WO2008048132A1 - Procédé pour fabriquer une matière hautement dispersée, prioritairement pour la fabrication de revêtements hydro-isolants, antibruits et de sports - Google Patents

Procédé pour fabriquer une matière hautement dispersée, prioritairement pour la fabrication de revêtements hydro-isolants, antibruits et de sports Download PDF

Info

Publication number
WO2008048132A1
WO2008048132A1 PCT/RU2006/000537 RU2006000537W WO2008048132A1 WO 2008048132 A1 WO2008048132 A1 WO 2008048132A1 RU 2006000537 W RU2006000537 W RU 2006000537W WO 2008048132 A1 WO2008048132 A1 WO 2008048132A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
crumb
thermoplastic
mixture
processing
Prior art date
Application number
PCT/RU2006/000537
Other languages
English (en)
French (fr)
Inventor
Vadim Gennadievich Nikol'skii
Irina Aleksandrovna Krasotkina
Tatiana Vladimirovna Dudareva
Original Assignee
Institut Himicheskoy Fiziki Im. N.N.Semenova Rossiyskoy Akademii Nauk
Obschestvo S Ogranichennoy Otvetstvennostju 'noviy Kauchuk'
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut Himicheskoy Fiziki Im. N.N.Semenova Rossiyskoy Akademii Nauk, Obschestvo S Ogranichennoy Otvetstvennostju 'noviy Kauchuk' filed Critical Institut Himicheskoy Fiziki Im. N.N.Semenova Rossiyskoy Akademii Nauk
Priority to PCT/RU2006/000537 priority Critical patent/WO2008048132A1/ru
Publication of WO2008048132A1 publication Critical patent/WO2008048132A1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L19/00Compositions of rubbers not provided for in groups C08L7/00 - C08L17/00
    • C08L19/003Precrosslinked rubber; Scrap rubber; Used vulcanised rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the invention relates to the field of processing of polymeric materials, in particular to methods for producing compositions of macromolecular substances, and can be used to obtain highly dispersed material based on rubber crumb and thermoplastics, suitable for the manufacture of various materials, including waterproofing, soundproofing and sports coatings.
  • the composition contains components in the following ratio, wt.%: Styrene-butadiene rubber 5-15, low-density polyethylene 5-20, petroleum bitumen 8-30, carbon black 10-20, mineral filler 3-15, rubber flour 10- 45, petroleum softener PH-6PI 5-15, stearic acid 0-5, resin 0-10, paraffin 0-4. (Patent of the Russian Federation N ° 2 142969C1, published on December 20, 1999.). The method of preparation of the composition allows to simplify the technological scheme of obtaining a waterproofing material without improving the technical properties of insulating materials.
  • this method provides a composition in a batch mode, which reduces its effectiveness.
  • the preparation of the composition is carried out at very low shear stresses, which negatively affects the uniformity of mixing and, therefore, the physico-mechanical properties of waterproofing materials obtained on the basis of this composition.
  • the particle size of rubber flour is not specified, but it is well known that the particle size of rubber has a decisive influence on the properties of the composition.
  • the composition contains rubber crumb with particle size predominantly up to 1.0 mm and a polyolefin or a mixture of polyolefins with the following content of components per 10 parts per hour, the main composition: rubber crumb - 40-90 parts by mass, polyolefin (mixture of polyolefins) 10-part.
  • the preparation of the composition is carried out by mixing the components at a temperature in the range from (Tm + 5) ° C to (Tm + 55) ° C, where Tm is the melting temperature of the thermoplastic. Then, the resulting composition is molded to obtain a roll stock of material for protective coatings. (Patent of the Russian Federation N ° 2 129133C1, published on 04/20/1999.).
  • the method allows for the possibility of introducing into the composition of the material the most massive polymer waste: secondary polyolefins and products of processing depreciated tires and to obtain materials with sufficiently high operational or consumer properties.
  • this method of obtaining the composition is carried out by mechanical mixing of the components of the composition at very low shear stresses in a paddle mixer at a temperature when the polyolefin is in a melt state and the rubber particles freely move in the mass of the molten polyolefin and do not change in structure.
  • the consequence of this is the insufficient adhesion strength of the rubber and polyolefin particles due to the small contact area, which negatively affects the physicomechanical characteristics of the coatings obtained on the basis of this composition: tensile strength is only 3.4 MPa, and elongation at break is 90% .
  • thermoplastic composition comprising a mixture of 10-90 parts by weight milled vulcanized rubber with a particle size of less than 1.5 mm and 90-10 wt.h. one or more polyolefins and at least 0.5 parts by weight an alpha olefin copolymer, wherein said alpha olefin copolymer is present in an amount sufficient to increase the ultimate tensile elongation of the pressed composition by 25%.
  • US patent 6031009 published 02.29.2000.
  • the preparation of the composition is carried out using a device that provides sufficiently effective mixing of the components at the required temperature, for example using a Banbury mixer or extruder.
  • the mixing of the components of this composition is carried out at sufficiently low shear stresses, the contact area of the polyolefin with rubber particles does not increase, since the surface of the rubber particles does not change during mixing in the molten polyolefin.
  • An increase in the ultimate elongation at break of the pressed composition by 25% is due to the introduction of the third component, the alpha olefin copolymer, which has an affinity for both rubber and polyolefins, into the specified composition.
