WO2008047608A1 - Semiconductor laser device - Google Patents

Semiconductor laser device Download PDF

Info

Publication number
WO2008047608A1
WO2008047608A1 PCT/JP2007/069448 JP2007069448W WO2008047608A1 WO 2008047608 A1 WO2008047608 A1 WO 2008047608A1 JP 2007069448 W JP2007069448 W JP 2007069448W WO 2008047608 A1 WO2008047608 A1 WO 2008047608A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor laser
laser light
housing
laser
wall surface
Prior art date
Application number
PCT/JP2007/069448
Other languages
French (fr)
Japanese (ja)
Inventor
Hirofumi Miyajima
Hirofumi Kan
Kazunori Kuroyanagi
Takayuki Uchiyama
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Publication of WO2008047608A1 publication Critical patent/WO2008047608A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0608Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02423Liquid cooling, e.g. a liquid cools a mount of the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4056Edge-emitting structures emitting light in more than one direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4075Beam steering

Definitions

  • the present invention relates to a high-power semiconductor laser device that collects laser light and emits it with a high energy density.
  • FIGS. 11 and 12 of Patent Document 1 laser light from one light source is transmitted through a laser light path from a plurality of semiconductor laser light sources substantially orthogonal to each other and lasers from other laser light sources are transmitted.
  • a technology that increases the energy density by combining each laser beam from multiple semiconductor laser sources by disposing an optical element that reflects light at approximately 45 degrees with respect to each optical path has been disclosed. .
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-258624
  • the present invention has been made to solve the above-described problems, and includes a plurality of semiconductor laser modules.
  • a semiconductor laser device having a module laser light output from the semiconductor laser module is transmitted through the optical element and reflected by the inner wall surface of the housing, and is prevented from returning to the semiconductor laser module and degrading the active layer.
  • An object of the present invention is to provide a semiconductor laser device that can be used.
  • a semiconductor laser device of the present invention includes at least two or more semiconductor laser modules, a collimating lens that collimates laser light output from the semiconductor laser module in the fast direction, and Both laser beams are transmitted by transmitting laser light output from at least one semiconductor laser module and reflecting laser light output from at least one other semiconductor laser module.
  • laser light output from two or more high-power semiconductor laser modules having a large number of active layers for generating laser light is collimated in the fast direction by a collimating lens and synthesized by an optical element. Is done. At that time, some of the laser light that is reflected by the optical element and is to be combined with the laser light from other semiconductor laser modules is transmitted through the optical element, and the housing The inner wall may be irradiated. Even in this case, since the irradiated inner wall surface is inclined in the fast direction, the laser beam does not return to the emitted route and deteriorate the active layer of the semiconductor laser module.
  • the scattering and absorption of the laser light applied to the inner wall surface of the housing is promoted, and therefore the laser beam returning to the semiconductor laser module is further increased.
  • the laser light can be reduced, and the laser beam reflected by the inner wall surface of the casing is not irradiated to a certain location in the casing as a collective laser beam.
  • the inner wall surface of the casing irradiated with the laser beam may become a high temperature of several hundred degrees in some cases, thereby increasing the temperature inside the casing and deteriorating the components and resin installed therein. become.
  • the semiconductor laser device has an inner wall that is irradiated with laser light from the housing. In the case of further including a cooling device provided in the housing wall at a location corresponding to the surface, it is possible to suppress an increase in temperature due to laser light irradiation.
  • the present invention of the laser light output from the semiconductor laser module, a part of the laser light to be reflected by the optical element is transmitted through the optical element and applied to the inner wall surface of the housing.
  • the active layer it is possible to prevent the active layer from being deteriorated by being reflected by the inner wall surface and returning to the semiconductor laser module, and to provide a highly reliable semiconductor laser device.
  • FIG. 1 is a conceptual diagram showing an example in which the semiconductor laser device 1 is used in a steel sheet welding line.
  • FIG. 2 is a perspective view in which the outer case of the semiconductor laser device 1 is partially broken.
  • FIG. 3 is a perspective view showing a semiconductor laser module 30.
  • FIG. 4 is an explanatory diagram of a main part excluding the outer case 11 in the IV-IV cross section in FIG.
  • FIG. 5 is a cross-sectional view taken along the line V-V in FIG.
  • FIG. 6 is an explanatory diagram of the state of light emitted from the LD.
  • FIG. 7 is a view showing another form of the inclined surface of the inner wall surface of the housing 20.
  • Cooling water passage 30 ⁇ ⁇ Semiconductor laser module, 31 ⁇ 'LD array stack, 31A--LD array, 31Aa.' Active layer, 32 ⁇ electrode, 33 ⁇ flange, 40 ⁇ barrel, 51, 52 ⁇ 'Striped mirror, 53 ⁇ ⁇ Half-wave plate, 54 ⁇ ' Beam splitter, 55 ⁇ 'Collimate lens, 56 ⁇ ⁇ Collimate lens, 57 ⁇ ' Condenser lens.
  • FIG. 1 is a conceptual diagram showing an example in which the semiconductor laser device 1 of the present embodiment is applied to laser welding of a steel plate.
  • the one-device apparatus 1 is slidably installed on the lower rail 2 by an appropriate holding member 3.
  • the butted portions 4 of the steel plates S1 and S2 are welded by the laser beam condensed while moving along the butted portions 4 of the steel plates S1 and S2.
  • the semiconductor laser device 1 is connected with a semiconductor laser module, a flexible pipe for circulating cooling water for cooling the housing wall, and a power cable for supplying power.
  • the cooling water distribution pipe and the power cable are connected to a fixedly installed cooler and power source, respectively, and the end on the semiconductor laser device 1 side is connected to the upper rail 5 of the semiconductor laser device 1. It is arranged so that it can follow the movement!
  • FIG. 2 is a perspective view in which the outer case 11 of the semiconductor laser device 1 according to the present embodiment is partially broken.
  • a casing 20 is installed with its front surface exposed to the outside.
  • a lens barrel 40 for emitting laser light to the outside is attached to the front surface of the housing 20.
  • four semiconductor laser modules 30-1 to 30-4 (only reference numeral 30 is used when the four are not distinguished) are attached to the casing 20.
  • the outer case 11 is provided with an external cooling water circulation pipe and a cooling water inlet / outlet 12 for connecting a pipe to a cooling portion of each semiconductor laser module 30 in the outer case 11.
  • a cooling water inlet / outlet for allowing the cooling water to flow through a cooling water passage formed in the housing wall described later is also provided.
  • the outer case 11 is also provided with a power supply terminal 13 connected to an external power cable in order to supply power to each semiconductor laser module 30.
  • the casing 20 is formed of, for example, an aluminum alloy, and a black film of alumite (aluminum oxide formed by anodization) is formed on the inner surface of the casing 20 in order to prevent reflection of laser light as much as possible. It has been applied. Since the surface of the black film becomes an appropriate rough surface! /, It has the effect of dispersing the reflection of the laser light to some extent.
  • An opening for attachment is formed in the housing 20, and a semiconductor laser module 30 — ;! ⁇ 30-4 is attached thereto.
  • FIG. 3 is a perspective view showing the semiconductor laser module 30 disposed in the opening of the housing 20.
  • the semiconductor laser module 30 includes an LD array stack 31 in which a large number of semiconductor laser arrays (hereinafter referred to as “LD arrays”) 31A are stacked between electrodes 32 at both ends. It is attached and configured.
  • Each LD array 31A forms a one-dimensional array of laser light emission points in which a plurality of active layers are arranged in a row in the horizontal direction in the drawing.
  • the thickness direction of each active layer that is, the stacking direction of the LD array 31A is referred to as the fast direction F
  • the column direction of the active layers in the LD array 31A is referred to as the slow direction S.
  • a cooling plate may be inserted between these LD arrays 31A.
  • a connection terminal to the electrode 32 is provided on the opposite surface of the flange 33.
  • the semiconductor laser module 30 includes the power of the LD array stack 31 so that the output obtained by combining the laser light of a predetermined number of semiconductor laser modules 30 can be used for applications such as metal processing. It can be an LD stack or an LD array.
  • Each semiconductor laser module 30 is attached to the opening so that the surface opposite to the mounting surface of the LD array stack 31 of the flange 33 closes the opening of the housing 20 and forms a part of the outer wall of the housing 20.
  • FIG. 4 is an explanatory diagram of a main part excluding the outer case 11 in the IV-IV cross section in FIG. That is, a longitudinal section of the housing 20 and the lens barrel 40 is shown.
  • each of the LD array stacks 31 illustrated in FIG. 3 is positioned on the inner surface side of the housing 20 in a state where the semiconductor laser modules 30— ;! to 30-4 are attached.
  • the LD array 31A is stacked along the direction perpendicular to the paper surface of FIG. 4, and this direction is the fast direction of the semiconductor laser module 30.
  • 5 is a cross-sectional view taken along the line VV in FIG. In this figure, the optical path of the laser light L1 of one semiconductor laser module 30-1 among the four semiconductor laser modules 30 is illustrated.
  • the state of the laser light emitted from the LD array 31A of each semiconductor laser module 30 will be described.
  • the laser light L emitted from the active layer 31Aa has a fast direction F As shown by / 3, it has a large spread of about 30 to 40 degrees, and in the slow direction S is a small spread of about 8 to 10 degrees as shown by ⁇ . Therefore, collimating lenses 55— ;! to 55-4 for collimating the laser beam in the fast direction are arranged on the emission surface of each LD array 31A of each semiconductor laser module 30 as shown in FIGS.
  • the semiconductor laser module 30-1 and the semiconductor laser module 30-2 are substantially perpendicular to each other, and are approximately 45 degrees to the optical axis of the laser beam emitted from them.
  • the stripe mirror 51 is installed in the housing 20 with a holder at an angle.
  • the The triple mirror 51 includes stripe-shaped mirrors stacked at the same pitch as the stacking pitch of the LD arrays 31A in the semiconductor laser modules 30-1 and 30-2.
  • the LD arrays 31A in the semiconductor laser modules 30-1 and 30-2 are stacked with their positions shifted from each other by the same pitch as the striped mirror in the fast direction.
