WO2008044573A1 - Capacitor layer-forming material, method for producing capacitor layer-forming material, and printed wiring board comprising built-in capacitor obtained by using the capacitor layer-forming material - Google Patents

Capacitor layer-forming material, method for producing capacitor layer-forming material, and printed wiring board comprising built-in capacitor obtained by using the capacitor layer-forming material Download PDF

Info

Publication number
WO2008044573A1
WO2008044573A1 PCT/JP2007/069365 JP2007069365W WO2008044573A1 WO 2008044573 A1 WO2008044573 A1 WO 2008044573A1 JP 2007069365 W JP2007069365 W JP 2007069365W WO 2008044573 A1 WO2008044573 A1 WO 2008044573A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
dielectric layer
manganese
capacitor
forming material
Prior art date
Application number
PCT/JP2007/069365
Other languages
French (fr)
Japanese (ja)
Inventor
Naohiko Abe
Akiko Sugioka
Akihiro Kanno
Hirotake Nakashima
Original Assignee
Mitsui Mining & Smelting Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining & Smelting Co., Ltd. filed Critical Mitsui Mining & Smelting Co., Ltd.
Priority to JP2007548638A priority Critical patent/JPWO2008044573A1/en
Publication of WO2008044573A1 publication Critical patent/WO2008044573A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/162Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed capacitors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0175Inorganic, non-metallic layer, e.g. resist or dielectric for printed capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0179Thin film deposited insulating layer, e.g. inorganic layer for printed capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0183Dielectric layers
    • H05K2201/0195Dielectric or adhesive layers comprising a plurality of layers, e.g. in a multilayer structure