  • an increase of this indicator by 25% is not very significant.
  • the closest to the proposed method is a method of producing a rubber mixture to obtain a waterproofing material.
  • waste rubber vulcanizates and a primary polyolefin selected from the group are used: polyethylene, polypropylene, 1,4-cis-polybutadiene, 1,4-cis-polyisoprene.
  • the primary polyolefin and waste rubber vulcanizates are taken in a quantitative ratio (20-10) :( 80-90) wt.%, Respectively, and the process of obtaining the mixture is carried out by grinding it into powder in an extrusion apparatus under the influence of compression, shear and temperature. (Patent of the Russian Federation N ° 2 123935C1, published on December 27, 1998.).
  • the prepared rubber mixture is formed by calendering.
  • the disadvantages of this method include low strength (not more than 5 MPa), as well as low deformability (not more than 200%) of the materials obtained by molding mixtures. The most likely reason for this is too low shear stress in the extrusion apparatus used.
  • the production of high-strength materials based on mixtures of the indicated type with a polyolefin content of more than 10-15 mass% cannot, in principle, be carried out by single-stage shear grinding. Grinding high-strength rubber in a polyolefin medium at low shear stresses leads to simple crushing of rubber crumb without the formation of an active particle surface. As a result, the resulting mixtures are characterized by insufficient uniformity in particle size, weak adhesion at smooth contact boundaries, which leads to insufficient high physical, mechanical and operational characteristics of the final material.
  • the objective of the invention is to develop a method for producing highly dispersed material based on rubber crumb and thermoplastic in a wide range of component ratios with a high degree of homogeneity of the mixture, suitable for producing mainly waterproofing, soundproofing and sports coatings with high physical, mechanical and operational characteristics.
  • the problem is solved by the method of obtaining highly dispersed material based on rubber crumb and thermoplastics, including the processing of rubber crumb with thermoplastics in a rotary type device for high-temperature shear grinding during heating by simultaneously applying shear stress and pressure to the processed material. Processing is carried out in two stages. First, at the first stage, rubber crumb or a mixture of rubber crumb is processed with at least one thermoplastic with a ratio of rubber lining: thermal layer (mixture of thermoplastics) (mass%) equal to (99.5-90.0) :( 0.5 -10.0), under conditions providing high-temperature shear grinding of rubber crumb.
  • the processing of the product obtained at the first stage is carried out in the presence of a thermoplastic or a mixture of thermoplastics with the ratio obtained at the first stage of the product-thermoplast (mixture of thermoplastics) (mass%), equal to (2-90): (98-10), conditions providing high-temperature shear grinding of thermoplastics (mixture of thermoplastics).
  • the particle size of the processed rubber crumb and / or thermoplastic, in at least one dimension can be no more than 10 mm.
  • processing in the first stage can be carried out with a shear stress of 10-70 N / mm, and in the second stage with a shear stress of 0.5-25 N / mm 2 .
  • rubber crumb a crumb of rubber from waste rubber products based on isoprene, butadiene, butadiene-styrene, butadiene-nitrile, natural, carboxylate, silicone, polyisobutylene, polychloroprene rubber, as well as mixtures thereof.
  • rubber crumb of tire rubber based on isoprene, butadiene-styrene or natural rubber, and also mixtures thereof, including crumb rubber from worn tires reinforced with synthetic cord can be used as rubber crumb, and the processing at the first stage can be carried out at a temperature of 140-190 0 C.
  • crumb from rubber waste based on ethylene propylene diene rubber can be used as rubber crumb, and at the same time, processing at the first stage can be carried out at a temperature of 180-250 0 C.
  • thermoplastic in the method, low pressure polyethylene, high pressure polyethylene, polypropylene, divinyl styrene copolymer, polyvinyl chloride, polystyrene, ethylene vinyl acetate copolymer, mixtures or wastes thereof can be used, and at the same time, processing in the second stage can be carried out at a temperature 70-150 0 C.
  • thermoplastics in the form of granules, crushed chips, chopped film, tangled fibers can be used.
  • a rotary type device for high-temperature shear grinding a device can be used according to RF Patent JNs 2173634 or RF Patent JC ° 2173635 or RF Patent JVb 2198788, as well as some types of twin-screw extruders.
  • the processing of rubber crumb or a mixture of rubber crumb with at least one thermoplastic in the first and / or second stage can be carried out in the presence of target additives, and mineral filler, plasticizer, dye and other additives can be used as target additives.
  • a rotary type device for high temperature shear grinding (Engineering Engineering. 1998. JVa 4 (18), c.c.94-101) implements the process of grinding rubber and other polymeric materials in a continuous mode.
  • the device contains a grinding unit with a working body grinding
  • the rotor which is installed in relation to the camera body of the node used grinding with an annular gap.
  • the processed material is subjected to compression, deformation by shear and heating in the indicated annular gap.
  • the values of pressure, shear stress and temperature reach optimal critical values, multiple cracking of the material occurs, its destruction and transformation into a finely divided powder.