  • the laser beam emitted from each LD array 31A of the semiconductor laser module 30-2 and collimated in the fast direction by the collimating lens 55-2 is irradiated and reflected on each stripe-shaped mirror portion of the stripe mirror 51. Change the direction about 90 degrees.
  • the laser beam emitted from each LD array 31A of the semiconductor laser module 30-1 and collimated in the fast direction by the collimating lens 55-1 is reflected between the striped mirrors 51 in the stripe mirror 51. Go straight through the part where is not formed.
  • the laser light power from the semiconductor laser modules 30-1 and 30 2 is combined by the stripe mirror 51 and is incident on the half-wave plate 53.
  • the half-wave plate rotates the polarization direction of the synthesized laser beam by 90 degrees.
  • the semiconductor laser modules 30-3 and 30-4 are also in the same relationship as described for the semiconductor laser modules 30 1 and 30-2, and the laser beams from them are combined by the stripe mirror 52 and are combined into a beam splitter. Incident at 54. Of the laser light, the beam splitter 54 transmits one of the P-polarized component and the S-polarized component and reflects the other. Therefore, the laser light emitted from the semiconductor laser modules 30-3 and 30-4 and synthesized by the stripe mirror 52 passes through the beam splitter 54 and travels straight. On the other hand, the laser beam emitted from the semiconductor laser modules 30-1 and 30-2 and synthesized by the stripe mirror 51 and whose polarization direction is changed by 90 degrees by the half-wave plate 53 is reflected by the beam splitter 54. .
  • both laser beams are combined.
  • a collimating lens 56 and a condensing lens 57 are arranged in the optical path inside the lens barrel 40 of the synthesized laser light, and the laser light from the four semiconductor laser modules 30—;! To 30—4 is received.
  • the combined laser beam can be emitted for processing.
  • the stripe mirrors 51 and 52 may be slit mirrors having the same function, or between the laser diode modules 30-1 and 30-2 and between the semiconductor laser modules 30-3 and 30-4.
  • the wavelength of the light is different, the laser light of a specific wavelength is transmitted, and the other specific wave Anti-long laser light ⁇ ] ,.
  • the wavelength of the synthesized laser light of the semiconductor laser modules 30-1 and 302 and the synthesized laser light of 30-3 and 30-4 are different without installing a 1Z2 wavelength plate. Leave
  • the entire inner wall surface of the housing 20 or at least the inner wall surface force S at a location facing the semiconductor laser module 30 installed, and the semiconductor laser module 30 are inclined in the fast direction.
  • the semiconductor laser module 30-1 has an inner wall 21 force that faces the laser splitter 54 and a stripe mirror 51 as an optical element for combining laser beams. It is slanted in the fast direction because it has many triangular irregularities extending in the slow direction.
  • the inner wall surface 22 facing the semiconductor laser module 30-2 in FIG. 4 is also inclined. The same applies to the inner wall surface 23 facing the semiconductor laser module 30-4.
  • cooling water passages 24 and 25 for circulating cooling water are formed in the walls corresponding to these inner wall surfaces.
  • the force S formed only at two locations of the inner wall surfaces 21, 23 of the corresponding inner wall surfaces 21, 22, 23, may be formed in the walls corresponding to all the inner wall surfaces. You may form only in the wall of the inner wall surface 21 with which a big temperature rise is anticipated. The same applies to the inclination of the inner wall surface, and it may be formed only on the inner wall surface 21 where laser light irradiation due to leakage is particularly large.
  • the ends of the cooling water passages 24 and 25 are closed by the cooling water passage cover 20a so that the cooling water does not leak outside.
  • the cooling water passages 24 and 25 have a connection hole with a cooling water inlet / outlet connected to the cooling device via a flexible pipe, so that the cooling water is connected to the cooling device. It is recirculated at.
  • the laser light L1 emitted from each LD array 31A of the semiconductor laser module 30-1 and collimated in the fast direction by the collimating lens 55-1 is similarly collimated by the stripe mirror 51 by the collimating lens 55-2. Synthesized with laser light from laser module 30-2. Next, the wavelength polarization direction is changed by 90 degrees by the half-wave plate 53, reflected by the beam splitter 54, and the traveling direction is changed by 90 degrees. Together with the laser light from the joules 30-3 and 30-4, the light is condensed by the condenser lens 57 and emitted to the outside.
  • the force is all the laser light force incident on the beam splitter 54, for example, an S polarization component, and is not necessarily reflected by the beam splitter 54 in the emission direction.
  • a P-polarized component or the like may be mixed, and a part of the laser light passes through the beam splitter 54 and is irradiated on the inner wall surface 21 of the housing 20.
  • the partial power S of the combined laser light of the semiconductor laser modules 30-3, 30-4 may be reflected by the beam splitter 54 and applied to the inner wall surface 21. obtain. Therefore, a part of the laser light goes straight to the inner wall surface 21 of the housing 20 as indicated by a broken line in FIG.
  • the inner wall surface 21 is a vertical surface (a surface along the fast direction) as usual, the laser beam reflected by the inner wall surface 21 is in the fast direction. For this, the path that came is returned straight and the active layer of each LD array 31A of the semiconductor laser module 30-1 is degraded.
  • the inner wall surface 21 has an irregular shape with a triangular cross section and is a surface inclined in the fast direction, so that it is reflected at an inclination angle in the fast direction.
  • the inclination angle is preferably 1 degree or more. Less than this tilt is not sufficient to function as a ramp and prevent the reflected light from returning to the LD array. Further, a sufficient inclination angle is preferably 5 degrees or more.
  • the inner wall surface of the aluminum alloy casing 20 including the inner wall surface 2;! To 23 is provided with an alumite black coating so as to absorb laser light as much as possible. Since the black coating is also roughened at the same time, the absorption is increased and the reflected light is scattered as much as possible. Although such a black coating cannot sufficiently prevent the reflected laser beam from returning to the LD array 31A, it absorbs as much as possible the reflection of the laser beam irradiated to the inclined inner wall surface. In addition, the action of the inclined surface is also supported for scattering of the reflected light. In place of the black film, it is also possible to use a copper plate that has been roughened with a chemical solution and blackened, and is adhered to the inner wall surface of the aluminum alloy casing 20.
  • FIG. 5 shows the path from the semiconductor laser module 30-1 to the inner wall surface 21.
  • the laser beam emitted from the semiconductor laser module 30-2 and collimated in the fast direction by the collimator lens 55-2 is reflected by the stripe mirror 51.
  • the laser beam that has been transmitted and traveled straight can prevent the return of the semiconductor laser module 30-2 to the LD array 31A because the inner wall surface 22 is inclined in the same manner as the inner wall surface 21 in FIG.
  • the stripe mirror 51 (the same applies to the slit mirror) differs from the beam splitter 54 described in the example of FIG. 5 in that the reflection / transmission mechanism is different. Then it is transparent.
  • the semiconductor laser device 1 in the present embodiment is used for metal processing or the like, a high output such as 4 to 5 kW (kilowatt) may be required. Therefore, even if the proportion of laser light that should be reflected by the optical elements (stripe mirrors 51 and 52, beam splitter 54) is small, the inner wall surface 2 of the housing 20; The energy of the laser light irradiated to 23 is considerable. Moreover, when the inner wall surface is coated with a black film, energy absorption is also high, and the inner wall surface of the housing 20 may locally rise to a temperature of 300 ° C or higher.
  • the casing 20 is deformed due to such a temperature rise, the position of the semiconductor laser module 30 or each optical element installed there is distorted! /, And the optical path length of the laser light is changed. Cause trouble.
  • the ambient temperature in the housing 20 since the ambient temperature in the housing 20 also rises, it causes deterioration of the adhesive and solder used to fix the components and the installed components themselves.
  • the resin coating of the lead of the humidity sensor installed to monitor the humidity at the light emitting portion of the semiconductor laser module 30 is deteriorated.
  • the cooling water passage 24 is provided in the wall of the housing 20 at a location corresponding to the inner wall surface 2;! , 25 is formed.
  • the cooling water is introduced into the cooling water inlet on the bottom surface of the semiconductor laser device 1 by an external cooler power pipe, and circulates through the cooling water passages 24 and 25 by piping (not shown). Cool the body 20 walls. Thereafter, the cooling water is discharged from the cooling water outlet on the bottom surface of the semiconductor laser device 1 through a pipe (not shown) and returned to the cooler through the pipe.
  • the laser beam is emitted by a simple configuration in which an inclination is formed in the inner wall surface 2 of the casing 20 that receives irradiation due to leakage of laser light in the optical element; It is possible to prevent the active layer from deteriorating by returning to the LD array of the semiconductor laser module 30. Further, the inner wall surface 2;! To 23 is blackened and roughened by applying a black film or the like, so that the laser beam can be prevented from returning by the inclined surface. Furthermore, it is possible to suppress an increase in temperature due to irradiation with laser light by cooling with cooling water.
  • the inclination of the inner wall surface 2;! To 23 has a large number of triangular concave and convex shapes as shown in Fig. 5, so that the reflected laser light is divided almost evenly on both sides in the fast direction. Can be scattered. Even if the angle of inclination is increased to prevent the reflected laser light from returning to the LD array of the semiconductor laser module 30 more reliably (the triangle has a sharp shape with a long isosceles side) The space of the entire casing 20 does not become particularly large.
  • the inclination shape of the inner wall surface 2;! To 23 of the housing 20 in the present embodiment is not limited to this, and may be the shape shown in FIG. As shown in (A) and (B) of Fig. 7, if one inclined surface is inclined in either of the fast directions, manufacturing becomes easier.
  • the slopes of (A) and (B) can be combined with a number of triangular shapes shown in Fig. 5 or (E). Can be increased.
  • the inclination angle with respect to the fast direction is preferably 1 degree or more, and more preferably 5 degrees or more, as in the case of FIG.
  • the upper limit of the tilt angle can be determined depending on the tilt mode, taking into consideration that the space efficiency is not particularly deteriorated and the manufacturing efficiency.
  • the force used for the cooling water passages 24 and 25 may be electronic cooling using a Peltier element, a heat pipe, or the like.
  • the object of use is not limited to metal processing such as laser welding or laser cutting, but can be applied to those requiring a high-power semiconductor laser device.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Semiconductor Lasers (AREA)