Definitions

  • CAPACITOR LAYER FORMING MATERIAL CAPACITOR LAYER FORMING MATERIAL MANUFACTURING METHOD, AND PRINTED WIRING BOARD HAVING BUILT-IN CAPACITOR OBTAINED BY USING THE CAPACITOR LAYER FORMING MATERIAL
  • the invention according to the present application relates to a capacitor layer forming material, a method for manufacturing the capacitor layer forming material, and a printed wiring board including a built-in capacitor layer obtained by using the capacitor layer forming material.
  • multilayer printed wiring boards with built-in capacitor circuits use one or more layers located in the inner layer as layers including the capacitor circuit, and inner layer circuits located on both sides of the dielectric layer of the capacitor circuit.
  • the upper electrode and the lower electrode of the capacitor circuit have been used in the form of facing each other.
  • the capacitor circuit layer is composed of an upper electrode formation layer / dielectric layer / lower electrode formation layer.
  • a capacitor circuit forming material having a three-layer structure is obtained by processing using an etching method or the like.
  • the internal capacitor layer forming material of the printed wiring board referred to in the present invention is expressed as having a configuration in which a dielectric layer is provided between the first conductive layer used for forming the upper electrode and the second conductive layer used for forming the lower electrode.
  • the first conductive layer and the second conductive layer are processed so as to form a capacitor circuit by etching or the like, and used as a constituent material of an electronic material such as a printed wiring board.
  • the dielectric layer is insulating and accumulates a certain amount of electric charge.
  • Various methods are employed for forming such a dielectric layer.
  • Patent Document 2 describes a process of depositing an amorphous SrTiO-based thin film on a substrate at a temperature lower than 400 ° C, using the chemical vapor phase reaction method, and the amorphous SrTiO Thin
  • the film is crystallized by laser annealing or rapid thermal annealing.
  • a manufacturing method including a step of obtaining a thin film is disclosed.
  • the purpose of the dielectric layer obtained by this method is to obtain an SrTiO-based thin film having a high dielectric constant.
  • any sputtering method on a substrate is described as using a sputtering vapor deposition method.
  • the high-dielectric constant dielectric is a polycrystal having a crystal grain and grain boundary force, and has a plurality of valences.
  • a thin film capacitor is disclosed, which contains a metal ion that can be contained as an impurity and contains the impurity at a higher concentration in the vicinity of the crystal grain boundary than in the crystal grain. It is disclosed that Mn ions are suitable as possible metal ions. Thin film capacitors obtained by this method have long-term reliability and a long time to breakdown.
  • the sol-gel method is used, and after oxidizing the surface of the substrate, an oxide dielectric thin film using a metal alkoxide as a raw material is formed on the substrate.
  • a method for manufacturing a dielectric thin film is disclosed.
  • the oxide dielectric that can be formed as a thin film is a metal oxide having dielectric properties, for example, LiNbO 2, Li B
  • the oxide dielectric thin film obtained by this method is an oxide dielectric thin film having excellent orientation and crystallinity.
  • the formation of a dielectric layer using the sol-gel method disclosed in Patent Document 4 is a vacuum process compared to the formation of a dielectric layer using a chemical vapor reaction method (CVD method) or a sputtering deposition method.
  • CVD method chemical vapor reaction method
  • sputtering deposition method a sputtering deposition method.
  • Patent Document 1 Japanese Translation of Special Publication 2002-539634
  • Patent Document 2 Japanese Patent Laid-Open No. 06-140385
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-358303
  • Patent Document 4 Japanese Patent Application Laid-Open No. 07-294862
  • the dielectric layer using the sol-gel method has advantages and disadvantages. Its advantages are that it can form a ⁇ wide area dielectric layer, and (i) generally essential for large-capacity capacitor layers. It can be mentioned that it can be formed as a very thin dielectric film.
  • the disadvantages are (I) the problem of short circuit between the upper electrode and the lower electrode when the capacitor is formed due to the thinness of the film and the presence of gaps between the oxide particles. There are cases where the leakage current may increase and the production yield is low, and (II) the change in the ambient temperature causes a large change in the capacitance and the like, and the temperature characteristics are lacking.
  • the inventors of the present invention as a result of earnest research, have significantly improved the temperature characteristics of the printed circuit board as a capacitor circuit and formed an internal capacitor layer in the printed circuit board that can reduce leakage current. I came up with the material.
  • the present invention will be described.
  • the built-in capacitor layer forming material of the printed wiring board according to the present invention is a layer including a dielectric layer between an upper electrode forming layer and a lower electrode forming layer. It is characterized in that it has a configuration and its dielectric layer strength is composed of various types of layers.
  • This dielectric layer is characterized by being a multilayered oxide dielectric layer comprising a manganese-free layer, a manganese-less oxide dielectric layer, and a manganese-containing oxide dielectric layer.
  • the manganese-containing oxide dielectric layer of the built-in capacitor layer forming material of the printed wiring board according to the present invention is composed of n (2 ⁇ n) first sub-dielectric layers to n-th sub-dielectric layers. It is also preferable that the first sub-dielectric layer is a manganese-containing dielectric layer, and a part of the second sub-dielectric layer to the n-th sub-dielectric layer does not contain manganese.
  • the manganese-containing oxide dielectric layer preferably has a thickness of 10 nm to 500 nm.
  • the thickness of the dielectric layer of the built-in capacitor layer forming material of the printed wiring board according to the present invention is preferably 201111 to 1111.
  • the lower electrode forming layer of the built-in capacitor layer forming material of the printed wiring board according to the present invention is preferably a nickel layer or a nickel alloy layer having a thickness of 1 ⁇ m to 100 m.
  • the upper electrode forming layer of the built-in capacitor layer forming material of the printed wiring board according to the present invention has a nickel layer, a copper layer, a nickel alloy layer, a copper alloy layer having a thickness of 0.5 m to 50 m. It is preferable to have a laminated structure of any of these or a combination thereof.
  • the dielectric layer of the built-in capacitor layer forming material of the printed wiring board according to the present invention is preferably resin-impregnated.
  • a method for manufacturing a built-in capacitor layer forming material for a printed wiring board according to the present invention In the above-described manufacturing method for a built-in capacitor layer forming material for a printed wiring board according to the present invention, Either a gas phase chemical reaction method or a sol-gel method is used.
  • the method for producing a built-in capacitor layer forming material for a printed wiring board according to the present invention includes manganese on the lower electrode forming layer using any one of a physical vapor deposition method, a gas phase chemical reaction method, and a sol-gel method.
  • a manganese-free oxide dielectric layer is formed, and a manganese-containing oxide dielectric layer is formed on the manganese-less oxide dielectric layer using a physical vapor deposition method, a gas phase chemical reaction method, or a sol-gel method.
  • a multilayer oxide dielectric layer is formed, and an upper electrode forming layer is formed on the multilayer oxide dielectric layer.
  • a physical vapor deposition method, a gas phase chemical reaction method, or a sol-gel method is used on the lower electrode forming layer.
  • the manganese-free oxide dielectric layer is formed by using the slippery! /, And the physical vapor deposition method, the gas phase chemical reaction method, the sol-gel method V, the slippery method is formed on the manganeseless oxide dielectric layer.
  • a manganese-containing oxide dielectric layer is used to form a multilayered oxide dielectric layer, and at least one of the manganese-less oxide dielectric layer or the manganese-containing oxide dielectric layer is impregnated with resin.
  • the resin impregnation treatment is performed by applying a resin varnish to the surface of the dielectric layer and impregnating the resin layer, drying the resin, It is preferable to cure the resin.
  • the multilayer oxide dielectric layer is formed by a sol-gel method, and is preferably obtained through the following steps a to f.
  • Step a A first sol-gel solution for forming an unfired manganese-less dielectric layer and a manganese-free sub-dielectric layer is prepared.
  • Step b Prepare a second sol-gel solution for forming a sub-dielectric layer containing manganese.
  • Step c A first sol-gel solution is applied to the surface of the lower electrode formation layer, and then dried, and thermally decomposed in an oxygen-containing atmosphere to form an unfired manganese-less dielectric layer.
  • Step d After applying the second sol-gel solution to the surface of the unfired manganese-less dielectric layer, drying and thermally decomposing in an oxygen-containing atmosphere are performed once to form the first unfired sub-dielectric layer. Form.
  • Step e Then, after applying the first sol-gel solution or the second sol-gel solution! /, Either one of them is dried and then thermally decomposed in an oxygen-containing atmosphere as one unit step. By repeating (n-1) times, the second unfired subdielectric layer to the nth unfired subdielectric layer containing manganese in some or all layers are formed.
  • Step f Multi-layer structure oxide having a manganese-free oxide dielectric layer containing no manganese and a manganese-containing oxide dielectric layer containing manganese by firing the unfired dielectric layer obtained in the above step Final firing is performed to form the dielectric layer.
  • the multilayer oxide dielectric layer is formed using a sol-gel method, in the step d and the step e, it is optionally 550 ° C to 800 ° prior to the process of one unit step. It is also preferable to provide a pre-baking treatment with C.
  • Printed wiring board according to the present invention A printed wiring board having a built-in capacitor layer obtained by using the built-in capacitor layer forming material of the printed wiring board according to the present invention described above has an electrostatic property. Excellent temperature characteristics, low leakage current, and high quality.
  • the built-in capacitor layer forming material of the printed wiring board according to the present invention includes a multilayer oxide oxide dielectric layer of manganeseless oxide dielectric layer / manganese-containing oxide dielectric layer.
  • the dielectric layer has a multilayer structure of manganeseless oxide dielectric layer / manganese-containing oxide dielectric layer.
  • it is possible to use any manufacturing method as long as possible.
  • it is preferably applied to the formation of a BST-based dielectric film by the Zorgel method.
  • the form of the built-in capacitor layer forming material of the printed wiring board according to the present invention the form of the manufacturing method thereof, and each form of the printed wiring board including the built-in capacitor layer will be described, and examples and comparative examples will be shown.
  • the built-in capacitor layer forming material of the printed wiring board is simply referred to as “capacitor layer forming material”.
  • the capacitor layer forming material according to the present invention basically has a layer structure including a dielectric layer between an upper electrode forming layer and a lower electrode forming layer.
  • FIG. 1 illustrates a schematic cross-sectional view so that the layer configuration of the dielectric layer 2 can be clearly seen in the layer configuration of the capacitor layer forming material 1 according to the present invention.
  • the dielectric layer between the upper electrode forming layer 5 and the lower electrode forming layer 6 is characterized by being composed of two layers.
  • This dielectric layer 2 is a multilayer oxide oxide dielectric layer comprising a manganese-free oxide dielectric layer 3 and a manganese-containing oxide dielectric layer 4 that do not contain manganese.
  • oxide dielectric layer refers to BaTiO, SrTiO, BaSrTiO, PbZrTiO, PbLaTiO
  • manganese is contained in the oxide dielectric layer, manganese is likely to exist mainly in the form of manganese oxide in the oxide dielectric layer. Manganese is considered to be present in the grain boundaries and grains of the oxide dielectric layer. Such manganese contributes to the reduction of leakage current in the performance as a capacitor circuit obtained by processing the capacitor layer forming material.
  • the mechanism for reducing the leakage current is considered as follows. There is a high possibility that the leak current of the dielectric layer is generated through crystal grain boundaries and lattice defects of the oxide dielectric film. Therefore, it seems that the leakage current flow path is blocked by including manganese in the grain boundaries and grains of the oxide dielectric film.
  • Addition of manganese to the oxide dielectric layer also contributes to an improvement in temperature characteristics.
  • the mechanism is not clear, but is considered as follows.
  • the crystal grain growth is inhibited, the crystal grain size of the oxide dielectric layer becomes smaller, and it seems to exhibit paraelectric characteristics that are difficult to exhibit ferroelectric properties. I think to become.
  • manganese segregates at the grain boundary part, and manganese that does not have ferroelectric properties is arranged around the core that exhibits ferroelectric properties so that it forms a shell, and a pseudo core-shell structure is taken! /, It ’s not for the purpose! /
  • the dielectric constant tends to greatly decrease. Therefore, the dielectric layer in the case of force is often unable to satisfy the required capacity density even if the temperature characteristics are good. Therefore, the force that would require a thinner and wider area dielectric layer, and the more severe such a requirement, the lower the productivity, so it is not suitable for mass production.
  • the dielectric constant changes greatly due to temperature change, and even if it shows good dielectric properties at room temperature, it does not show good dielectric properties at high temperatures. There is a tendency that stable temperature characteristics cannot be obtained.
  • temperature characteristics is a characteristic in which the average capacitance density of the capacitor circuit changes in response to temperature changes.
  • the quality as a capacitor circuit varies depending on the temperature. Therefore, circuit design is also difficult.
  • the dielectric layer does not contain a certain thickness of manganese! /, A manganese-less oxide dielectric layer ( Hereinafter, it is simply referred to as “manganese-less oxide dielectric layer”. ) To form a multilayer oxide dielectric layer with a manganese-containing oxide dielectric layer, thereby reducing the leakage current and improving the temperature characteristics.
  • the manganese-containing oxide dielectric layer is preferably composed of n (2 ⁇ n) first to n-th sub-dielectric layers.
  • Each of the plurality of layers constituting the manganese-containing oxide dielectric layer 4 is referred to as a “sub-dielectric layer”, and each sub-dielectric layer is referred to as a first sub-dielectric layer to an n-th sub-dielectric layer.
  • This sub-dielectric layer can be confirmed by observing the cross section with a scanning electron microscope or the like at a stage where it can be used as a dielectric layer of a capacitor circuit, for example.
  • the first sub-dielectric layer to the n-th sub-dielectric layer indicate sub-dielectric layers at positions counted in order from the lower electrode side.
  • FIGS. 2 (a) to 2 (c) show a part of the layer structure of the capacitor layer forming material according to the present invention other than that shown in FIG. 1 by clearly seeing the layer structure of the dielectric layer 2.
  • the sub-dielectric layers constituting the manganese-containing oxide dielectric layer 4 are shown separately as a manganese-containing sub-dielectric layer m and a sub-dielectric layer n not containing manganese. It should be noted that in all of the drawings used for the explanation here, the layer thickness and the like do not relatively reflect the actual product thickness.
  • the manganese-containing oxide dielectric layer described above is necessary to obtain the effect of reducing the temperature dependence of the capacitance density and reducing the leakage current.
  • the thickness is preferably 10 nm to 500 nm.
  • the thickness of the manganese-containing oxide dielectric layer is less than 1 Onm, it becomes difficult to reduce the temperature dependence of the capacitance density.
  • the thickness of the manganese-containing oxide dielectric layer exceeds 500 nm, the effect of improving the temperature characteristics will not become more significant, and it will be difficult to maintain a high capacity density.
  • the dielectric layer of the capacitor layer forming material according to the present invention preferably has a thickness of 20 nm to 1 m.
  • the upper limit is about l ⁇ m.
  • the thickness of the manganless oxide dielectric layer can be naturally derived.
  • the role of this manganese-less dielectric layer is necessary to make a dielectric layer that exhibits a high dielectric constant.
  • This manganese-less oxide dielectric layer is preferably present immediately above the lower electrode.
  • the amount of manganese contained in the dielectric layer will be described.
  • the manganese content is preferably in the range of 0.01 mol% to 5.00 mol%.
  • the amount of the manganese is less than 0.01 mol%, manganese is not sufficiently segregated at the crystal grain boundaries of the oxide dielectric layer, and a good leakage current blocking effect and good withstand voltage characteristics cannot be obtained. Yes.
  • the amount of manganese exceeds 5.00 mol%, manganese segregation to the crystal grain boundaries of the oxide dielectric layer becomes excessive, the dielectric layer becomes brittle and toughness is lost.
  • the withstand voltage characteristics are improved, the leakage current is further reduced, and the long life is achieved. More preferably, the amount of manganese contained in the oxide dielectric layer is 0.25 mol% to 3.00 mol%. This is to ensure the quality as an oxide dielectric layer containing manganese more reliably.
  • the manganese content referred to in the present invention shall be ABO.
  • 3 represents the oxide dielectric material, the manganese content mol% when the total amount of component A and component B is 100 mol%.
  • the lower electrode forming layer of the capacitor layer forming material according to the present invention is preferably a nickel layer or a nickel alloy layer having a thickness of 1 ⁇ m to 100 m. These nickel layers or nickel alloy layers are preferred because they have the following advantages (1) to (4).
  • the adhesiveness with the oxide dielectric layer can be controlled by changing the nickel alloy composition.
  • the nickel layer or nickel alloy layer here is mainly intended to use a metal foil. Therefore, the nickel layer is a layer formed of a pure nickelo foil having a so-called purity of 99 wt% (other unavoidable impurities) or higher.
  • the nickel alloy layer is a layer formed using, for example, a nickel monolin alloy.
  • the phosphorus content of the nickel-phosphorus alloy mentioned here is preferably 0.1 wt% to 1 wt%.
  • the phosphorus component of the nickel-phosphorus alloy layer diffuses into the oxide dielectric layer when it is subjected to a high temperature load in the manufacturing process of the capacitor layer forming material and the normal manufacturing process of the printed wiring board.
  • the nickel-phosphorus alloy layer with the appropriate phosphorus content improves the electrical characteristics of the capacitor.
  • the phosphorus content is less than 0.1 wt%, it becomes the same as when pure nickel is used, and the significance of alloying is lost.
  • the phosphorus content exceeds l lwt%, phosphorus segregates at the interface with the oxide dielectric layer, the adhesiveness deteriorates, and peeling easily occurs. Accordingly, the phosphorus content is preferably in the range of 0.1 wt% to 1 wt%.
  • the phosphorus content in the present invention is a value converted as [P component weight] / [Ni component weight] X 100 (wt%).
  • the nickel foil and the nickel alloy foil referred to in the present invention include all those obtained by a rolling method and an electrolytic method. It is described as a concept including a composite foil provided with these nickel or nickel alloy layers on the outermost layer of the metal foil.
  • metal substrate As a material constituting the composite material, a composite material having a nickel layer or a nickel alloy layer on the surface of the copper foil may be used.
  • the metal base material having such a composition is deteriorated in strength even after a high temperature processing process of 300 ° C to 400 ° C used in a printed wiring board manufacturing process using a fluororesin substrate, a liquid crystal polymer, or the like as a substrate material. There is almost no. As a result, even if the oxide dielectric layer is formed on the surface of the metal foil by using a method of forming an oxide dielectric layer that is subjected to high temperature load such as a sol-gel method, there is almost no deterioration in the quality. .
  • the crystal structure of the nickel foil and nickel alloy foil referred to in the present invention is preferably such that the crystal grains are as fine as possible and the strength is improved. More specifically, it is preferable that the average crystal grain size is refined to a level of 0.5 m or less and has high mechanical properties with high mechanical strength.
  • the thickness of the nickel layer or nickel alloy layer as the lower electrode forming layer is 1
  • the metal foil constituting the lower electrode forming layer is a metal foil with a carrier foil bonded to the carrier foil via a bonding interface. The carrier foil may be removed at a subsequent stage after processing into the capacitor layer forming material according to the present invention.
  • the nickel foil or nickel alloy foil for the lower electrode forming layer described above can be produced by an electrolytic method or a rolling method. There are no particular limitations on these production methods.
  • the upper electrode forming layer of the capacitor layer forming material uses any one of a nickel layer, a copper layer, a nickel alloy layer, and a copper alloy layer having a thickness of 0.5 m to 50 m. I can do it.
  • the upper electrode forming layer is generally formed as a thin layer. If the upper electrode formation layer is less than 0. ⁇ ⁇ , it is difficult to ensure film thickness uniformity by any manufacturing method. As a result, it becomes impossible to obtain a sufficient resistance against the pressure of the press working. On the other hand, if the upper electrode formation layer exceeds 50 m, the time required for etching to form the upper electrode circuit becomes longer, and the dielectric layer tends to be significantly damaged by the etching solution.
  • the resin varnish component used for this resin impregnation is preferably a resin composition using an epoxy resin as a main ingredient. Among them, it contains 40 wt% to 70 wt% of epoxy resin, 20 wt% to 50 wt% of polybutacetal resin, 0.1 wt% to 20 wt% of melamine resin or urethane resin, based on the total amount of resin components, It is preferable to use a resin composition in which 5 wt% to 80 wt% of the epoxy resin is a rubber-modified epoxy resin.
  • the epoxy resin used here can be used without particular limitation as long as it is commercially available for molding laminated boards and the like and electronic parts.
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, nopolac type epoxy resin, o-cresol nopolac type epoxy resin, triglycidyl isocyanurate, N, N-diglycidyl diphosphorine Glycidylamine compounds such as diglycidyl ester tetrahydrophthalate, and brominated epoxy resins such as tetrabromobisphenol A and diglycidyl ether.
  • These epoxy resins are preferably used alone or in combination.
  • the degree of polymerization and epoxy equivalent as an epoxy resin are not particularly limited.
  • the "curing agent" of the epoxy resin includes dicyandiamide, organic hydrazide, imidazoles, amines such as aromatic amines, phenols such as bisphenol A and brominated bisphenol A, phenolol. These include nopolacs such as pollac resins and cresol nopolac resins, and acid anhydrides such as phthalic anhydride. Further, one type of curing agent may be used alone, or two or more types may be used in combination. The amount of the curing agent added to the epoxy resin can be derived from the respective equivalents.
  • a curing accelerator may be appropriately added as necessary.
  • this curing accelerator tertiary amine, imidazole-based, urea-based curing accelerator and the like can be used.
  • the amount of the epoxy resin blended in the resin composition is 40% of the total amount of the resin components. % To 70% by weight is preferred. If the blending amount is less than 40% by weight, the insulating properties and heat resistance as electrical characteristics deteriorate. On the other hand, if it exceeds 70% by weight, the resin flow during curing becomes too large, and the resin component tends to be unevenly distributed in the dielectric layer.
  • a rubber-modified epoxy resin as a part of the epoxy resin composition.
  • This rubber-modified epoxy resin can be used without particular limitation as long as it is a product marketed for adhesives or paints.
  • Specific examples include "EPICLON TSR-960” (trade name, manufactured by Dainippon Ink and Company), "EPOTOHTO YR-102” (trade name, manufactured by Tohto Kasei Co., Ltd.), “Sumiepoxy ESC-500” (product) Name, manufactured by Sumitomo Chemical Co., Ltd.) and "EPOMIK VSR 3531” (trade name, manufactured by Mitsui Petrochemical Co., Ltd.).
  • rubber-modified epoxy resins may be used alone or in combination of two or more.
  • the compounding amount of the rubber-modified epoxy resin here is 5% to 80% by weight of the total epoxy resin amount.
  • the use of rubber-modified epoxy resin promotes the fixing of resin components in the BST dielectric layer. Therefore, when the compounding power of the rubber-modified epoxy resin is less than 3% by weight, the effect of promoting fixing in the BST-based dielectric layer cannot be obtained. On the other hand, if the amount of the rubber-modified epoxy resin is more than 80% by weight, the heat resistance of the cured resin will decrease.
  • the polybulacetal resin used in the epoxy resin composition is synthesized by the reaction of polyvinyl alcohol and aldehydes.
  • polybulal alcohols with various degrees of polymerization and reaction products of one or more aldehydes are commercially available for paints and adhesives as polybulacetal resins.
  • Nyacetalization degree can be used without any particular limitation.
  • the degree of polymerization of the raw polyvinyl alcohol is not particularly limited, but considering the heat resistance of the cured resin and the solubility in solvents, it is possible to use a product synthesized from the power of polybulal alcohol having a polymerization degree of 2000-3500. desirable.
  • modified polybulucetal resins having a carboxyl group or the like introduced in the molecule are also commercially available! /, But can be used without particular limitation as long as there is no problem in compatibility with the combined epoxy resin.
  • the amount of the polyvinyl acetal resin blended in the insulating layer is 20% to 50% by weight of the total resin composition. If the blending amount is less than 20% by weight, the effect of improving the fluidity as a resin cannot be obtained. On the other hand, if the amount exceeds 50% by weight, the water absorption rate of the insulating layer after curing is high. Therefore, it is extremely undesirable as a constituent material for the BST-based dielectric layer.
  • the resin composition used in the present invention preferably contains a melamine resin or a urethane resin as a cross-linking agent for the polybulacetal resin.
  • a melamine resin used here, an alkylated melamine resin commercially available for coating can be used. Specific examples include methylated melamine resins, n-butylated melamine resins, iso-butylated melamine resins, and mixed alkylated melamine resins.
  • the molecular weight and alkylation degree as a melamine resin are not particularly limited.
  • urethane resin a resin containing an isocyanate group in a molecule marketed for adhesives and paints can be used.
  • Specific examples include polyisocyanate compounds such as tolylene diisocyanate, diphenylmethane diisocyanate, polymethylene polyphenyl polyisocyanate, trimethylolpropane, polyether polyol, polyester polyol, etc.
  • polyisocyanate compounds such as tolylene diisocyanate, diphenylmethane diisocyanate, polymethylene polyphenyl polyisocyanate, trimethylolpropane, polyether polyol, polyester polyol, etc.
  • There is a reaction product with polyols Since these compounds may polymerize with moisture in an atmosphere with high reactivity as a resin, in the present invention, these resins are stabilized with phenols and oximes to prevent this problem.
  • rock isocyanate is preferred.
  • the blending amount of the melamine resin or the urethane resin added to the resin composition in the present invention is 0.1 wt% to 20 wt% of the total amount of the resin composition. If the blending amount is less than 0.1% by weight, the effect of crosslinking of the polybulucetal resin is insufficient, the heat resistance of the dielectric layer is lowered, and if the blending amount exceeds 20% by weight, it is fixed in the dielectric layer. Deteriorates.
  • additives such as inorganic fillers typified by talc and aluminum hydroxide, antifoaming agents, leveling agents, and coupling agents are used in this resin composition as desired. You can also These improve the permeability of the resin component to the dielectric layer, and are effective in improving flame retardancy and reducing costs. The specific method of impregnation using the resin composition described above will be described in detail in the manufacturing method described later.
  • the manufacturing method of a capacitor layer forming material according to the present invention includes a physical vapor deposition method, a gas phase chemical reaction method, a Zogel method for forming a dielectric layer. Either of these is used. In some cases, the dielectric layer is impregnated with resin.
  • the capacitor layer forming material according to the present invention is manufactured by physical vapor deposition on the lower electrode forming layer.
  • the method begins with the formation of a manganese-free oxide dielectric layer that does not contain manganese using any one of the chemical method, chemical vapor reaction method, and sol-gel method.
  • the lower electrode formation layer is as described above.
  • physical vapor deposition is used to form this manganese-less oxide dielectric layer, resistance heating, electron beam (EB) vapor deposition, laser ablation, molecular beam epitaxy, bipolar sputtering, magnetron sputtering Or reactive sputtering can be used.
  • EB electron beam
  • a necessary manganese-less oxide dielectric layer can be appropriately formed by arbitrarily adjusting the composition of the vapor deposition material.
  • the chemical vapor reaction method involves reacting a plurality of vaporized materials in the gas phase and landing the reaction product on the lower electrode formation layer to form a manganese-less oxide dielectric layer. Includes all methods.
  • the sol-gel method will be described in detail later.
  • any one of the physical vapor deposition method, the gas phase chemical reaction method, and the sol-gel method similar to the above may be used.
  • ! / A combination of a manganese-less oxide dielectric layer and a manganese-containing oxide dielectric layer is referred to as a multilayer oxide dielectric layer.
  • a capacitor layer forming material in which the dielectric layer formed by the above method is a resin-impregnated dielectric layer
  • it is composed of a manganese-less oxide dielectric layer and a manganese-containing oxide dielectric layer by the above method.
  • the multilayer oxide dielectric layer is manufactured by impregnating the multilayer oxide dielectric layer with resin.
  • the resin composition used for the resin impregnation has been described above, only the impregnation technique using the resin composition will be described here. From the viewpoint of reducing the leakage current, it is preferable to impregnate the dielectric layer with a resin.
  • This resin composition is used as a dilute resin varnish whose solid content is controlled within a certain range using a solvent so that the dielectric layer can be easily impregnated.
  • the resin varnish to be applied to the surface of the dielectric layer is obtained by dissolving the above resin component using an organic solvent to obtain a resin varnish having a solid content of 0.1 wt% to 1. Owt%.
  • the solid content is less than 0.1 wt%, the viscosity is too low, the organic component does not remain in the dielectric layer, and the significance of resin impregnation is lost.
  • the solid content exceeds 1. Owt%, the resin impregnation process varies and the viscosity is too high when an excessive amount of resin is applied. Since the oil film is formed and the thickness of the dielectric layer is increased, the electric capacity density is lowered as a result.
  • the solid content of the resin varnish should be in the range of 0.1 wt% to 1. Owt% to ensure good permeability into the dielectric layer.
  • the organic solvent can be used, for example, by using any one of ethylmethylketone and cyclopentanone or a mixed solvent thereof. Ethyl methyl ketone and cyclopentanone can be easily volatilized and removed efficiently by heating at about 190 ° C., and the volatile gas can be easily purified. Moreover, it is easy to adjust the viscosity of the resin solution to a viscosity most suitable for impregnating the dielectric layer.
  • a mixed solvent of ethylmethylketone and cyclopentanone there is no particular limitation on the mixing ratio in the case of a mixed solvent.
  • cyclopentanone it is preferable to use ethylmethylketone as the coexisting solvent in consideration of the volatilization removal rate. is there.
  • any solvent can be used as long as it can dissolve all the resin components used in the present invention.
  • Step a In this step, a first sol-gel solution for forming a sub-dielectric layer containing no manganese is prepared.
  • An example is the case of preparing the first sol-gel solution for producing the desired BST-based dielectric film.
  • a commercially available preparation agent with no particular limitation may be used, or it may be blended by itself.
  • the BST-based dielectric film is a (Ba Sr) TiO (0 ⁇ 1) film and may be a sol-gel solution capable of obtaining a dielectric film containing this composition.
  • x 0, it means BaTiO.
  • a Mn-added (Ba Sr) TiO (0 ⁇ x ⁇ 1) film may be referred to as a BST-based dielectric film.
  • Step b In this step, a second zonore gel solution for forming a sub-dielectric layer containing manganese is prepared.
  • the second sol-gel solution is preferably a solution for forming an oxide dielectric film having a perovskite structure containing 0.01 mol% to 5.00 mol% of manganese! /. This is to maintain an appropriate range of the manganese content in the dielectric layer.
  • a commercially available preparation containing manganese may be used, or it may be blended by itself.
  • a BST dielectric film containing desired manganese may be formed.
  • As a method for adding manganese to the second sol-gel solution it is preferable to use a manganese compound solution and add a predetermined amount so as to be in the range of the above-mentioned mangan content.
  • the first sol-gel solution is applied to the surface of the metal foil constituting the lower electrode forming layer, dried in an oxygen-containing atmosphere at 120 ° C. to 250 ° C., and oxygen
  • An unfired manganese-less dielectric layer is formed through a series of steps in which pyrolysis is performed under conditions of 270 ° C. to 390 ° C. in a contained atmosphere.
  • the film thickness of the unfired manganese-less dielectric layer can be adjusted by repeating this series of steps a plurality of times.
  • the manganese-less dielectric layer before final firing is deliberately referred to as “unfired”. It is called “manganless dielectric layer”!
  • the drying conditions for the first sol-gel solution applied to the surface of the lower electrode formation layer are 120 ° C to 250 ° C. It is preferable to employ a temperature of Further, the drying time is preferably 30 seconds to 10 minutes. If the drying conditions are not met, the dielectric film can be dried inadequately, resulting in roughening of the surface of the dielectric film after the subsequent thermal decomposition, or if the drying is excessive, the subsequent thermal decomposition reaction may become non-uniform. It becomes easy to produce the local quality variation. Do this dry There is no particular restriction on the atmosphere during the event. On the other hand, when the thermal decomposition is performed, it is preferably performed in an oxygen-containing atmosphere. That is, the decomposition of organic substances is not promoted when carried out in a reducing atmosphere.
  • the thermal decomposition it is preferable that the drying is completed and the thermal decomposition is performed in an oxygen-containing atmosphere under the conditions of 270 ° C to 390 ° C x 5 minutes to 30 minutes.
  • the employed pyrolysis temperature is extremely characteristic.
  • the conventional pyrolysis temperature has been in the range of 450 ° C to 550 ° C.
  • a thermal decomposition temperature in a low temperature range of 270 ° C. to 390 ° C. is employed to prevent excessive oxidation of the lower electrode formation layer.
  • the thermal decomposition temperature is less than 270 ° C, no matter how long heating is continued, good thermal decomposition is unlikely to occur, productivity is insufficient, and good capacitor characteristics cannot be obtained.
  • the dielectric film is formed on the surface of a metal foil or the like, and when heating above 390 ° C., the oxidation of the metal substrate surface becomes remarkable at the interface between the dielectric film and the metal foil. Therefore, in consideration of process variations and quality safety in mass production, it is more preferable to set the upper limit of about 370 ° C, which is a lower temperature.
  • the heating time is determined by the decomposition temperature used and the properties of the sol-gel solution.
  • the means for applying the sol-gel solution to the surface of the metal foil is not particularly limited. However, it is preferable to use the meniscus method as the spin coat method as long as the uniformity of the film thickness and the characteristics of the sol-gel solution are taken into consideration.
  • Step d In this step, a series of steps of applying the second sol-gel solution to the surface of the unfired manganese-less dielectric layer, drying and thermally decomposing in an oxygen-containing atmosphere are performed once. 1 Form an unfired subdielectric layer.
  • the conditions for drying and pyrolysis in this case are the same as in the case of using the first sol-gel solution described above, and a description thereof is omitted here.
  • Step (0079] Step Then, either the first sol-gel solution or the second sol-gel solution is applied on the first unsintered subdielectric layer, and then dried and thermally decomposed in an oxygen-containing atmosphere.
  • a series of processes is defined as one unit process, and this one unit process is repeated (n-1) times, so that the second unsintered sub-dielectric layer containing manganese in some or all layers to the nth unsintered sub-layer Form a dielectric layer.
  • a series of processes consisting of sol-gel solution application ⁇ drying ⁇ thermal decomposition is called one unit process.
  • the first sol-gel solution (manganese-free sol-gel solution) or the second sol-gel solution (manganese-containing sol-gel solution) is selectively used for this sol-gel solution.
  • the film thickness can be adjusted as a manganese-containing dielectric layer.
  • the second sol-gel solution is used in at least one unit process from the first unit process to the n-1 first unit process.
  • a manganese-containing dielectric layer having a layer structure in which a BST-based dielectric film containing manganese and a BST-based dielectric film not containing manganese are arranged in layers by using the first sol-gel solution, etc. And can.
  • the conditions for drying and pyrolysis in this case are the same as in the case of using the first sol-gel solution described above, and a description thereof is omitted here.
  • the step d and the step e it is optionally performed at a temperature of 550 ° C. to 800 ° C. prior to the process of one unit step. It is also preferable to provide a pre-baking treatment. That is, when one unit process for forming the unfired manganese-less dielectric layer and the first unfired sub-dielectric layer to the n-th unfired sub-dielectric layer is repeated a plurality of times, An optional pre-baking treatment is provided.
  • this pre-baking treatment condition adopts the firing condition of 550 ° C-800 ° CX for 2-60 minutes between 1 unit process and 1 unit process when repeating 1 unit process multiple times It is preferable to do this. Since these conditions are almost the same as in step e described below, the critical significance of the numerical values will be described in the explanation. It should be noted that, when the pre-baking, unfired dielectric layer that existed before there is force the fired dielectric layer s, dare in the sense that not doing the final firing denoted by the "unfired"! / RU
  • the crystal state of the dielectric film obtained by the conventional sol-gel method has fine crystal grains, and a large number of voids can be confirmed in the crystal grains.
  • the structure of the dielectric film becomes a state in which the film density is high and dense, and there are few structural defects in the crystal grains.
  • the leakage current is small, the voltage resistance is excellent, and a high-capacity dielectric layer can be formed.
  • the thickness of the dielectric layer can be adjusted by the number of repetitions of one unit process in the process d described above.
  • Step f In this step, the unfired manganese-less dielectric layer containing no manganese obtained in the above step and the unfired manganese-containing dielectric layer containing manganese in some or all of the sub-dielectric layers
  • the final baking which forms a multilayer structure oxide dielectric layer by baking is performed. This final baking is preferably performed at a temperature of 600 ° C to 1000 ° C on the premise of a temperature higher than the pre-baking temperature. Furthermore, the firing time is preferably 5 to 60 minutes. This firing step is a so-called main firing step, and after this firing, a final dielectric layer is obtained.
  • this firing step it is preferable to perform heating in an inert gas replacement atmosphere or vacuum in order to prevent oxidative degradation of the lower electrode formation layer. If the heating is less than the temperature condition at this time, firing is difficult, the adhesiveness with the lower electrode forming layer is excellent, and a dielectric layer having an appropriate density and a crystal structure with an appropriate grain size cannot be obtained. If excessive heating is performed exceeding this temperature condition, deterioration of the dielectric layer and deterioration of the physical strength of the lower electrode formation layer proceed, and it becomes impossible to achieve high capacitance and long life as capacitor characteristics. From this viewpoint, a more preferable upper limit temperature is 900 ° C.
  • the upper electrode forming layer is provided on the dielectric layer.
  • a method of forming the upper electrode formation layer a metal foil is used. It is possible to employ a method of bonding, a method of forming a conductive layer by a plating method, a method of sputtering deposition, or the like.
  • Printed wiring board according to the present invention By using the capacitor layer forming material according to the present invention, it is possible to obtain a printed wiring board having a high-quality built-in capacitor layer. .
  • the capacitor layer forming material according to the present invention is formed by forming a capacitor circuit shape on the lower electrode forming layer and the upper electrode forming layer on both surfaces of the capacitor layer forming material by an etching method. Used as material.
  • the nickel or nickel alloy described above for the lower electrode formation layer it becomes possible to form a lower electrode with excellent adhesion to the BST-based dielectric layer, and the lower electrode is a material with excellent heat resistance. For this reason, even if hot pressing in the range of 300 ° C to 400 ° C is performed multiple times, oxidation deterioration does not occur and physical property changes hardly occur.
  • any method without particular limitation can be adopted.
  • the BST-based dielectric layer is formed on the surface of the nickel foil that is the base metal (lower electrode forming layer), and the upper electrode-forming layer is further provided on the surface of the BST-based dielectric layer.
  • Capacitor layer forming material was manufactured. Then, a capacitor circuit was formed by an etching method using this capacitor layer forming material, and leakage current characteristics and the like were evaluated.
  • base metal lower electrode forming layer
  • a 50-inch thick nickel foil produced by a rolling method was used.
  • the thickness of the nickel foil manufactured by the rolling method is indicated by the gauge thickness. This nickel foil constitutes the lower electrode formation layer when it becomes the capacitor layer formation material.
  • a dielectric layer was formed on the surface of the nickel foil using a sol-gel method.
  • the Nikkenole foil before forming the dielectric layer by the Zonolegel method is heated at 250 ° C for 15 minutes as a pretreatment, and then heated at 250 ° C to remove the deposits etc. present on the nickel foil surface. Irradiated with UV light for 1 minute.
  • step a a first sol-gel solution was prepared.
  • a dielectric film was obtained.
  • step b a second sol-gel solution was prepared.
  • a second sol-gel solution containing 0.86 mol% manganese with respect to the total mol number with titanium was prepared. Then, an oxide dielectric film having a composition of (Ba Sr) (Ti Mn) O can be obtained.
  • step c the first sol-gel solution is applied to the surface of the nickel foil by spin coating, dried at 150 ° CX for 2 minutes in an oxygen-containing atmosphere, and 330 ° CX in an oxygen-containing atmosphere.
  • a series of processes for thermal decomposition was performed under conditions of 15 minutes, and pre-baking was performed at this stage in an inert gas replacement atmosphere at 650 ° C. for 15 minutes.
  • the manganese-less dielectric layer is about 50 nm thick and has been fired.
  • step d a manganese-containing second sol-gel solution is applied to the surface of the manganese-less dielectric layer, dried in an oxygen-containing atmosphere at 150 ° C. for 2 minutes, and then in an oxygen-containing atmosphere.
  • the first unsintered subdielectric layer was formed by a series of processes (one unit process) in which pyrolysis was performed under the condition of ° CX for 15 minutes.
  • Step e Then, one unit step is repeated on the first unsintered subdielectric layer to form a second unsintered subdielectric layer, and the inert gas replacement at 700 ° C. for 15 minutes is performed. Pre-baking treatment was performed in a nitrogen-substituted atmosphere (the same applies hereinafter).
  • the above one unit process was repeated three times to form a third unsintered subdielectric layer to a sixth unsintered subdielectric layer.
  • the cross-section of the capacitor layer forming material as the final product was observed with a transmission electron microscope.
  • the first sub-dielectric layer is the first sub-dielectric layer.
  • the first unfired sub-dielectric layer and the second unfired sub-dielectric layer are layers formed by subjecting to pre-firing.
  • the second sub-dielectric layer is a layer formed by integrating the third unsintered sub-dielectric layer to the sixth unsintered sub-dielectric layer through preliminary firing. This state is shown as a schematic cross-sectional view in the column of the example of FIG.
  • Step f A BST having a perovskite structure on the surface of the rolled nickel foil constituting the lower electrode forming layer is baked in an inert gas replacement atmosphere (nitrogen replacement atmosphere) at 750 ° CXI for 5 minutes. A system dielectric layer was formed.
  • inert gas replacement atmosphere nitrogen replacement atmosphere
  • the entire BST dielectric layer was impregnated with resin, and a BST dielectric layer with resin impregnation was also prepared.
  • a resin varnish is applied to the surface of the BST-based dielectric layer using a spin coating method, left at room temperature for 30 minutes, and heated in an oven at 150 ° C for 5 minutes to remove a certain amount of solvent. And dried to a semi-cured state. Then, it was cured by heating in a 190 ° C oven for 30 minutes.
  • the thickness of the BST-based dielectric layer obtained at this time was about 3 OOnm.
  • the resin varnish used at this time was prepared as follows.
  • Non-rubber modified epoxy resin (trade name: EPOMIC R-301, manufactured by Mitsui Petrochemical Co., Ltd.) 40 parts by weight, rubber modified epoxy resin (trade name: EPOTOHTOYR-102, manufactured by Toto Kasei) 20 parts by weight, polybulucetal resin (Product name: Denkabutyral # 5000A, manufactured by Denki Kagaku Kogyo Co., Ltd.) 30 parts by weight, Melamine resin (Product name: Yuban 20SB, Mitsui Toatsu Chemicals Co., Ltd.) 10 parts by weight, latent epoxy resin curing agent (Dicyandiamide, reagent) 2 parts by weight (added in a dimethylformamide solution with a solid content of 25% by weight), curing accelerator (trade name: Cuazo Nore 2E4MZ, manufactured by Shikoku Chemicals) 0.5 part by weight dissolved in ethyl methyl ketone
  • a copper upper electrode circuit having a thickness of 2 ⁇ 111 is attached only to the portion where the upper electrode is to be formed. It was directly formed by the sputtering deposition method, and 10 capacitor circuits with an upper electrode area of Imm x 1mm size were formed.
  • Leakage current As can be judged from the values in the table shown in Fig. 3, the BST dielectric layer without resin impregnation is compared with the resin impregnation. It can be seen that the current is relatively small.
  • Electrode yield After the capacitor circuit was formed, a predetermined voltage was applied to the 10 capacitor circuits of each sample, and the rate at which no short-circuit phenomenon was observed between the upper electrode and the lower electrode was observed. As a result, the production yield of Imm x lmm size capacitor circuits was 100% in both the case without resin impregnation and the case with resin impregnation.
  • Dielectric loss When measuring the dielectric loss of the capacitor circuit when the electrode area of the upper electrode is lmm x lmm size, it is 0.146 (14.6%) without resin impregnation and with resin impregnation. It was 0 ⁇ 016 (1.6%).
  • the first sol-gel solution was applied to the surface of the rolled nickel foil used in Example 1, dried in an oxygen-containing atmosphere at 150 ° C. for 2 minutes, and then in an oxygen-containing atmosphere.
  • a series of processes for thermal decomposition at 330 ° CXI for 5 minutes was defined as one unit process. And this 1 unit After performing the process once, perform pre-baking treatment in an inert gas replacement atmosphere at 650 ° CX for 15 minutes, then repeat one unit process twice and then reserve in an inert gas replacement atmosphere at 650 ° CX for 15 minutes A baking treatment was performed. Furthermore, film thickness adjustment was performed by repeating the 1 unit process three times.
  • the sample was subjected to a final firing treatment in an inert gas replacement atmosphere (nitrogen replacement atmosphere) at 700 ° C for 15 minutes to form a manganese-free BST-based dielectric layer.
  • an inert gas replacement atmosphere nitrogen replacement atmosphere
  • Example 2 As in Example 1, the dielectric layer of Comparative Sample 1 was impregnated with resin, and a BST-based dielectric layer impregnated with resin was also prepared.
  • the rate of change in capacity density was determined in the same manner as in Example 1. As a result, the rate of change in capacity density when the sample for comparison was not impregnated with resin (temperature range from 55 ° C to 125 ° C) was-35
  • Leakage current As can be judged from the values shown in Fig. 3, the leakage current of the resin-impregnated one is compared with the case where the BST dielectric layer is not impregnated with the resin. Can be understood to be relatively small.
  • Electrode Yield After the capacitor circuit was formed, in the same manner as in Example 1, a ratio in which no short-circuit phenomenon was observed between the upper electrode and the lower electrode was observed. As a result, the production yield of the lmm x lmm size capacitor circuit is the case without resin impregnation and with resin impregnation.
  • Capacity Density initial capacity density when the electrode area of the upper electrode was set to lmm X lmm size, if without resin impregnation 1247nF / cm 2, the case with the resin-impregnated 1120nF / cm 2 and higher capacitance showed that.
  • Dielectric loss When the dielectric loss of the capacitor circuit when the electrode area of the upper electrode is lmm x lmm size is measured, 0.029 (2.9%) without resin impregnation and with resin impregnation It was 0 ⁇ 021 (2. 1%). [0116] The characteristics described above are listed in the table of Fig. 3 so that they can be compared with the above-described examples.
  • Fig. 4 shows this change in temperature characteristics as a graph. This figure 4 shows the temperature rise and fall curves of the example (with two types of resin impregnation and without resin impregnation) and the comparative example (resin impregnation, rep!, ). The difference in the remarkable change rate between the example and the comparative example.
  • Leakage current As can be judged from the values in the table shown in Fig. 1, the BST dielectric layer without resin impregnation is compared with the resin impregnation. Current tends to be relatively small. This tendency is the same in the comparative example, and it can be seen that resin impregnation is effective in suppressing leakage current.
  • Electrode Yield The production yield of the capacitor circuit including the BST-based dielectric layer according to the present invention is extremely good at 100% in both the case of no resin impregnation and the case of resin impregnation.
  • the production yield is 100% both in the case without resin impregnation and in the case with resin impregnation, and there is no difference in production yield. In both the examples and the comparative examples, it is considered that the production yield was stabilized because the preliminary firing was provided.
  • Capacity density As can be judged from the values in the table shown in Fig. 3, the initial capacity density when the electrode area of the upper electrode is lmm x lmm size is almost the same as the example and the comparative example. It can be judged that.
  • a capacitor having a BST-type dielectric layer to which the technical idea according to the present invention is applied has a capacitance density equivalent to that of the comparative example. Considering other characteristics such as the above, it exceeds the comparative example and can be judged to be a very balanced product.
  • the capacitor layer forming material according to the present invention is suitable for forming a built-in capacitor layer of a printed wiring board, and is capable of forming a high-quality capacitor circuit with high electric capacity, good temperature characteristics, and reduced leakage current. Make it possible. Therefore, printed wiring boards equipped with built-in capacitor circuits obtained by using this capacitor layer forming material can be used more stably for electronic and electrical products in which the change in electrical characteristics of the capacitor circuit due to temperature changes is small. Become.
  • the method for manufacturing a capacitor layer forming material according to the present invention it is possible to form a high-quality dielectric layer that has excellent temperature characteristics with good yield and can suppress leakage current. It is possible to stably supply the capacitor layer forming material.
  • the method for manufacturing a capacitor layer forming material according to the present invention does not require excessive capital investment.
  • FIG. 1 is a schematic cross-sectional view for explaining a basic layer configuration of a dielectric layer of a capacitor layer forming material according to the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a noiration of the layer structure of the dielectric layer of the capacitor layer forming material according to the present invention.
  • FIG. 3 is a list of dielectric characteristics including a schematic cross-sectional view of a capacitor layer forming material including a BST-based dielectric layer formed using the technical idea of the present invention.
  • FIG. 4 is a diagram showing each temperature characteristic (rate of change in temperature) between an example and a comparative example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

Disclosed is a capacitor layer-forming material for printed wiring boards which enables to improve temperature characteristics of an oxide dielectric layer having a perovskite structure, while reducing leakage current at the same time. Specifically disclosed is a capacitor layer-forming material (1) comprising a dielectric layer (2) between an upper electrode-forming layer (5) and a lower electrode-forming layer (6). This capacitor layer-forming material (1) is characterized in that the dielectric layer (2) is an oxide dielectric layer having a multilayer structure, which is composed of a manganese-less oxide dielectric layer (3) containing no manganese, and a manganese-containing oxide dielectric layer (4). Also disclosed is a method for producing such a capacitor layer-forming material, wherein a manganese-less oxide dielectric layer and a manganese-containing oxide dielectric layer are formed by any one of a physical deposition method, a chemical vapor reaction method and a sol-gel method.