  • the proposed method for producing highly dispersed material based on rubber crumb and thermoplastics is carried out in two stages as follows.
  • rubber crumb or a mixture of rubber crumb and thermoplastic (mixture of thermoplastics) in the ratio of rubber cover: thermoplastic (mixture of thermoplastics) (mass%) equal to (99.5-90.0) is poured into the loading hole of a device for high-temperature shear grinding; : (0.5-10.0).
  • the components of the mixture can be poured at the same time using a two-armed dosimeter, or a coarse heterogeneous mixture can be prepared in advance in any mixer for dry mixing.
  • the material that is poured into the loading hole is subjected to shear stress and pressure at the same time, as a result of which the material is heated, and the material is processed under conditions that provide high-temperature shear grinding of crumb rubber. Then, the product obtained at the first stage and thermoplastic (or a mixture of thermoplastics) in the ratio (2-90) :( 98-10) (mass%) simultaneously and uniformly using a two-strand dosing device (or by preparing a rough heterogeneous mixture in advance in a dry mixing apparatus) fall asleep in the loading hole of the device for high-temperature shear grinding.
  • thermoplastics thermoplastics mixture
  • the result is a highly dispersed composite material, characterized by a high degree of homogeneity of the mixture, and the powder particles of this material have a highly developed surface.
  • the processing of rubber crumb or a mixture of rubber crumb with at least one thermoplastic can be carried out in the presence of target additives, which are used as mineral filler, plasticizer, dye.
  • target additives which are used as mineral filler, plasticizer, dye.
  • Such additives can be introduced into the loading opening of the device for high-temperature shear grinding, either using an additional metering device, or a mixture of this additive with any component of the mixture is preliminarily prepared.
  • thermoplastics mixture of thermoplastics loaded in the second stage
  • a highly dispersed composite material is formed (maximum particle size less than 300 microns), characterized by a high NOSTA mixture.
  • Each powder particle of the obtained highly dispersed mixed material is an agglomerate, consisting of very fine fragments of rubber and thermoplastic well mixed with each other (mixture of thermoplastics). Moreover, such a particle is characterized by a fairly strong contact interaction between these fragments.
  • the resulting highly dispersed mixed material is easily processed to obtain any film, roll materials or products based on it. So, for example, to obtain waterproofing, soundproofing and sports coatings, the obtained finely dispersed composite material is subjected to molding by pressing or followed by slow cooling under pressure, or by calendering on a cascade of several calendars with a gradual decrease in temperature from 150 to 80 0 C, or a finely dispersed mixed material is dissolved in hot bitumen, followed by molding. Coatings obtained on the basis of a highly dispersed mixed material have high physical, mechanical and operational characteristics.
  • Example 1 The following are examples that illustrate but do not exhaust the proposed method for producing highly dispersed materials based on crumb rubber and thermoplastics.
  • Example 1 The following are examples that illustrate but do not exhaust the proposed method for producing highly dispersed materials based on crumb rubber and thermoplastics.
  • the specified mixture is processed at a shear stress of 37 N / mm 2 . Under these conditions, the processed material is heated and crushed at a temperature of 170 ° C.
  • LDPE thermoplastic PTP 2g / 10min is introduced into the product obtained at the first stage in the ratio of the obtained product / thermoplastic 20/80 (mass%) and processed in a device for high-temperature shear grinding at a shear stress of 10 N / mm
  • the components of the processed material are heated, mixed and co-milled at a temperature of 95 ° C.
  • a highly dispersed mixed material based on crumb rubber and LDPE with a temperature of 34 ° C is poured out of the discharge opening of the specified device, which after sieving on a sieve with a mesh size of 0.3 mm gives residue less than 2 mass%.
  • the obtained highly dispersed mixed composite material is characterized by a high homogeneity of the components, and the powder particles of this material have a highly developed surface. Then the obtained material is subjected to pressing at a temperature of 150 0 C and a pressure of 10 MPa followed by slow cooling under pressure.
  • the molded material has the following physical and mechanical characteristics: tensile strength of 8.2 MPa and elongation of 300%. Examples 2-15.
  • the preparation of finely dispersed material is carried out analogously to example 1. Pressing the obtained material is also carried out under the conditions of example 1.
  • the name of the processed material, the ratio of rubber crumb and thermoplastic, the parameters of the process in the first and second stages (shear stress, temperature), as well as physico-mechanical characteristics of the pressed fine material are given in the table.
  • the proposed method for producing a highly dispersed composite material based on crumb rubber and thermoplastic allows to obtain a mixed material in a wide range of component ratios with a high degree of mixture uniformity.
  • the finely dispersed material obtained by the proposed method makes it possible to produce high-quality coatings on its basis, mainly waterproofing, soundproofing and sports coatings, with high physical, mechanical and other operational characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