Abstract

A semiconductor laser device comprising at least two semiconductor laser modules (30), a collimate lens (55) for collimating a laser light outputted from the semiconductor laser modules (30) in the fast direction, an optical element for transmitting a laser light outputted from at least one semiconductor laser module (30) out of laser lights from the collimate lens (55) and reflecting a laser light outputted from at least one other semiconductor laser module (30), thereby combining the laser lights, and a housing (20) for internally arranging the semiconductor laser modules, the collimate lens and the optical element. In this semiconductor laser device, the inner wall face (21) of the housing (20) facing the semiconductor laser modules (30) through the optical element is inclined at least in the fast direction.

Description

明 細 書  Specification
半導体レーザ装置  Semiconductor laser device
技術分野  Technical field
[0001] 本発明は、レーザ光を集光して高いエネルギー密度で出射する高出力の半導体レ 一ザ装置に関するものである。  The present invention relates to a high-power semiconductor laser device that collects laser light and emits it with a high energy density.
背景技術  Background art
[0002] 半導体レーザ装置は、小型でありながら、レーザ光を高いエネルギー密度で出射 すること力 Sできること力、ら、近年、種々の目的の光源に広く用いられてきた。同時に、 半導体レーザ装置の出力をさらに高める開発がされてきた。例えば、特許文献 1の図 11 ,図 12には、互いにほぼ直交する複数の半導体レーザ光源からのレーザ光の光 路に、 1つの光源からのレーザ光を透過するとともに他のレーザ光源からのレーザ光 を反射する光学素子を各光路に対して略 45度になるように配置することで、複数の 半導体レーザ光源からの各レーザ光を合成して、エネルギー密度を高める技術が開 示されている。  [0002] Semiconductor laser devices have been widely used in recent years for light sources for various purposes because of their ability to emit laser light at a high energy density despite their small size. At the same time, developments have been made to further increase the output of semiconductor laser devices. For example, in FIGS. 11 and 12 of Patent Document 1, laser light from one light source is transmitted through a laser light path from a plurality of semiconductor laser light sources substantially orthogonal to each other and lasers from other laser light sources are transmitted. A technology that increases the energy density by combining each laser beam from multiple semiconductor laser sources by disposing an optical element that reflects light at approximately 45 degrees with respect to each optical path has been disclosed. .
特許文献 1 :特開 2004— 258624号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2004-258624
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] ところで、金属鋼板のレーザ溶接やレーザ切断等の金属加工にレーザ光を使用す る場合、特に、高いエネルギー密度が必要となる。そのため、レーザ光を発生させる 活性層を多数備えた高出力の半導体レーザモジュールを、前記特許文献 1のように 、複数個を配置して、それらのレーザ光を光学素子によって合成することが考えられ る。し力もながら、発生したレーザ光を全て合成して、外部に出射できるとは限らない 。光学素子によって反射されるべきレーザ光の一部は、光学素子を透過して、筐体 の内壁面に照射される事態が生じる。このレーザ光は、予め、活性層の厚さ方向(フ ァスト方向)にコリメートされていることから、筐体の内壁面において反射して、そのま ま、半導体レーザモジュールの活性層に戻って活性層を劣化させることになる。  By the way, when laser light is used for metal processing such as laser welding or laser cutting of a metal steel plate, a high energy density is particularly required. Therefore, it is conceivable to arrange a plurality of high-power semiconductor laser modules having a large number of active layers for generating laser light, as described in Patent Document 1, and to synthesize these laser lights by optical elements. The However, it is not always possible to combine all the generated laser beams and emit them to the outside. A part of the laser light to be reflected by the optical element may pass through the optical element and irradiate the inner wall surface of the housing. Since this laser beam is collimated in the thickness direction (fast direction) of the active layer in advance, it is reflected on the inner wall surface of the housing and returns to the active layer of the semiconductor laser module as it is to be activated. It will degrade the layer.
[0004] 本発明は、上記問題を解決するためになされたものであり、複数の半導体レーザモ ジュールを備える半導体レーザ装置において、半導体レーザモジュールから出力さ れるレーザ光が、光学素子を透過して筐体の内壁面で反射し、半導体レーザモジュ ールに戻って活性層を劣化させることを防止することのできる半導体レーザ装置を提 供することを目的とする。 [0004] The present invention has been made to solve the above-described problems, and includes a plurality of semiconductor laser modules. In a semiconductor laser device having a module, laser light output from the semiconductor laser module is transmitted through the optical element and reflected by the inner wall surface of the housing, and is prevented from returning to the semiconductor laser module and degrading the active layer. An object of the present invention is to provide a semiconductor laser device that can be used.
課題を解決するための手段  Means for solving the problem
[0005] このような目的を達成するために、本発明の半導体レーザ装置は、少なくとも 2以上 の半導体レーザモジュールと、半導体レーザモジュールから出力されるレーザ光をフ ァスト方向にコリメートするコリメートレンズと、コリメートレンズからのレーザ光のうちで 、少なくとも 1の半導体レーザモジュールから出力されるレーザ光を透過し、他の少な くとも 1の半導体レーザモジュールから出力されるレーザ光を反射することにより、両 レーザ光を合成する光学素子と、半導体レーザモジュール、コリメートレンズ及び光 学素子を内部に配置する筐体と、を備え、光学素子を介して半導体レーザモジユー ルと対面する筐体の内壁面が少なくともファスト方向に傾斜している。 In order to achieve such an object, a semiconductor laser device of the present invention includes at least two or more semiconductor laser modules, a collimating lens that collimates laser light output from the semiconductor laser module in the fast direction, and Both laser beams are transmitted by transmitting laser light output from at least one semiconductor laser module and reflecting laser light output from at least one other semiconductor laser module. An optical element that synthesizes light, and a housing in which a semiconductor laser module, a collimator lens, and an optical element are disposed, and the inner wall surface of the housing that faces the semiconductor laser module through the optical element is at least in the fast direction It is inclined to.
[0006] この装置によれば、レーザ光を発生させる活性層を多数備えた高出力の 2以上の 半導体レーザモジュールから出力されるレーザ光は、コリメートレンズによってファスト 方向にコリメートされ、光学素子によって合成される。その際に、光学素子によって反 射されて、他の半導体レーザモジュールからのレーザ光と合成されるべきレーザ光の うちで、一部のレーザ光が、光学素子を透過してしまい、筐体の内壁面に照射される 場合がある。この場合であっても、照射される内壁面がファスト方向に傾斜しているこ と力、ら、レーザ光は、出射されたルートを戻って半導体レーザモジュールの活性層を 劣化させることがない。  [0006] According to this apparatus, laser light output from two or more high-power semiconductor laser modules having a large number of active layers for generating laser light is collimated in the fast direction by a collimating lens and synthesized by an optical element. Is done. At that time, some of the laser light that is reflected by the optical element and is to be combined with the laser light from other semiconductor laser modules is transmitted through the optical element, and the housing The inner wall may be irradiated. Even in this case, since the irradiated inner wall surface is inclined in the fast direction, the laser beam does not return to the emitted route and deteriorate the active layer of the semiconductor laser module.
[0007] また、筐体の内壁面が黒色化されている場合は、筐体の内壁面に照射されたレー ザ光の散乱や吸収が促進されることから、一層、半導体レーザモジュールへ戻るレー ザ光を少なくすることができるとともに、筐体の内壁面で反射したレーザ光が、まとま つたレーザ光線として、筐体内の一定箇所に照射されることがない。  [0007] When the inner wall surface of the housing is blackened, the scattering and absorption of the laser light applied to the inner wall surface of the housing is promoted, and therefore the laser beam returning to the semiconductor laser module is further increased. The laser light can be reduced, and the laser beam reflected by the inner wall surface of the casing is not irradiated to a certain location in the casing as a collective laser beam.
[0008] また、レーザ光が照射された筐体の内壁面は場合によっては数百度の高温となつ て、筐体内部の温度を上昇させ、内部に設置された部品や樹脂等を劣化させること になる。し力もながら、上記半導体レーザ装置が、筐体のレーザ光が照射される内壁 面に対応する箇所の筐体壁内に設けられた冷却装置を更に備える場合は、レーザ 光の照射による温度上昇を抑制することができる。 [0008] In addition, the inner wall surface of the casing irradiated with the laser beam may become a high temperature of several hundred degrees in some cases, thereby increasing the temperature inside the casing and deteriorating the components and resin installed therein. become. However, the semiconductor laser device has an inner wall that is irradiated with laser light from the housing. In the case of further including a cooling device provided in the housing wall at a location corresponding to the surface, it is possible to suppress an increase in temperature due to laser light irradiation.