Description

明 細 書  Specification
キャパシタ層形成材及びキャパシタ層形成材の製造方法並びにそのキヤ パシタ層形成材を用いて得られる内蔵キャパシタを備えるプリント配線板  CAPACITOR LAYER FORMING MATERIAL, CAPACITOR LAYER FORMING MATERIAL MANUFACTURING METHOD, AND PRINTED WIRING BOARD HAVING BUILT-IN CAPACITOR OBTAINED BY USING THE CAPACITOR LAYER FORMING MATERIAL
技術分野  Technical field
[0001] 本件出願に係る発明は、キャパシタ層形成材及びそのキャパシタ層形成材の製造 方法並びにそのキャパシタ層形成材を用いて得られる内蔵キャパシタ層を備えたプリ ント配線板に関する。  The invention according to the present application relates to a capacitor layer forming material, a method for manufacturing the capacitor layer forming material, and a printed wiring board including a built-in capacitor layer obtained by using the capacitor layer forming material.
背景技術  Background art
[0002] 近年、キャパシタ回路を内蔵した多層プリント配線板は、その内層に位置する 1以 上の層をキャパシタ回路を含んだ層として用い、そのキャパシタ回路の誘電層の両 面に位置する内層回路にキャパシタ回路の上部電極及び下部電極が対峙して配置 された形で用いられてきた。  In recent years, multilayer printed wiring boards with built-in capacitor circuits use one or more layers located in the inner layer as layers including the capacitor circuit, and inner layer circuits located on both sides of the dielectric layer of the capacitor circuit. The upper electrode and the lower electrode of the capacitor circuit have been used in the form of facing each other.
[0003] そして、このキャパシタ回路層は、上部電極形成層/誘電層/下部電極形成層の  [0003] The capacitor circuit layer is composed of an upper electrode formation layer / dielectric layer / lower electrode formation layer.
3層構造を持つキャパシタ回路形成材を、特許文献 1に開示されているようにエッチ ング法等を用いて加工して得られるものである。本件発明に言うプリント配線板の内 蔵キャパシタ層形成材は、上部電極形成に用いる第 1導電層と下部電極形成に用い る第 2導電層との間に誘電層を備える構成を持つものとして表しており、当該第 1導 電層と第 2導電層とは、エッチング加工等によりキャパシタ回路を形成するように加工 され、プリント配線板等の電子材料の構成材料として用いられる。  As disclosed in Patent Document 1, a capacitor circuit forming material having a three-layer structure is obtained by processing using an etching method or the like. The internal capacitor layer forming material of the printed wiring board referred to in the present invention is expressed as having a configuration in which a dielectric layer is provided between the first conductive layer used for forming the upper electrode and the second conductive layer used for forming the lower electrode. The first conductive layer and the second conductive layer are processed so as to form a capacitor circuit by etching or the like, and used as a constituent material of an electronic material such as a printed wiring board.
[0004] そして、前記誘電層は、絶縁性を有し、一定量の電荷を蓄積するためのものである 。このような誘電層の形成方法には、種々の方法が採用されている。  [0004] The dielectric layer is insulating and accumulates a certain amount of electric charge. Various methods are employed for forming such a dielectric layer.
[0005] 例えば、特許文献 2には、化学的気相反応法を用いるものとして、下地上に 400°C より低い温度で非晶質状 SrTiO系薄膜を堆積する工程と、該非晶質状 SrTiO系薄  [0005] For example, Patent Document 2 describes a process of depositing an amorphous SrTiO-based thin film on a substrate at a temperature lower than 400 ° C, using the chemical vapor phase reaction method, and the amorphous SrTiO Thin
3 3 膜をレーザァニール又はラピッドサ一マルアニール処理して結晶化させ、 SrTiO系  3 3 The film is crystallized by laser annealing or rapid thermal annealing.
3 薄膜を得る工程とを含む製造方法が開示されている。この方法で得られた誘電層は 、高い誘電率を有する SrTiO系薄膜を得ることを目的としている。  3 A manufacturing method including a step of obtaining a thin film is disclosed. The purpose of the dielectric layer obtained by this method is to obtain an SrTiO-based thin film having a high dielectric constant.
3  Three
[0006] 次に、特許文献 3には、スパッタリング蒸着法を用いたものとして、基板上の任意の 層に下部電極、高誘電率の誘電体、上部電極が積層された薄膜キャパシタにおいて 、該高誘電率の誘電体が結晶粒と結晶粒界力 なる多結晶であって、複数の原子価 を取りうる金属イオンを不純物として含有し、該結晶粒内部よりも該結晶粒界近傍に 高濃度の該不純物を含有してレ、ることを特徴とする薄膜キャパシタが開示され、その 複数の原子価を取りうる金属イオンとして Mnイオンが好適であることが開示されてい る。この方法で得られた薄膜キャパシタは、長期信頼性が高く絶縁破壊に至る時間 が長いとある。 [0006] Next, in Patent Document 3, any sputtering method on a substrate is described as using a sputtering vapor deposition method. In a thin film capacitor in which a lower electrode, a high-dielectric constant dielectric, and an upper electrode are stacked on a layer, the high-dielectric constant dielectric is a polycrystal having a crystal grain and grain boundary force, and has a plurality of valences. A thin film capacitor is disclosed, which contains a metal ion that can be contained as an impurity and contains the impurity at a higher concentration in the vicinity of the crystal grain boundary than in the crystal grain. It is disclosed that Mn ions are suitable as possible metal ions. Thin film capacitors obtained by this method have long-term reliability and a long time to breakdown.
[0007] 更に、特許文献 4には、ゾルーゲル法を用いたものとして、基板表面に水酸化処理 を施した後、該基板上に、金属アルコキシドを原料とする酸化物誘電体薄膜を形成 する酸化物誘電体薄膜の製造方法が開示されている。ここで、薄膜として形成できる 酸化物誘電体は、誘電特性を有する金属酸化物であって、例えば、 LiNbO 、 Li B  [0007] Further, in Patent Document 4, the sol-gel method is used, and after oxidizing the surface of the substrate, an oxide dielectric thin film using a metal alkoxide as a raw material is formed on the substrate. A method for manufacturing a dielectric thin film is disclosed. Here, the oxide dielectric that can be formed as a thin film is a metal oxide having dielectric properties, for example, LiNbO 2, Li B
3 2 4 3 2 4
〇、 PbZrTiO 、 BaTiO、 SrTiO 、 PbLaZrTiO 、 LiTaO、 Zn〇、 Ta〇等を用〇, PbZrTiO, BaTiO, SrTiO, PbLaZrTiO, LiTaO, Zn〇, Ta〇 etc.
7 3 3 3 3 3 2 5 いるとある。この方法で得られた、酸化物誘電体薄膜は、配向性に優れ、結晶性の良 好な酸化物誘電体薄膜とある。 7 3 3 3 3 3 2 5 The oxide dielectric thin film obtained by this method is an oxide dielectric thin film having excellent orientation and crystallinity.
[0008] 中でも、特許文献 4に開示のゾル—ゲル法を用いた誘電層の形成は、化学的気相 反応法(CVD法)若しくはスパッタリング蒸着法を用いた誘電層の形成に比べ、真空 プロセスを用いることも不要で、誘電層を広い面積の基板上に形成することも容易で あるという利点がある。しかも、誘電層の構成成分を理論的比率にすることが容易で、 且つ、極めて薄い誘電膜が得られるため、大容量のキャパシタ層を形成する手法とし ての期待がかけられている。 In particular, the formation of a dielectric layer using the sol-gel method disclosed in Patent Document 4 is a vacuum process compared to the formation of a dielectric layer using a chemical vapor reaction method (CVD method) or a sputtering deposition method. There is also an advantage that it is easy to form a dielectric layer on a substrate having a large area. In addition, since it is easy to make the components of the dielectric layer have a theoretical ratio and an extremely thin dielectric film can be obtained, it is expected to be a technique for forming a large-capacity capacitor layer.
[0009] 特許文献 1 :特表 2002— 539634号公報 [0009] Patent Document 1: Japanese Translation of Special Publication 2002-539634
特許文献 2:特開平 06— 140385号公報  Patent Document 2: Japanese Patent Laid-Open No. 06-140385
特許文献 3:特開 2001— 358303号公報  Patent Document 3: Japanese Patent Laid-Open No. 2001-358303
特許文献 4 :特開平 07— 294862号公報  Patent Document 4: Japanese Patent Application Laid-Open No. 07-294862
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] しかしながら、ゾル—ゲル法を用いた誘電層には長所と欠点とが存在する。その長 所は、 ω広面積誘電層の形成が可能、(ϋ)一般的に大容量のキャパシタ層に必須と される極めて薄い誘電膜として形成可能という点等を挙げることが出来る。 However, the dielectric layer using the sol-gel method has advantages and disadvantages. Its advantages are that it can form a ω wide area dielectric layer, and (i) generally essential for large-capacity capacitor layers. It can be mentioned that it can be formed as a very thin dielectric film.
[0011] 一方、欠点は、(I)その薄さ故に膜厚の不均一及び酸化物粒子の粒子間の間隙の 存在により、キャパシタを形成した際の上部電極と下部電極との短絡の問題がありリ ーク電流が大きくなる場合があり生産歩留りが低い、(II)雰囲気温度の変化によって 電気容量等の変化が大きく温度特性に欠ける等を挙げることが出来る。 [0011] On the other hand, the disadvantages are (I) the problem of short circuit between the upper electrode and the lower electrode when the capacitor is formed due to the thinness of the film and the presence of gaps between the oxide particles. There are cases where the leakage current may increase and the production yield is low, and (II) the change in the ambient temperature causes a large change in the capacitance and the like, and the temperature characteristics are lacking.
[0012] 以上のことから、市場では、 BST系誘電層をはじめとする酸化物誘電層の温度特 性の改善及びリーク電流の低減化が達成できるプリント配線板用の内蔵キャパシタ 層形成材への要求が高まってきた。  [0012] From the above, in the market, it is possible to improve the temperature characteristics of oxide dielectric layers such as BST-based dielectric layers and reduce the leakage current. The demand has increased.
課題を解決するための手段  Means for solving the problem
[0013] そこで、本件発明者等は、鋭意研究の結果、プリント配線板のキャパシタ回路として の温度特性を大幅に向上させ、且つ、リーク電流の低減が可能なプリント配線板の内 蔵キャパシタ層形成材に想到した。以下、本件発明に関して述べる。  [0013] Therefore, the inventors of the present invention, as a result of earnest research, have significantly improved the temperature characteristics of the printed circuit board as a capacitor circuit and formed an internal capacitor layer in the printed circuit board that can reduce leakage current. I came up with the material. Hereinafter, the present invention will be described.
[0014] 本件発明に係るプリント配線板の内蔵キャパシタ層形成材: 本件発明に係るプリント 配線板の内蔵キャパシタ層形成材は、上部電極形成層と下部電極形成層との間に 誘電層を備える層構成を備え、その誘電層力 ¾種類の層からなる点に特徴がある。こ の誘電層は、マンガンを含まなレ、マンガンレス酸化物誘電層及びマンガン含有酸化 物誘電層の複層構造酸化物誘電層であることを特徴としたものである。  [0014] Built-in capacitor layer forming material of printed wiring board according to the present invention: The built-in capacitor layer forming material of the printed wiring board according to the present invention is a layer including a dielectric layer between an upper electrode forming layer and a lower electrode forming layer. It is characterized in that it has a configuration and its dielectric layer strength is composed of various types of layers. This dielectric layer is characterized by being a multilayered oxide dielectric layer comprising a manganese-free layer, a manganese-less oxide dielectric layer, and a manganese-containing oxide dielectric layer.
[0015] そして、本件発明に係るプリント配線板の内蔵キャパシタ層形成材の前記マンガン 含有酸化物誘電層は、 n層(2≤n)の第 1サブ誘電層〜第 nサブ誘電層で構成され ており、当該第 1サブ誘電層はマンガン含有誘電層であり、第 2サブ誘電層〜第 nサ ブ誘電層の一部がマンガンを含有しなレ、ものであることも好ましレ、。  [0015] The manganese-containing oxide dielectric layer of the built-in capacitor layer forming material of the printed wiring board according to the present invention is composed of n (2≤n) first sub-dielectric layers to n-th sub-dielectric layers. It is also preferable that the first sub-dielectric layer is a manganese-containing dielectric layer, and a part of the second sub-dielectric layer to the n-th sub-dielectric layer does not contain manganese.
[0016] 本件発明に係るプリント配線板の内蔵キャパシタ層形成材において、前記マンガン 含有酸化物誘電層は、その厚さが 10nm〜500nmである事が好ましい。  [0016] In the built-in capacitor layer forming material for a printed wiring board according to the present invention, the manganese-containing oxide dielectric layer preferably has a thickness of 10 nm to 500 nm.
[0017] そして、本件発明に係るプリント配線板の内蔵キャパシタ層形成材の前記誘電層は 、その厚さが 201 111〜1 111である事が好ましい。  [0017] The thickness of the dielectric layer of the built-in capacitor layer forming material of the printed wiring board according to the present invention is preferably 201111 to 1111.
[0018] また、本件発明に係るプリント配線板の内蔵キャパシタ層形成材の前記下部電極 形成層は、厚さが 1 μ m〜; 100 mのニッケル層又はニッケル合金層である事が好ま しい。 [0019] 更に、本件発明に係るプリント配線板の内蔵キャパシタ層形成材の前記上部電極 形成層は、厚さが 0. 5 m〜50 mのニッケル層、銅層、ニッケル合金層、銅合金 層のいずれか又はこれらの組み合わせによる積層構造を備えるものである事が好ま しい。 [0018] The lower electrode forming layer of the built-in capacitor layer forming material of the printed wiring board according to the present invention is preferably a nickel layer or a nickel alloy layer having a thickness of 1 μm to 100 m. [0019] Further, the upper electrode forming layer of the built-in capacitor layer forming material of the printed wiring board according to the present invention has a nickel layer, a copper layer, a nickel alloy layer, a copper alloy layer having a thickness of 0.5 m to 50 m. It is preferable to have a laminated structure of any of these or a combination thereof.
[0020] そして、本件発明に係るプリント配線板の内蔵キャパシタ層形成材の前記誘電層は 、樹脂含浸させたものであることも好ましい。  [0020] The dielectric layer of the built-in capacitor layer forming material of the printed wiring board according to the present invention is preferably resin-impregnated.
[0021] 本件発明に係るプリント配線板の内蔵キャパシタ層形成材の製造方法: 上述の本 件発明に係るプリント配線板の内蔵キャパシタ層形成材の製造方法では、誘電層の 形成に物理蒸着法、気相化学反応法、ゾルーゲル法のいずれかを用いる。  [0021] A method for manufacturing a built-in capacitor layer forming material for a printed wiring board according to the present invention: In the above-described manufacturing method for a built-in capacitor layer forming material for a printed wiring board according to the present invention, Either a gas phase chemical reaction method or a sol-gel method is used.
[0022] 本件発明に係るプリント配線板の内蔵キャパシタ層形成材の製造方法は、下部電 極形成層の上に物理蒸着法、気相化学反応法、ゾルーゲル法のいずれかを用いて マンガンを含まないマンガンレス酸化物誘電層を形成し、当該マンガンレス酸化物誘 電層の上に物理蒸着法、気相化学反応法、ゾルーゲル法のいずれかを用いてマン ガン含有酸化物誘電層を形成することで複層構造酸化物誘電層とし、当該複層構 造酸化物誘電層の上に上部電極形成層を形成することを特徴としたものである。  [0022] The method for producing a built-in capacitor layer forming material for a printed wiring board according to the present invention includes manganese on the lower electrode forming layer using any one of a physical vapor deposition method, a gas phase chemical reaction method, and a sol-gel method. A manganese-free oxide dielectric layer is formed, and a manganese-containing oxide dielectric layer is formed on the manganese-less oxide dielectric layer using a physical vapor deposition method, a gas phase chemical reaction method, or a sol-gel method. Thus, a multilayer oxide dielectric layer is formed, and an upper electrode forming layer is formed on the multilayer oxide dielectric layer.
[0023] また、樹脂含浸誘電層を備えるプリント配線板の内蔵キャパシタ層形成材を製造す る場合には、下部電極形成層の上に物理蒸着法、気相化学反応法、ゾルーゲル法 の!/、ずれかを用いてマンガンを含まな!/、マンガンレス酸化物誘電層を形成し、当該 マンガンレス酸化物誘電層の上に物理蒸着法、気相化学反応法、ゾルーゲル法の V、ずれかを用いてマンガン含有酸化物誘電層を形成することで複層構造酸化物誘 電層とし、当該マンガンレス酸化物誘電層又はマンガン含有酸化物誘電層との少な くとも一方の層に樹脂含浸させ樹脂含浸誘電層とし、当該複層構造酸化物誘電層の 上に上部電極形成層を形成することを特徴としたプリント配線板の内蔵キャパシタ層 形成材の製造方法を採用することが好ましレ、。  [0023] In addition, when manufacturing a built-in capacitor layer forming material for a printed wiring board having a resin-impregnated dielectric layer, a physical vapor deposition method, a gas phase chemical reaction method, or a sol-gel method is used on the lower electrode forming layer. The manganese-free oxide dielectric layer is formed by using the slippery! /, And the physical vapor deposition method, the gas phase chemical reaction method, the sol-gel method V, the slippery method is formed on the manganeseless oxide dielectric layer. A manganese-containing oxide dielectric layer is used to form a multilayered oxide dielectric layer, and at least one of the manganese-less oxide dielectric layer or the manganese-containing oxide dielectric layer is impregnated with resin. It is preferable to adopt a method for producing a built-in capacitor layer forming material for a printed wiring board, characterized in that a resin-impregnated dielectric layer is formed and an upper electrode forming layer is formed on the multilayer oxide dielectric layer. .
[0024] そして、樹脂含浸誘電層を備えるプリント配線板の内蔵キャパシタ層形成材の製造 方法においては、前記樹脂含浸処理は、誘電層の表面に樹脂ワニスを塗布して含 浸させ、樹脂乾燥、樹脂硬化することが好ましい。  [0024] Then, in the method for producing a built-in capacitor layer forming material for a printed wiring board having a resin-impregnated dielectric layer, the resin impregnation treatment is performed by applying a resin varnish to the surface of the dielectric layer and impregnating the resin layer, drying the resin, It is preferable to cure the resin.
[0025] また、本件発明に係るプリント配線板の内蔵キャパシタ層形成材の製造方法にお!/、 て、前記複層構造酸化物誘電層がゾルーゲル法により形成されたものであり、以下 の工程 a〜工程 fの各工程を経て得られることが好ましい。 [0025] Further, the method for producing a built-in capacitor layer forming material for a printed wiring board according to the present invention! / The multilayer oxide dielectric layer is formed by a sol-gel method, and is preferably obtained through the following steps a to f.
[0026] 工程 a : 未焼成マンガンレス誘電層及びマンガンを含有しないサブ誘電層を形成す るための第 1ゾル ゲル溶液を調製する。 [0026] Step a: A first sol-gel solution for forming an unfired manganese-less dielectric layer and a manganese-free sub-dielectric layer is prepared.
工程 b: マンガンを含有するサブ誘電層を形成するための第 2ゾルーゲル溶液を調 製する。  Step b: Prepare a second sol-gel solution for forming a sub-dielectric layer containing manganese.
工程 c : 下部電極形成層の表面に第 1ゾルーゲル溶液を塗布後、乾燥させ、酸素含 有雰囲気中で熱分解を行うことで未焼成マンガンレス誘電層を形成する。  Step c: A first sol-gel solution is applied to the surface of the lower electrode formation layer, and then dried, and thermally decomposed in an oxygen-containing atmosphere to form an unfired manganese-less dielectric layer.
工程 d : 前記未焼成マンガンレス誘電層の表面に、第 2ゾルーゲル溶液を塗布後、 乾燥させ、酸素含有雰囲気中で熱分解を行う一連の工程を一回行い第 1未焼成サ ブ誘電層を形成する。  Step d: After applying the second sol-gel solution to the surface of the unfired manganese-less dielectric layer, drying and thermally decomposing in an oxygen-containing atmosphere are performed once to form the first unfired sub-dielectric layer. Form.
工程 e: その後第 1ゾルーゲル溶液又は第 2ゾルーゲル溶液の!/、ずれかを塗布後、 乾燥させ、酸素含有雰囲気中で熱分解を行う一連の工程を 1単位工程とし、この 1単 位工程を (n— 1)回繰り返して行うことで、一部又は全ての層にマンガンを含有した 第 2未焼成サブ誘電層〜第 n未焼成サブ誘電層を形成する。  Step e: Then, after applying the first sol-gel solution or the second sol-gel solution! /, Either one of them is dried and then thermally decomposed in an oxygen-containing atmosphere as one unit step. By repeating (n-1) times, the second unfired subdielectric layer to the nth unfired subdielectric layer containing manganese in some or all layers are formed.
工程 f: 上記工程で得られた未焼成の誘電層を焼成することで、マンガンを含まない マンガンレス酸化物誘電層と、マンガンを含有したマンガン含有酸化物誘電層を有 する複層構造酸化物誘電層を形成するための最終焼成を行う。  Step f: Multi-layer structure oxide having a manganese-free oxide dielectric layer containing no manganese and a manganese-containing oxide dielectric layer containing manganese by firing the unfired dielectric layer obtained in the above step Final firing is performed to form the dielectric layer.
[0027] そして、ゾル—ゲル法を用いて前記複層構造酸化物誘電層を形成する場合には、 前記工程 d及び工程 eにおいて、 1単位工程の処理に先立ち任意に 550°C〜800°C での予備焼成処理を設けることも好ましレ、。  [0027] Then, when the multilayer oxide dielectric layer is formed using a sol-gel method, in the step d and the step e, it is optionally 550 ° C to 800 ° prior to the process of one unit step. It is also preferable to provide a pre-baking treatment with C.
[0028] 更に、前記第 2ゾルーゲル溶液は、マンガンを 0. 01mol%〜5. 00mol%含有す るぺロブスカイト構造の酸化物誘電膜の形成溶液を用いることが好ましい。  Furthermore, it is preferable to use a solution for forming an oxide dielectric film having a perovskite structure containing 0.01 mol% to 5.00 mol% of manganese as the second sol-gel solution.
[0029] 本件発明に係るプリント配線板: 上述の本件発明に係るプリント配線板の内蔵キヤ パシタ層形成材を用いて得られた内蔵キャパシタ層を形成したプリント配線板は、そ の静電特性における温度特性に優れ、且つ、リーク電流が小さくなり、高品質のもの となる。  [0029] Printed wiring board according to the present invention: A printed wiring board having a built-in capacitor layer obtained by using the built-in capacitor layer forming material of the printed wiring board according to the present invention described above has an electrostatic property. Excellent temperature characteristics, low leakage current, and high quality.
発明の効果 [0030] 本件発明に係るプリント配線板の内蔵キャパシタ層形成材は、マンガンレス酸化物 誘電層/マンガン含有酸化物誘電層の複層構造酸化物誘電層を備えるものである 。このキャパシタ層形成材をプリント配線板の内蔵キャパシタ回路の形成に用いること で、このキャパシタ層形成材を加工して得られるキャパシタ回路の高!/、平均容量密度 の確保、リーク電流の抑制、温度特性等の向上が可能となり、電気特性において非 常にバランスの取れた内蔵キャパシタ層を形成したプリント配線板を提供できる。特 に、電気容量密度の温度依存性を小さくし、且つ、リーク電流を小さくする効果の両 立が可能とレ、う点に於レ、て優れて!/、る。 The invention's effect [0030] The built-in capacitor layer forming material of the printed wiring board according to the present invention includes a multilayer oxide oxide dielectric layer of manganeseless oxide dielectric layer / manganese-containing oxide dielectric layer. By using this capacitor layer forming material for the formation of the built-in capacitor circuit of the printed wiring board, the capacitor circuit formed by processing this capacitor layer forming material can be made to have a high height / average capacitance density, leakage current suppression, temperature As a result, it is possible to provide a printed wiring board on which a built-in capacitor layer having a very balanced electrical characteristic is formed. In particular, the temperature dependency of the capacitance density can be reduced and the effect of reducing the leakage current can be achieved.
[0031] また、本件発明に係るプリント配線板の内蔵キャパシタ層形成材の製造方法には、 結果として、誘電層がマンガンレス酸化物誘電層/マンガン含有酸化物誘電層の複 層構造を得ることが出来る限り、あらゆる製造方法の使用が可能である力 特に、ゾ ルーゲル法による BST系誘電膜の形成に応用することが好ましい。  [0031] Further, in the method for producing a built-in capacitor layer forming material for a printed wiring board according to the present invention, as a result, the dielectric layer has a multilayer structure of manganeseless oxide dielectric layer / manganese-containing oxide dielectric layer. However, it is possible to use any manufacturing method as long as possible. In particular, it is preferably applied to the formation of a BST-based dielectric film by the Zorgel method.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0032] 以下、本件発明に係るプリント配線板の内蔵キャパシタ層形成材の形態、その製造 方法の形態及び内蔵キャパシタ層を備えるプリント配線板の各形態に関して説明し、 実施例及び比較例を示す。以下、プリント配線板の内蔵キャパシタ層形成材を、単に 「キャパシタ層形成材」と称する。  [0032] Hereinafter, the form of the built-in capacitor layer forming material of the printed wiring board according to the present invention, the form of the manufacturing method thereof, and each form of the printed wiring board including the built-in capacitor layer will be described, and examples and comparative examples will be shown. Hereinafter, the built-in capacitor layer forming material of the printed wiring board is simply referred to as “capacitor layer forming material”.
