WO2008044571A1 - Method for analyzing fluidity of resin material including particles and fluidity analysis system - Google Patents

Method for analyzing fluidity of resin material including particles and fluidity analysis system Download PDF

Info

Publication number
WO2008044571A1
WO2008044571A1 PCT/JP2007/069361 JP2007069361W WO2008044571A1 WO 2008044571 A1 WO2008044571 A1 WO 2008044571A1 JP 2007069361 W JP2007069361 W JP 2007069361W WO 2008044571 A1 WO2008044571 A1 WO 2008044571A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
load
resin material
convex
particle
Prior art date
Application number
PCT/JP2007/069361
Other languages
French (fr)
Japanese (ja)
Inventor
Tsutomu Kono
Kouji Kobayashi
Kazuyoshi Kojima
Masayuki Mino
Original Assignee
Hitachi Chemical Company, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Company, Ltd. filed Critical Hitachi Chemical Company, Ltd.
Priority to JP2008538677A priority Critical patent/JPWO2008044571A1/en
Publication of WO2008044571A1 publication Critical patent/WO2008044571A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads

Definitions

  • the present invention relates to a flow analysis method and a flow analysis system of a resin material in which particles are contained, and particularly to connect a semiconductor integrated circuit (IC) used in a device, a liquid crystal, or the like to a substrate.
  • the present invention relates to a three-dimensional flow analysis method for evaluating conductivity from the number of particles between electrodes and the amount of deformation of the particles by flowing a resin material containing conductive particles between the electrodes.
  • Patent Literature 1 and Patent Literature 2 describe analysis programs capable of analyzing foaming behavior in which the density of a polyurethane foam material decreases with time as a flow analysis method of a thermosetting material.
  • Patent Document 1 the entire foamed material is considered to have a uniform density, and the density is calculated as the elapsed time since the first nozzle of the foamed material that exits the nozzle that delivers the foamed material with the foaming material stirred. Density is used.
  • Patent Document 2 describes that in addition to the technique of Patent Document 1, foam flow analysis of a foam material is performed using a function that takes into account that the density of the foam material changes due to fluctuations in thickness.
  • Non-Patent Document 1 As a method for compressing a resin material in which particles are contained between electrodes and calculating particle deformation. This is based on the structure analysis (software: ABAQ US) and the electrode, particle and resin material shapes, particle and resin physical properties (Young's modulus, Poisson's ratio, linear expansion coefficient) are input between heated electrodes. This is a calculation method for compressing particles and resin.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-318909
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-91561
  • the structural analysis cannot accurately predict the flow process of a resin material that changes in viscosity with an exothermic reaction.
  • the plastic deformation between the electrodes of the particles cannot be accurately calculated while the resin material flows.
  • an object of the present invention is to calculate the flow behavior of a resin material and particles by compression between electrodes, and to obtain the number of particles sandwiched between the electrodes.
  • the amount of deformation of the particles is predicted based on the load or speed conditions applied to the electrodes in order to move the electrodes. I will make it a mess.
  • Another object of the present invention is to predict the conductivity between electrodes from the deformation amount of the particles and the number of particles sandwiched between the electrodes.
  • the present invention predicts the flow process of an embryo material by a fluid analysis technique using at least the viscosity condition of the resin material, the experimental result of the deformation amount of the particle and the load as input values. It is characterized by realizing a calculation method for predicting the flow and particle deformation of resin materials. Specifically, it is possible to predict the number of particles sandwiched between electrodes by predicting the flow process of resin material and particles in consideration of viscosity changes.
  • the amount of deformation of the particle is obtained from the distance between the electrodes obtained by the fluid analysis, and the particle is calculated from the load applied from the outside in order to move the electrode.
  • the deformation amount of the particles to be obtained in the structural analysis is calculated by the fluid analysis, and the structure Resin material while particles are deformed only by fluid analysis without using analysis It is possible to predict the process of flow of fee.
  • the conductivity between the electrodes can be predicted from the maximum value of the amount of deformation of the particles and the number of particles sandwiched between the substrates.
  • the analysis technique of the present invention can predict the number of particles sandwiched between the electrodes of the chip and the substrate and the amount of deformation of the particles.
  • Optimum for analysis of factors that interact with each other in a complex manner such as initial shape such as resin material thickness, particle and electrode shape, physical properties such as particle elasticity, and molding process conditions such as load applied to the electrode Can be achieved.