発明の効果  The invention's effect
[0009] 本発明によれば、半導体レーザモジュールから出力されるレーザ光のうちで、光学 素子によって反射されるべきレーザ光の一部が、光学素子を透過して筐体の内壁面 に照射されても、内壁面で反射して半導体レーザモジュールに戻って活性層を劣化 させることを防止し、信頼性の高い半導体レーザ装置を提供することができる。  [0009] According to the present invention, of the laser light output from the semiconductor laser module, a part of the laser light to be reflected by the optical element is transmitted through the optical element and applied to the inner wall surface of the housing. However, it is possible to prevent the active layer from being deteriorated by being reflected by the inner wall surface and returning to the semiconductor laser module, and to provide a highly reliable semiconductor laser device.
図面の簡単な説明  Brief Description of Drawings
[0010] [図 1]半導体レーザ装置 1を鋼板の溶接ラインに使用した例を示す概念図である。  FIG. 1 is a conceptual diagram showing an example in which the semiconductor laser device 1 is used in a steel sheet welding line.
[図 2]半導体レーザ装置 1の外ケースを一部破断した斜視図である。  FIG. 2 is a perspective view in which the outer case of the semiconductor laser device 1 is partially broken.
[図 3]半導体レーザモジュール 30を示す斜視図である。  3 is a perspective view showing a semiconductor laser module 30. FIG.
[図 4]図 2における IV— IV断面において外ケース 11を除いた要部の説明図である。  FIG. 4 is an explanatory diagram of a main part excluding the outer case 11 in the IV-IV cross section in FIG.
[図 5]図 4の V— V断面図である。  FIG. 5 is a cross-sectional view taken along the line V-V in FIG.
[図 6]LDからの出射光の状態の説明図である。  FIG. 6 is an explanatory diagram of the state of light emitted from the LD.
[図 7]筐体 20の内壁面の傾斜面についての他の形態を示す図である。  FIG. 7 is a view showing another form of the inclined surface of the inner wall surface of the housing 20.
符号の説明  Explanation of symbols
[0011] 1 · ·半導体レーザ装置、 11 · ·外ケース、 12 · ·冷却水入出口、 13 · ·電源端子、 20  [0011] 1 · · Semiconductor laser device, 11 · · Outer case, 12 · · Cooling water inlet / outlet, 13 · · Power supply terminal, 20
• ·筐体、 20a ' ·冷却水通路カバー、 21、 22、 23 · ·筐体の内壁面の傾斜面、 24、 25 • · Housing, 20a '· Cooling water passage cover, 21, 22, 23 · · Inclined surface of the inner wall of the housing, 24, 25
• ·冷却水通路、 30 · ·半導体レーザモジュール、 31 · ' LDアレイスタック、 31A- - LD アレイ、 31Aa . '活性層、 32 · '電極、 33 · 'フランジ、 40 · '鏡筒、 51、 52 · 'ストライプミ ラー、 53 · · 1/2波長板、 54 · 'ビームスプリッタ、 55 · 'コリメ一トレンズ、 56 · ·コリメ一 トレンズ、 57 · '集光レンズ。 • · Cooling water passage, 30 · · Semiconductor laser module, 31 · 'LD array stack, 31A--LD array, 31Aa.' Active layer, 32 · electrode, 33 · flange, 40 · barrel, 51, 52 · 'Striped mirror, 53 · · Half-wave plate, 54 ·' Beam splitter, 55 · 'Collimate lens, 56 · · Collimate lens, 57 ·' Condenser lens.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 以下、図面に基づいて、本発明による半導体レーザ装置の好適な実施形態につい て詳細に説明する。なお、説明において、同一要素又は同一機能を有する要素には 、同一符号を用いることとし、重複する説明は省略する。図 1は、本実施形態の半導 体レーザ装置 1を、鋼板のレーザ溶接に適用した例を示す概念図である。半導体レ 一ザ装置 1は、下部レール 2に適宜の保持部材 3によって摺動自在に設置される。鋼 板 S1と鋼板 S2との突き合わせ部 4に沿って、移動しながら集光されたレーザ光によつ て、鋼板 S1,S2の突き合わせ部 4を溶接する。半導体レーザ装置 1には、半導体レー ザモジュール及び筐体壁を冷却するための冷却水流通用のフレキシブルなパイプ、 電力を供給するための電力ケーブルが接続されて!/、る。冷却水流通用パイプ及び電 力ケーブルは、それぞれ、固定的に設置された冷却器及び電源に接続されるととも に、上部レール 5に、半導体レーザ装置 1の側の端部が半導体レーザ装置 1の移動 に追随可能なように配置されて!/、る。 Hereinafter, a preferred embodiment of a semiconductor laser device according to the present invention will be described in detail with reference to the drawings. In the description, the same reference numerals are used for the same elements or elements having the same function, and redundant description is omitted. FIG. 1 is a conceptual diagram showing an example in which the semiconductor laser device 1 of the present embodiment is applied to laser welding of a steel plate. Semiconductor The one-device apparatus 1 is slidably installed on the lower rail 2 by an appropriate holding member 3. The butted portions 4 of the steel plates S1 and S2 are welded by the laser beam condensed while moving along the butted portions 4 of the steel plates S1 and S2. The semiconductor laser device 1 is connected with a semiconductor laser module, a flexible pipe for circulating cooling water for cooling the housing wall, and a power cable for supplying power. The cooling water distribution pipe and the power cable are connected to a fixedly installed cooler and power source, respectively, and the end on the semiconductor laser device 1 side is connected to the upper rail 5 of the semiconductor laser device 1. It is arranged so that it can follow the movement!
[0013] 図 2は、本実施形態における半導体レーザ装置 1の外ケース 11を一部破断した斜 視図である。外ケース 11内には、筐体 20がその前面を外部に露出して設置されてい る。筐体 20のその前面には、レーザ光を外部に出射する鏡筒 40がー体に取り付けら れている。筐体 20には、外ケース 11内において、 4個の半導体レーザモジュール 30 —1〜30— 4 (4個を区別しなぃときは、符号 30のみを用いる。)が取り付けられてい る。また、外ケース 11には、外部の冷却水流通用パイプと、外ケース 11内の各半導 体レーザモジュール 30の冷却部分へのパイプを接続するための冷却水入出口 12が 設けられている。また、外ケース 11の底面には、図示しないが、後記の筐体壁に形 成される冷却水通路に冷却水を流通させるための冷却水入出口も設けられている。 また、外ケース 11には、各半導体レーザモジュール 30に電力を供給するために、外 部の電力ケーブルに接続される電源端子 13も設けられている。  FIG. 2 is a perspective view in which the outer case 11 of the semiconductor laser device 1 according to the present embodiment is partially broken. Inside the outer case 11, a casing 20 is installed with its front surface exposed to the outside. A lens barrel 40 for emitting laser light to the outside is attached to the front surface of the housing 20. In the outer case 11, four semiconductor laser modules 30-1 to 30-4 (only reference numeral 30 is used when the four are not distinguished) are attached to the casing 20. Further, the outer case 11 is provided with an external cooling water circulation pipe and a cooling water inlet / outlet 12 for connecting a pipe to a cooling portion of each semiconductor laser module 30 in the outer case 11. Also, on the bottom surface of the outer case 11, although not shown, a cooling water inlet / outlet for allowing the cooling water to flow through a cooling water passage formed in the housing wall described later is also provided. The outer case 11 is also provided with a power supply terminal 13 connected to an external power cable in order to supply power to each semiconductor laser module 30.
[0014] 筐体 20は、例えば、アルミニウム合金等で形成され、その内面には、レーザ光の反 射をできるだけ防止するために、アルマイト(陽極酸化により形成されるアルミニウム 酸化物)の黒色皮膜が施されてレ、る。黒色皮膜の表面は適度の粗面となって!/、ること から、レーザ光の反射を多少とも分散する効果を有している。筐体 20には取り付け用 の開口が形成され、そこに半導体レーザモジュール 30—;!〜 30— 4が取付けられて いる。  The casing 20 is formed of, for example, an aluminum alloy, and a black film of alumite (aluminum oxide formed by anodization) is formed on the inner surface of the casing 20 in order to prevent reflection of laser light as much as possible. It has been applied. Since the surface of the black film becomes an appropriate rough surface! /, It has the effect of dispersing the reflection of the laser light to some extent. An opening for attachment is formed in the housing 20, and a semiconductor laser module 30 — ;! ~ 30-4 is attached thereto.
[0015] 図 3は、筐体 20の開口に配置される半導体レーザモジュール 30を示す斜視図であ る。半導体レーザモジュール 30は、両端の電極 32間に多数の半導体レーザアレイ( 以下「LDアレイ」という) 31Aが積層された LDアレイスタック 31が、板状のフランジ 33 に取り付けられて構成されている。各 LDアレイ 31Aは、複数の活性層が図面で横方 向に一列に配置された一次元配列のレーザ光出射点を形成している。なお、各活性 層の厚さ方向すなわち LDアレイ 31Aの積層方向をファスト方向 Fと称し、 LDアレイ 3 1Aの活性層の列方向をスロー方向 Sと称する。これらの各 LDアレイ 31Aの間には、 冷却用のプレートを揷入しておいてもよい。また、フランジ 33の反対面には、電極 32 への接続端子が設けられている。ここで、半導体レーザモジュール 30に含まれるの は、 LDアレイスタック 31としている力 所定数の半導体レーザモジュール 30力ものレ 一ザ光を合わせた出力が、金属加工等の用途に使用できるものであればよぐ LDス タックであっても LDアレイであってもよい。フランジ 33の LDアレイスタック 31取付面と 反対面が、筐体 20の開口を塞いで、筐体 20の外壁の一部を形成するように、各半 導体レーザモジュール 30が開口に取り付けられる。 FIG. 3 is a perspective view showing the semiconductor laser module 30 disposed in the opening of the housing 20. The semiconductor laser module 30 includes an LD array stack 31 in which a large number of semiconductor laser arrays (hereinafter referred to as “LD arrays”) 31A are stacked between electrodes 32 at both ends. It is attached and configured. Each LD array 31A forms a one-dimensional array of laser light emission points in which a plurality of active layers are arranged in a row in the horizontal direction in the drawing. The thickness direction of each active layer, that is, the stacking direction of the LD array 31A is referred to as the fast direction F, and the column direction of the active layers in the LD array 31A is referred to as the slow direction S. A cooling plate may be inserted between these LD arrays 31A. A connection terminal to the electrode 32 is provided on the opposite surface of the flange 33. Here, the semiconductor laser module 30 includes the power of the LD array stack 31 so that the output obtained by combining the laser light of a predetermined number of semiconductor laser modules 30 can be used for applications such as metal processing. It can be an LD stack or an LD array. Each semiconductor laser module 30 is attached to the opening so that the surface opposite to the mounting surface of the LD array stack 31 of the flange 33 closes the opening of the housing 20 and forms a part of the outer wall of the housing 20.
