neutralisiert.
Es entsteht eine stabile Polymerdispersion mit einem Feststoffgehalt von 50 %.

Claims

Patentansprüche:
1. Verfahren zur Herstellung von wasserlöslichen Blockalkoxylaten α,ß-ethylenisch ungesättigter Mono- oder Dicarbonsäuren, indem die α,ß-ethylenisch ungesättigte Mono- oder Dicarbonsäure oder ein alkoxylierbares Derivat davon zunächst mit 1 bis 4 mol Propylenoxid pro Carbonsäuregruppe alkoxyliert wird, und nach dieser Propoxylierung eine weitere Alkoxylierung mit Ethylenoxid oder einem Gemisch von Alkylenoxiden, das mindestens 70 mol-% Ethylenoxid enthält, durchgeführt wird, so dass der nach DIN 53917 bestimmte Trübungspunkt des erhaltenen Blockalkoxylats mindestens bei 750C liegt, wobei die Alkoxylierungen in Gegenwart von DMC-Katalysatoren erfolgen.
2. Verfahren nach Anspruch 1 , wobei das hergestellte wasserlösliche Blockalkoxylat aus den Verbindungen 2, 3, 4 oder 5 ausgewählt ist
(Verbindung 2)
Figure imgf000016_0001
<Verbindun9 3)
Figure imgf000016_0002
Figure imgf000016_0003
(Verbindung 4)
Figure imgf000017_0001
worin k für eine Zahl von 1 bis 4, n für eine Zahl von 1 bis 3,
R, R1 unabhängig voneinander für H oder Methyl,
A für C2- bis C3-Alkylen, mit mindestens 70 mol-% C2-Alkylen, und m für eine Zahl von 7 bis 500 stehen.
3. Verfahren nach Anspruch 1 und/oder 2, worin als konjugierte, α,ß-ungesättigte Säure Acrylsäure, Methacrylsäure, Fumarsäure, Maleinsäure oder Itaconsäure verwendet werden.
4. Verfahren nach Anspruch 1 und/oder 2, worin als reaktives Derivat einer konjugierten, α,ß-ungesättigte Säure Hydroxyethylmethacrylat,
Hydroxypropylmethacrylat, Hydroxyethylacrylat, Hydroxypropylacrylat, Diethylenglykol-monomethacrylsäureester, Diethylenglykol-monoacrylsäureester, Dipropylenglykol-monomethacrylsäureester, Dipropylenglykol- monoacrylsäureester, Triethylenglykol-monomethacrylsäureester, Triethylenglykol-monoacrylsäureester, Tripropylenglykol- monomethacrylsäureester, Tripropylenglykol-monoacrylsäureester verwendet werden.
5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, worin der Trübungspunkt des erhaltenen Blockalkoxylates bei mehr als 900C liegt.
6. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, worin als Polymerisationsinhibitor 2,2,6,6-Tetramethylpiperidin-i-oxyl oder 4-Hydroxy- 2,2,6, 6-Tetramethylpiperidin-1-oxyl eingesetzt werden.
7. Verfahren nach einem oder mehreren der Ansprüche 1 bis 6, welches im Temperaturbereich von 80 - 1500C durchgeführt wird.
8. Verfahren nach einem oder mehreren der Ansprüche 1 bis 7, welches bei Drücken zwischen 2 und 20 bar unter Stickstoff durchgeführt wird.
9. Verwendung der nach dem Verfahren gemäß Anspruch 1 bis 8 erhaltenen Blockalkoxylate als copolymerisierbarer Emulgator, Additiv, Emulgator oder Coemulgator zur Emulsionsstabilisierung in Emulsions- oder Suspensionspolymerisationen.
PCT/EP2007/005326 2006-10-23 2007-06-16 Wasserlösliche hydroxyfunktionelle, copolymerisierbare polyalkylenglykol-makromonomere, deren herstellung und verwendung WO2008049471A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006049804A DE102006049804A1 (de) 2006-10-23 2006-10-23 Wasserlösliche hydroxyfunktionelle, copolymerisierbare Polyalkylenglykol-Makromonomere, deren Herstellung und Verwendung
DE102006049804.6 2006-10-23

Publications (1)

Publication Number Publication Date
WO2008049471A1 true WO2008049471A1 (de) 2008-05-02

Family

ID=38432947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/005326 WO2008049471A1 (de) 2006-10-23 2007-06-16 Wasserlösliche hydroxyfunktionelle, copolymerisierbare polyalkylenglykol-makromonomere, deren herstellung und verwendung

Country Status (2)

Country Link
DE (1) DE102006049804A1 (de)
WO (1) WO2008049471A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2671893A1 (de) 2012-06-06 2013-12-11 Bayer MaterialScience AG Verfahren zur Herstellung von Omega-Hydroxy-Aminopolymeren
US8920542B2 (en) 2009-06-25 2014-12-30 Clariant Finance (Bvi) Limited Additives for inhibiting gas hydrate formation
US8920543B2 (en) 2010-06-04 2014-12-30 Clariant Finance (Bvi) Limited Additives for inhibition of gas hydrate formation
CN113831528A (zh) * 2021-11-08 2021-12-24 浙江劲光实业股份有限公司 一种聚亚烷基二醇聚醚的制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007021868A1 (de) 2007-05-10 2008-11-20 Clariant International Limited Nichtionische wasserlösliche Additive
CA2786195A1 (en) 2010-01-11 2011-07-14 Clariant Finance (Bvi) Limited Surface coatings having anti-ice properties
CN108348884A (zh) 2015-10-30 2018-07-31 科莱恩国际有限公司 具有提高的稳定性的金属分散体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0692465A1 (de) * 1994-06-30 1996-01-17 Kao Corporation Hydraulische Zusammensetzung
US5849840A (en) * 1986-11-07 1998-12-15 Nippon Gohsei Kagaku Kogyo Kabushiki Kaisha Dispersing stabilizer
WO1999010407A1 (en) * 1997-08-25 1999-03-04 Arco Chemical Technology, L.P. Preparation of functionalised polyethers
US5990232A (en) * 1997-08-25 1999-11-23 Arco Chemical Technology, L.P. Stabilizers for polymer polyols
US20020103290A1 (en) * 1999-07-13 2002-08-01 Clariant Gmbh Aqueous polymer dispersion, its preparation and use