  • FIG. 1 is a schematic diagram showing a semiconductor integrated circuit (IC) and a substrate molding process using a resin material containing conductive particles to be analyzed.
  • IC semiconductor integrated circuit
  • FIG. 2 is a hardware configuration diagram for performing flow analysis.
  • FIG. 3 is a flowchart of a calculation in which the movement of the semiconductor integrated circuit (IC) 3 and the electrode according to the first embodiment of the present invention is pressure controlled.
  • FIG. 4 is a flowchart of a calculation in which the movement of the semiconductor integrated circuit (IC) 3 and the electrode according to the second embodiment of the present invention is pressure controlled from the speed.
  • FIG. 5 is an analysis example (single layer resin) of the electrode pressure control of Example 1 or 2 of the present invention.
  • Fig. 6 is an analysis example (double-layer resin) of pressure control of the electrode of Example 1 or 2 of the present invention.
  • FIG. 7 is a flowchart of an analysis for predicting the conductivity of Example 3 of the present invention (calculation in which the movement of the semiconductor integrated circuit (IC) 3 and the electrode is pressure control).
  • FIG. 8 is a flowchart of an analysis for predicting the conductivity of Example 4 of the present invention (calculation in which the movement of the semiconductor integrated circuit (IC) 3 and the electrode is controlled by pressure from the speed).
  • FIG. 9 shows the relationship of the input "deformation amount when a load is applied per particle 1".
  • Fig. 10 is a graph showing the relationship between the input "deformation amount per arbitrary number of particles and the conductivity between the electrode of the semiconductor integrated circuit (IC) and the electrode of the substrate".
  • FIG. 11 A schematic diagram showing a molding process of a semiconductor integrated circuit (IC) and a substrate using a resin material containing conductive particles to be analyzed.
  • IC semiconductor integrated circuit
  • FIG. 13 is a flowchart of a calculation in which movement of the semiconductor integrated circuit (IC) 3 and the electrodes according to the fifth embodiment of the present invention is pressure control.
  • FIG. 14 is a flowchart of a calculation in which the movement of the semiconductor integrated circuit (IC) 3 and the electrodes according to the sixth embodiment of the present invention is pressure control from the speed.
  • IC semiconductor integrated circuit
  • Example 15 This is an analysis example (single layer resin) of the electrode pressure control in Example 5 or 6 of the present invention.
  • 16 This is an analysis example (two-layer resin) of pressure control of the electrode of Example 5 or 6 of the present invention.
  • 17 This is a flowchart of the analysis for predicting the conductivity of Example 7 of the present invention (calculation in which the movement of the semiconductor integrated circuit (IC) 3 and the electrode is pressure control).
  • FIG. 21 is a view showing the relationship between “particle contact area and conductivity between an electrode of a semiconductor integrated circuit (IC) and an electrode of a substrate”.
  • IC semiconductor integrated circuit
  • the molding process to be analyzed will be described with reference to FIG.
  • the resin material 2 containing the conductive particles 1 is placed between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5.
  • the semiconductor integrated circuit (IC) 3 to which heat is applied is moved in the direction of the substrate 5 and the resin material 2 containing the particles 1 is compressed, whereby the resin material 2 containing the particles 1 flows.
  • the temperature of the resin material 2 changes due to the contact between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the resin material 2, and the viscosity of the resin material 2 changes along with the temperature change. It flows while being compressed.
  • the distance between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 becomes smaller than the diameter of the particle 1, the particle 1 sandwiched between the electrodes 4 is compressed while being deformed.
  • the electric conductivity between the semiconductor integrated circuit (IC) 3 and the substrate 5 is caused by the conductivity of the particles 1 sandwiched between the electrodes 4. It is possible to convey a signal.
  • the contact area between the particle 1 and the electrode 4 is determined by the deformation amount of the particle 1, and the conductivity between the semiconductor integrated circuit (IC) 3 and the substrate 5 is determined by this contact area.
  • the conductivity is evaluated by the current that flows when a constant voltage is applied between the electrodes 4.
  • the deformation amount of the particle 1 is the ability of the device to apply a load from the upper part of the semiconductor integrated circuit (IC) 3, the deformation amount of the particle 1 when the load is applied, the number of particles 1 sandwiched between the electrodes, It depends on the viscosity change of resin material 2.
  • the analysis system functions by executing software having the hardware configuration shown in FIG. 2 and having the flows of FIGS. 3, 4, 7, and 8 described later.