[0016] 図 4は、図 2における IV— IV断面において外ケース 11を除いた要部の説明図であ る。すなわち、筐体 20と鏡筒 40との縦断面を示している。図 4において、半導体レー ザモジュール 30—;!〜 30— 4が取り付けられた状態では、図 3に示した各 LDアレイ スタック 31は、筐体 20の内面側に位置する。また、図 4の紙面に垂直な方向に沿つ て、 LDアレイ 31Aが積層されることになり、その方向が、半導体レーザモジュール 30 のファスト方向ということになる。図 5は、図 4の V—V断面図である。この図では、 4つ の半導体レーザモジユーノレ 30のうちで、 1つの半導体レーザモジユーノレ 30— 1のレ 一ザ光 L1の光路を例示している。  [0016] FIG. 4 is an explanatory diagram of a main part excluding the outer case 11 in the IV-IV cross section in FIG. That is, a longitudinal section of the housing 20 and the lens barrel 40 is shown. In FIG. 4, each of the LD array stacks 31 illustrated in FIG. 3 is positioned on the inner surface side of the housing 20 in a state where the semiconductor laser modules 30— ;! to 30-4 are attached. Also, the LD array 31A is stacked along the direction perpendicular to the paper surface of FIG. 4, and this direction is the fast direction of the semiconductor laser module 30. 5 is a cross-sectional view taken along the line VV in FIG. In this figure, the optical path of the laser light L1 of one semiconductor laser module 30-1 among the four semiconductor laser modules 30 is illustrated.
[0017] ここで、各半導体レーザモジュール 30の LDアレイ 31Aから出射されるレーザ光の 状態を説明すると、図 6に示すように、活性層 31Aaから出射されるレーザ光 Lは、ファ スト方向 Fには /3で示すように、 30〜40度程度の大きな拡がりをし、スロー方向 Sに は αで示すような 8〜; 10度程度の小さな拡がりである。そのため、各半導体レーザモ ジュール 30の各 LDアレイ 31Aの出射面には、ファスト方向にレーザ光をコリメートす るコリメートレンズ 55— ;!〜 55— 4力 図 4,図 5のように配置される。  Here, the state of the laser light emitted from the LD array 31A of each semiconductor laser module 30 will be described. As shown in FIG. 6, the laser light L emitted from the active layer 31Aa has a fast direction F As shown by / 3, it has a large spread of about 30 to 40 degrees, and in the slow direction S is a small spread of about 8 to 10 degrees as shown by α. Therefore, collimating lenses 55— ;! to 55-4 for collimating the laser beam in the fast direction are arranged on the emission surface of each LD array 31A of each semiconductor laser module 30 as shown in FIGS.
[0018] 図 4のとおり、半導体レーザモジユーノレ 30— 1と半導体レーザモジユーノレ 30— 2と は、ほぼ直交する位置にあり、それらから出射されるレーザ光の光軸にほぼ 45度の 角度をもって、ストライプミラー 51が、ホルダによって筐体 20内に設置されている。ス トライプミラー 51は、半導体レーザモジュール 30— 1及び 30— 2における LDアレイ 3 1Aの積層ピッチと同ピッチで積層されるストライプ状のミラーを備えている。一方、半 導体レーザモジュール 30— 1と 30— 2における各 LDアレイ 31Aは、ファスト方向にス トライプ状のミラーと同ピッチだけ互いに位置をずらして積層されている。そのため、 半導体レーザモジュール 30— 2の各 LDアレイ 31Aから出射されてコリメートレンズ 55 —2によって、ファスト方向にコリメートされたレーザ光は、ストライプミラー 51における 各ストライプ状のミラー部分に照射されて反射し、略 90度方向を変える。一方、半導 体レーザモジュール 30— 1の各 LDアレイ 31Aから出射されてコリメートレンズ 55— 1 によって、ファスト方向にコリメートされたレーザ光は、ストライプミラー 51における各ス トライプ状のミラーの間のミラーが形成されていない部分を透過して直進する。これに よって、半導体レーザモジュール 30— 1と 30 2からのレーザ光力 ストライプミラー 51により合成されて、 1/2波長板 53に入射することになる。 1/2波長板は、この合 成されたレーザ光の偏光方向を 90度回転させるものである。 [0018] As shown in FIG. 4, the semiconductor laser module 30-1 and the semiconductor laser module 30-2 are substantially perpendicular to each other, and are approximately 45 degrees to the optical axis of the laser beam emitted from them. The stripe mirror 51 is installed in the housing 20 with a holder at an angle. The The triple mirror 51 includes stripe-shaped mirrors stacked at the same pitch as the stacking pitch of the LD arrays 31A in the semiconductor laser modules 30-1 and 30-2. On the other hand, the LD arrays 31A in the semiconductor laser modules 30-1 and 30-2 are stacked with their positions shifted from each other by the same pitch as the striped mirror in the fast direction. Therefore, the laser beam emitted from each LD array 31A of the semiconductor laser module 30-2 and collimated in the fast direction by the collimating lens 55-2 is irradiated and reflected on each stripe-shaped mirror portion of the stripe mirror 51. Change the direction about 90 degrees. On the other hand, the laser beam emitted from each LD array 31A of the semiconductor laser module 30-1 and collimated in the fast direction by the collimating lens 55-1 is reflected between the striped mirrors 51 in the stripe mirror 51. Go straight through the part where is not formed. As a result, the laser light power from the semiconductor laser modules 30-1 and 30 2 is combined by the stripe mirror 51 and is incident on the half-wave plate 53. The half-wave plate rotates the polarization direction of the synthesized laser beam by 90 degrees.
半導体レーザモジュール 30— 3と 30— 4についても、半導体レーザモジュール 30 1と 30— 2について説明したのと同様の関係にあり、それらからのレーザ光は、スト ライプミラー 52によって合成されて、ビームスプリッタ 54に入射する。ビームスプリッタ 54は、レーザ光のうちで、 P偏光成分と S偏光成分の一方は透過し、他方は反射する ものである。そのため、半導体レーザモジュール 30— 3と 30— 4から出射してストライ プミラー 52で合成されたレーザ光は、ビームスプリッタ 54を透過して直進する。一方 、半導体レーザモジュール 30— 1と 30— 2から出射してストライプミラー 51で合成さ れ、 1/2波長板 53によって 90度偏光方向を変えられたレーザ光は、ビームスプリツ タ 54によって反射される。これによつて、両レーザ光は合成されることになる。合成さ れたレーザ光の鏡筒 40内の光路には、コリメートレンズ 56と集光レンズ 57が配置さ れており、 4個の半導体レーザモジュール 30— ;!〜 30— 4からのレーザ光が合成さ れて、加工のために集光されたレーザ光が出射可能とされている。ここで、ストライプ ミラー 51 , 52は、同様の機能を有するスリットミラーでもよぐあるいは、半導体レーザ モジユーノレ 30— 1と 30— 2の間、半導体レーザモジュール 30— 3と 30— 4の間のレ 一ザ光の波長を異ならせておいて、特定の波長のレーザ光を透過し、他の特定の波 長のレーザ光を反^] 、。同じく、ビームスプリツ タ 54についても、 1Z2波長板を設置せずに、半導体レーザモジュール 30— 1と 30 2の合成レーザ光と、 30— 3と 30— 4の合成レーザ光との波長を異ならせておいて
Figure imgf000009_0001
The semiconductor laser modules 30-3 and 30-4 are also in the same relationship as described for the semiconductor laser modules 30 1 and 30-2, and the laser beams from them are combined by the stripe mirror 52 and are combined into a beam splitter. Incident at 54. Of the laser light, the beam splitter 54 transmits one of the P-polarized component and the S-polarized component and reflects the other. Therefore, the laser light emitted from the semiconductor laser modules 30-3 and 30-4 and synthesized by the stripe mirror 52 passes through the beam splitter 54 and travels straight. On the other hand, the laser beam emitted from the semiconductor laser modules 30-1 and 30-2 and synthesized by the stripe mirror 51 and whose polarization direction is changed by 90 degrees by the half-wave plate 53 is reflected by the beam splitter 54. . As a result, both laser beams are combined. A collimating lens 56 and a condensing lens 57 are arranged in the optical path inside the lens barrel 40 of the synthesized laser light, and the laser light from the four semiconductor laser modules 30—;! To 30—4 is received. The combined laser beam can be emitted for processing. Here, the stripe mirrors 51 and 52 may be slit mirrors having the same function, or between the laser diode modules 30-1 and 30-2 and between the semiconductor laser modules 30-3 and 30-4. The wavelength of the light is different, the laser light of a specific wavelength is transmitted, and the other specific wave Anti-long laser light ^] ,. Similarly, for the beam splitter 54, the wavelength of the synthesized laser light of the semiconductor laser modules 30-1 and 302 and the synthesized laser light of 30-3 and 30-4 are different without installing a 1Z2 wavelength plate. Leave
Figure imgf000009_0001