Способ получения высокодисперсного материала для получения, преимущественно гидроизоляционных, шумозащитных и спортивных покрытий.
Изобретение относится к области переработки полимерных материалов, в частности к способам получения композиций высокомолекулярных веществ, и может быть использовано для получения высокодисперсного материала на основе резиновой крошки и термопластов, пригодного для изготовления различного рода материалов, в том числе гидроизоляционных, шумозащитных и спортивных покрытий. Известен способ приготовления композиции для гидроизоляционных материалов на битуминозно-полимерной основе, включающий единовременную загрузку и смешение компонентов композиции при температуре не более 15O0C в тихоходных или скоростных резиносмесителях периодического действия. Композиция содержит компоненты при следующем соотношении, мacc.%: бутадиен-стирольный каучук 5-15, полиэтилен высокого давления низкой плотности 5-20, нефтяной битум 8-30, технический углерод 10-20, минеральный наполнитель 3-15, резиновая мука 10-45, нефтяной мягчитель ПH-6ПI 5-15, стеариновая кислота 0-5, смола 0-10, парафин 0-4. (Патент Российской федерации N°2 142969C1, опубликован 20.12.1999.). Способ приготовления композиции позволяет упростить технологическую схему получения гидроизоляционного материала без улучшения технических свойств изоляционных материалов.
Однако указанный способ обеспечивает получение композиции в периодическом режиме, что снижает его эффективность. В указанном способе приготовление композиции осуществляется при очень низких напряжениях сдвига, что отрицательно сказывается на однородности смешения и, следовательно, на физико-механических свойствах гидроизоляционных материалов, полученных на основе данной композиции. Кроме того, не конкретизируется размер частиц резиновой муки, а хорошо известно, что размер частиц резины оказывает решающее влияние на свойства композиции. Известен способ получения композиции на основе каучуксодержащих отходов и термопластов, которая пригодна к формованию рулонной заготовки при получении материала для защитных покрытий строительных сооружений и конструкций. Композиция содержит резиновую крошку с размером частиц преимущественно до 1,0 мм и полиолефин или смесь полиолефинов при следующем содержании компонентов на ЮОмас.ч, основной композиции: резиновая крошка - 40-90мac.ч., полиолефин (смесь полиолефинов) 10-бOмac.ч. Получение композиции осуществляют путем смешения компонентов при температуре в интервале от (Tпл+5)°C до (Tпл+55)°C, где Тпл - температура плавления термопласта. Затем осуществляют формование полученной композиции для получения рулонной заготовки материала для защитных покрытий. (Патент Российской федерации N°2 129133C1, опубликован 20.04.1999.). Способ позволяет осуществить возможность введения в состав материала наиболее массовых полимерных отходов: вторичных полиолефинов и продуктов переработки амортизированных шин и получать материалы с достаточно высокими эксплуатационными или потребительскими свойствами.
Однако указанный способ получения композиции осуществляется путем механического смешения компонентов композиции при очень низких напряжениях сдвига в лопастном смесителе при температуре, когда полиолефин находится в состоянии расплава, а резиновые частицы при этом свободно перемещаются в массе расплавленного полиолефина и не изменяются по своей структуре. Следствием этого является недостаточная прочность сцепления частиц резины и полиолефина из-за небольшой площади контакта, что отрицательно сказывается на физико-механических характеристиках покрытий, полученных на основе данной композиции: разрывная прочность составляет всего 3,4 МПа, а относительное удлинение при разрыве - 90%.
Также известен способ получения термопластичной композиции, включающей смесь 10-90 мас.ч. размолотой вулканизированной резины с размером частиц менее 1,5 мм и 90-10 мас.ч. одного или более полиолефина и, по крайней мере, 0,5 мас.ч. сополимера альфа-олефина, где указанный сополимер альфа-олефина присутствует в количестве, достаточном для увеличения предельного удлинения на разрыв отпрессованной композиции на 25%. (Патент США 6031009, опубликован 29.02.2000.). Получение композиции осуществляют с помощью устройства, которое обеспечивает достаточно эффективное смешение компонентов при необходимой температуре, например с помощью смесителя Бенбери или экструдера. Однако в указанном способе получения композиции смешение компонентов этой композиции осуществляется при достаточно низких напряжениях сдвига, площадь контакта полиолефина с резиновыми частицами не увеличивается, так как изменения поверхности резиновых частиц в процессе смешения, осуществляемого в расплаве полиолефина, не происходит. Увеличение предельного удлинения на разрыв отпрессованной композиции на 25% происходит за счет введения в указанную композицию третьего компонента - сополимера альфа-олефина, который обладает сродством как к резине, так и к полиолефинам. Причем увеличение указанного показателя на 25% весьма не существенно, Наиболее близким к предлагаемому способу является способ получения резиновой смеси для получения гидроизоляционного материала. Для получения резиновой смеси используют отходы резиновых вулканизатов и первичный полиолефин, выбранный из группы: полиэтилен, полипропилен, 1,4-циc- полибутадиен, 1,4-циc-пoлиизoпpeн. При приготовлении смеси первичный полиолефин и отходы резиновых вулканизатов берут в количественном соотношении (20-10):(80-90) мacc.%, соответственно, а процесс получения смеси осуществляют путем измельчения ее в порошок в экструзионном аппарате под воздействием сил сжатия, сдвига и температуры. (Патент Российской федерации N°2 123935C1, опубликован 27.12.1998.). Для получения гидроизоляционного материала приготовленную резиновую смесь формуют путем каландрования.
К недостаткам указанного способа следует отнести низкую прочность (не более 5 МПа), а также низкую деформируемость (не более 200%) материалов, получаемых при формовании смесей. Наиболее вероятной причиной этого является слишком низкое напряжение сдвига в используемом экструзионном аппарате. Кроме того, получение высокопрочных материалов на основе смесей указанного типа с содержанием полиолефинов более 10-15 мacc.% в принципе не может быть осуществлено путем одностадийного сдвигового измельчения. Измельчение высокопрочной резины в среде полиолефина при низких напряжениях сдвига приводит к простому дроблению резиновой крошки без образования активной поверхности частиц. Вследствие этого получаемые смеси характеризуется недостаточной однородностью по размерам частиц, слабым сцеплением на гладких границах контакта, что и приводит к недостаточно высоким физико-механическим и эксплуатационным характеристикам конечного материала.