[0033] 本件発明に係るキャパシタ層形成材の形態: 本件発明に係るキャパシタ層形成材 は、上部電極形成層と下部電極形成層との間に誘電層を備える層構成を基本とする 。図 1に、本件発明に係るキャパシタ層形成材 1の層構成の中で、当該誘電層 2の層 構成が明瞭に分かるように模式断面図を例示した。この図 1から分かるように、上部 電極形成層 5と下部電極形成層 6との間の誘電層が 2層からなる点に特徴がある。こ の誘電層 2は、マンガンを含まないマンガンレス酸化物誘電層 3及びマンガン含有酸 化物誘電層 4の複層構造酸化物誘電層であることを特徴とする。  [0033] Form of capacitor layer forming material according to the present invention: The capacitor layer forming material according to the present invention basically has a layer structure including a dielectric layer between an upper electrode forming layer and a lower electrode forming layer. FIG. 1 illustrates a schematic cross-sectional view so that the layer configuration of the dielectric layer 2 can be clearly seen in the layer configuration of the capacitor layer forming material 1 according to the present invention. As can be seen from FIG. 1, the dielectric layer between the upper electrode forming layer 5 and the lower electrode forming layer 6 is characterized by being composed of two layers. This dielectric layer 2 is a multilayer oxide oxide dielectric layer comprising a manganese-free oxide dielectric layer 3 and a manganese-containing oxide dielectric layer 4 that do not contain manganese.
[0034] 最初に、酸化物誘電層という用語に関して説明しておく。ここで言う酸化物誘電層と は、誘電体として機能する BaTiO 、 SrTiO 、 BaSrTiO、 PbZrTiO 、 PbLaTiO ·  [0034] First, the term oxide dielectric layer will be described. The oxide dielectric layer here refers to BaTiO, SrTiO, BaSrTiO, PbZrTiO, PbLaTiO
3 3 3 3 3 3 3 3 3 3
PbLaZrO 、 PbCaZrTiO 、 SrBi Ta O等のペブロスカイト構造を持つ酸化物で構 PbLaZrO, PbCaZrTiO, SrBi Ta O, etc.
3 3 2 2 9  3 3 2 2 9
成された層のことである。 [0035] マンガンを酸化物誘電層中に含有させると、マンガンは酸化物誘電層の中で、主 にマンガン酸化物の形で存在する可能性が高い。そして、マンガンは、酸化物誘電 層の結晶粒界及び粒内に存在していると考えられる。このようなマンガンは、キャパシ タ層形成材を加工して得られるキャパシタ回路としての性能の内、リーク電流の低減 に寄与する。リーク電流の低減に関するメカニズムは、次のように考える。誘電層のリ ーク電流が発生する経路としては、酸化物誘電膜の結晶粒界及び格子欠陥を経由 する可能性が高い。そこで、酸化物誘電膜の結晶粒界及び粒内にマンガンを含ませ ることで、リーク電流の流路を遮断していると思われる。 It is a formed layer. When manganese is contained in the oxide dielectric layer, manganese is likely to exist mainly in the form of manganese oxide in the oxide dielectric layer. Manganese is considered to be present in the grain boundaries and grains of the oxide dielectric layer. Such manganese contributes to the reduction of leakage current in the performance as a capacitor circuit obtained by processing the capacitor layer forming material. The mechanism for reducing the leakage current is considered as follows. There is a high possibility that the leak current of the dielectric layer is generated through crystal grain boundaries and lattice defects of the oxide dielectric film. Therefore, it seems that the leakage current flow path is blocked by including manganese in the grain boundaries and grains of the oxide dielectric film.
[0036] また、マンガンの酸化物誘電層への添加は、温度特性の向上にも寄与している。そ のメカニズムは、明確にではないが、次のように考えている。マンガンの添加により酸 化物誘電層の製造時に高温が負荷されると結晶粒成長が阻害され、酸化物誘電層 の結晶粒径が小さくなり、強誘電特性を示し難ぐ常誘電の特性を示すようになるた めと考えている。また、マンガンが結晶粒界部分に偏析し、強誘電特性を示すコアの 周囲に強誘電特性を備えないマンガンがシェルを構成するように配置され擬似的に コア一シェル構造をとつて!/、る為ではな!/、かと考えて!/、る。  [0036] Addition of manganese to the oxide dielectric layer also contributes to an improvement in temperature characteristics. The mechanism is not clear, but is considered as follows. When high temperature is applied during the production of an oxide dielectric layer due to the addition of manganese, the crystal grain growth is inhibited, the crystal grain size of the oxide dielectric layer becomes smaller, and it seems to exhibit paraelectric characteristics that are difficult to exhibit ferroelectric properties. I think to become. Also, manganese segregates at the grain boundary part, and manganese that does not have ferroelectric properties is arranged around the core that exhibits ferroelectric properties so that it forms a shell, and a pseudo core-shell structure is taken! /, It ’s not for the purpose! /
[0037] しかしながら、酸化物誘電層の全部に均一にマンガンを含有させると、誘電率が大 きく低下する傾向になる。従って、力、かる場合の誘電層は、温度特性は良好でも、要 求される容量密度を満足し得ない場合が多くなる。そこで、より薄く且つ広い面積の 誘電層が要求されることになる力、このような要求が厳しくなるほど生産性が低下する ため量産には適さない。これに対し、酸化物誘電層に一切のマンガンを含有させな い場合は、温度変化による誘電率が大きく変化し、室温で良好な誘電特性を示して も、高温で良好な誘電特性を示さず、安定した温度特性が得られない傾向がある。こ こで、単に温度特性と記述しているのは、温度変化に対応して、キャパシタ回路の平 均容量密度が変化する特性である。例えば、発熱を多く伴うコンピュータ等のプリント 配線板のキャパシタ回路として用いる際には、キャパシタとしての品質が温度により 変化するため、キャパシタ回路としての品質が一定ではない。従って、回路設計とし ても困難を伴う。  [0037] However, when manganese is uniformly contained in the entire oxide dielectric layer, the dielectric constant tends to greatly decrease. Therefore, the dielectric layer in the case of force is often unable to satisfy the required capacity density even if the temperature characteristics are good. Therefore, the force that would require a thinner and wider area dielectric layer, and the more severe such a requirement, the lower the productivity, so it is not suitable for mass production. On the other hand, when no manganese is contained in the oxide dielectric layer, the dielectric constant changes greatly due to temperature change, and even if it shows good dielectric properties at room temperature, it does not show good dielectric properties at high temperatures. There is a tendency that stable temperature characteristics cannot be obtained. Here, what is simply described as temperature characteristics is a characteristic in which the average capacitance density of the capacitor circuit changes in response to temperature changes. For example, when used as a capacitor circuit of a printed wiring board of a computer or the like that generates a lot of heat, the quality as a capacitor circuit varies depending on the temperature. Therefore, circuit design is also difficult.
[0038] そこで、誘電層内に一定の厚さのマンガンを含まな!/、マンガンレス酸化物誘電層( 以下、単に「マンガンレス酸化物誘電層」と称する。)を設け、マンガン含有酸化物誘 電層との複層構造酸化物誘電層とすることで、上記リーク電流を低減し、且つ、温度 特性を向上させる。 [0038] Therefore, the dielectric layer does not contain a certain thickness of manganese! /, A manganese-less oxide dielectric layer ( Hereinafter, it is simply referred to as “manganese-less oxide dielectric layer”. ) To form a multilayer oxide dielectric layer with a manganese-containing oxide dielectric layer, thereby reducing the leakage current and improving the temperature characteristics.
[0039] そして、前記マンガン含有酸化物誘電層は、 n層(2≤n)の第 1サブ誘電層〜第 n サブ誘電層で構成することも好ましレ、。このマンガン含有酸化物誘電層 4を構成する 複数の層のそれぞれを「サブ誘電層」と称し、各サブ誘電層を第 1サブ誘電層〜第 n サブ誘電層と称する。このサブ誘電層は、例えばキャパシタ回路の誘電層として使用 可能な段階で、その断面を走査型電子顕微鏡等で観察することにより確認できる。な お、第 1サブ誘電層〜第 nサブ誘電層は、下部電極側から順にカウントした位置のサ ブ誘電層を示すものである。  [0039] The manganese-containing oxide dielectric layer is preferably composed of n (2≤n) first to n-th sub-dielectric layers. Each of the plurality of layers constituting the manganese-containing oxide dielectric layer 4 is referred to as a “sub-dielectric layer”, and each sub-dielectric layer is referred to as a first sub-dielectric layer to an n-th sub-dielectric layer. This sub-dielectric layer can be confirmed by observing the cross section with a scanning electron microscope or the like at a stage where it can be used as a dielectric layer of a capacitor circuit, for example. Note that the first sub-dielectric layer to the n-th sub-dielectric layer indicate sub-dielectric layers at positions counted in order from the lower electrode side.
[0040] そして、第 1サブ誘電層をマンガンを含有した層として、以降の第 2サブ誘電層〜第 nサブ誘電層の一部又は全部をマンガンを含有しない層として構成することも可能で ある。キャパシタ回路として使用するときの要求品質、使用環境等を考慮して、適宜 層設計を変更すればよい。図 2 (a)〜図 2 (c)には、図 1で示した以外の本件発明に 係るキャパシタ層形成材の層構成の一部態様を、誘電層 2の層構成が明瞭に見て取 れるように模式的に例示した。この図では、マンガン含有酸化物誘電層 4を構成する サブ誘電層を、マンガン含有サブ誘電層 m、マンガンを含有しないサブ誘電層 nとし て分別して記載している。なお、ここで説明に用いる全ての図面に於いて、層の厚さ 等は現実の製品の厚さを相対的に反映させたものでないことを明記しておく。  [0040] It is also possible to configure the first sub-dielectric layer as a layer containing manganese, and a part or all of the subsequent second sub-dielectric layer to n-th sub-dielectric layer as a layer not containing manganese. . The layer design may be changed as appropriate in consideration of the required quality and usage environment when used as a capacitor circuit. FIGS. 2 (a) to 2 (c) show a part of the layer structure of the capacitor layer forming material according to the present invention other than that shown in FIG. 1 by clearly seeing the layer structure of the dielectric layer 2. As schematically illustrated, In this figure, the sub-dielectric layers constituting the manganese-containing oxide dielectric layer 4 are shown separately as a manganese-containing sub-dielectric layer m and a sub-dielectric layer n not containing manganese. It should be noted that in all of the drawings used for the explanation here, the layer thickness and the like do not relatively reflect the actual product thickness.
[0041] 以上に述べたマンガン含有酸化物誘電層は、電気容量密度の温度依存性を小さく し、且つ、リーク電流を小さくする効果を得るために必要なものである。そして、その 厚さが 10nm〜500nmである事が好ましい。マンガン含有酸化物誘電層の厚さが 1 Onm未満になると、電気容量密度の温度依存性を小さくする事が困難になる。一方 、マンガン含有酸化物誘電層の厚さが 500nmを超えるものとすると、それ以上に温 度特性の向上効果が顕著になることもないばかりか、高い容量密度の維持が困難に なる。  [0041] The manganese-containing oxide dielectric layer described above is necessary to obtain the effect of reducing the temperature dependence of the capacitance density and reducing the leakage current. The thickness is preferably 10 nm to 500 nm. When the thickness of the manganese-containing oxide dielectric layer is less than 1 Onm, it becomes difficult to reduce the temperature dependence of the capacitance density. On the other hand, if the thickness of the manganese-containing oxide dielectric layer exceeds 500 nm, the effect of improving the temperature characteristics will not become more significant, and it will be difficult to maintain a high capacity density.
[0042] そして、本件発明に係るキャパシタ層形成材の前記誘電層は、その厚さが 20nm〜 ; 1 mである事が好ましい。誘電層の厚さは、薄いほど電気容量が向上する。しかし、 当該誘電層の厚さが 20nm未満となると、例えマンガン含有酸化物誘電層を設けて も、リーク電流を抑制する効果がなくなり、耐電圧特性に劣り絶縁破壊が早期に起こ るため長寿命化が出来ない。一方、高い電気容量を維持する観点から l ^ m程度の 厚さが上限となる。 [0042] The dielectric layer of the capacitor layer forming material according to the present invention preferably has a thickness of 20 nm to 1 m. The smaller the thickness of the dielectric layer, the higher the capacitance. But, When the thickness of the dielectric layer is less than 20 nm, even if a manganese-containing oxide dielectric layer is provided, the effect of suppressing the leakage current is lost, and the breakdown voltage characteristics are inferior and dielectric breakdown occurs early, resulting in longer life. I can't. On the other hand, from the viewpoint of maintaining a high electric capacity, the upper limit is about l ^ m.
[0043] 上述のマンガン含有酸化物誘電層の厚さと誘電層の厚さとの関係から、自ずとマン ガンレス酸化物誘電層の厚さが導き出せる。このマンガンレス誘電層の役割は、高い 誘電率を発揮する誘電層とするために必要なものである。そして、このマンガンレス 酸化物誘電層は、下部電極の直上に存在させることが好ましい。  [0043] From the relationship between the thickness of the above-described manganese-containing oxide dielectric layer and the thickness of the dielectric layer, the thickness of the manganless oxide dielectric layer can be naturally derived. The role of this manganese-less dielectric layer is necessary to make a dielectric layer that exhibits a high dielectric constant. This manganese-less oxide dielectric layer is preferably present immediately above the lower electrode.
[0044] ここで、当該誘電層に含ませるマンガン量に関して述べておく。誘電層全体として、 マンガン含有量は、 0. 01mol%〜5. 00mol%の範囲とすることが好ましい。当該マ ンガン量が 0. 01mol%未満の場合には、酸化物誘電層の結晶粒界へのマンガンの 偏析が不十分であり、良好なリーク電流遮断効果及び良好な耐電圧特性も得られな い。一方、当該マンガン量が 5. 00mol%を超える場合には、当該酸化物誘電層の 結晶粒界へのマンガンの偏析が過剰になり、誘電層が脆く靱性が失われ、エツチン グ法で上部電極形状等を加工する際のエッチング液シャワー等により誘電層破壊が 起こる等の不具合が生じ、結果として良好なリーク電流遮断効果及び良好な耐電圧 特性も得られにくい。従って、マンガンを、上述の範囲で含む酸化物誘電膜組成を 採用することで、耐電圧特性を向上させ、リーク電流をより小さくして長寿命化を達成 するのである。なお、より好ましくは、当該酸化物誘電層に含ませるマンガン量は 0. 2 5mol%〜3. 00mol%である。より確実にマンガンを含有した酸化物誘電層としての 品質を確保するためである。なお、本件発明に言うマンガンの含有量は、 ABOとし  Here, the amount of manganese contained in the dielectric layer will be described. As a whole dielectric layer, the manganese content is preferably in the range of 0.01 mol% to 5.00 mol%. When the amount of the manganese is less than 0.01 mol%, manganese is not sufficiently segregated at the crystal grain boundaries of the oxide dielectric layer, and a good leakage current blocking effect and good withstand voltage characteristics cannot be obtained. Yes. On the other hand, if the amount of manganese exceeds 5.00 mol%, manganese segregation to the crystal grain boundaries of the oxide dielectric layer becomes excessive, the dielectric layer becomes brittle and toughness is lost. Problems such as dielectric layer breakdown occur due to an etchant shower or the like when processing the shape and the like, and as a result, it is difficult to obtain a good leakage current blocking effect and a good withstand voltage characteristic. Therefore, by adopting an oxide dielectric film composition containing manganese in the above-described range, the withstand voltage characteristics are improved, the leakage current is further reduced, and the long life is achieved. More preferably, the amount of manganese contained in the oxide dielectric layer is 0.25 mol% to 3.00 mol%. This is to ensure the quality as an oxide dielectric layer containing manganese more reliably. The manganese content referred to in the present invention shall be ABO.
3 て酸化物誘電材を表す場合において、 A成分と B成分との総量を 100mol%としたと きのマンガンの含有 mol%として示している。  3 represents the oxide dielectric material, the manganese content mol% when the total amount of component A and component B is 100 mol%.
[0045] 次に、本件発明に係るキャパシタ層形成材の前記下部電極形成層は、厚さが 1 μ m〜100 mのニッケル層又はニッケル合金層を用いることが好ましい。これらニッケ ル層又はニッケル合金層が好ましレ、のは、以下の(1)〜(4)の利点があるからであるNext, the lower electrode forming layer of the capacitor layer forming material according to the present invention is preferably a nickel layer or a nickel alloy layer having a thickness of 1 μm to 100 m. These nickel layers or nickel alloy layers are preferred because they have the following advantages (1) to (4).
Yes
[0046] (1)金属箔としての入手が可能で、その箔状態のままで、その表面に酸化物誘電層 の形成が可能である。 [0046] (1) Available as a metal foil, an oxide dielectric layer on the surface of the foil as it is Can be formed.
(2)ゾルーゲル法等の高温負荷が行われる酸化物誘電層の形成法を採用する場合 の過酷な熱履歴に対しての耐酸化性、抗軟化特性が優れて!/、る。  (2) Excellent oxidation resistance and anti-softening properties against severe thermal history when employing a method of forming an oxide dielectric layer that is subjected to high temperature load such as sol-gel method.
(3)ニッケル合金組成を変化させることで、酸化物誘電層との密着性が制御出来る。 (3) The adhesiveness with the oxide dielectric layer can be controlled by changing the nickel alloy composition.
(4)卑金属層とすることで、エッチング法により、下部電極形状を形成するときのファ インなキャパシタ回路の形成が容易となる。 (4) By using the base metal layer, it becomes easy to form a fine capacitor circuit when forming the lower electrode shape by etching.
[0047] ここで言うニッケル層又はニッケル合金層は、主に金属箔を用いることを意図してい る。従って、ニッケル層とは、所謂純度が 99wt% (その他、不可避不純物)以上の純 ニッケノレ箔で形成される層である。そして、ニッケノレ合金層とは、例えばニッケル一リ ン合金を用いて形成される層である。ここで言うニッケル リン合金のリン含有量は 0 . lwt%〜; l lwt%である事が好ましい。ニッケル—リン合金層のリン成分は、キャパ シタ層形成材の製造及び通常のプリント配線板の製造プロセスにおいて高温負荷さ れることがあれば、酸化物誘電層の内部に拡散し、当該酸化物誘電層との密着性を 劣化させ、誘電率にも変化を与えていると考えられる。し力もながら、適正なリン含有 量を備えたニッケル リン合金層は、キャパシタとしての電気特性を向上させる。リン 含有量が 0. lwt%未満の場合には、純ニッケルを用いた場合と変わらないものとな り、合金化することの意義が失われるのである。これに対し、リン含有量が l lwt%を 超えると、酸化物誘電層との界面にリンが偏析し、密着性が劣化し、剥離しやすくな る。従って、リン含有量は、 0. lwt%〜; l lwt%の範囲が好ましい。そして、ニッケル リン合金層と酸化物誘電層とのより安定した密着性を確保するためには、リン含有 量が 0· 2wt%〜3wt%の範囲であれば、製造工程に一定のバラツキがあっても安 定した密着性が得られる。なお、酸化物誘電層の中でも BST系誘電層に関して言え ば、リン含有量が 0. 25wt%〜lwt%で最も良好な密着性を確保し、同時に良好な 誘電率をも確保出来る。なお、本件発明におけるリン含有量は、 [P成分重量]/ [Ni 成分重量] X 100 (wt%)として換算した値である。  [0047] The nickel layer or nickel alloy layer here is mainly intended to use a metal foil. Therefore, the nickel layer is a layer formed of a pure nickelo foil having a so-called purity of 99 wt% (other unavoidable impurities) or higher. The nickel alloy layer is a layer formed using, for example, a nickel monolin alloy. The phosphorus content of the nickel-phosphorus alloy mentioned here is preferably 0.1 wt% to 1 wt%. The phosphorus component of the nickel-phosphorus alloy layer diffuses into the oxide dielectric layer when it is subjected to a high temperature load in the manufacturing process of the capacitor layer forming material and the normal manufacturing process of the printed wiring board. It is thought that the adhesion with the layer is deteriorated and the dielectric constant is also changed. However, the nickel-phosphorus alloy layer with the appropriate phosphorus content improves the electrical characteristics of the capacitor. When the phosphorus content is less than 0.1 wt%, it becomes the same as when pure nickel is used, and the significance of alloying is lost. On the other hand, if the phosphorus content exceeds l lwt%, phosphorus segregates at the interface with the oxide dielectric layer, the adhesiveness deteriorates, and peeling easily occurs. Accordingly, the phosphorus content is preferably in the range of 0.1 wt% to 1 wt%. In order to secure more stable adhesion between the nickel-phosphorus alloy layer and the oxide dielectric layer, there is a certain variation in the manufacturing process if the phosphorus content is in the range of 0.2 wt% to 3 wt%. Even with this, stable adhesion can be obtained. Of the oxide dielectric layers, the BST-based dielectric layer can ensure the best adhesion when the phosphorus content is 0.25 wt% to lwt%, and at the same time, can ensure a good dielectric constant. The phosphorus content in the present invention is a value converted as [P component weight] / [Ni component weight] X 100 (wt%).
[0048] 本件発明に言うニッケル箔及びニッケル合金箔とは、圧延法及び電解法等で得ら れたものの全てを含む。そして、金属箔の最表層に、これらニッケル若しくはニッケル 合金層を備えた複合箔の如きものも含む概念として記述している。例えば、金属基材 を構成する材料として、銅箔の表面にニッケル層若しくはニッケル合金層を備えた複 合材を用いることもできる。 [0048] The nickel foil and the nickel alloy foil referred to in the present invention include all those obtained by a rolling method and an electrolytic method. It is described as a concept including a composite foil provided with these nickel or nickel alloy layers on the outermost layer of the metal foil. For example, metal substrate As a material constituting the composite material, a composite material having a nickel layer or a nickel alloy layer on the surface of the copper foil may be used.
[0049] このような組成の金属基材は、フッ素樹脂基板、液晶ポリマー等を基板材料とした プリント配線板の製造プロセスで用いる 300°C〜400°Cの高温加工プロセスを経ても 強度の劣化は殆ど無い。結果として、この金属箔の表面に、ゾルーゲル法等の高温 負荷が行われる酸化物誘電層の形成法を採用して酸化物誘電層を形成しても、そ の品質劣化も殆ど無いことになる。なお、本件発明に言うニッケル箔及びニッケル合 金箔の結晶組織は、結晶粒が可能な限り細かく強度を向上させたものであることが好 ましい。更に具体的に言えば、平均結晶粒径 0. 5 m以下のレベルに微細化され、 機械的強度の高レヽ物性を備えることが好ましレ、のである。  [0049] The metal base material having such a composition is deteriorated in strength even after a high temperature processing process of 300 ° C to 400 ° C used in a printed wiring board manufacturing process using a fluororesin substrate, a liquid crystal polymer, or the like as a substrate material. There is almost no. As a result, even if the oxide dielectric layer is formed on the surface of the metal foil by using a method of forming an oxide dielectric layer that is subjected to high temperature load such as a sol-gel method, there is almost no deterioration in the quality. . The crystal structure of the nickel foil and nickel alloy foil referred to in the present invention is preferably such that the crystal grains are as fine as possible and the strength is improved. More specifically, it is preferable that the average crystal grain size is refined to a level of 0.5 m or less and has high mechanical properties with high mechanical strength.
[0050] そして、前記下部電極形成層としてのニッケル層又はニッケル合金層の厚みは、 1  [0050] The thickness of the nickel layer or nickel alloy layer as the lower electrode forming layer is 1
〃 m〜; 100 mであることが好ましい。上記厚みが 1 m未満では、キャパシタ回路 を形成したときの電極としての信頼性に著しく欠け、その表面へ酸化物誘電層を形 成する事が極めて困難となる。一方、 100 mを超える厚みとすることには、実用上 の要求が殆どない。また、キャパシタ回路形成材を製造する場合において、前記下 部電極形成層の厚さを 10 m以下とする場合には、ハンドリングが困難となる。そこ で、前記下部電極形成層を構成する金属箔が、接合界面を介して、キャリア箔と張り 合わせられたキャリア箔付金属箔を用いることが好ましい。キャリア箔は、本件発明に 言うキャパシタ層形成材に加工して以降の段階で除去すれば良い。  〃 m˜; preferably 100 m. If the thickness is less than 1 m, the reliability as an electrode when a capacitor circuit is formed is remarkably lacking, and it becomes extremely difficult to form an oxide dielectric layer on the surface. On the other hand, there is almost no practical requirement for a thickness exceeding 100 m. In addition, when manufacturing a capacitor circuit forming material, if the thickness of the lower electrode forming layer is 10 m or less, handling becomes difficult. Accordingly, it is preferable that the metal foil constituting the lower electrode forming layer is a metal foil with a carrier foil bonded to the carrier foil via a bonding interface. The carrier foil may be removed at a subsequent stage after processing into the capacitor layer forming material according to the present invention.