[0020] 本実施形態においては、筐体 20の全内壁面又は少なくとも設置された半導体レー ザモジュール 30と対面する箇所の内壁面力 S、半導体レーザモジュール 30のファスト 方向に傾斜して形成されている。図 5に一例を示すように、半導体レーザモジュール 30— 1に、レーザ光を合成する光学素子としてのビームスプリッタ 54、ストライプミラ —51を介して対面する内壁面 21力 当該半導体レーザモジュール 30— 1のスロー 方向に延びる多数の三角形の凹凸形状とされることで、ファスト方向に傾斜したもの とされている。また、同様に図 4における半導体レーザモジュール 30— 2と対面する 内壁面 22も傾斜面とされている。半導体レーザモジュール 30— 4と対面する内壁面 23も同様である。  In the present embodiment, the entire inner wall surface of the housing 20 or at least the inner wall surface force S at a location facing the semiconductor laser module 30 installed, and the semiconductor laser module 30 are inclined in the fast direction. Yes. As shown in FIG. 5, as an example, the semiconductor laser module 30-1 has an inner wall 21 force that faces the laser splitter 54 and a stripe mirror 51 as an optical element for combining laser beams. It is slanted in the fast direction because it has many triangular irregularities extending in the slow direction. Similarly, the inner wall surface 22 facing the semiconductor laser module 30-2 in FIG. 4 is also inclined. The same applies to the inner wall surface 23 facing the semiconductor laser module 30-4.
[0021] また、これらの内壁面に対応する壁内には、冷却水を流通させるための冷却水通 路 24, 25が形成されている。図 4では、該当する内壁面 21 , 22, 23のうちの内壁面 21 , 23の 2箇所だけに形成している力 S、全ての内壁面に対応する壁内に形成しても よぐ特に大きな温度上昇が見込まれる内壁面 21の壁内だけに形成してもよい。内 壁面の傾斜についても同様であり、特に漏れによるレーザ光の照射が大きい内壁面 21だけに形成してもよい。図 5に示すように、冷却水通路 24, 25は、外部に冷却水 が漏れないように冷却水通路カバー 20aによって端部が塞がれている。また、図示し ないが、冷却水通路 24, 25には、冷却器にフレキシブルなパイプを介して接続され る冷却水入出口との連結孔が開口しており、冷却水が冷却器との間で環流される。  [0021] In addition, cooling water passages 24 and 25 for circulating cooling water are formed in the walls corresponding to these inner wall surfaces. In Fig. 4, the force S formed only at two locations of the inner wall surfaces 21, 23 of the corresponding inner wall surfaces 21, 22, 23, may be formed in the walls corresponding to all the inner wall surfaces. You may form only in the wall of the inner wall surface 21 with which a big temperature rise is anticipated. The same applies to the inclination of the inner wall surface, and it may be formed only on the inner wall surface 21 where laser light irradiation due to leakage is particularly large. As shown in FIG. 5, the ends of the cooling water passages 24 and 25 are closed by the cooling water passage cover 20a so that the cooling water does not leak outside. Although not shown, the cooling water passages 24 and 25 have a connection hole with a cooling water inlet / outlet connected to the cooling device via a flexible pipe, so that the cooling water is connected to the cooling device. It is recirculated at.
[0022] 次に、本実施形態の半導体レーザ装置 1の作用について、図 5を主にして説明する 。半導体レーザモジュール 30— 1の各 LDアレイ 31Aから出射し、コリメートレンズ 55 —1でファスト方向にコリメートされたレーザ光 L1は、ストライプミラー 51によって、同 様にコリメートレンズ 55— 2でコリメートされた半導体レーザモジュール 30— 2からの レーザ光と合成される。次に、 1/2波長板 53によって波長偏光方向を 90度変えら れて、ビームスプリッタ 54で反射されて、 90度進行方向を変えられ、半導体レーザモ ジュール 30— 3、 30— 4からのレーザ光とともに、集光レンズ 57で集光されて外部に 出射される。 Next, the operation of the semiconductor laser device 1 of the present embodiment will be described mainly with reference to FIG. The laser light L1 emitted from each LD array 31A of the semiconductor laser module 30-1 and collimated in the fast direction by the collimating lens 55-1 is similarly collimated by the stripe mirror 51 by the collimating lens 55-2. Synthesized with laser light from laser module 30-2. Next, the wavelength polarization direction is changed by 90 degrees by the half-wave plate 53, reflected by the beam splitter 54, and the traveling direction is changed by 90 degrees. Together with the laser light from the joules 30-3 and 30-4, the light is condensed by the condenser lens 57 and emitted to the outside.
[0023] ところ力 ビームスプリッタ 54に入射する全てのレーザ光力 例えば S偏光成分とな つていて、ビームスプリッタ 54によって、出射方向に反射されるとは限らない。一部に は P偏光成分等が混入していることもあり、一部のレーザ光は、ビームスプリッタ 54を 透過して、筐体 20の内壁面 21に照射される。なお、図 4のような配置では、半導体レ 一ザモジュール 30— 3, 30— 4の合成レーザ光の一部力 S、ビームスプリッタ 54で反 射されて内壁面 21に照射されることもあり得る。そのため、レーザ光の一部は、図 5の 破線で示すように筐体 20の内壁面 21に直進する。レーザ光は、ファスト方向にコリメ ートされていることから、内壁面 21が通常のように垂直面(ファスト方向に沿った面)で あれば、内壁面 21で反射したレーザ光は、ファスト方向については、来た経路を真 直に戻って、半導体レーザモジュール 30— 1の各 LDアレイ 31Aの活性層を劣化さ せることになる。ここで、本実施形態では、図 5のように、内壁面 21は、断面 3角形の 凹凸形状とされ、ファスト方向に傾斜した面となっていることから、ファスト方向に傾斜 角度をもって反射されることになり、 LDアレイ 31Aに戻ることを防止できる。ここで、傾 斜の角度は、 1度以上が好ましい。これ以下の傾斜では、傾斜面として機能して反射 光の LDアレイへの戻りを防止するのに十分ではない。さらに十分な傾斜角度として は、 5度以上が好ましい。  However, the force is all the laser light force incident on the beam splitter 54, for example, an S polarization component, and is not necessarily reflected by the beam splitter 54 in the emission direction. In some cases, a P-polarized component or the like may be mixed, and a part of the laser light passes through the beam splitter 54 and is irradiated on the inner wall surface 21 of the housing 20. In the arrangement as shown in FIG. 4, the partial power S of the combined laser light of the semiconductor laser modules 30-3, 30-4 may be reflected by the beam splitter 54 and applied to the inner wall surface 21. obtain. Therefore, a part of the laser light goes straight to the inner wall surface 21 of the housing 20 as indicated by a broken line in FIG. Since the laser beam is collimated in the fast direction, if the inner wall surface 21 is a vertical surface (a surface along the fast direction) as usual, the laser beam reflected by the inner wall surface 21 is in the fast direction. For this, the path that came is returned straight and the active layer of each LD array 31A of the semiconductor laser module 30-1 is degraded. Here, in the present embodiment, as shown in FIG. 5, the inner wall surface 21 has an irregular shape with a triangular cross section and is a surface inclined in the fast direction, so that it is reflected at an inclination angle in the fast direction. As a result, it is possible to prevent returning to the LD array 31A. Here, the inclination angle is preferably 1 degree or more. Less than this tilt is not sufficient to function as a ramp and prevent the reflected light from returning to the LD array. Further, a sufficient inclination angle is preferably 5 degrees or more.
[0024] また、本実施形態においては、内壁面 2;!〜 23を含め、アルミニウム合金製の筐体 20の内壁面には、レーザ光をできるだけ吸収するようにアルマイトの黒色被膜を施し ており、黒色被膜は同時に粗面化もされていることから、吸収を大きくするとともに反 射光についてもできるだけ散乱するようにされている。このような黒色被膜を施しただ けでは、反射したレーザ光の LDアレイ 31Aへの戻りを十分に防止することはできな いものの、傾斜した内壁面へ照射されるレーザ光の反射をできるだけ吸収し、反射光 の散乱についても傾斜面の作用を補助している。なお、黒色皮膜に替えて、表面を 薬液によって粗面化するとともに黒化処理を施した銅板をアルミニウム合金製の筐体 20内壁面に貼着することも採用され得る。  In the present embodiment, the inner wall surface of the aluminum alloy casing 20 including the inner wall surface 2;! To 23 is provided with an alumite black coating so as to absorb laser light as much as possible. Since the black coating is also roughened at the same time, the absorption is increased and the reflected light is scattered as much as possible. Although such a black coating cannot sufficiently prevent the reflected laser beam from returning to the LD array 31A, it absorbs as much as possible the reflection of the laser beam irradiated to the inclined inner wall surface. In addition, the action of the inclined surface is also supported for scattering of the reflected light. In place of the black film, it is also possible to use a copper plate that has been roughened with a chemical solution and blackened, and is adhered to the inner wall surface of the aluminum alloy casing 20.