Задачей создания изобретения является разработка способа получения высокодисперсного материала на основе резиновой крошки и термопласта в широком диапазоне соотношения компонентов с высокой степенью однородности смеси, пригодной для получения, преимущественно гидроизоляционных, шумозащитных и спортивных покрытий с высокими физико-механическими и эксплуатационными характеристиками.
Поставленная задача решается способом получения высокодисперсного материала на основе резиновой крошки и термопластов, включающим переработку резиновой крошки с термопластами в устройстве роторного типа для высокотемпературного сдвигового измельчения при нагревании путем одновременного воздействия на перерабатываемый материал напряжения сдвига и давления. Переработку осуществляют в два этапа. Сначала, на первом этапе осуществляют переработку резиновой крошки или смеси резиновой крошки по меньшей мере с одним термопластом при соотношении резиновая кpoшкa:тepмoплacт (смесь термопластов) (мacc.%), равном (99,5-90,0):(0,5-10,0), в условиях, обеспечивающих высокотемпературное сдвиговое измельчение резиновой крошки. А затем, на втором этапе переработку полученного на первом этапе продукта осуществляют в присутствии термопласта или смеси термопластов при соотношении полученный на первом этапе продукrтермопласт (смесь термопластов) (мacc.%), равном (2-90): (98- 10), в условиях, обеспечивающих высокотемпературное сдвиговое измельчение термопласта (смеси термопластов).
В способе размер частиц перерабатываемой резиновой крошки и/или термопласта, по крайней мере, в одном измерении может составлять не более 10мм.
В частности, при получении высокодисперсного материала переработка на первом этапе может быть осуществлена при напряжении сдвига 10-70 Н/мм , а на втором этапе - при напряжении сдвига 0,5-25 Н/мм2. В качестве резиновой крошки может быть использована крошка резины из отходов резино-технических изделий на основе изопренового, бутадиенового, бутадиен-стирольного, бутадиен-нитрильного, натурального, карбоксилатного, силиконового, полиизобутиленового, полихлоропренового каучука, а также их смесей.
В частности в качестве резиновой крошки может быть использована крошка шинной резины на основе изопренового, бутадиен-стирольного или натурального каучука, а также их смесей, в том числе крошка резины из изношенных шин, армированных синтетическим кордом, и переработка при этом на первом этапе может быть осуществлена при температуре 140-1900C.
Также при получении высокодисперсного материала в качестве резиновой крошки может быть использована крошка из отходов резины на основе этиленпропилендиенового каучука, и при этом переработка на первом этапе может быть осуществлена при температуре 180-2500C.
В частности, в качестве термопласта в способе может быть использован полиэтилен низкого давления, полиэтилен высокого давления, полипропилен, дивинилстирольный сополимер, поливинилхлорид, полистирол, сополимер этилена с винилацетатом, их смеси или отходы, и при этом переработка на втором этапе может быть осуществлена при температуре 70-1500C.
В частности, в способе может быть использован первичный и/или вторичный термопласт в виде гранул, дробленой крошки, рубленой пленки, спутанных волокон. В качестве устройства роторного типа для высокотемпературного сдвигового измельчения может быть использовано устройство по Патенту РФ JNs 2173634 или по Патенту РФ JЧ° 2173635 или по Патенту РФ JVb 2198788, а также некоторые типы двухшнековых экструдеров.
В способе переработка резиновой крошки или смеси резиновой крошки по меньшей мере с одним термопластом на первом и/или втором этапе может быть осуществлена в присутствии целевых добавок, а в качестве целевых добавок может быть использован минеральный наполнитель, пластификатор, краситель и другие добавки.
Устройство роторного типа для высокотемпературного сдвигового измельчения (Техника машиностроения. 1998. JVa 4 (18), c.c.94-101) реализует процесс измельчения резин и других полимерных материалов в непрерывном режиме. Устройство содержит узел измельчения с рабочим органом измельчения
(в частности, ротор), который установлен по отношению к корпусу камеры узла б измельчения с кольцевым зазором. При вращении рабочего органа измельчения (ротора) перерабатываемый материал подвергается в указанном кольцевом зазоре сжатию, деформированию сдвигом и нагреву. Когда величины давления, напряжения сдвига и температуры достигают оптимальных критических значений, происходит множественное растрескивание материала, его разрушение и превращение в высокодисперсный порошок.
Предлагаемый способ получения высокодисперсного материала на основе резиновой крошки и термопластов осуществляют в два этапа следующим образом. На первом этапе в загрузочное отверстие устройства для высокотемпературного сдвигового измельчения засыпают резиновую крошку или смесь резиновой крошки и термопласта (смеси термопластов) в соотношении резиновая кpoшкa:тepмoплacт (смесь термопластов) (мacc.%), равном (99,5- 90,0):(0,5-10,0). Компоненты смеси можно засыпать одновременно, используя двухручьевой дозиметр, или приготовить заранее грубогетерогенную смесь в любом смесителе для сухого смешения. Засыпаемый в загрузочное отверстие материал подвергают одновременному воздействию напряжения сдвига и давления, в результате чего материал нагревается, при этом переработку материала осуществляют в условиях, обеспечивающих высокотемпературное сдвиговое измельчение резиновой крошки. Затем полученный на первом этапе продукт и термопласт (или смесь термопластов) в соотношении (2-90):(98-10) (мacc.%) одновременно и равномерно с помощью двухручьевого дозирующего устройства (или приготовив заранее грубогетерогенную смесь в аппарате сухого смешения) засыпают в загрузочное отверстие устройства для высокотемпературного сдвигового измельчения. Засыпаемый материал подвергают одновременному воздействию напряжения сдвига и давления, осуществляя при этом переработку в условиях, обеспечивающих высокотемпературное сдвиговое измельчение термопласта (смеси термопластов). В результате получается высокодисперсный композиционный материал, характеризующийся высокой степенью однородности смеси, а порошковые частицы этого материала обладают высоко развитой поверхностью.