[0051] 以上に述べてきた下部電極形成層用のニッケル箔又はニッケル合金箔は、電解法 又は圧延法で製造したものを用いることが可能である。これらの製造方法に関して、 特に限定はない。  [0051] The nickel foil or nickel alloy foil for the lower electrode forming layer described above can be produced by an electrolytic method or a rolling method. There are no particular limitations on these production methods.
[0052] 更に、本件発明に係るキャパシタ層形成材の前記上部電極形成層は、厚さが 0. 5 m〜 50 mのニッケル層、銅層、ニッケル合金層、銅合金層のいずれかを用いる ことが出来る。上部電極形成後に、エッチング加工してキャパシタ回路を形成したとき の、エッチング液による誘電層の損傷を最小限にするため、上部電極形成層は薄い 層として形成するのが一般的である。上部電極形成層が 0. δ πι未満の場合には、 どのような製造方法を用いても膜厚としての均一性の確保が困難で、プリント配線板 としてのプレス加工の圧力に対する十分な抵抗力が得られなくなる。一方、上部電極 形成層が 50 mを超えるものとすると、エッチング加工して上部電極回路とするため の時間が長くなり、エッチング液による誘電層の損傷が顕著となる傾向がある。 [0052] Furthermore, the upper electrode forming layer of the capacitor layer forming material according to the present invention uses any one of a nickel layer, a copper layer, a nickel alloy layer, and a copper alloy layer having a thickness of 0.5 m to 50 m. I can do it. In order to minimize damage to the dielectric layer due to the etching solution when the capacitor circuit is formed by etching after forming the upper electrode, the upper electrode forming layer is generally formed as a thin layer. If the upper electrode formation layer is less than 0. δ πι, it is difficult to ensure film thickness uniformity by any manufacturing method. As a result, it becomes impossible to obtain a sufficient resistance against the pressure of the press working. On the other hand, if the upper electrode formation layer exceeds 50 m, the time required for etching to form the upper electrode circuit becomes longer, and the dielectric layer tends to be significantly damaged by the etching solution.
[0053] そして、本件発明に係るキャパシタ層形成材の前記誘電層は、その少なくとも一部 に樹脂含浸させることも好ましい。この樹脂含浸に用いる樹脂ワニス成分は、ェポキ シ系樹脂を主剤として用いた樹脂組成物を用いることが好ましい。中でも、樹脂成分 総量に対してエポキシ樹脂 40重量%〜70重量%、ポリビュルァセタール樹脂 20重 量%〜50重量%、メラミン樹脂またはウレタン樹脂 0. 1重量%〜20重量%を含有し 、該エポキシ樹脂の 5重量%〜80重量%がゴム変成エポキシ樹脂である樹脂組成 物を用いることが好ましい。  [0053] It is also preferable that at least a part of the dielectric layer of the capacitor layer forming material according to the present invention is impregnated with a resin. The resin varnish component used for this resin impregnation is preferably a resin composition using an epoxy resin as a main ingredient. Among them, it contains 40 wt% to 70 wt% of epoxy resin, 20 wt% to 50 wt% of polybutacetal resin, 0.1 wt% to 20 wt% of melamine resin or urethane resin, based on the total amount of resin components, It is preferable to use a resin composition in which 5 wt% to 80 wt% of the epoxy resin is a rubber-modified epoxy resin.
[0054] ここに用いられるエポキシ樹脂としては、積層板等や電子部品の成型用として市販 されているものであれば特に制限なく使用できる。具体的に例示すれば、ビスフエノ ール A型エポキシ樹脂、ビスフエノール F型エポキシ樹脂、ノポラック型エポキシ樹脂 、 o—クレゾールノポラック型エポキシ樹脂、トリグリシジルイソシァヌレート、 N, N—ジ グリシジルァ二リン等のグリシジルァミン化合物、テトラヒドロフタル酸ジグリシジルエス テル等のグリシジルエステル化合物、テトラブロモビスフエノール A、ジグリシジルエー テル等の臭素化エポキシ樹脂等がある。これらのエポキシ樹脂は 1種又は 2種以上を 混合して用いることが好ましレ、。またエポキシ樹脂としての重合度やエポキシ当量は 特に限定されない。  [0054] The epoxy resin used here can be used without particular limitation as long as it is commercially available for molding laminated boards and the like and electronic parts. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, nopolac type epoxy resin, o-cresol nopolac type epoxy resin, triglycidyl isocyanurate, N, N-diglycidyl diphosphorine Glycidylamine compounds such as diglycidyl ester tetrahydrophthalate, and brominated epoxy resins such as tetrabromobisphenol A and diglycidyl ether. These epoxy resins are preferably used alone or in combination. The degree of polymerization and epoxy equivalent as an epoxy resin are not particularly limited.
[0055] そして、エポキシ系樹脂の「硬化剤」とは、ジシアンジアミド、有機ヒドラジド、イミダゾ ール類、芳香族ァミン等のアミン類、ビスフエノール A、ブロム化ビスフエノール A等の フエノール類、フエノールノポラック樹脂及びクレゾールノポラック樹脂等のノポラック 類、無水フタル酸等の酸無水物等である。また、硬化剤は、 1種類を単独で使用して も、 2種類以上を混合して使用してもよい。エポキシ樹脂に対する硬化剤の添加量は 、それぞれの当量から導き出すことができる。  [0055] The "curing agent" of the epoxy resin includes dicyandiamide, organic hydrazide, imidazoles, amines such as aromatic amines, phenols such as bisphenol A and brominated bisphenol A, phenolol. These include nopolacs such as pollac resins and cresol nopolac resins, and acid anhydrides such as phthalic anhydride. Further, one type of curing agent may be used alone, or two or more types may be used in combination. The amount of the curing agent added to the epoxy resin can be derived from the respective equivalents.
[0056] その他、必要に応じて硬化促進剤を適宜添加しても良い。この硬化促進剤には、 3 級ァミン、イミダゾール系、尿素系硬化促進剤等を用いることが出来る。  [0056] In addition, a curing accelerator may be appropriately added as necessary. As this curing accelerator, tertiary amine, imidazole-based, urea-based curing accelerator and the like can be used.
[0057] この樹脂組成物に配合されるエポキシ樹脂の配合量は、樹脂成分総量の 40重量 %〜70重量%であることが好ましい。配合量が 40重量%未満であれば、電気特性と しての絶縁性及び耐熱性が劣化する。一方、 70重量%を超えて配合すると、硬化中 の樹脂流れが大きくなり過ぎて、誘電層内で樹脂成分の偏在が起こりやすくなる。 [0057] The amount of the epoxy resin blended in the resin composition is 40% of the total amount of the resin components. % To 70% by weight is preferred. If the blending amount is less than 40% by weight, the insulating properties and heat resistance as electrical characteristics deteriorate. On the other hand, if it exceeds 70% by weight, the resin flow during curing becomes too large, and the resin component tends to be unevenly distributed in the dielectric layer.
[0058] そして、エポキシ樹脂組成物の一部として、ゴム変成エポキシ樹脂を使用する事が 好ましい。このゴム変性エポキシ樹脂は、接着剤用や塗料用として市販されている製 品であれば特に制限なく使用できる。具体的に例を挙げれば、 "EPICLON TSR- 960" (商品名、大日本インキ社製)、 "EPOTOHTO YR- 102" (商品名、東都化 成社製)、 "スミエポキシ ESC— 500" (商品名、住友化学社製)、 "EPOMIK VSR 3531 " (商品名、三井石油化学社製)等がある。これらのゴム変成エポキシ樹脂は 1 種類を単独で使用しても、 2種類以上を混合して使用してもよい。ここにおけるゴム変 成エポキシ樹脂の配合量は全エポキシ樹脂量の 5重量%〜80重量%である。ゴム 変成エポキシ樹脂の使用により、 BST系誘電層内への樹脂成分の定着を促進する 。従って、当該ゴム変成エポキシ樹脂の配合量力 ¾重量%未満の場合には、 BST系 誘電層内への定着促進効果は得られない。一方、当該ゴム変成エポキシ樹脂の配 合量が 80重量%を超えるものとすると硬化後の樹脂としての耐熱性が低下する。  [0058] It is preferable to use a rubber-modified epoxy resin as a part of the epoxy resin composition. This rubber-modified epoxy resin can be used without particular limitation as long as it is a product marketed for adhesives or paints. Specific examples include "EPICLON TSR-960" (trade name, manufactured by Dainippon Ink and Company), "EPOTOHTO YR-102" (trade name, manufactured by Tohto Kasei Co., Ltd.), "Sumiepoxy ESC-500" (product) Name, manufactured by Sumitomo Chemical Co., Ltd.) and "EPOMIK VSR 3531" (trade name, manufactured by Mitsui Petrochemical Co., Ltd.). These rubber-modified epoxy resins may be used alone or in combination of two or more. The compounding amount of the rubber-modified epoxy resin here is 5% to 80% by weight of the total epoxy resin amount. The use of rubber-modified epoxy resin promotes the fixing of resin components in the BST dielectric layer. Therefore, when the compounding power of the rubber-modified epoxy resin is less than 3% by weight, the effect of promoting fixing in the BST-based dielectric layer cannot be obtained. On the other hand, if the amount of the rubber-modified epoxy resin is more than 80% by weight, the heat resistance of the cured resin will decrease.
[0059] そして、当該エポキシ樹脂組成物に使用されるポリビュルァセタール樹脂は、ポリビ ニルアルコールとアルデヒド類の反応により合成されるものである。現在、ポリビュル ァセタール樹脂として、様々な重合度のポリビュルアルコールと 1種又は 2種類以上 のアルデヒド類の反応物が塗料用や接着剤用として市販されているが、本件発明で はアルデヒド類の種類ゃァセタール化度には特に制限なく使用できる。また原料ポリ ビュルアルコールの重合度は特に限定されないが、硬化後の樹脂としての耐熱性や 溶剤に対する溶解性を考慮すると、重合度 2000〜3500のポリビュルアルコール力、 ら合成された製品の使用が望ましい。さらに分子内にカルボキシル基等を導入した 変成ポリビュルァセタール樹脂も市販されて!/、るが、組み合わされるエポキシ樹脂と の相溶性に問題がなければ、特に制限なく使用できる。絶縁層に配合されるポリビニ ルァセタール樹脂の配合量としては樹脂組成物総量の 20重量%〜50重量%である 。当該配合量が 20重量%未満であれば、樹脂としての流動性を改良する効果が得 られない。一方、当該配合量が 50重量%を超えると硬化後の絶縁層の吸水率が高く なるので、 BST系誘電層の構成材としては極めて好ましくないものとなる。 [0059] Then, the polybulacetal resin used in the epoxy resin composition is synthesized by the reaction of polyvinyl alcohol and aldehydes. At present, polybulal alcohols with various degrees of polymerization and reaction products of one or more aldehydes are commercially available for paints and adhesives as polybulacetal resins. Nyacetalization degree can be used without any particular limitation. The degree of polymerization of the raw polyvinyl alcohol is not particularly limited, but considering the heat resistance of the cured resin and the solubility in solvents, it is possible to use a product synthesized from the power of polybulal alcohol having a polymerization degree of 2000-3500. desirable. In addition, modified polybulucetal resins having a carboxyl group or the like introduced in the molecule are also commercially available! /, But can be used without particular limitation as long as there is no problem in compatibility with the combined epoxy resin. The amount of the polyvinyl acetal resin blended in the insulating layer is 20% to 50% by weight of the total resin composition. If the blending amount is less than 20% by weight, the effect of improving the fluidity as a resin cannot be obtained. On the other hand, if the amount exceeds 50% by weight, the water absorption rate of the insulating layer after curing is high. Therefore, it is extremely undesirable as a constituent material for the BST-based dielectric layer.
[0060] 本件発明で用いる樹脂組成物は、上記成分に加えて、前記ポリビュルァセタール 樹脂の架橋剤としてメラミン樹脂またはウレタン樹脂を配合させることが好ましレ、。ここ で使用されるメラミン樹脂としては塗料用として市販されているアルキル化メラミン樹 脂が使用できる。具体的に例示すると、メチル化メラミン樹脂、 n—ブチル化メラミン樹 脂、 iso—ブチル化メラミン樹脂、およびこれらの混合アルキル化メラミン樹脂がある。 メラミン樹脂としての分子量やアルキル化度は特に限定されない。  [0060] In addition to the above components, the resin composition used in the present invention preferably contains a melamine resin or a urethane resin as a cross-linking agent for the polybulacetal resin. As the melamine resin used here, an alkylated melamine resin commercially available for coating can be used. Specific examples include methylated melamine resins, n-butylated melamine resins, iso-butylated melamine resins, and mixed alkylated melamine resins. The molecular weight and alkylation degree as a melamine resin are not particularly limited.
[0061] 当該ウレタン樹脂としては、接着剤用、塗料用として市販されている分子中にイソシ ァネート基を含有した樹脂が使用できる。具体的に例示するとトリレンジイソシァネー ト、ジフエニルメタンジイソシァネート、ポリメチレンポリフエ二ルポリイソシァネート等の ポリイソシァネート化合物とトリメチロールプロパンやポリエーテルポリオール、ポリエ ステルポリオール等のポリオール類との反応物がある。これらの化合物は樹脂として の反応性が高ぐ雰囲気中の水分で重合する場合があるので、本件発明では、この 不具合の起きないように、これらの樹脂をフエノール類ゃォキシム類で安定化したブ ロックイソシァネートと呼ばれるウレタン樹脂の使用が好ましい。  [0061] As the urethane resin, a resin containing an isocyanate group in a molecule marketed for adhesives and paints can be used. Specific examples include polyisocyanate compounds such as tolylene diisocyanate, diphenylmethane diisocyanate, polymethylene polyphenyl polyisocyanate, trimethylolpropane, polyether polyol, polyester polyol, etc. There is a reaction product with polyols. Since these compounds may polymerize with moisture in an atmosphere with high reactivity as a resin, in the present invention, these resins are stabilized with phenols and oximes to prevent this problem. The use of a urethane resin called rock isocyanate is preferred.
[0062] 本件発明における樹脂組成物に添加するメラミン樹脂またはウレタン樹脂の配合量 は、樹脂組成物総量の 0. 1重量%〜20重量%である。当該配合量が 0. 1重量%未 満ではポリビュルァセタール樹脂の架橋効果が不十分となり、誘電層の耐熱性が低 下し、 20重量%を超えて配合すると、誘電層内での定着性が劣化する。  [0062] The blending amount of the melamine resin or the urethane resin added to the resin composition in the present invention is 0.1 wt% to 20 wt% of the total amount of the resin composition. If the blending amount is less than 0.1% by weight, the effect of crosslinking of the polybulucetal resin is insufficient, the heat resistance of the dielectric layer is lowered, and if the blending amount exceeds 20% by weight, it is fixed in the dielectric layer. Deteriorates.
[0063] この樹脂組成物には、上記必須成分に加えてタルクや水酸化アルミニウムで代表さ れる無機充填剤、消泡剤、レべリング剤、カップリング剤等の添加剤を所望により使 用することもできる。これらは誘電層に対する樹脂成分の浸透性を改良し、難燃性向 上、コストの低減等に効果がある。以上に述べてきた樹脂組成物を用いた含浸の具 体的手法は、後述する製造方法の中で詳説する。  [0063] In addition to the above essential components, additives such as inorganic fillers typified by talc and aluminum hydroxide, antifoaming agents, leveling agents, and coupling agents are used in this resin composition as desired. You can also These improve the permeability of the resin component to the dielectric layer, and are effective in improving flame retardancy and reducing costs. The specific method of impregnation using the resin composition described above will be described in detail in the manufacturing method described later.
[0064] 本件発明に係るキャパシタ層形成材の製造方法の形態: 上記本件発明に係るキヤ パシタ層形成材の製造方法は、誘電層の形成に物理蒸着法、気相化学反応法、ゾ ルーゲル法のいずれかを用いる。そして、当該誘電層に樹脂含浸を行う場合もある。  Form of manufacturing method of capacitor layer forming material according to the present invention: The manufacturing method of a capacitor layer forming material according to the present invention includes a physical vapor deposition method, a gas phase chemical reaction method, a Zogel method for forming a dielectric layer. Either of these is used. In some cases, the dielectric layer is impregnated with resin.
[0065] 本件発明に係るキャパシタ層形成材の製造は、下部電極形成層の上に物理蒸着 法、化学気相反応法、ゾルーゲル法のいずれかを用いてマンガンを含まないマンガ ンレス酸化物誘電層を形成する事に始まる。下部電極形成層に関しては、上述のと おりである。このマンガンレス酸化物誘電層の形成に、物理蒸着法を用いる場合には 、抵抗加熱法、電子ビーム(EB)蒸着法、レーザアブレーシヨン、分子線ェピタキシャ ル法、 2極スパッタリング法、マグネトロンスパッタリング法、反応性スパッタリング法等 を用いることが出来る。これらの物理蒸着法は、蒸着材料の組成を任意に調節するこ とで、適宜、必要なマンガンレス酸化物誘電層を形成できる。化学気相反応法とは、 蒸発気化した複数の材料を気相で反応させ、その反応物を下部電極形成層の上に 着地させマンガンレス酸化物誘電層を形成するものであり、 CVDと称する全ての手 法を含むものである。そして、ゾル—ゲル法に関しては、後の説明に於いて詳述する ことにする。 [0065] The capacitor layer forming material according to the present invention is manufactured by physical vapor deposition on the lower electrode forming layer. The method begins with the formation of a manganese-free oxide dielectric layer that does not contain manganese using any one of the chemical method, chemical vapor reaction method, and sol-gel method. The lower electrode formation layer is as described above. When physical vapor deposition is used to form this manganese-less oxide dielectric layer, resistance heating, electron beam (EB) vapor deposition, laser ablation, molecular beam epitaxy, bipolar sputtering, magnetron sputtering Or reactive sputtering can be used. In these physical vapor deposition methods, a necessary manganese-less oxide dielectric layer can be appropriately formed by arbitrarily adjusting the composition of the vapor deposition material. The chemical vapor reaction method involves reacting a plurality of vaporized materials in the gas phase and landing the reaction product on the lower electrode formation layer to form a manganese-less oxide dielectric layer. Includes all methods. The sol-gel method will be described in detail later.
[0066] そして、当該マンガンレス酸化物誘電層の上に形成するマンガン含有酸化物誘電 層に関しても、上述と同様の物理蒸着法、気相化学反応法、ゾルーゲル法のいずれ かを用いてもよ!/、。マンガンレス酸化物誘電層及びマンガン含有酸化物誘電層をあ わせたものを複層構造酸化物誘電層と称している。  [0066] For the manganese-containing oxide dielectric layer formed on the manganese-less oxide dielectric layer, any one of the physical vapor deposition method, the gas phase chemical reaction method, and the sol-gel method similar to the above may be used. ! / A combination of a manganese-less oxide dielectric layer and a manganese-containing oxide dielectric layer is referred to as a multilayer oxide dielectric layer.
[0067] また、前記手法で形成した誘電層を樹脂含浸誘電層としたキャパシタ層形成材を 製造する場合には、上記手法にてマンガンレス酸化物誘電層及びマンガン含有酸 化物誘電層から構成される複層構造酸化物誘電層とし、この複層構造酸化物誘電 層に樹脂含浸させて製造する。ここで、樹脂含浸に用いる樹脂組成物に関しては上 述したので、ここでは当該樹脂組成物を用いた含浸手法に関してのみ述べる。リーク 電流を小さくするという観点から、誘電層に樹脂含浸させる事が好ましい。  [0067] Further, when manufacturing a capacitor layer forming material in which the dielectric layer formed by the above method is a resin-impregnated dielectric layer, it is composed of a manganese-less oxide dielectric layer and a manganese-containing oxide dielectric layer by the above method. The multilayer oxide dielectric layer is manufactured by impregnating the multilayer oxide dielectric layer with resin. Here, since the resin composition used for the resin impregnation has been described above, only the impregnation technique using the resin composition will be described here. From the viewpoint of reducing the leakage current, it is preferable to impregnate the dielectric layer with a resin.
[0068] この樹脂組成物は、誘電層内への含浸が容易となるように、溶剤を用いて固形分 量を一定の範囲に制御した希薄樹脂ワニスとして用いる。ここで誘電層の表面に塗 布する樹脂ワニスは、上記樹脂成分を、有機溶剤を用いて溶解し、固形分量 0. lwt %〜1. Owt%の樹脂ワニスとするのである。ここで、固形分量が 0. lwt%未満の場 合には粘度が低すぎて、誘電層中に有機成分が残留せず、樹脂含浸を行う意義が 没却する。一方、固形分量が 1. Owt%を超えると、樹脂含浸工程にバラツキがあり、 過剰量の樹脂を塗工する状況となったとき、粘度が高すぎるため、誘電層の上に樹 脂膜を形成し、誘電層厚さが大きくなるため、結果として電気容量密度が低下するた め好ましくない。 [0068] This resin composition is used as a dilute resin varnish whose solid content is controlled within a certain range using a solvent so that the dielectric layer can be easily impregnated. Here, the resin varnish to be applied to the surface of the dielectric layer is obtained by dissolving the above resin component using an organic solvent to obtain a resin varnish having a solid content of 0.1 wt% to 1. Owt%. Here, when the solid content is less than 0.1 wt%, the viscosity is too low, the organic component does not remain in the dielectric layer, and the significance of resin impregnation is lost. On the other hand, if the solid content exceeds 1. Owt%, the resin impregnation process varies and the viscosity is too high when an excessive amount of resin is applied. Since the oil film is formed and the thickness of the dielectric layer is increased, the electric capacity density is lowered as a result.
[0069] 従って、前記樹脂ワニスの固形分量を 0. lwt%〜; 1. Owt%の範囲として、良好な 誘電層内への浸透性を確保すべきである。有機溶剤として用いることの出来るのは、 例えば、ェチルメチルケトンとシクロペンタノンのいずれか一種の溶剤又はこれらの混 合溶剤を用いて溶解するのである。ェチルメチルケトンとシクロペンタノンとは、 190 °C程度の加熱により効率よく揮発除去することが容易であり、且つ、揮発ガスの浄化 処理も容易である。しかも、樹脂溶液の粘度を誘電層に含浸させるのに最も適した粘 度に調節することが容易だからである。そして、ェチルメチルケトンとシクロペンタノン との混合溶剤を用いて溶解することは、環境的な見地より好ましいのである。混合溶 剤とする場合の、混合割合にも特に限定はないが、シクロペンタノンを用いる場合に は、揮発除去の速度を考え、ェチルメチルケトンをその共存溶媒とすることが好まし いのである。但し、ここに具体的に挙げた溶剤以外でも、本件発明で用いるすべての 樹脂成分を溶解することの出来るものであれば、その使用が可能である。  Accordingly, the solid content of the resin varnish should be in the range of 0.1 wt% to 1. Owt% to ensure good permeability into the dielectric layer. The organic solvent can be used, for example, by using any one of ethylmethylketone and cyclopentanone or a mixed solvent thereof. Ethyl methyl ketone and cyclopentanone can be easily volatilized and removed efficiently by heating at about 190 ° C., and the volatile gas can be easily purified. Moreover, it is easy to adjust the viscosity of the resin solution to a viscosity most suitable for impregnating the dielectric layer. And it is more preferable from an environmental point of view to dissolve using a mixed solvent of ethylmethylketone and cyclopentanone. There is no particular limitation on the mixing ratio in the case of a mixed solvent. However, when cyclopentanone is used, it is preferable to use ethylmethylketone as the coexisting solvent in consideration of the volatilization removal rate. is there. However, in addition to the solvents specifically mentioned here, any solvent can be used as long as it can dissolve all the resin components used in the present invention.
[0070] そして、この樹脂ワニスを誘電層の表面に塗布するには、種々の方法を採用するこ とが可能である。しかし、樹脂ワニスの固形分量力 通常の樹脂ワニスと比べて極め て希薄であるため、スピンコート法を採用して塗工することが塗布の均一性を維持す る観点、力、ら好ましい。  [0070] Various methods can be employed to apply this resin varnish to the surface of the dielectric layer. However, the strength of the solid content of the resin varnish is extremely dilute as compared with a normal resin varnish. Therefore, it is preferable to apply the spin coating method from the viewpoint of maintaining the coating uniformity.
[0071] 次に、本件発明に係るキャパシタ層形成材の好ましい製造方法の一例として、ゾル ゲル法を用レ、BST系の前記複層構造酸化物誘電層を形成する製造方法に関し て述べる。以下の工程 a〜工程 fの各工程を順次説明する。  [0071] Next, as an example of a preferable method for manufacturing the capacitor layer forming material according to the present invention, a method for forming the BST-based multilayer oxide dielectric layer using a sol-gel method will be described. The following steps a to f will be sequentially described.
[0072] 工程 a : この工程では、マンガンを含有しないサブ誘電層を形成するための第 1ゾル ゲル溶液を調製する。所望の BST系誘電膜を製造するための第 1ゾルーゲル溶 液を調製する場合を一例とする。この工程に関して、特段の制限はなぐ市販の調製 剤を使用しても、自らが配合しても構わない。結果として、所望の BST系誘電膜を形 成出来ればよい。即ち、 BST系誘電膜とは、 (Ba Sr )TiO (0≤χ≤1)膜であり、 この組成を含む誘電膜を得ることが出来るゾルーゲル溶液であればよい。ここで、 X = 1のときは SrTiOを意味するものとなり、 x = 0のときは BaTiOを意味するものとな る力 いずれの場合でも本件発明の効果は発揮されるが、 0≤x≤0. 5とすることが、 より好ましい。なお、本件明細書においては、 Mnを添加した(Ba Sr )TiO (0≤ x≤ 1)膜にっレ、ても BST系誘電膜と称することがある。 [0072] Step a: In this step, a first sol-gel solution for forming a sub-dielectric layer containing no manganese is prepared. An example is the case of preparing the first sol-gel solution for producing the desired BST-based dielectric film. Regarding this step, a commercially available preparation agent with no particular limitation may be used, or it may be blended by itself. As a result, it is only necessary to form a desired BST dielectric film. That is, the BST-based dielectric film is a (Ba Sr) TiO (0≤χ≤1) film and may be a sol-gel solution capable of obtaining a dielectric film containing this composition. Here, when X = 1, it means SrTiO, and when x = 0, it means BaTiO. In any case, the effect of the present invention is exhibited, but it is more preferable that 0≤x≤0.5. In the present specification, a Mn-added (Ba Sr) TiO (0≤x≤1) film may be referred to as a BST-based dielectric film.