[0025] 以上は、半導体レーザモジュール 30— 1から内壁面 21に至る経路を示す図 5を例 にとつて説明した力 他の箇所においても同様であり、例えば、半導体レーザモジュ ール 30— 2から出射しコリメートレンズ 55— 2でファスト方向にコリメートされたレーザ 光のうちで、ストライプミラー 51によって反射されずに、透過して直進したレーザ光は 、内壁面 22が図 5の内壁面 21と同じように傾斜されていることから、半導体レーザモ ジュール 30— 2の LDアレイ 31Aへの戻りを防止できる。ここで、ストライプミラー 51 ( スリットミラーの場合も同じ)は、図 5の例で説明したビームスプリッタ 54とは反射 ·透過 の機構は異なり、ミラーの存在する部分では反射し、ミラーの存在しない部分では透 過する。そのため、半導体レーザモジュール 30— 2の各 LDアレイ 31Aからのレーザ 光力 S、ストライプミラー 51のミラー部分で反射されるように位置合わせされているにし ても、その誤差のために、一部のレーザ光が、ストライプミラー 51のミラーの存在しな V、部分を透過してしまうものである。 [0025] The above is an example of FIG. 5 showing the path from the semiconductor laser module 30-1 to the inner wall surface 21. The same applies to the other points. For example, the laser beam emitted from the semiconductor laser module 30-2 and collimated in the fast direction by the collimator lens 55-2 is reflected by the stripe mirror 51. Instead, the laser beam that has been transmitted and traveled straight can prevent the return of the semiconductor laser module 30-2 to the LD array 31A because the inner wall surface 22 is inclined in the same manner as the inner wall surface 21 in FIG. . Here, the stripe mirror 51 (the same applies to the slit mirror) differs from the beam splitter 54 described in the example of FIG. 5 in that the reflection / transmission mechanism is different. Then it is transparent. Therefore, even if the laser beam power S from each LD array 31A of the semiconductor laser module 30-2 is aligned so that it is reflected by the mirror part of the stripe mirror 51, some of the error is caused by the error. The laser light is transmitted through the V, part where the mirror of the stripe mirror 51 does not exist.
[0026] 次に筐体 20の冷却について説明する。本実施形態における半導体レーザ装置 1 は、金属加工等に使用されるものであることから、 4〜5kW (キロワット)というような高 出力が要求されることもある。したがって、レーザ光のうちで、光学素子 (ストライプミラ 一 51及び 52、ビームスプリッタ 54)で反射されるべきものが透過する割合が小さな値 であっても、筐体 20の内壁面 2;!〜 23に照射されるレーザ光のエネルギーは相当の ものである。しかも、内壁面に黒色皮膜を施している場合には、エネルギー吸収も高 いものとなり、筐体 20の内壁面が局所的に 300°C以上の温度にも上昇することがあ る。そして、このような温度上昇により、筐体 20が変形すると、そこに設置している半 導体レーザモジュール 30や各光学素子の位置に狂!/、を生じ、レーザ光の光路長を 変化させる等の障害を生じる。また、筐体 20内の雰囲気温度も上昇することから、部 品の固定に使用されている接着剤や半田、設置された部品自体の劣化を引き起こす 。特に、半導体レーザモジュール 30の発光部分での湿度をモニタするために設置さ れている湿度センサのリードの樹脂被覆が劣化する障害を生じる。  Next, cooling of the housing 20 will be described. Since the semiconductor laser device 1 in the present embodiment is used for metal processing or the like, a high output such as 4 to 5 kW (kilowatt) may be required. Therefore, even if the proportion of laser light that should be reflected by the optical elements (stripe mirrors 51 and 52, beam splitter 54) is small, the inner wall surface 2 of the housing 20; The energy of the laser light irradiated to 23 is considerable. Moreover, when the inner wall surface is coated with a black film, energy absorption is also high, and the inner wall surface of the housing 20 may locally rise to a temperature of 300 ° C or higher. If the casing 20 is deformed due to such a temperature rise, the position of the semiconductor laser module 30 or each optical element installed there is distorted! /, And the optical path length of the laser light is changed. Cause trouble. In addition, since the ambient temperature in the housing 20 also rises, it causes deterioration of the adhesive and solder used to fix the components and the installed components themselves. In particular, the resin coating of the lead of the humidity sensor installed to monitor the humidity at the light emitting portion of the semiconductor laser module 30 is deteriorated.
[0027] そのため、本実施形態においては、特に、図 5に明確に示すように、筐体 20の前記 内壁面 2;!〜 23に対応する箇所の筐体 20壁内には冷却水通路 24, 25を形成して いる。冷却水は、外部の冷却器力 パイプによって半導体レーザ装置 1の底面の冷 却水入口に導入され、図示しない配管によって各冷却水通路 24, 25を流通して、筐 体 20の壁部を冷却する。その後、冷却水は、図示しない配管によって半導体レーザ 装置 1の底面の冷却水出口から排出され、パイプによって冷却器に戻される。 Therefore, in the present embodiment, as clearly shown in FIG. 5, in particular, the cooling water passage 24 is provided in the wall of the housing 20 at a location corresponding to the inner wall surface 2;! , 25 is formed. The cooling water is introduced into the cooling water inlet on the bottom surface of the semiconductor laser device 1 by an external cooler power pipe, and circulates through the cooling water passages 24 and 25 by piping (not shown). Cool the body 20 walls. Thereafter, the cooling water is discharged from the cooling water outlet on the bottom surface of the semiconductor laser device 1 through a pipe (not shown) and returned to the cooler through the pipe.
[0028] 以上のように、本実施形態においては、レーザ光の光学素子での漏れにより照射を 受ける筐体 20内壁面 2;!〜 23に傾斜を形成するという簡単な構成により、レーザ光 が半導体レーザモジュール 30の LDアレイに戻り活性層を劣化させることを防止でき る。また、内壁面 2;!〜 23には黒色被膜を施す等で黒色化及び粗面化していることで 、傾斜面によるレーザ光の戻り防止をさらに確かなものとできる。さらに、レーザ光が 照射されて温度が上昇することを、冷却水による冷却によって抑制することができる。  [0028] As described above, in the present embodiment, the laser beam is emitted by a simple configuration in which an inclination is formed in the inner wall surface 2 of the casing 20 that receives irradiation due to leakage of laser light in the optical element; It is possible to prevent the active layer from deteriorating by returning to the LD array of the semiconductor laser module 30. Further, the inner wall surface 2;! To 23 is blackened and roughened by applying a black film or the like, so that the laser beam can be prevented from returning by the inclined surface. Furthermore, it is possible to suppress an increase in temperature due to irradiation with laser light by cooling with cooling water.
[0029] 本実施形態においては、内壁面 2;!〜 23の傾斜は、図 5のように多数の三角形の 凹凸形状としているため、反射したレーザ光を、ファスト方向の両側にほぼ均等に分 散することカできる。また、反射したレーザ光が半導体レーザモジュール 30の LDァ レイに戻るのをより確実に防止するために傾斜角度を大きくした(三角形が 2等辺が 長い尖った形状となる)場合であっても、筐体 20全体のスペースが特段に大きくなる ことがない。  [0029] In the present embodiment, the inclination of the inner wall surface 2;! To 23 has a large number of triangular concave and convex shapes as shown in Fig. 5, so that the reflected laser light is divided almost evenly on both sides in the fast direction. Can be scattered. Even if the angle of inclination is increased to prevent the reflected laser light from returning to the LD array of the semiconductor laser module 30 more reliably (the triangle has a sharp shape with a long isosceles side) The space of the entire casing 20 does not become particularly large.
[0030] し力、し、本実施形態における筐体 20の内壁面 2;!〜 23の傾斜の形状については、 これに限ることなく、図 7に示す形状やその他の変形であってよい。図 7の(A) (B)の ように、ファスト方向のどちらかに傾斜する 1つの傾斜面とした場合は、製造が容易に なる。 (C) (D)のように少ない数の三角形状とした場合は、反射したレーザ光をファス ト方向の両側にほぼ均等に分散させることができるとともに、スペースもそれほど必要 とせず、製造も比較的容易である。 (E)のように、多数の三角形でかつ一方の辺を長 くした凹凸形状とした場合は、図 5の実施形態とほぼ同様であるが、さらに、ファスト方 向の一方側(図では上側)に多く反射を偏らせることができる。 (F) (G)に示すように、 (A) (B)の傾斜に、図 5又は(E)の図の多数の三角形状を組み合わせることもでき、 この場合、レーザ光の照射される面積を大きくすることができる。そして、いずれの場 合においても、ファスト方向に対する傾斜角度は、図 5の場合と同様に、 1度以上、さ らには 5度以上が好ましい。傾斜角度の上限値は、傾斜態様によって、スペース効率 を特に悪化させないことや製造効率を考慮して決定できる。  [0030] The inclination shape of the inner wall surface 2;! To 23 of the housing 20 in the present embodiment is not limited to this, and may be the shape shown in FIG. As shown in (A) and (B) of Fig. 7, if one inclined surface is inclined in either of the fast directions, manufacturing becomes easier. (C) When a small number of triangles are used as shown in (D), the reflected laser light can be distributed almost evenly on both sides in the fast direction, and space is not required so much. Easy. As shown in (E), when the concavo-convex shape has a large number of triangles and one side is elongated, it is almost the same as the embodiment of FIG. ) Can deflect the reflection much. (F) As shown in (G), the slopes of (A) and (B) can be combined with a number of triangular shapes shown in Fig. 5 or (E). Can be increased. In any case, the inclination angle with respect to the fast direction is preferably 1 degree or more, and more preferably 5 degrees or more, as in the case of FIG. The upper limit of the tilt angle can be determined depending on the tilt mode, taking into consideration that the space efficiency is not particularly deteriorated and the manufacturing efficiency.
[0031] また、本実施形態においては、内壁面 2;!〜 23に対応する壁面に設ける冷却装置 は、冷却水通路 24, 25とした力 例えば、ペルチェ素子を用いた電子冷却、ヒートパ ィプ等であってもよい。また、使用対象も、レーザ溶接やレーザ切断等の金属加工に 限らず、高出力の半導体レーザ装置を必要とされるものに適用可能なことはいうまで もない。 [0031] In the present embodiment, the cooling device provided on the wall surface corresponding to the inner wall surface 2;! For example, the force used for the cooling water passages 24 and 25 may be electronic cooling using a Peltier element, a heat pipe, or the like. Needless to say, the object of use is not limited to metal processing such as laser welding or laser cutting, but can be applied to those requiring a high-power semiconductor laser device.