На первом и/или втором этапе переработка резиновой крошки или смеси резиновой крошки, по меньшей мере, с одним термопластом может осуществляться в присутствии целевых добавок, в качестве которых используют минеральный наполнитель, пластификатор, краситель. Такие добавки могут вводиться в загрузочное отверстие устройства для высокотемпературного сдвигового измельчения либо с помощью дополнительного дозирующего устройства либо смесь указанной добавки с каким либо компонентом смеси готовят предварительно.
В процессе осуществления указанного способа на первом этапе его реализации в результате проведения процесса в условиях, обеспечивающих высокотемпературное сдвиговое измельчение резиновой крошки, получается либо высокодисперсный порошок резины с величиной удельной поверхности не ниже 0,5 м2/г, либо высокодисперсный порошок резины, на поверхности каждой частицы которого находится тончайший слой или вкрапления термопласта (смеси термопластов). Диапазон размеров частиц порошка резины, полученного на первом этапе - от нескольких микрон до lмм. Затем, при осуществлении второго этапа переработки в условиях, обеспечивающих высокотемпературное сдвиговое измельчение термопласта или смеси термопластов, происходит высокотемпературное сдвиговое смешение и совместное измельчение (соизмельчение) полученного на первом этапе продукта (высокодисперсного порошка) вместе с загружаемым на втором этапе термопластом (смесью термопластов), в результате которого образуется высокодисперсный композиционный материал (максимальный размер частиц менее 300 мкм), характеризующийся высокой однородностью смеси. Каждая порошковая частица полученного высокодисперсного смесевого материала представляет собой агломерат, состоящий из хорошо перемешанных друг с другом очень мелких фрагментов резины и термопласта (смеси термопластов). При этом такая частица характеризуется достаточно сильным контактным взаимодействием между указанными фрагментами. Указанные факторы благоприятно сказываются на физико-механических характеристиках покрытий, полученных на основе высокодисперсного смесевого материала, приготовленного указанным способом.
Полученный высокодисперсный смесевой материал легко перерабатывается для получения на его основе каких-либо пленочных, рулонных материалов или изделий. Так, например, для получения гидроизоляционных, шумозащитных и спортивных покрытий, полученный высокодисперсный композиционный материал подвергают формованию путем либо прессования с последующим медленным охлаждением под давлением, либо путем каландрования на каскаде из нескольких каландров с постепенным снижением температуры от 150 до 800C, или высокодисперсный смесевой материал растворяют в горячем битуме с последующим формованием. Покрытия, полученные на основе смесевого высокодисперсного материала, обладают высокими физико-механическими и эксплуатационными характеристиками.
Ниже приводятся примеры, которые иллюстрируют, но не исчерпывают предлагаемый способ получения высокодисперсных материалов на основе резиновой крошки и термопластов. Пример 1.
Резиновую крошку из отработанных шин с размером 2,5-3 мм засыпают в загрузочное отверстие устройства для высокотемпературного сдвигового измельчения одновременно с полиэтиленом низкой плотности (ПЭНП) ПТР = 2 г/Юмин, подвергнутым предварительному дроблению до размера частиц не более Зx4мм, при соотношении резиновая крошкаЛЭНП, равном 98:7мacc.%. Указанную смесь перерабатывают при напряжении сдвига 37 Н/мм2. В указанных условиях перерабатываемый материал нагревается и измельчается при температуре 1700C. В полученный на первом этапе продукт вводят термопласт ПЭНП ПTP=2г/10мин в соотношении полученный продукт/термопласт 20/80 (мacc.%) и осуществляют переработку в устройстве для высокотемпературного сдвигового измельчения при напряжении сдвига 10 Н/мм . При этом компоненты перерабатываемого материала нагреваются, смешиваются и соизмельчаются при температуре 950C. Из выгрузного отверстия указанного устройства высыпается высокодисперсный смесевой материал на основе резиновой крошки и ПЭНП с температурой 340C, который после просева на сите с размером ячейки 0,3 мм дает остаток менее 2 мacc.%. Полученный высокодисперсный смесевой композиционный материал характеризуется высокой однородностью компонент, а порошковые частицы этого материала обладают высоко развитой поверхностью. Затем полученный материал подвергают прессованию при температуре 1500C и давлении Ю МПа с последующим медленным охлаждением под давлением. Отформованный материал обладает следующими физико-механическими характеристиками: разрывная прочность 8,2 МПа и относительное удлинение 300%. Примеры 2-15.
Получение высокодисперсного материала осуществляют аналогично примеру 1. Прессование полученного материала осуществляют также в условиях примера 1. Наименование перерабатываемого материала, соотношение резиновой крошки и термопласта, параметры проведения процесса на первом и втором этапах (напряжение сдвига, температура), а также физико-механические характеристики отпрессованного высокодисперсного материала приведены в таблице.
Примеры 16-19.
Для сравнения приведены данные из патента РФ N° 2 123 935 Cl.
Как следует из приведенных в Таблице данных, предлагаемый способ получения высокодисперсного композиционного материала на основе резиновой крошки и термопласта позволяет получать смесевой материал в широком диапазоне соотношения компонентов с высокой степенью однородности смеси. Полученный предлагаемым способом высокодисперсный материал позволяет изготавливать на его основе высококачественные покрытия, преимущественно гидроизоляционные, шумозащитные и спортивные покрытия, с высокими физико- механическими и другими эксплуатационными характеристиками.
ТАБЛИЦА
Figure imgf000012_0001
ПРОДОЛЖЕНИЕ ТАБЛИЦЫ
Figure imgf000013_0001
ПРО ОЛЖЕНИЕ ТАБЛИЦЫ
ts)
Figure imgf000014_0001
ПРОДОЛЖЕНИЕ ТАБЛИЦЫ
UJ
Figure imgf000015_0001