[0073] 工程 b : この工程では、マンガンを含有するサブ誘電層を形成するための第 2ゾノレ ゲル溶液を調製する。そして、前記第 2ゾルーゲル溶液は、このマンガンを 0. 01 mol%〜5. 00mol%含有するぺロブスカイト構造を備える酸化物誘電膜を形成する ための溶液を用いることが好まし!/、。上述の誘電層中のマンガン含有量の適正な範 囲を維持するためである。この第 2ゾルーゲル溶液の調製にも、特段の制限はなぐ 市販のマンガンを含有した調製剤を使用しても、 自らが配合しても構わない。結果と して、例えば、所望のマンガンを含む BST系誘電膜を形成できればよい。第 2ゾル- ゲル溶液中へのマンガンの添加方法は、マンガン化合物の溶液を用いて、上記マン ガン含有量の範囲となるように、所定量を混合添加することが好ましい。  Step b: In this step, a second zonore gel solution for forming a sub-dielectric layer containing manganese is prepared. The second sol-gel solution is preferably a solution for forming an oxide dielectric film having a perovskite structure containing 0.01 mol% to 5.00 mol% of manganese! /. This is to maintain an appropriate range of the manganese content in the dielectric layer. There are no particular restrictions on the preparation of the second sol-gel solution. A commercially available preparation containing manganese may be used, or it may be blended by itself. As a result, for example, a BST dielectric film containing desired manganese may be formed. As a method for adding manganese to the second sol-gel solution, it is preferable to use a manganese compound solution and add a predetermined amount so as to be in the range of the above-mentioned mangan content.
[0074] 工程 この工程では、下部電極形成層を構成する金属箔の表面に第 1ゾルーゲル 溶液を塗布後、乾燥させ、酸素含有雰囲気中で熱分解を行うことで未焼成マンガン レス誘電層を形成する。この工程を、より詳細に述べれば、下部電極形成層を構成 する金属箔の表面に第 1ゾルーゲル溶液を塗布し、酸素含有雰囲気中で 120°C〜2 50°Cの条件で乾燥し、酸素含有雰囲気中で 270°C〜390°Cの条件で熱分解を行う 一連の工程を経て未焼成マンガンレス誘電層が形成される。そして、この一連のェ 程を複数回繰り返すことで、未焼成マンガンレス誘電層の膜厚調整が行なえる。そし て、ゾル—ゲル法による誘電層の形成の場合には、全ての層構成が完成して最終的 な焼成が施されるため、この最終焼成前のマンガンレス誘電層を、敢えて「未焼成マ ンガンレス誘電層」等と称して!/、る。  [0074] Step In this step, the first sol-gel solution is applied to the surface of the metal foil constituting the lower electrode forming layer, and then dried, and thermally decomposed in an oxygen-containing atmosphere to form an unfired manganese-less dielectric layer. To do. To describe this process in more detail, the first sol-gel solution is applied to the surface of the metal foil constituting the lower electrode forming layer, dried in an oxygen-containing atmosphere at 120 ° C. to 250 ° C., and oxygen An unfired manganese-less dielectric layer is formed through a series of steps in which pyrolysis is performed under conditions of 270 ° C. to 390 ° C. in a contained atmosphere. The film thickness of the unfired manganese-less dielectric layer can be adjusted by repeating this series of steps a plurality of times. In the case of forming a dielectric layer by the sol-gel method, since all layer configurations are completed and final firing is performed, the manganese-less dielectric layer before final firing is deliberately referred to as “unfired”. It is called “manganless dielectric layer”!
[0075] そして、この未焼成マンガンレス誘電層の形成条件に関してより詳細に述べておく 、下部電極形成層の表面に塗布した第 1ゾル―ゲル溶液の上記乾燥条件は 120°C 〜250°Cの温度を採用することが好ましい。更に、その乾燥時間には、 30秒〜 10分 を採用することが好ましい。ここで言う乾燥条件を外れると、乾燥が不十分で後の熱 分解後の誘電膜表面に粗れが生じたり、乾燥が過剰になると、後の熱分解反応が不 均一になり得られる誘電膜の場所的な品質バラツキを生じやすくなる。この乾燥を行 うときの雰囲気に特段の制限は無い。これに対し、熱分解を行うときには、酸素含有 雰囲気で行う事が好ましい。即ち、還元雰囲気で行うと有機物の分解が促進されな い。 [0075] Then, the formation conditions of the unfired manganese-less dielectric layer will be described in more detail. The drying conditions for the first sol-gel solution applied to the surface of the lower electrode formation layer are 120 ° C to 250 ° C. It is preferable to employ a temperature of Further, the drying time is preferably 30 seconds to 10 minutes. If the drying conditions are not met, the dielectric film can be dried inadequately, resulting in roughening of the surface of the dielectric film after the subsequent thermal decomposition, or if the drying is excessive, the subsequent thermal decomposition reaction may become non-uniform. It becomes easy to produce the local quality variation. Do this dry There is no particular restriction on the atmosphere during the event. On the other hand, when the thermal decomposition is performed, it is preferably performed in an oxygen-containing atmosphere. That is, the decomposition of organic substances is not promoted when carried out in a reducing atmosphere.
[0076] 更に、熱分解に関しては、上記乾燥が終了して、酸素含有雰囲気中で 270°C〜39 0°C X 5分〜 30分の条件で熱分解を行うことが好ましい。ここで、採用した熱分解温 度が極めて特徴的である。従来の熱分解温度には 450°C〜550°Cの温度範囲が採 用されてきた。これに対し、本件発明においては、下部電極形成層の余分な酸化を 防止するため 270°C〜390°Cという低温域での熱分解温度を採用している。ここで熱 分解温度を 270°C未満とすると、いかに長時間の加熱を続けても良好な熱分解が起 こりにくく、生産性に欠けると共に、良好なキャパシタ特性が得られない。一方、誘電 膜は、金属箔等の表面上に形成するものであり、 390°Cを超える加熱を行うと、誘電 膜と金属箔との界面で金属基材表面の酸化進行が顕著になる。従って、大量生産を 行う上での工程のバラツキと品質の安全性とを考慮すると、それ以下の温度である 3 70°C程度を上限とする事が、より好ましい。そして、加熱時間は、採用する分解温度 とゾルーゲル溶液の性状によって決められるものである力 上記の加熱温度範囲を 採用することを前提に、 5分未満の加熱では十分な熱分解が行えない。また、加熱温 度が 30分を超えても、誘電膜としての品質向上は望めず、生産に時間を要し生産性 が低下する。  [0076] Further, regarding the thermal decomposition, it is preferable that the drying is completed and the thermal decomposition is performed in an oxygen-containing atmosphere under the conditions of 270 ° C to 390 ° C x 5 minutes to 30 minutes. Here, the employed pyrolysis temperature is extremely characteristic. The conventional pyrolysis temperature has been in the range of 450 ° C to 550 ° C. On the other hand, in the present invention, a thermal decomposition temperature in a low temperature range of 270 ° C. to 390 ° C. is employed to prevent excessive oxidation of the lower electrode formation layer. Here, if the thermal decomposition temperature is less than 270 ° C, no matter how long heating is continued, good thermal decomposition is unlikely to occur, productivity is insufficient, and good capacitor characteristics cannot be obtained. On the other hand, the dielectric film is formed on the surface of a metal foil or the like, and when heating above 390 ° C., the oxidation of the metal substrate surface becomes remarkable at the interface between the dielectric film and the metal foil. Therefore, in consideration of process variations and quality safety in mass production, it is more preferable to set the upper limit of about 370 ° C, which is a lower temperature. The heating time is determined by the decomposition temperature used and the properties of the sol-gel solution. On the premise that the above heating temperature range is used, sufficient heat decomposition cannot be performed with heating for less than 5 minutes. Also, even if the heating temperature exceeds 30 minutes, improvement in quality as a dielectric film cannot be expected, and production takes time and productivity is reduced.
[0077] ここで、ゾルーゲル溶液の塗布に関して述べる。ゾルーゲル溶液を金属箔の表面 に塗布する手段に関しては、特に限定を要さない。し力もながら、膜厚の均一性及び ゾルーゲル溶液の特質等を考慮する限り、スピンコート法ゃメニスカス法を用いること が好ましい。  [0077] Here, the application of the sol-gel solution will be described. The means for applying the sol-gel solution to the surface of the metal foil is not particularly limited. However, it is preferable to use the meniscus method as the spin coat method as long as the uniformity of the film thickness and the characteristics of the sol-gel solution are taken into consideration.
[0078] 工程 d : この工程では、前記未焼成マンガンレス誘電層の表面に、第 2ゾルーゲル 溶液を塗布後、乾燥させ、酸素含有雰囲気中で熱分解を行う一連の工程を一回行 い第 1未焼成サブ誘電層を形成する。この場合の乾燥及び熱分解の条件は、上述 の第 1ゾル ゲル溶液を用レ、た場合と同様であるため、ここでの説明は省略する。  [0078] Step d: In this step, a series of steps of applying the second sol-gel solution to the surface of the unfired manganese-less dielectric layer, drying and thermally decomposing in an oxygen-containing atmosphere are performed once. 1 Form an unfired subdielectric layer. The conditions for drying and pyrolysis in this case are the same as in the case of using the first sol-gel solution described above, and a description thereof is omitted here.
[0079] 工程 そして、前記第 1未焼成サブ誘電層の上に、第 1ゾル—ゲル溶液又は第 2ゾ ルーゲル溶液のいずれかを塗布後、乾燥させ、酸素含有雰囲気中で熱分解を行う 一連の工程を 1単位工程とし、この 1単位工程を(n— 1)回繰り返して行うことで、一 部又は全ての層にマンガンを含有した第 2未焼成サブ誘電層〜第 n未焼成サブ誘電 層を形成する。即ち、ゾルーゲル溶液塗布→乾燥→熱分解の連続した一連の工程 を 1単位工程と称している。従って、このゾル—ゲル溶液に、前記第 1ゾル—ゲル溶 液(マンガンを含有しなレ、ゾルーゲル溶液)又は前記第 2ゾルーゲル溶液(マンガン を含有するゾルーゲル溶液)の何れかを選択的に用い、この 1単位工程を複数回(n —1)回繰り返して、マンガン含有誘電層としての膜厚調整を行える。そして、本件発 明に係る酸化物誘電層の形成方法の場合、例えば 1回目の 1単位工程から n— 1回 目の 1単位工程の少なくとも 1回の 1単位工程に第 2ゾルーゲル溶液を用い、その他 の 1単位工程には前記第 1ゾルーゲル溶液を用いる等して、マンガンを含有した BS T系誘電膜とマンガンを含有しない BST系誘電膜とを層状に配置した層構成のマン ガン含有誘電層とできる。この場合の乾燥及び熱分解の条件は、上述の第 1ゾルー ゲル溶液を用いた場合と同様であるため、ここでの説明は省略する。 [0079] Step Then, either the first sol-gel solution or the second sol-gel solution is applied on the first unsintered subdielectric layer, and then dried and thermally decomposed in an oxygen-containing atmosphere. A series of processes is defined as one unit process, and this one unit process is repeated (n-1) times, so that the second unsintered sub-dielectric layer containing manganese in some or all layers to the nth unsintered sub-layer Form a dielectric layer. In other words, a series of processes consisting of sol-gel solution application → drying → thermal decomposition is called one unit process. Therefore, either the first sol-gel solution (manganese-free sol-gel solution) or the second sol-gel solution (manganese-containing sol-gel solution) is selectively used for this sol-gel solution. By repeating this one unit process a plurality of times (n-1), the film thickness can be adjusted as a manganese-containing dielectric layer. In the case of the method for forming an oxide dielectric layer according to the present invention, for example, the second sol-gel solution is used in at least one unit process from the first unit process to the n-1 first unit process. In the other unit process, a manganese-containing dielectric layer having a layer structure in which a BST-based dielectric film containing manganese and a BST-based dielectric film not containing manganese are arranged in layers by using the first sol-gel solution, etc. And can. The conditions for drying and pyrolysis in this case are the same as in the case of using the first sol-gel solution described above, and a description thereof is omitted here.
そして、ゾル—ゲル法を用いて前記複層構造酸化物誘電層を形成する場合には、 前記工程 d及び工程 eにおいて、 1単位工程の処理に先立ち任意に 550°C〜800°C での予備焼成処理を設けることも好ましい。即ち、未焼成マンガンレス誘電層及び第 1未焼成サブ誘電層〜第 n未焼成サブ誘電層を形成するための 1単位工程を複数 回繰り返す場合において、 1単位工程と 1単位工程との間に任意に予備焼成処理を 設けるのである。例えば、 6回の 1単位工程を繰り返し行う場合で考えると、 1回の予 備焼成工程を設けるとすれば 1単位工程(1回目)→予備焼成工程→1単位工程(2 回目)→ 1単位工程(3回目)→ 1単位工程 (4回目)→ 1単位工程( 5回目)→ 1単位ェ 程 ½回目)のプロセスを採用する等である。そして、 2回の焼成工程を設けるとすれ ば、 1単位工程(1回目)→予備焼成工程→1単位工程(2回目)→1単位工程(3回目 )→予備焼成工程→ 1単位工程 (4回目)→ 1単位工程( 5回目)→ 1単位工程(6回目 )のプロセスを採用する等である。更に、全ての 1単位工程間に焼成工程を設けると すれば、 1単位工程( 1回目)→予備焼成工程→ 1単位工程 (2回目)→予備焼成ェ 程→ 1単位工程 (3回目)→予備焼成工程→ 1単位工程 (4回目)→予備焼成工程→ 1単位工程(5回目)→予備焼成工程→1単位工程(6回目)のプロセスを採用するこ とになる。 In the case of forming the multilayer oxide dielectric layer using a sol-gel method, in the step d and the step e, it is optionally performed at a temperature of 550 ° C. to 800 ° C. prior to the process of one unit step. It is also preferable to provide a pre-baking treatment. That is, when one unit process for forming the unfired manganese-less dielectric layer and the first unfired sub-dielectric layer to the n-th unfired sub-dielectric layer is repeated a plurality of times, An optional pre-baking treatment is provided. For example, in the case of repeating 1 unit process of 6 times, if 1 preliminary firing process is provided, 1 unit process (1st) → preliminary firing process → 1 unit process (2nd) → 1 unit Process (3rd) → 1 unit process (4th) → 1 unit process (5th) → 1 unit process ½th) is adopted. Then, if two firing steps are provided, 1 unit process (first time) → preliminary firing step → 1 unit process (second time) → 1 unit process (3rd time) → preliminary firing step → 1 unit process (4 1st process (5th time) → 1 unit process (6th time). Furthermore, if a firing process is provided between all 1 unit processes, 1 unit process (first time) → pre-baking process → 1 unit process (2nd time) → pre-baking process → 1 unit process (3rd time) → Pre-baking process → 1 unit process (4th) → Pre-baking process → 1 unit process (5th) → Pre-baking process → 1 unit process (6th) It becomes.
[0081] そして、この予備焼成処理条件は、 1単位工程を複数回繰り返すにあたり、 1単位 工程と 1単位工程との間に、 550°C〜800°C X 2分〜 60分の焼成条件を採用するこ とが好ましい。この条件は、以下に述べる工程 eとほぼ同様であるため、そこの説明で 数値の臨界的意義等を述べる。なお、この予備焼成を行うと、そこまでに存在した未 焼成の誘電層は焼成された誘電層となる力 s、最終焼成を行っていないという意味で 敢えて「未焼成」を付して!/、る。 [0081] And, this pre-baking treatment condition adopts the firing condition of 550 ° C-800 ° CX for 2-60 minutes between 1 unit process and 1 unit process when repeating 1 unit process multiple times It is preferable to do this. Since these conditions are almost the same as in step e described below, the critical significance of the numerical values will be described in the explanation. It should be noted that, when the pre-baking, unfired dielectric layer that existed before there is force the fired dielectric layer s, dare in the sense that not doing the final firing denoted by the "unfired"! / RU
[0082] 従来のゾルーゲル法で得られた誘電膜の結晶状態は、微細な結晶粒が存在し、結 晶粒内に多数のボイドが確認出来る。これに対して、この予備焼成工程を採用するこ とにより、誘電膜の組織が、膜密度が高く緻密で、結晶粒内の構造欠陥の少ない状 態になる。この結果、リーク電流は小さぐ耐電圧特性に優れ、高容量の誘電層の形 成が可能となる。以上に述べてきた工程 dでの 1単位工程の繰り返し回数によって、 誘電層としての厚さの調整が可能となる。  [0082] The crystal state of the dielectric film obtained by the conventional sol-gel method has fine crystal grains, and a large number of voids can be confirmed in the crystal grains. On the other hand, by adopting this pre-baking step, the structure of the dielectric film becomes a state in which the film density is high and dense, and there are few structural defects in the crystal grains. As a result, the leakage current is small, the voltage resistance is excellent, and a high-capacity dielectric layer can be formed. The thickness of the dielectric layer can be adjusted by the number of repetitions of one unit process in the process d described above.
[0083] 工程 f : この工程では、上記工程で得られたマンガンを含まない未焼成のマンガンレ ス誘電層と、一部又は全てのサブ誘電層にマンガンを含有した未焼成マンガン含有 誘電層とを焼成することで複層構造酸化物誘電層を形成する最終焼成を行う。この 最終焼成は、予備焼成温度よりも高い温度を前提として、 600°C〜; 1000°Cの温度を 採用すること力好ましい。更に、その焼成時間は 5分〜 60分として焼成処理とする事 が好ましい。この焼成工程が所謂本焼成工程であり、この焼成を経て、最終的な誘 電層となる。この焼成工程では、下部電極形成層の酸化劣化を防止するため、不活 性ガス置換雰囲気又は真空中で加熱を行う事が好ましい。このときの温度条件未満 の加熱では、焼成が困難であり、下部電極形成層との密着性に優れ、適正な緻密さ と適度な粒度の結晶組織を備える誘電層が得られない。そして、この温度条件を超 える過剰の加熱を行うと、誘電層の劣化及び下部電極形成層の物理的強度の劣化 が進行し、キャパシタ特性である高い電気容量及び長寿命化が図れなくなる。この観 点から見れば、より好ましい上限温度は 900°Cである。  [0083] Step f: In this step, the unfired manganese-less dielectric layer containing no manganese obtained in the above step and the unfired manganese-containing dielectric layer containing manganese in some or all of the sub-dielectric layers The final baking which forms a multilayer structure oxide dielectric layer by baking is performed. This final baking is preferably performed at a temperature of 600 ° C to 1000 ° C on the premise of a temperature higher than the pre-baking temperature. Furthermore, the firing time is preferably 5 to 60 minutes. This firing step is a so-called main firing step, and after this firing, a final dielectric layer is obtained. In this firing step, it is preferable to perform heating in an inert gas replacement atmosphere or vacuum in order to prevent oxidative degradation of the lower electrode formation layer. If the heating is less than the temperature condition at this time, firing is difficult, the adhesiveness with the lower electrode forming layer is excellent, and a dielectric layer having an appropriate density and a crystal structure with an appropriate grain size cannot be obtained. If excessive heating is performed exceeding this temperature condition, deterioration of the dielectric layer and deterioration of the physical strength of the lower electrode formation layer proceed, and it becomes impossible to achieve high capacitance and long life as capacitor characteristics. From this viewpoint, a more preferable upper limit temperature is 900 ° C.
[0084] 以上のようにして誘電層の形成が終了すると、その誘電層の上には、上部電極形 成層を設けることになる。この上部電極形成層の形成方法としては、金属箔を用いて 張り合わせる方法、メツキ法で導電層を形成する方法、スパッタリング蒸着等の方法 を採用することが可能である。 When the formation of the dielectric layer is completed as described above, the upper electrode forming layer is provided on the dielectric layer. As a method of forming the upper electrode formation layer, a metal foil is used. It is possible to employ a method of bonding, a method of forming a conductive layer by a plating method, a method of sputtering deposition, or the like.
[0085] 本件発明に係るプリント配線板: そして、上記本件発明に係るキャパシタ層形成材 を用いることで、高品質の内蔵キャパシタ層を備えたことを特徴とするプリント配線板 を得ること力 S出来る。 [0085] Printed wiring board according to the present invention: By using the capacitor layer forming material according to the present invention, it is possible to obtain a printed wiring board having a high-quality built-in capacitor layer. .
[0086] 本件発明に係るキャパシタ層形成材は、そのキャパシタ層形成材の両面にある下 部電極形成層と上部電極形成層とにキャパシタ回路形状をエッチング法で形成し、 多層プリント配線板の構成材料として用いる。また、下部電極形成層に上述のニッケ ル又はニッケル合金を用いることで、 BST系誘電層との密着性に優れた下部電極の 形成が可能となり、当該下部電極は耐熱性に優れた素材であるため、 300°C〜400 °Cの範囲の熱間プレス加工を複数回経ても、酸化劣化も起こらず、物性変化も起こし にくい。この本件発明に係るキャパシタ層形成材を用いての内蔵キャパシタ回路を備 えるプリント配線板の製造方法に関して、特段の限定はなぐあらゆる方法を採用す る事が可能となる。  [0086] The capacitor layer forming material according to the present invention is formed by forming a capacitor circuit shape on the lower electrode forming layer and the upper electrode forming layer on both surfaces of the capacitor layer forming material by an etching method. Used as material. In addition, by using the nickel or nickel alloy described above for the lower electrode formation layer, it becomes possible to form a lower electrode with excellent adhesion to the BST-based dielectric layer, and the lower electrode is a material with excellent heat resistance. For this reason, even if hot pressing in the range of 300 ° C to 400 ° C is performed multiple times, oxidation deterioration does not occur and physical property changes hardly occur. With respect to the method of manufacturing a printed wiring board having a built-in capacitor circuit using the capacitor layer forming material according to the present invention, any method without particular limitation can be adopted.
実施例  Example
[0087] この実施例では、基材金属(下部電極形成層)であるニッケル箔の表面に、上記 B ST系誘電層を形成し、更に当該 BST系誘電層の表面に上部電極形成層を設けキ ャパシタ層形成材を製造した。そして、このキャパシタ層形成材を用いてエッチング 法でキャパシタ回路を形成し、リーク電流特性等の評価を行った。  In this embodiment, the BST-based dielectric layer is formed on the surface of the nickel foil that is the base metal (lower electrode forming layer), and the upper electrode-forming layer is further provided on the surface of the BST-based dielectric layer. Capacitor layer forming material was manufactured. Then, a capacitor circuit was formed by an etching method using this capacitor layer forming material, and leakage current characteristics and the like were evaluated.
[0088] 基材金属(下部電極形成層)の製造: ここでは、圧延法で製造した 50 in厚さの二 ッケル箔を使用した。なお、圧延法で製造したニッケル箔の厚さはゲージ厚さで示し たものである。このニッケル箔は、キャパシタ層形成材となったときの下部電極形成層 を構成する。  [0088] Production of base metal (lower electrode forming layer): Here, a 50-inch thick nickel foil produced by a rolling method was used. The thickness of the nickel foil manufactured by the rolling method is indicated by the gauge thickness. This nickel foil constitutes the lower electrode formation layer when it becomes the capacitor layer formation material.
[0089] 誘電層の形成: 当該ニッケル箔の表面にゾルーゲル法を用いて誘電層を形成した 。ゾノレーゲル法で誘電層を形成する前のニッケノレ箔は、前処理として、 250°C X 15 分の加熱を行い、その後ニッケル箔表面に存在する付着物等を除去するため、 250 °Cで加熱しながら紫外線の 1分間照射を行った。  [0089] Formation of dielectric layer: A dielectric layer was formed on the surface of the nickel foil using a sol-gel method. The Nikkenole foil before forming the dielectric layer by the Zonolegel method is heated at 250 ° C for 15 minutes as a pretreatment, and then heated at 250 ° C to remove the deposits etc. present on the nickel foil surface. Irradiated with UV light for 1 minute.
[0090] 工程 aでは、第 1ゾルーゲル溶液を調製した。ここでは、三菱マテリアル株式会社製 の商品名 BST薄膜形成剤 7wt%BSTを用いて、 Ba Sr TiOの組成の酸化物 [0090] In step a, a first sol-gel solution was prepared. Here, Mitsubishi Materials Corporation Product name of BST thin film forming agent 7 wt% BST, Ba Sr TiO composition oxide
0. 7 0. 3 3  0. 7 0. 3 3
誘電膜を得るようにした。  A dielectric film was obtained.