  • the computing device 7 includes a computing device 7, a computing device 7 provided with a recording device 10 (hard disk, MO, etc.), a LAN 8 connecting these two computing devices, and a display device 9 provided in the computing device 7. .
  • the CAD data created by the calculation device 6 may be transferred to the calculation device 7 via the LAN 8.
  • the CAD data transferred to the computing device 7 can be recorded on the recording device 10 (node, disk, MO, etc.) of the computing device 7 for use.
  • the calculation device 7 executes the calculation according to the flowcharts shown in FIGS. 3, 4, 7, and 8, records the result in the recording device 10, and then displays the result on the display device 9.
  • the calculation devices 6 and 7 are naturally provided with input devices such as a keyboard and a mouse.
  • the analysis target model specified by the operator through the input device that is, the electrode to be analyzed, the shape of the resin material including the initial particles, and the resin material including the particles can flow.
  • the analysis target model specified by the operator through the input device that is, the electrode to be analyzed
  • the shape of the resin material including the initial particles and the resin material including the particles can flow.
  • step 1002 for creating a 3D solid element the shape of the data read in the model shape creating step 1001 is decomposed into a plurality of specific spaces (finite elements of a 3D solid), and the shape data of each finite element Create
  • the density, thermal conductivity, specific heat, exothermic equation (Equation 7) to (Equation 11), viscosity equation (Equation 12) to (Equation 15), the arrangement, density, diameter of particle 1 and the amount of deformation when a load is applied to each particle 1 are displayed to prompt the operator, and these are displayed from the input device. Accept data.
  • reaction rate reaction rate
  • t time
  • T temperature
  • dA / dt reaction rate
  • XI, X2 coefficient as a function of temperature
  • N M
  • Xa, Ea, Xb, Eb material specific coefficients
  • Q Calorific value up to an arbitrary time
  • Qo Total calorific value until the end of reaction
  • dQ / dt Heat generation rate
  • No Viscosity
  • No 0 Initial viscosity
  • t Time
  • tO Gelation time
  • dA / dt (K, + K 2 A M ) ⁇ lA) N (7)
  • a display prompting the operator to input the pressure applied to the top of the semiconductor integrated circuit (IC) 3 and the electrode 4 is performed. Force data is accepted.
  • the pressure applied to the top of the semiconductor integrated circuit (IC) 3 and the electrode 4 and the area of the top of the semiconductor integrated circuit (IC) 3 are applied to the top of the semiconductor integrated circuit (IC) 3 and the electrode 4. Calculate the load F.
  • an analysis start instruction from the operator and an initial time increment are received.
  • the analysis increases the minute time and calculates the change at each time step, and the time increment indicates the time step interval.
  • step 1005 based on this instruction, continuous equations (1), Naviest status equations (2) to (4), and energy conservation equation (5) stored in the recording device are called.
  • Substituting the viscosity equations (Equation 12) to (Equation 15) calculate the velocity, pressure, temperature and viscosity associated with the flow of the resin material 2 and particles 1 due to the compression of the electrode. This calculation result is stored in the storage device in association with the position of the finite element.
  • step 1006 it is determined whether or not the distance between the electrodes 4 is larger than the diameter of the particles.
  • the distance between the electrodes 4 becomes equal to the diameter ( ⁇ D) of the particles 1
  • step 1007 the number 1 of particles 1 at the connection portion sandwiched between the electrodes 4 is output.
  • the flow process of the resin material 2 accompanied by the deformation of the particles 1 is calculated.
  • Fig. 9 shows an example of the relationship of the input "deformation amount when a load is applied per particle 1".
  • the load FJ2 applied to the tops of the semiconductor integrated circuit (IC) 3 and the electrode 4 is equal to the set value F force per particle 1 obtained in step 1008.
  • the load applied per particle by the deformation amount ⁇ 2 of particle 1 AF 2.
  • FJ3 F—NX AF2 as the load condition applied to the semiconductor integrated circuit (IC) 3 in the next time step calculation.
  • step 1011 the calculation in steps 1008 to 1010 is repeated, and in the Mth step, the deformation amount ⁇ ( ⁇ ) of particle 1 and the load AF (M) applied to each particle are calculated.