Claims

Формула изобретения
1. Способ получения высокодисперсного материала на основе резиновой крошки и термопластов, включающий переработку резиновой крошки с термопластами в устройстве роторного типа для высокотемпературного сдвигового измельчения при нагревании путем одновременного воздействия на перерабатываемый материал давления и напряжения сдвига, при этом переработку осуществляют в два этапа: на первом этапе резиновую крошку или смесь резиновой крошки по меньшей мере с одним термопластом при соотношении резиновая кpoшкa:тepмoплacт (смесь термопластов) (мacc.%), равном (99,5— 90,0):(0,5— 10,0), перерабатывают в условиях, обеспечивающих высокотемпературное сдвиговое измельчение резиновой крошки, а затем, на втором этапе переработку полученного на первом этапе продукта осуществляют в присутствии термопласта или смеси термопластов при соотношении полученный на первом этапе пpoдyкт:тepмoплacт (смесь термопластов) (мac.%), равном (2-90):(98-10), и при этом переработку осуществляют в условиях, обеспечивающих высокотемпературное сдвиговое измельчение термопласта или смеси термопластов.
2. Способ по п. 1, в котором размер частиц резиновой крошки и/или термопласта по крайней мере в одном измерении составляет не более 10 мм.
3. Способ по п. 1 или 2, в котором переработку на первом этапе осуществляют при напряжении сдвига 10-70 Н/мм2.
4. Способ по п. 1, в котором переработку на втором этапе осуществляют при напряжении сдвига 0,5-25 Н/мм2.
5. Способ по п. 1, в котором в качестве резиновой крошки используют крошку резины из отходов резинотехнических изделий на основе изопренового, бутадиенового, бутадиен-стирольного, бутадиен-нитрильного, натурального, карбоксилатного, силиконового, полиизобутиленового, полихлоропренового каучука, а также их смесей.
6. Способ по п. 1, в котором в качестве резиновой крошки используют крошку шинной резины на основе изопренового, бутадиен-стирольного или натурального каучука, а также их смесей, в том числе крошку резины из изношенных шин, армированных синтетическим кордом.
7. Способ по п. б, в котором переработку на первом этапе осуществляют при температуре 140-1900C,
8. Способ по п. 1, в котором в качестве резиновой крошки используют крошку из отходов резины на основе этиленпропилендиенового каучука.
9. Способ по п. 8, в котором переработку на первом этапе осуществляют при температуре 180-2500C.
10. Способ по п. 1, в котором в качестве термопласта используют полиэтилен низкого давления, полиэтилен высокого давления, полипропилен, дивинилстирольный сополимер, поливинилхлорид, полистирол, сополимер этилена с винилацетатом, их смеси или отходы.
11. Способ по п. 1 или 10, в котором в качестве термопласта используют первичный и/или вторичный термопласт в виде гранул, дробленой крошки, рубленной пленки, спутанных волокон.
12. Способ по п.10, в котором переработку на втором этапе осуществляют при температуре 70-150 С.
13. Способ по п. 1, в котором в качестве устройства роторного типа для высокотемпературного сдвигового измельчения используют устройство по Патенту РФ N22173634 или по Патенту РФ N° 2173635 или по Патенту РФ Ns 2198788. 14 Способ по п. 1, в котором переработку резиновой крошки или смеси резиновой крошки по меньшей мере с одним термопластом на первом и/или втором этапе осуществляют в присутствии целевых добавок.
15 Способ по п. 13, в котором в качестве целевых добавок используют минеральный наполнитель, пластификатор, краситель.
PCT/RU2006/000537 2006-10-18 2006-10-18 Procédé pour fabriquer une matière hautement dispersée, prioritairement pour la fabrication de revêtements hydro-isolants, antibruits et de sports WO2008048132A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/RU2006/000537 WO2008048132A1 (fr) 2006-10-18 2006-10-18 Procédé pour fabriquer une matière hautement dispersée, prioritairement pour la fabrication de revêtements hydro-isolants, antibruits et de sports