[0091] 工程 bでは、第 2ゾルーゲル溶液を調製した。ここでは、三菱マテリアル株式会社製 の商品名 BST薄膜形成剤 7wt%BSTと、株式会社高純度化学研究所製の Mn — 03 (酸化マンガン(III) 2. 8wt%〜3. 2wt%、テレビン油 44wt%〜46wt%、酢 酸ブチル 22wt%〜24wt%、酢酸ェチル 7wt%〜8wt%、有機物系安定化剤 10w t%〜l lwt%、その他粘度調整剤)とを用いて、ノ リウムとストロンチウムとチタンとの トータル mol数に対し、 0. 86mol%のマンガンを含む第 2ゾルーゲル溶液を調製し た。そして、(Ba Sr ) (Ti Mn ) Oの組成の酸化物誘電膜を得られるようにし [0091] In step b, a second sol-gel solution was prepared. Here, the product name BST thin film forming agent 7wt% BST manufactured by Mitsubishi Materials Corporation, Mn-03 (Manganese (III) oxide 2.8wt% ~ 3.2wt%, turpentine oil 44wt%, manufactured by High Purity Chemical Laboratory Co., Ltd.) And strontium with ˜26 wt%, butyl acetate 22 wt% -24 wt%, ethyl acetate 7 wt% -8 wt%, organic stabilizers 10 wt% -l lwt%, and other viscosity modifiers). A second sol-gel solution containing 0.86 mol% manganese with respect to the total mol number with titanium was prepared. Then, an oxide dielectric film having a composition of (Ba Sr) (Ti Mn) O can be obtained.
0. 7 0. 3 1 0. 017 3  0. 7 0. 3 1 0. 017 3
た。  It was.
[0092] 工程 cでは、前記ニッケル箔の表面に第 1ゾル ゲル溶液をスピンコート法で塗布 し、酸素含有雰囲気中で 150°C X 2分の条件で乾燥し、酸素含有雰囲気中で 330 °C X 15分の条件で熱分解を行う一連の工程を施し、この段階で 650°C X 15分の不 活性ガス置換雰囲気で予備焼成処理を行った。この段階のマンガンレス誘電層は約 50nm厚さで焼成が完了したものである。  [0092] In step c, the first sol-gel solution is applied to the surface of the nickel foil by spin coating, dried at 150 ° CX for 2 minutes in an oxygen-containing atmosphere, and 330 ° CX in an oxygen-containing atmosphere. A series of processes for thermal decomposition was performed under conditions of 15 minutes, and pre-baking was performed at this stage in an inert gas replacement atmosphere at 650 ° C. for 15 minutes. At this stage, the manganese-less dielectric layer is about 50 nm thick and has been fired.
[0093] 工程 dでは、前記マンガンレス誘電層の表面に、マンガンを含む第 2ゾルーゲル溶 液を塗布し、酸素含有雰囲気中で 150°C X 2分の条件で乾燥し、酸素含有雰囲気 中で 330°C X 15分の条件で熱分解を行いう一連の工程(1単位工程)によって第 1 未焼成サブ誘電層を形成した。  [0093] In step d, a manganese-containing second sol-gel solution is applied to the surface of the manganese-less dielectric layer, dried in an oxygen-containing atmosphere at 150 ° C. for 2 minutes, and then in an oxygen-containing atmosphere. The first unsintered subdielectric layer was formed by a series of processes (one unit process) in which pyrolysis was performed under the condition of ° CX for 15 minutes.
[0094] 工程 e : そして、前記第 1未焼成サブ誘電層の上に対して、 1単位工程を再度繰り 返し第 2未焼成サブ誘電層を形成し、 700°C X 15分の不活性ガス置換 (窒素置換雰 囲気、以下同様である。)での予備焼成処理を行った。  [0094] Step e: Then, one unit step is repeated on the first unsintered subdielectric layer to form a second unsintered subdielectric layer, and the inert gas replacement at 700 ° C. for 15 minutes is performed. Pre-baking treatment was performed in a nitrogen-substituted atmosphere (the same applies hereinafter).
[0095] その後、上記 1単位工程を 3回繰り返して、第 3未焼成サブ誘電層〜第 6未焼成サ ブ誘電層を形成した。このとき、第 2未焼成サブ誘電層と第 3未焼成サブ誘電層との 間に予備焼成を行ったので、最終製品としてのキャパシタ層形成材の断面を透過型 電子顕微鏡で観察すると、誘電層はマンガンレス酸化物誘電層/マンガン含有酸化 物誘電層の構成を持ち、そのマンガン含有酸化物誘電層が 2層の第 1サブ誘電層と 第 2サブ誘電層とで構成されているように観察される。この第 1サブ誘電層は、上記第 1未焼成サブ誘電層及び第 2未焼成サブ誘電層が予備焼成を受けることにより一体 化して形成された層である。そして、第 2サブ誘電層は、上記第 3未焼成サブ誘電層 〜第 6未焼成サブ誘電層が予備焼成を受けることにより一体化して形成された層で ある。この様子を図 3の実施例の欄に模式断面図として示している。 [0095] Thereafter, the above one unit process was repeated three times to form a third unsintered subdielectric layer to a sixth unsintered subdielectric layer. At this time, since preliminary firing was performed between the second unsintered sub-dielectric layer and the third unsintered sub-dielectric layer, the cross-section of the capacitor layer forming material as the final product was observed with a transmission electron microscope. Has a structure of manganese-less oxide dielectric layer / manganese-containing oxide dielectric layer, and the manganese-containing oxide dielectric layer is observed to be composed of two first sub-dielectric layers and second sub-dielectric layers Is done. The first sub-dielectric layer is the first sub-dielectric layer. The first unfired sub-dielectric layer and the second unfired sub-dielectric layer are layers formed by subjecting to pre-firing. The second sub-dielectric layer is a layer formed by integrating the third unsintered sub-dielectric layer to the sixth unsintered sub-dielectric layer through preliminary firing. This state is shown as a schematic cross-sectional view in the column of the example of FIG.
[0096] 工程 f : そして、 750°C X I 5分の不活性ガス置換雰囲気(窒素置換雰囲気)で焼成 処理を行い、下部電極形成層を構成する圧延ニッケル箔の表面にぺロブスカイト構 造を備える BST系誘電層を形成した。  [0096] Step f: A BST having a perovskite structure on the surface of the rolled nickel foil constituting the lower electrode forming layer is baked in an inert gas replacement atmosphere (nitrogen replacement atmosphere) at 750 ° CXI for 5 minutes. A system dielectric layer was formed.
[0097] そして、当該 BST系誘電層全体に樹脂含浸を行わせ、樹脂含浸有りの BST系誘 電層の調製も行った。このとき、 BST系誘電層の表面に樹脂ワニスをスピンコート法 を採用して塗布し、室温で 30分間放置して、 150°Cのオーブン内で 5分間加熱し、 一定量の溶剤を除去し、半硬化状態に乾燥させた。その後、 190°Cのオーブン内で 30分間加熱する事で硬化させた。このときに得られた BST系誘電層の厚みは、約 3 OOnmであった。  [0097] Then, the entire BST dielectric layer was impregnated with resin, and a BST dielectric layer with resin impregnation was also prepared. At this time, a resin varnish is applied to the surface of the BST-based dielectric layer using a spin coating method, left at room temperature for 30 minutes, and heated in an oven at 150 ° C for 5 minutes to remove a certain amount of solvent. And dried to a semi-cured state. Then, it was cured by heating in a 190 ° C oven for 30 minutes. The thickness of the BST-based dielectric layer obtained at this time was about 3 OOnm.
[0098] このときに用いた樹脂ワニスは、以下のようにして調製したものである。ゴム変成され ていないエポキシ樹脂(商品名: EPOMIC R— 301、三井石油化学製) 40重量部、 ゴム変成エポキシ樹脂(商品名: EPOTOHTOYR—102、東都化成製) 20重量部 、ポリビュルァセタール樹脂(商品名:デンカブチラール # 5000A、電気化学工業製 ) 30重量部、メラミン樹脂(商品名:ユーバン 20SB、三井東圧化学社製)を固形分と して 10重量部、潜在製エポキシ樹脂硬化剤 (ジシアンジアミド、試薬) 2重量部(固形 分 25重量%のジメチルホルムアミド溶液で添加)、硬化促進剤(商品名:キュアゾー ノレ 2E4MZ、四国化成製) 0· 5重量部を、ェチルメチルケトンに溶解して固形分量 0· 22wt%の樹脂ワニスとしたものである。  [0098] The resin varnish used at this time was prepared as follows. Non-rubber modified epoxy resin (trade name: EPOMIC R-301, manufactured by Mitsui Petrochemical Co., Ltd.) 40 parts by weight, rubber modified epoxy resin (trade name: EPOTOHTOYR-102, manufactured by Toto Kasei) 20 parts by weight, polybulucetal resin (Product name: Denkabutyral # 5000A, manufactured by Denki Kagaku Kogyo Co., Ltd.) 30 parts by weight, Melamine resin (Product name: Yuban 20SB, Mitsui Toatsu Chemicals Co., Ltd.) 10 parts by weight, latent epoxy resin curing agent (Dicyandiamide, reagent) 2 parts by weight (added in a dimethylformamide solution with a solid content of 25% by weight), curing accelerator (trade name: Cuazo Nore 2E4MZ, manufactured by Shikoku Chemicals) 0.5 part by weight dissolved in ethyl methyl ketone Thus, a resin varnish having a solid content of 0.22 wt% is obtained.
[0099] <上部電極の形成〉  [0099] <Formation of upper electrode>
以上のようにして、各試料に形成した BST系誘電層(樹脂含浸有りの場合を含む) の上に、上部電極を形成する部位にのみ 2 ^ 111厚さの銅製の上部電極回路を、スパ ッタリング蒸着法で直接形成し、上部電極面積が Imm X 1mmサイズの 10個のキヤ パシタ回路を形成した。  As described above, on the BST-based dielectric layer (including the case with resin impregnation) formed on each sample, a copper upper electrode circuit having a thickness of 2 ^ 111 is attached only to the portion where the upper electrode is to be formed. It was directly formed by the sputtering deposition method, and 10 capacitor circuits with an upper electrode area of Imm x 1mm size were formed.
[0100] <誘電特性の評価〉 温度特性:シグナル周波数 1MHzで、試料 1の樹脂含浸無しの場合(一 55°C〜; 125 °Cの温度範囲)の容量密度の変化率は 14. 7%〜; 10. 0%、試料 1の樹脂含浸有 りの場合( 55°C〜; 100°Cの温度範囲)の容量密度の変化率は—4· 3%〜4· 4% であった。なお、当該変化率は、 25°Cの時の容量密度を基準として、 { [25°Cでの容 量密度]― [x°Cでの容量密度] }/[25°Cでの容量密度] X 100 (%)で算出した値 である。なお、温度特性の測定には、ヒユーレッド 'パッカード社製のインピーダンスァ ナライザ一 4194Aを用 1/ヽた。 [0100] <Evaluation of dielectric properties> Temperature characteristics: When the signal frequency is 1MHz and the sample 1 is not impregnated with resin (from 55 ° C to 125 ° C), the change rate of the capacity density is from 14.7% to 10.0%, sample 1 When the resin impregnation was carried out (55 ° C ~; temperature range of 100 ° C), the change rate of the capacity density was -4.3% to 4.4%. The rate of change is based on the capacity density at 25 ° C. {[Capacity density at 25 ° C]-[Capacity density at x ° C]} / [Capacity density at 25 ° C ] X 100 (%). For measurement of the temperature characteristics, an impedance analyzer 4194A manufactured by HIEURED Packard was used.
[0101] リーク電流: 図 3に掲載した表の数値から判断できるように、 BST系誘電層に対する 樹脂含浸無しの場合と、樹脂含浸有りの場合とを対比すると、樹脂含浸を行った方 1S リーク電流が相対的に小さくなつていることが理解できる。  [0101] Leakage current: As can be judged from the values in the table shown in Fig. 3, the BST dielectric layer without resin impregnation is compared with the resin impregnation. It can be seen that the current is relatively small.
[0102] 電極歩留り: キャパシタ回路の形成後に、各試料の 10個のキャパシタ回路に、所定 の電圧を負荷して、上部電極と下部電極との間でのショート現象の見られない割合を みた。その結果、 Imm X lmmサイズのキャパシタ回路の生産歩留りは樹脂含浸無 しの場合及び樹脂含浸有りの場合ともに 100%であった。  [0102] Electrode yield: After the capacitor circuit was formed, a predetermined voltage was applied to the 10 capacitor circuits of each sample, and the rate at which no short-circuit phenomenon was observed between the upper electrode and the lower electrode was observed. As a result, the production yield of Imm x lmm size capacitor circuits was 100% in both the case without resin impregnation and the case with resin impregnation.
[0103] 電気容量密度: 上部電極の電極面積を lmm X lmmサイズとした場合の容量密度 は、樹脂含浸無しの場合 1383nF/cm2、樹脂含浸有りの場合 1096nF/cm2と高 い電気容量を示した。 [0103] capacitance density capacity density when the electrode area of the upper electrode was set to lmm X lmm size, if 1383nF / cm 2 without resin impregnation, the case 1096nF / cm 2 and higher have capacitance of there resin impregnation Indicated.
[0104] 誘電損失: 上部電極の電極面積を lmm X lmmサイズとした場合のキャパシタ回 路の誘電損失を測定すると、樹脂含浸無しの場合 0. 146 (14. 6%)、樹脂含浸有り の場合 0· 016 (1. 6%)であった。  [0104] Dielectric loss: When measuring the dielectric loss of the capacitor circuit when the electrode area of the upper electrode is lmm x lmm size, it is 0.146 (14.6%) without resin impregnation and with resin impregnation. It was 0 · 016 (1.6%).
[0105] 以上に述べてきた各特性は、後述する比較例と対比可能なように図 3の表に纏め て掲載した。  [0105] The characteristics described above are listed in the table of Fig. 3 so that they can be compared with the comparative examples described later.
比較例  Comparative example
[0106] この比較例では、実施例 1と同様の製造フローを採用している力 ゾルーゲル溶液 としては、第 1ゾルーゲル溶液のみを用いて、 1単位工程を 6回行い、最終焼成した。  In this comparative example, as a force sol-gel solution that employs the same manufacturing flow as in Example 1, only the first sol-gel solution was used, and one unit process was performed 6 times, followed by final firing.
[0107] 即ち、前記第 1ゾル—ゲル溶液を、実施例 1で用いた圧延ニッケル箔の表面に塗布 し、酸素含有雰囲気中で 150°C X 2分の条件で乾燥し、酸素含有雰囲気中で 330 °C X I 5分の条件で熱分解を行う一連の工程を 1単位工程とした。そして、この 1単位 工程を 1回行った後に 650°C X 15分の不活性ガス置換雰囲気で予備焼成処理を行 い、次に 1単位工程を 2回繰り返した後に 650°C X 15分の不活性ガス置換雰囲気で 予備焼成処理を行った。そして、更に、当該 1単位工程を 3回繰り返し膜厚調整を行 つた。 That is, the first sol-gel solution was applied to the surface of the rolled nickel foil used in Example 1, dried in an oxygen-containing atmosphere at 150 ° C. for 2 minutes, and then in an oxygen-containing atmosphere. A series of processes for thermal decomposition at 330 ° CXI for 5 minutes was defined as one unit process. And this 1 unit After performing the process once, perform pre-baking treatment in an inert gas replacement atmosphere at 650 ° CX for 15 minutes, then repeat one unit process twice and then reserve in an inert gas replacement atmosphere at 650 ° CX for 15 minutes A baking treatment was performed. Furthermore, film thickness adjustment was performed by repeating the 1 unit process three times.
[0108] そして、上記試料を 700°C X 15分の不活性ガス置換雰囲気(窒素置換雰囲気)で 最終焼成処理を行い、マンガンを含まな!/、BST系誘電層を形成した。  [0108] Then, the sample was subjected to a final firing treatment in an inert gas replacement atmosphere (nitrogen replacement atmosphere) at 700 ° C for 15 minutes to form a manganese-free BST-based dielectric layer.
[0109] なお、実施例 1と同様に、当該比較試料 1の誘電層に樹脂含浸を行わせ、樹脂含 浸させた BST系誘電層の調製も行った。 [0109] As in Example 1, the dielectric layer of Comparative Sample 1 was impregnated with resin, and a BST-based dielectric layer impregnated with resin was also prepared.
[0110] 以下、実施例 1と同様にして、各試料に形成した BST系誘電層の上に、スパッタリ ング蒸着法により、上部電極面積が lmm X 1mmサイズの 10個のキャパシタ回路を 形成した。 [0110] In the same manner as in Example 1, 10 capacitor circuits having an upper electrode area of lmm x 1mm size were formed on the BST-based dielectric layer formed on each sample by sputtering deposition.
[0111] <誘電特性の評価〉 [0111] <Evaluation of dielectric properties>
温度特性:実施例 1と同様に、容量密度の変化率を求めた。その結果、比較用試料 の樹脂含浸無しの場合(一 55°C〜125°Cの温度範囲)の容量密度の変化率は— 35 Temperature characteristics: The rate of change in capacity density was determined in the same manner as in Example 1. As a result, the rate of change in capacity density when the sample for comparison was not impregnated with resin (temperature range from 55 ° C to 125 ° C) was-35
. 8%〜; 11 · 3%であった。 8% ~; 11 · 3%.
[0112] リーク電流: 図 3に掲載した数値から判断できるように、 BST系誘電層に対する樹脂 含浸無しの場合と、樹脂含浸有りの場合とを対比すると、樹脂含浸を行った方のリー ク電流が相対的に小さくなつていることが理解できる。 [0112] Leakage current: As can be judged from the values shown in Fig. 3, the leakage current of the resin-impregnated one is compared with the case where the BST dielectric layer is not impregnated with the resin. Can be understood to be relatively small.
[0113] 電極歩留り: キャパシタ回路の形成後に、実施例 1と同様にして、上部電極と下部 電極との間でのショート現象の見られない割合をみた。その結果、 lmm X lmmサイ ズのキャパシタ回路の生産歩留りは樹脂含浸無しの場合、樹脂含浸有りの場合共に[0113] Electrode Yield: After the capacitor circuit was formed, in the same manner as in Example 1, a ratio in which no short-circuit phenomenon was observed between the upper electrode and the lower electrode was observed. As a result, the production yield of the lmm x lmm size capacitor circuit is the case without resin impregnation and with resin impregnation.
100%であった。 100%.
[0114] 容量密度: 上部電極の電極面積を lmm X lmmサイズとした場合の初期の容量密 度は、樹脂含浸無しの場合 1247nF/cm2、樹脂含浸有りの場合 1120nF/cm2と 高い電気容量を示した。 [0114] Capacity Density: initial capacity density when the electrode area of the upper electrode was set to lmm X lmm size, if without resin impregnation 1247nF / cm 2, the case with the resin-impregnated 1120nF / cm 2 and higher capacitance showed that.
[0115] 誘電損失: 上部電極の電極面積を lmm X lmmサイズとした場合のキャパシタ回 路の誘電損失を測定すると、樹脂含浸無しの場合 0. 029 (2. 9%)、樹脂含浸有り の場合 0· 021 (2. 1 %)であった。 [0116] 以上に述べてきた各特性は、上述の実施例と対比可能なように図 3の表に纏めて 掲載した。 [0115] Dielectric loss: When the dielectric loss of the capacitor circuit when the electrode area of the upper electrode is lmm x lmm size is measured, 0.029 (2.9%) without resin impregnation and with resin impregnation It was 0 · 021 (2. 1%). [0116] The characteristics described above are listed in the table of Fig. 3 so that they can be compared with the above-described examples.
[0117] <実施例と比較例との対比〉  [0117] <Comparison between Examples and Comparative Examples>
温度特性: 上述のように容量密度の変化率は、比較例の当該変化率の幅と比べ、 樹脂含浸の有無に拘わらず、実施例の変化率の幅が小さぐ温度依存性が小さいこ とが分かる。従って、本件発明に係る技術的思想を適用した BST系誘電層を用いた キャパシタ回路は、周囲の温度雰囲気が変動しても、誘電特性に及ぼす影響が小さ いと言える。この温度特性の変化をグラフとして表したのが図 4である。この図 4は、実 施例 (樹脂含浸有り、樹脂含浸無しの 2種類を表示)と比較例 (樹脂含浸してレ、な!/、も の)との昇温降温曲線を示している力 実施例と比較例とでは顕著な変化率の差異 力 Sfcること力 S理角早でさる。  Temperature characteristics: As described above, the rate of change of the capacity density is smaller than the range of the rate of change of the comparative example, regardless of whether or not the resin is impregnated. I understand. Therefore, it can be said that the capacitor circuit using the BST-based dielectric layer to which the technical idea of the present invention is applied has little influence on the dielectric characteristics even if the ambient temperature atmosphere changes. Fig. 4 shows this change in temperature characteristics as a graph. This figure 4 shows the temperature rise and fall curves of the example (with two types of resin impregnation and without resin impregnation) and the comparative example (resin impregnation, rep!, ...). The difference in the remarkable change rate between the example and the comparative example.
[0118] リーク電流: 図 1に掲載した表の数値から判断できるように、 BST系誘電層に対する 樹脂含浸無しの場合と、樹脂含浸有りの場合とを対比すると、樹脂含浸を行った方 1S リーク電流が相対的に小さくなる傾向がある。この傾向は、比較例に於いても同 様であり、樹脂含浸がリーク電流の抑制には効果的であることが分かる。  [0118] Leakage current: As can be judged from the values in the table shown in Fig. 1, the BST dielectric layer without resin impregnation is compared with the resin impregnation. Current tends to be relatively small. This tendency is the same in the comparative example, and it can be seen that resin impregnation is effective in suppressing leakage current.
[0119] 電極歩留り: 本件発明に係る BST系誘電層を備えるキャパシタ回路の生産歩留り は、実施例の場合には、樹脂含浸無しの場合及び樹脂含浸有りの場合ともに 100% と極めて良好である。これに対し、比較例も樹脂含浸無しの場合及び樹脂含浸有り の場合ともに生産歩留りが 100%となり、生産歩留りの差異はない。実施例及び比較 例共に、予備焼成を設けたために生産歩留りが安定化したと考える。  [0119] Electrode Yield: The production yield of the capacitor circuit including the BST-based dielectric layer according to the present invention is extremely good at 100% in both the case of no resin impregnation and the case of resin impregnation. On the other hand, in the comparative example, the production yield is 100% both in the case without resin impregnation and in the case with resin impregnation, and there is no difference in production yield. In both the examples and the comparative examples, it is considered that the production yield was stabilized because the preliminary firing was provided.
[0120] 容量密度: 図 3に掲載した表の数値から判断できるように、上部電極の電極面積を lmm X lmmサイズとした場合の初期の容量密度に関しては、実施例と比較例とは ほぼ同等であると判断できる。  [0120] Capacity density: As can be judged from the values in the table shown in Fig. 3, the initial capacity density when the electrode area of the upper electrode is lmm x lmm size is almost the same as the example and the comparative example. It can be judged that.
[0121] 以上のことを総合して考えるに、本件発明に係る技術的思想を適用した BST系誘 電層を備えるキャパシタは、容量密度が比較例と同等である力 リーク電流の抑制、 温度特性等のその他の特性を考慮すると比較例を上回っており、非常にバランスの 取れた製品であると判断できる。  [0121] Considering all of the above, a capacitor having a BST-type dielectric layer to which the technical idea according to the present invention is applied has a capacitance density equivalent to that of the comparative example. Considering other characteristics such as the above, it exceeds the comparative example and can be judged to be a very balanced product.
産業上の利用可能性 [0122] 本件発明に係るキャパシタ層形成材は、プリント配線板の内蔵キャパシタ層の形成 に好適であり、高い電気容量、良好な温度特性、リーク電流を抑制した高品質のキヤ パシタ回路の形成を可能とする。従って、このキャパシタ層形成材を用いて得られる 内蔵キャパシタ回路を備えるプリント配線板等は、温度変化によるキャパシタ回路の 電気特性の変化が少なぐ電子及び電気製品の、より安定的な使用が可能となる。ま た、本件発明に係るキャパシタ層形成材の製造方法を採用することで、歩留り良ぐ 温度特性に優れ、リーク電流を抑制することのできる高品質の誘電層の形成が可能 であり、高品質のキャパシタ層形成材の安定供給が可能となる。また、本件発明に係 るキャパシタ層形成材の製造方法は、過大な設備投資の不要なものである。 Industrial applicability [0122] The capacitor layer forming material according to the present invention is suitable for forming a built-in capacitor layer of a printed wiring board, and is capable of forming a high-quality capacitor circuit with high electric capacity, good temperature characteristics, and reduced leakage current. Make it possible. Therefore, printed wiring boards equipped with built-in capacitor circuits obtained by using this capacitor layer forming material can be used more stably for electronic and electrical products in which the change in electrical characteristics of the capacitor circuit due to temperature changes is small. Become. In addition, by adopting the method for manufacturing a capacitor layer forming material according to the present invention, it is possible to form a high-quality dielectric layer that has excellent temperature characteristics with good yield and can suppress leakage current. It is possible to stably supply the capacitor layer forming material. In addition, the method for manufacturing a capacitor layer forming material according to the present invention does not require excessive capital investment.
図面の簡単な説明  Brief Description of Drawings
[0123] [図 1]本件発明に係るキャパシタ層形成材の誘電層の基本的層構成を説明するため の断面模式図である。  FIG. 1 is a schematic cross-sectional view for explaining a basic layer configuration of a dielectric layer of a capacitor layer forming material according to the present invention.
[図 2]本件発明に係るキャパシタ層形成材の誘電層の層構成のノ リエーシヨンを示す ための断面模式図である。  FIG. 2 is a schematic cross-sectional view showing a noiration of the layer structure of the dielectric layer of the capacitor layer forming material according to the present invention.
[図 3]本件発明に係る技術的思想を用いて形成した BST系誘電層を備えるキャパシ タ層形成材の断面模式図を含む誘電特性の一覧表である。  FIG. 3 is a list of dielectric characteristics including a schematic cross-sectional view of a capacitor layer forming material including a BST-based dielectric layer formed using the technical idea of the present invention.
[図 4]実施例と比較例との各温度特性 (温度一変化率)を示す図である。  FIG. 4 is a diagram showing each temperature characteristic (rate of change in temperature) between an example and a comparative example.
符号の説明  Explanation of symbols
[0124] 1 キャパシタ層形成材 [0124] 1 Capacitor layer forming material
2 誘電層  2 Dielectric layer
3 マンガンレス酸化物誘電層  3 Manganese-less oxide dielectric layer
4 マンガン含有酸化物誘電層  4 Manganese-containing oxide dielectric layer
5 上部電極形成層  5 Upper electrode formation layer
6 下部電極形成層  6 Lower electrode formation layer