Claims

請求の範囲 The scope of the claims
[1] 少なくとも 2以上の半導体レーザモジュールと、  [1] at least two or more semiconductor laser modules;
前記半導体レーザモジュールから出力されるレーザ光をファスト方向にコリメートす るコリメートレンズと、  A collimating lens for collimating the laser beam output from the semiconductor laser module in the fast direction;
前記コリメートレンズからのレーザ光のうちで、少なくとも 1の前記半導体レーザモジ ユールから出力されるレーザ光を透過し、他の少なくとも 1の前記半導体レーザモジ ユールから出力されるレーザ光を反射することにより、両レーザ光を合成する光学素 子と、  By transmitting laser light output from at least one of the semiconductor laser modules and reflecting laser light output from at least one of the other semiconductor laser modules among the laser light from the collimating lens, An optical element that synthesizes the laser light;
前記半導体レーザモジュール、前記コリメートレンズ及び前記光学素子を内部に配 置する筐体と、  A housing in which the semiconductor laser module, the collimating lens, and the optical element are disposed;
を備え、  With
前記光学素子を介して前記半導体レーザモジュールと対面する前記筐体の内壁 面が少なくとも前記ファスト方向に傾斜している、半導体レーザ装置。  A semiconductor laser device, wherein an inner wall surface of the casing facing the semiconductor laser module through the optical element is inclined at least in the fast direction.
[2] 前記筐体の前記内壁面は、黒色化されている、請求項 1に記載の半導体レーザ装 置。 [2] The semiconductor laser device according to [1], wherein the inner wall surface of the housing is blackened.
[3] 前記筐体の前記内壁面に対応する箇所の筐体壁内に設けられた冷却装置を更に 備える、請求項 1又は 2に記載の半導体レーザ装置。  [3] The semiconductor laser device according to [1] or [2], further comprising a cooling device provided in a housing wall at a location corresponding to the inner wall surface of the housing.
PCT/JP2007/069448 2006-10-19 2007-10-04 Semiconductor laser device WO2008047608A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006285314A JP5165226B2 (en) 2006-10-19 2006-10-19 Semiconductor laser device
JP2006-285314 2006-10-19

Publications (1)

Publication Number Publication Date
WO2008047608A1 true WO2008047608A1 (en) 2008-04-24

Family

ID=39313847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/069448 WO2008047608A1 (en) 2006-10-19 2007-10-04 Semiconductor laser device

Country Status (2)

Country Link
JP (1) JP5165226B2 (en)
WO (1) WO2008047608A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020105894A (en) * 2018-12-27 2020-07-09 コスモケミカル株式会社 Delineator device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7465149B2 (en) 2020-05-14 2024-04-10 株式会社フジクラ Laser module and fiber laser device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08160259A (en) * 1994-12-02 1996-06-21 Mitsubishi Electric Corp Photosemiconductor element module
JPH09168880A (en) * 1995-12-19 1997-06-30 Mitsubishi Chem Corp Laser texture device
JPH09304666A (en) * 1996-05-16 1997-11-28 Kyocera Corp Module for optical communication
JP2001044574A (en) * 1999-07-30 2001-02-16 Hamamatsu Photonics Kk Semiconductor laser
JP2001083460A (en) * 1999-09-14 2001-03-30 Hamamatsu Photonics Kk Laser device
JP2004012647A (en) * 2002-06-05 2004-01-15 Hitachi Cable Ltd Transmitter-receiver integrated optical module
JP2004093827A (en) * 2002-08-30 2004-03-25 Hamamatsu Photonics Kk Condensing device
JP2005142413A (en) * 2003-11-07 2005-06-02 Matsushita Electric Ind Co Ltd Semiconductor laser device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03147535A (en) * 1989-11-01 1991-06-24 Matsushita Electric Ind Co Ltd Optical head
JPH10235485A (en) * 1997-02-26 1998-09-08 Amada Co Ltd Cooling method for optical parts in laser beam machine and its device
JP3978271B2 (en) * 1997-11-20 2007-09-19 株式会社アマダエンジニアリングセンター Laser processing machine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08160259A (en) * 1994-12-02 1996-06-21 Mitsubishi Electric Corp Photosemiconductor element module
JPH09168880A (en) * 1995-12-19 1997-06-30 Mitsubishi Chem Corp Laser texture device
JPH09304666A (en) * 1996-05-16 1997-11-28 Kyocera Corp Module for optical communication
JP2001044574A (en) * 1999-07-30 2001-02-16 Hamamatsu Photonics Kk Semiconductor laser
JP2001083460A (en) * 1999-09-14 2001-03-30 Hamamatsu Photonics Kk Laser device
JP2004012647A (en) * 2002-06-05 2004-01-15 Hitachi Cable Ltd Transmitter-receiver integrated optical module
JP2004093827A (en) * 2002-08-30 2004-03-25 Hamamatsu Photonics Kk Condensing device
JP2005142413A (en) * 2003-11-07 2005-06-02 Matsushita Electric Ind Co Ltd Semiconductor laser device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020105894A (en) * 2018-12-27 2020-07-09 コスモケミカル株式会社 Delineator device

Also Published As

Publication number Publication date
JP5165226B2 (en) 2013-03-21
JP2008103564A (en) 2008-05-01

Similar Documents

Publication Publication Date Title
US10833482B2 (en) Diode laser apparatus with FAC lens out-of-plane beam steering
US6898222B2 (en) Diode laser arrangement with a plurality of diode laser arrays
US20060262408A1 (en) Linear light beam generating optical system
JP5982752B2 (en) Light source device and projector
EP2342597B1 (en) Interleaving laser beams
WO2014126124A1 (en) Semiconductor laser device
JP2001215443A (en) Optical device
US20220294174A1 (en) Light emitting apparatus, light source unit, light source apparatus, and optical fiber laser
US20180375285A1 (en) Diode laser with housing
JP6187023B2 (en) Light source device and projector
WO2008047608A1 (en) Semiconductor laser device
CA2228244C (en) Semiconductor excitation solid-state laser apparatus
US20230375791A1 (en) Optical apparatus, light source apparatus, and optical fiber laser
JP6351090B2 (en) Light source unit, illumination optical system using light source unit
CN112490852A (en) Laser beam combining device
JP2003124558A (en) Semiconductor laser device
JP2001044574A (en) Semiconductor laser
CN116068834A (en) Laser and laser projection equipment
JP2004146456A (en) Semiconductor laser device
WO2023033083A1 (en) Optical device, light source device, and optical fiber laser
CN213816739U (en) Laser beam combining device
JP2022071758A (en) Semiconductor laser module
CN219717496U (en) Laser and light emitting device
US20240019709A1 (en) Optical apparatus
WO2022019282A1 (en) Light irradiation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07829186

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07829186

Country of ref document: EP

Kind code of ref document: A1