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2006/000537 WO2008048132A1 (fr) 2006-10-18 2006-10-18 Procédé pour fabriquer une matière hautement dispersée, prioritairement pour la fabrication de revêtements hydro-isolants, antibruits et de sports

Publications (1)

Publication Number Publication Date
WO2008048132A1 true WO2008048132A1 (fr) 2008-04-24

Family

ID=39314256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2006/000537 WO2008048132A1 (fr) 2006-10-18 2006-10-18 Procédé pour fabriquer une matière hautement dispersée, prioritairement pour la fabrication de revêtements hydro-isolants, antibruits et de sports

Country Status (1)

Country Link
WO (1) WO2008048132A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3689935A1 (en) 2019-01-30 2020-08-05 Politechnika Gdanska Thermoplastic polyurethane-rubber composite and method for obtaining thermoplastic polyurethane-rubber composite
RU2736088C1 (ru) * 2020-05-21 2020-11-11 Юрий Николаевич Дубов Гидроизоляционное покрытие

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1178158A (en) * 1966-04-14 1970-01-21 Rexall Drug Chemical Process for the Production of Polymer Powder
SU1434663A1 (ru) * 1983-06-22 1990-09-15 Всесоюзный Научно-Исследовательский Институт "Композит" Научно-Производственного Объединения "Норпласт" Способ измельчени полимерного материала
RU2123935C1 (ru) * 1997-04-09 1998-12-27 Минираис Марванович Усманов Способ получения безосновного гидроизоляционного материала
RU2173634C1 (ru) * 2000-08-23 2001-09-20 Балыбердин Владимир Николаевич Способ получения порошка из полимерного материала и устройство для его осуществления (варианты)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1178158A (en) * 1966-04-14 1970-01-21 Rexall Drug Chemical Process for the Production of Polymer Powder
SU1434663A1 (ru) * 1983-06-22 1990-09-15 Всесоюзный Научно-Исследовательский Институт "Композит" Научно-Производственного Объединения "Норпласт" Способ измельчени полимерного материала
RU2123935C1 (ru) * 1997-04-09 1998-12-27 Минираис Марванович Усманов Способ получения безосновного гидроизоляционного материала
RU2173634C1 (ru) * 2000-08-23 2001-09-20 Балыбердин Владимир Николаевич Способ получения порошка из полимерного материала и устройство для его осуществления (варианты)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3689935A1 (en) 2019-01-30 2020-08-05 Politechnika Gdanska Thermoplastic polyurethane-rubber composite and method for obtaining thermoplastic polyurethane-rubber composite
RU2736088C1 (ru) * 2020-05-21 2020-11-11 Юрий Николаевич Дубов Гидроизоляционное покрытие
WO2021235975A1 (ru) * 2020-05-21 2021-11-25 Юрий Николаевич ДУБОВ Гидроизоляционное покрытие

Similar Documents

Publication Publication Date Title
CN1847318B (zh) 具有合成功能的沥青改性剂合成物和制造方法
JPS63207617A (ja) 無機フイラ−含有ポリオレフイン樹脂組成物の製造方法
KR102181876B1 (ko) 이차전지 폐분리막을 이용한 복합수지 조성물의 제조 방법
US8349938B2 (en) Process for making polyolefin compositions
KR102323858B1 (ko) 이차전지 폐분리막을 이용한 복합수지 조성물의 제조 방법
CN111051421A (zh) 分散有纤维素纤维的聚烯烃树脂复合材料、使用了该复合材料的粒料和成型体、以及分散有纤维素纤维的聚烯烃树脂复合材料的制造方法
GB2446681A (en) Rubber recycling
RU2333098C1 (ru) Способ получения высокодисперсного материала для получения гидроизоляционных, шумозащитных и спортивных покрытий
WO2008048132A1 (fr) Procédé pour fabriquer une matière hautement dispersée, prioritairement pour la fabrication de revêtements hydro-isolants, antibruits et de sports
JP2003128843A (ja) 再生ゴムの製造方法
CN115368665B (zh) 一种高分子防水卷材及其制备方法和应用
KR100969040B1 (ko) 폐고무를 이용한 재활용 열가소성 탄성체 및 그 제조방법
WO2013072547A1 (en) A composite product, a method for manufacturing a composite product and its use, a material component and a final product
PL237887B1 (pl) Polimeroasfalt oraz sposób otrzymywania polimeroasfaltu
CA2349196C (en) Blending of polymeric materials and fillers
CN113227220A (zh) 包含包封的氯化亚锡的热塑性硫化橡胶组合物
RU2792366C1 (ru) Термопластичная разлагаемая полиэтиленовая композиция и способ ее получения
CN108034120A (zh) 新能源汽车用无卤阻燃高弹性聚烯烃电缆料的制备工艺
CN111100342A (zh) 一种橡胶增韧塑料及其制备方法
JP4640537B2 (ja) 樹脂配合用古紙材料とその製造方法
JPH07138378A (ja) 熱可塑性エラストマー組成物の製造方法
JPS5869238A (ja) 充填剤含有複合ポリプロピレン樹脂粒子
CN117343390A (zh) 一种利用焦烧胶制备的高品质再生橡胶及其制备方法
JP2011224504A (ja) 樹脂組成物の製造方法
JP2002166421A (ja) 廃棄オレフィンフィルムからの再生ペレット製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006139344

Country of ref document: RU

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06849600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06849600

Country of ref document: EP

Kind code of ref document: A1