Claims

請求の範囲 The scope of the claims
[1] 上部電極形成層と下部電極形成層との間に誘電層を備えるキャパシタ層形成材に おいて、  [1] In a capacitor layer forming material having a dielectric layer between an upper electrode forming layer and a lower electrode forming layer,
前記誘電層は、マンガンを含まなレ、マンガンレス酸化物誘電層及びマンガン含有 酸化物誘電層の複層構造酸化物誘電層であることを特徴としたプリント配線板の内 蔵キャパシタ層形成材。  The material for forming an internal capacitor layer of a printed wiring board, wherein the dielectric layer is a multilayer oxide oxide layer of a manganese-free layer, a manganese-less oxide dielectric layer, and a manganese-containing oxide dielectric layer.
[2] 前記マンガン含有酸化物誘電層は、 n層 (2≤n)の第 1サブ誘電層〜第 nサブ誘電 層で構成されており、当該第 1サブ誘電層はマンガン含有酸化物誘電層であり、第 2 サブ誘電層〜第 nサブ誘電層の一部がマンガンを含有しないものであることを特徴と した請求項 1に記載のプリント配線板の内蔵キャパシタ層形成材。  [2] The manganese-containing oxide dielectric layer is composed of n (2≤n) first to n-th sub-dielectric layers, and the first sub-dielectric layer is a manganese-containing oxide dielectric layer. 2. The built-in capacitor layer forming material for a printed wiring board according to claim 1, wherein a part of the second sub-dielectric layer to the n-th sub-dielectric layer does not contain manganese.
[3] 前記マンガン含有酸化物誘電層は、その厚さが 10nm〜500nmである請求項 1又 は請求項 2に記載のプリント配線板の内蔵キャパシタ層形成材。  [3] The material for forming a built-in capacitor layer of a printed wiring board according to claim 1 or 2, wherein the manganese-containing oxide dielectric layer has a thickness of 10 nm to 500 nm.
[4] 前記誘電層は、その厚さが 201 111〜1 111である請求項 1〜請求項 3のいずれかに 記載のプリント配線板の内蔵キャパシタ層形成材。  [4] The material for forming a built-in capacitor layer of a printed wiring board according to any one of claims 1 to 3, wherein the dielectric layer has a thickness of 201 111 to 1 111.
[5] 前記下部電極形成層は、厚さが 1 m〜100 mのニッケル層又はニッケル合金層 である請求項 1〜請求項 4のいずれかに記載のプリント配線板の内蔵キャパシタ層形 成材。  5. The built-in capacitor layer forming material for a printed wiring board according to claim 1, wherein the lower electrode forming layer is a nickel layer or a nickel alloy layer having a thickness of 1 m to 100 m.
[6] 前記上部電極形成層は、厚さが 0. 5 m〜50 mのニッケル層、銅層、ニッケル合 金層、銅合金層のいずれか又はこれらの組み合わせによる積層構造を備えるもので ある請求項 1〜請求項 5のいずれかに記載のプリント配線板の内蔵キャパシタ層形成 材。  [6] The upper electrode forming layer has a laminated structure of a nickel layer, a copper layer, a nickel alloy layer, a copper alloy layer having a thickness of 0.5 m to 50 m, or a combination thereof. 6. A built-in capacitor layer forming material for a printed wiring board according to claim 1.
[7] 前記誘電層は、樹脂含浸させた樹脂含浸誘電層である請求項 1〜請求項 6のいず れかに記載のプリント配線板の内蔵キャパシタ層形成材。  7. The built-in capacitor layer forming material for a printed wiring board according to any one of claims 1 to 6, wherein the dielectric layer is a resin-impregnated dielectric layer impregnated with resin.
[8] 上部電極形成層と下部電極形成層との間に誘電層を備えるキャパシタ層形成材の 製造方法であって、 [8] A method for producing a capacitor layer forming material comprising a dielectric layer between an upper electrode forming layer and a lower electrode forming layer,
下部電極形成層の上に物理蒸着法、気相化学反応法、ゾルーゲル法のいずれか を用いてマンガンを含まな!/、マンガンレス酸化物誘電層を形成し、  A manganese-free oxide dielectric layer is formed on the lower electrode formation layer by using any one of physical vapor deposition, gas phase chemical reaction, and sol-gel method.
当該マンガンレス酸化物誘電層の上に物理蒸着法、気相化学反応法、ゾルーゲル 法のいずれかを用いてマンガン含有酸化物誘電層を形成することで複層構造酸化 物誘電層とし、 Physical vapor deposition, gas phase chemical reaction, sol-gel on the manganese-less oxide dielectric layer A multilayer oxide dielectric layer is formed by forming a manganese-containing oxide dielectric layer using any of the methods
当該複層構造酸化物誘電層の上に上部電極形成層を形成することを特徴としたプ リント配線板の内蔵キャパシタ層形成材の製造方法。  A method of manufacturing a built-in capacitor layer forming material for a printed wiring board, wherein an upper electrode forming layer is formed on the multilayer oxide dielectric layer.
[9] 上部電極形成層と下部電極形成層との間に誘電層を備えるキャパシタ層形成材の 製造方法であって、 [9] A method for producing a capacitor layer forming material comprising a dielectric layer between an upper electrode forming layer and a lower electrode forming layer,
下部電極形成層の上に物理蒸着法、気相化学反応法、ゾルーゲル法のいずれか を用いてマンガンを含まな!/、マンガンレス酸化物誘電層を形成し、  A manganese-free oxide dielectric layer is formed on the lower electrode formation layer by using any one of physical vapor deposition, gas phase chemical reaction, and sol-gel method.
当該マンガンレス酸化物誘電層の上に物理蒸着法、気相化学反応法、ゾルーゲル 法のいずれかを用いてマンガン含有酸化物誘電層を形成することで複層構造酸化 物誘電層とし、  A manganese-containing oxide dielectric layer is formed on the manganese-less oxide dielectric layer using any one of physical vapor deposition, gas phase chemical reaction, and sol-gel method to form a multilayer oxide dielectric layer.
当該マンガンレス酸化物誘電層又はマンガン含有酸化物誘電層との少なくとも一 方の層に樹脂含浸させ樹脂含浸誘電層とし、  At least one of the manganese-less oxide dielectric layer or the manganese-containing oxide dielectric layer is impregnated with resin to form a resin-impregnated dielectric layer,
当該複層構造酸化物誘電層の上に上部電極形成層を形成することを特徴としたプ リント配線板の内蔵キャパシタ層形成材の製造方法。  A method of manufacturing a built-in capacitor layer forming material for a printed wiring board, wherein an upper electrode forming layer is formed on the multilayer oxide dielectric layer.
[10] 請求項 9に記載のキャパシタ層形成材の製造方法において、 [10] In the method for producing a capacitor layer forming material according to claim 9,
前記樹脂含浸処理は、誘電層の表面に樹脂ワニスを塗布して含浸させ、樹脂乾燥 、樹脂硬化するものである請求項 9に記載のプリント配線板の内蔵キャパシタ層形成 材の製造方法。  10. The method for producing a built-in capacitor layer forming material for a printed wiring board according to claim 9, wherein the resin impregnation treatment is performed by applying and impregnating a resin varnish on the surface of the dielectric layer, drying the resin, and curing the resin.
[11] 前記複層構造酸化物誘電層がゾルーゲル法により形成されたものであり、以下のェ 程 a〜工程 fの各工程を経て得られるものである請求項 8〜請求項 10のいずれかに 記載のプリント配線板の内蔵キャパシタ層形成材の製造方法。  [11] The multilayer oxide oxide layer according to any one of claims 8 to 10, which is formed by a sol-gel method, and is obtained through the following steps a to f. The manufacturing method of the built-in capacitor layer forming material of printed wiring board as described in any one of Claims 1-3.
工程 a: 未焼成マンガンレス誘電層及びマンガンを含有しな!/、サブ誘電層を形成す るための第 1ゾル ゲル溶液を調製する。  Step a: Prepare the first sol-gel solution to form the unfired manganese-less dielectric layer and manganese! /, Sub-dielectric layer.
工程 b: マンガンを含有するサブ誘電層を形成するための第 2ゾルーゲル溶液を調 製する。  Step b: Prepare a second sol-gel solution for forming a sub-dielectric layer containing manganese.
工程 c : 下部電極形成層の表面に第 1ゾルーゲル溶液を塗布後、乾燥させ、酸素含 有雰囲気中で熱分解を行うことで未焼成マンガンレス誘電層を形成する。 工程 d : 前記未焼成マンガンレス誘電層の表面に、第 2ゾルーゲル溶液を塗布後、 乾燥させ、酸素含有雰囲気中で熱分解を行う一連の工程を一回行い第 1未焼成サ ブ誘電層を形成する。 Step c: A first sol-gel solution is applied to the surface of the lower electrode formation layer, and then dried, and thermally decomposed in an oxygen-containing atmosphere to form an unfired manganese-less dielectric layer. Step d: After applying the second sol-gel solution to the surface of the unfired manganese-less dielectric layer, drying and thermally decomposing in an oxygen-containing atmosphere are performed once to form the first unfired sub-dielectric layer. Form.
工程 e: その後第 1ゾルーゲル溶液又は第 2ゾルーゲル溶液の!/、ずれかを塗布後、 乾燥させ、酸素含有雰囲気中で熱分解を行う一連の工程を 1単位工程とし、この 1単 位工程を (n— 1)回繰り返して行うことで、一部又は全ての層にマンガンを含有した 第 2未焼成サブ誘電層〜第 n未焼成サブ誘電層を形成する。  Step e: Then, after applying the first sol-gel solution or the second sol-gel solution! /, Either one of them is dried and then thermally decomposed in an oxygen-containing atmosphere as one unit step. By repeating (n-1) times, the second unfired subdielectric layer to the nth unfired subdielectric layer containing manganese in some or all layers are formed.
工程 f: 上記工程で得られた未焼成の誘電層を焼成することで、マンガンを含まない マンガンレス酸化物誘電層と、マンガンを含有したマンガン含有酸化物誘電層を有 する複層構造酸化物誘電層を形成するための最終焼成を行う。  Step f: Multi-layer structure oxide having a manganese-free oxide dielectric layer containing no manganese and a manganese-containing oxide dielectric layer containing manganese by firing the unfired dielectric layer obtained in the above step Final firing is performed to form the dielectric layer.
[12] 前記工程 d及び工程 eにおいて、 1単位工程の処理に先立ち任意に 550°C〜800°C での予備焼成処理を設ける請求項 11に記載のプリント配線板の内蔵キャパシタ層形 成材の製造方法。 [12] The built-in capacitor layer forming material for a printed wiring board according to claim 11, wherein, in the step d and the step e, a pre-baking treatment at 550 ° C. to 800 ° C. is optionally provided prior to the treatment of one unit step. Production method.
[13] 前記第 2ゾルーゲル溶液は、マンガンを 0. 01mol%〜5. 00mol%含有するぺロブ スカイト構造の酸化物誘電膜の形成溶液である請求項 11又は請求項 12に記載のプ リント配線板の内蔵キャパシタ層形成材の製造方法。  [13] The printed wiring according to claim 11 or 12, wherein the second sol-gel solution is a solution for forming an oxide dielectric film having a perovskite structure containing 0.01 mol% to 5.00 mol% of manganese. A method for producing a built-in capacitor layer forming material for a plate
[14] 請求項 1〜請求項 7のいずれかに記載のプリント配線板の内蔵キャパシタ層形成材 を用いて得られた内蔵キャパシタ層を備えることを特徴としたプリント配線板。  [14] A printed wiring board comprising an internal capacitor layer obtained using the internal capacitor layer forming material for a printed wiring board according to any one of claims 1 to 7.
PCT/JP2007/069365 2006-10-05 2007-10-03 Capacitor layer-forming material, method for producing capacitor layer-forming material, and printed wiring board comprising built-in capacitor obtained by using the capacitor layer-forming material WO2008044573A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007548638A JPWO2008044573A1 (en) 2006-10-05 2007-10-03 CAPACITOR LAYER FORMING MATERIAL, METHOD FOR PRODUCING CAPACITOR LAYER FORMING MATERIAL, AND PRINTED WIRING BOARD HAVING BUILT-IN CAPACITOR OBTAINED USING THE CAPACITOR LAYER FORMING MATERIAL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-274285 2006-10-05
JP2006274285 2006-10-05

Publications (1)

Publication Number Publication Date
WO2008044573A1 true WO2008044573A1 (en) 2008-04-17

Family

ID=39282782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/069365 WO2008044573A1 (en) 2006-10-05 2007-10-03 Capacitor layer-forming material, method for producing capacitor layer-forming material, and printed wiring board comprising built-in capacitor obtained by using the capacitor layer-forming material

Country Status (3)

Country Link
JP (1) JPWO2008044573A1 (en)
TW (1) TW200829099A (en)
WO (1) WO2008044573A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009295907A (en) * 2008-06-09 2009-12-17 Sumitomo Metal Mining Co Ltd Method of manufacturing thin-film capacitor material
JP2010278346A (en) * 2009-05-29 2010-12-09 Tdk Corp Method of manufacturing thin film capacitor
JP2020072266A (en) * 2018-10-29 2020-05-07 Tdk株式会社 Thin film capacitor and circuit board incorporating the same
TWI713537B (en) * 2015-08-13 2020-12-21 日商太陽油墨製造股份有限公司 Photosensitive resin composition, dry film and printed wiring board

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08253319A (en) * 1995-03-15 1996-10-01 Mitsubishi Electric Corp Formation of highly dielectric thin film
JP2003045987A (en) * 2001-08-02 2003-02-14 Taiyo Yuden Co Ltd Dielectric laminating thin film and electronic parts using the same
WO2005034151A1 (en) * 2003-09-30 2005-04-14 Murata Manufacturing Co., Ltd. Layered ceramic electronic part and manufacturing method thereof
JP2006196848A (en) * 2005-01-17 2006-07-27 Mitsui Mining & Smelting Co Ltd Capacitor layer forming material, manufacturing method of capacitor layer forming material and printed wiring board provided with built-in capacitor layer obtained by using capacitor layer forming material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08253319A (en) * 1995-03-15 1996-10-01 Mitsubishi Electric Corp Formation of highly dielectric thin film
JP2003045987A (en) * 2001-08-02 2003-02-14 Taiyo Yuden Co Ltd Dielectric laminating thin film and electronic parts using the same
WO2005034151A1 (en) * 2003-09-30 2005-04-14 Murata Manufacturing Co., Ltd. Layered ceramic electronic part and manufacturing method thereof
JP2006196848A (en) * 2005-01-17 2006-07-27 Mitsui Mining & Smelting Co Ltd Capacitor layer forming material, manufacturing method of capacitor layer forming material and printed wiring board provided with built-in capacitor layer obtained by using capacitor layer forming material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009295907A (en) * 2008-06-09 2009-12-17 Sumitomo Metal Mining Co Ltd Method of manufacturing thin-film capacitor material
JP2010278346A (en) * 2009-05-29 2010-12-09 Tdk Corp Method of manufacturing thin film capacitor
TWI713537B (en) * 2015-08-13 2020-12-21 日商太陽油墨製造股份有限公司 Photosensitive resin composition, dry film and printed wiring board
JP2020072266A (en) * 2018-10-29 2020-05-07 Tdk株式会社 Thin film capacitor and circuit board incorporating the same
JP7419738B2 (en) 2018-10-29 2024-01-23 Tdk株式会社 Thin film capacitors and circuit boards containing them

Also Published As

Publication number Publication date
TW200829099A (en) 2008-07-01
JPWO2008044573A1 (en) 2010-02-12

Similar Documents

Publication Publication Date Title
JP3841814B1 (en) Capacitor layer forming material and method for manufacturing the capacitor layer forming material
US7179552B2 (en) Resin composition for interlayer insulation of multilayer printed wiring board, adhesive film and prepreg
JP4522774B2 (en) Thin film dielectric for capacitor and manufacturing method thereof
US7542265B2 (en) High energy density capacitors and methods of manufacture
KR100949254B1 (en) Manganese doped barium titanate thin film compositions, capacitors, and methods of making thereof
JP7061632B2 (en) Resin composition, copper foil with resin, dielectric layer, copper-clad laminate, capacitor element and printed wiring board with built-in capacitor
US7531112B2 (en) Composition for forming dielectric, capacitor produced using composition, and printed circuit board provided with capacitor
JP4118884B2 (en) Method for manufacturing capacitor layer forming material
US11670455B2 (en) Double-sided copper-clad laminate
JP2007035975A (en) Capacitor layer formation material with support substrate, and capacitor layer formation material as well as method for manufacturing these
WO2008044573A1 (en) Capacitor layer-forming material, method for producing capacitor layer-forming material, and printed wiring board comprising built-in capacitor obtained by using the capacitor layer-forming material
WO2006118236A1 (en) Method for oxide dielectric layer formation, and capacitor layer forming material comprising oxide dielectric layer formed by said formation method
WO2013115183A1 (en) Dielectric ceramic material and process for producing coarse particles of perovskite-type composite oxide for use therein
KR102510234B1 (en) Modified perovskite-type composite oxide, manufacturing method thereof, and composite dielectric material
JP2009540602A (en) Sintering of chemical solution deposited dielectric thin films assisted by glass flux
JPWO2008133243A1 (en) BST-based dielectric layer, capacitor layer forming material including the BST-based dielectric layer, capacitor layer constituent member with electrode circuit, and printed wiring board including a built-in capacitor circuit
US20120141777A1 (en) Laminate composed of ceramic insulating layer and metal layer, and method for producing the same
WO2021153339A1 (en) Resin layered product, dielectric layer, metal foil with resin, capacitor element, and printed wiring board with built-in capacitor
KR20170099673A (en) Flexible circuit clad laminate, printed circuit board using it, and method of manufacturing the same
WO2007029789A1 (en) Method for formation of pzt-type dielectric layer suitable for built-in capacitor circuit in printed wiring board
JP2002124773A (en) Fire-retardant electronic part
JP2004277447A (en) Highly electroconductive resin composition and highly electroconductive electronic part
JP2004277495A (en) Highly electroconductive resin composition and highly electroconductive electronic part
JP2004281070A (en) Resin composition and electronic parts of high dielectric constant

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2007548638

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07829104

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07829104

Country of ref document: EP

Kind code of ref document: A1