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5849840A (en) * 1986-11-07 1998-12-15 Nippon Gohsei Kagaku Kogyo Kabushiki Kaisha Dispersing stabilizer
EP0692465A1 (de) * 1994-06-30 1996-01-17 Kao Corporation Hydraulische Zusammensetzung
WO1999010407A1 (en) * 1997-08-25 1999-03-04 Arco Chemical Technology, L.P. Preparation of functionalised polyethers
US5990232A (en) * 1997-08-25 1999-11-23 Arco Chemical Technology, L.P. Stabilizers for polymer polyols
US20020103290A1 (en) * 1999-07-13 2002-08-01 Clariant Gmbh Aqueous polymer dispersion, its preparation and use

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8920542B2 (en) 2009-06-25 2014-12-30 Clariant Finance (Bvi) Limited Additives for inhibiting gas hydrate formation
US8920543B2 (en) 2010-06-04 2014-12-30 Clariant Finance (Bvi) Limited Additives for inhibition of gas hydrate formation
EP2671893A1 (de) 2012-06-06 2013-12-11 Bayer MaterialScience AG Verfahren zur Herstellung von Omega-Hydroxy-Aminopolymeren
CN113831528A (zh) * 2021-11-08 2021-12-24 浙江劲光实业股份有限公司 一种聚亚烷基二醇聚醚的制备方法

Also Published As

Publication number Publication date
DE102006049804A1 (de) 2008-04-24

Similar Documents

Publication Publication Date Title
DE69913071T2 (de) Verfahren zur Herstellung von veresterten Verbindungen
WO2008049471A1 (de) Wasserlösliche hydroxyfunktionelle, copolymerisierbare polyalkylenglykol-makromonomere, deren herstellung und verwendung
EP3145977B1 (de) Ethoxylatherstellung unter verwendung hoch aktiver doppelmetallcyanid-katalysatoren
EP3494149B1 (de) Polyisobutengruppen tragende makromonomere und deren homo- oder copolymere
EP1824901B2 (de) Verfahren zur herstellung von reinen alpha-alkoxy-omega-hydroxy-polyalkylenglykolen
DE10211664A1 (de) Verfahren zur Herstellung hochverzweigter Polymere
EP0264841B1 (de) Copolymerisate aus hydrophoben Acrylsäure-, bzw. Methacrylsäureestern und hydrophilen Comonomeren, Verfahren zu ihrer Herstellung und ihre Verwendung als Erölemulsionsspalter
EP2443170B1 (de) Terminal ungesättigte, glycidol-basierte makromonomere, daraus erhältliche polymere, herstellung und verwendung
DE10252452B4 (de) Styroloxidhaltige Copolymere und deren Verwendung als Emulgatoren und Dispergiermittel
EP2193838B1 (de) Semikontinuierlich betriebenes Verfahren zur Herstellung von Copolymeren
EP2410009B1 (de) Reglermolekül
EP1916274A2 (de) Hydroxyfunktionelle, copolymerisierbare Polyalkylenglykol-Makromonomere, deren Herstellung und Verwendung
WO2000063264A1 (de) Copolymere mit amphiphilen untereinheiten, verfahren zu deren herstellung und deren verwendung
EP1584631B1 (de) Copolymerisierbare Polyalkylenglykol-Makromonomere, deren Herstellung und Verwendung
EP2864367B1 (de) Verfahren zur emulsionspolymerisation
US11634642B2 (en) Biodegradable surfactant
DE69918996T2 (de) Verfahren zur herstellung von allyl-/ethylenischen copolymerisaten
EP0041871B1 (de) Ungesättigte Ester von Polyäther-polyolen und ihre Verwendung als nichtionische, oberflächenaktive Mittel
WO2010003710A1 (de) Verfahren zur herstellung von polyalkylenglykoldi(meth)acrylaten
WO2022258570A1 (de) Verfahren zur herstellung von polyoxymethylen-polyoxyalkylen-copolymeren
EP1717259A1 (de) Copolymerisierbare Polyalkylenglykol-Makromonomere, deren Herstellung und Verwendung
WO2021122402A1 (de) Verfahren zur herstellung von polyoxymethylen-polyoxyalkylen-copolymeren
WO2021249905A1 (de) Verfahren zur herstellung von polyoxymethylen-polyoxyalkylen-copolymeren
WO2006089650A1 (de) Verfahren zur herstellung von reinem alpha-phenoxy-omega-hydroxy- polyalkylenglykolen
DE2506803A1 (de) Verbindungen von polymerisaten von tertiaer alkylglycidylaethern und verfahren zu ihrer herstellung

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07764692

Country of ref document: EP

Kind code of ref document: A1