  • the product of the load AF (M) applied per particle 1 from the load setting value F applied to the top of the semiconductor integrated circuit (IC) 3 and electrode 4 and the number N of particles sandwiched between the electrodes determined in step 1007 Until the value obtained in (1) falls below 0 (F—NXAF (M) ⁇ 0), or the load F applied to the electrode becomes incapable of moving due to the increase in the viscosity of the resin material (gel viscosity), or
  • the deformation amount of the particles 1 and the flow behavior of the resin material 2 are calculated until the distance between the electrodes 4 becomes 0 (step 1012).
  • step 1013 calculation convergence determination is performed.
  • the zero convergence determination method compares the pressure with a predetermined pressure range, and determines that the pressure is within the range as convergence. If it does not converge, return to steps 1001 to 1004; At this time, prompt the operator for input and decide which step to return to.
  • step 1014 the appropriateness of particle deformation is determined.
  • the force in which the deformation amount of the particle is within the specified value range is determined, and if it is outside the specified range, the process returns to any one of steps 1001 to 1004. At this time, the operator is prompted to input, and which step force to return to is determined.
  • step 1013 it is determined that the calculation has converged. After determining that the deformation is appropriate, the calculation ends in step 1015.
  • Step 1003 an example of the relationship between deformation amounts when a load is applied per particle 1 is shown.
  • a load per particle 1 When a load per particle 1 is applied It is assumed that the relationship between the deformation amount and the deformation rate can be input, and the relationship between the stress applied to the particle 1 and the deformation amount and the deformation rate can be input.
  • the exothermic equation is not limited to (Equation 7) to (Equation 11), and an arbitrary function including the reaction rate of the resin material 2 is used.
  • the viscosity equation is not limited to (Equation 12) to (Equation 15), and an arbitrary function including the temperature or reaction rate of the embryo material 2 can be used. In addition, it is possible to use any judgment method for convergence judgment. It is also assumed that two-dimensional analysis is possible in addition to three-dimensional analysis. The above calculations can be performed using the finite element method, finite volume method, or finite difference method.
  • the analysis target model specified by the operator via the input device that is, the electrode to be analyzed, the shape of the resin material including the initial particles, and the resin material including the particles can flow.
  • step 2002 of creating the 3D solid element the shape of the data read in the model shape creating step 2001 is decomposed into a plurality of specific spaces (finite elements of the 3D solid), and the shape data of each finite element Create
  • the moving speed Vd of the semiconductor integrated circuit (IC) 3 and the electrode 4 and the maximum pressure applied to the upper part of the semiconductor integrated circuit (IC) 3 and the electrode 4 are set.
  • a display prompting the operator to enter and input device Force also accepts data.
  • the semiconductor integrated circuit (IC) 3 and the electrode 4 Calculate the maximum load Fmax that can be applied to the top of.
  • Step 20 05 based on this instruction, the continuous equation (1), Naviest status equation (2) to (4), and energy conservation equation (5) stored in the recording device are called and entered so far.
  • Equation 12 Equivalent to Equation 15
  • Calculation result is stored in the storage device in association with the position of the finite element.
  • step 2006 it is determined whether the distance between the electrodes 4 is larger than the diameter of the particles!
  • the distance between the electrodes 4 is equal to the diameter ( ⁇ D) of the particles 1
  • step 2008 the flow process of the resin material 2 accompanied by the deformation of the particles 1 is calculated.
  • the load FJ applied to the resin is calculated as the product of “the contact area between the moving electrode 4 and the resin material 2” and “the pressure of the resin embryo 2 at the contact portion”.
  • FIG. 9 shows an example of the input “deformation amount when a load is applied per particle 1”.
  • the maximum load Fmax force S applied to the tops of the semiconductor integrated circuit (IC) 3 and the electrode 4 is greater than the sum of the load FJ applied to the embryo material 2 and the load FR applied to the particles. (Fmax ⁇ FJl + FRl).
  • the load AF (M) applied per particle 1 from the load set value F applied to the upper part of the semiconductor integrated circuit (IC) 3 and the electrode 4 is sandwiched between the electrode obtained in Step 1007
  • the value obtained by the product of the number of particles N is less than 0 (F—NX AF (M) ⁇ 0) or the load F applied to the electrode is increased by the increase in the viscosity of the resin material (gel viscosity)
  • step 2009 if Fmax ⁇ FJl + FRl, the load F applied to the electrode is increased until the electrode cannot move due to the increase in the viscosity of the resin material (gel viscosity), or the electrode 4 Repeat the calculation in step 2008 and the judgment in step 2009 until the interval between them becomes zero.
  • step 2012 calculation convergence is determined. Convergence is determined by comparing the pressure with the force, and the pressure range that has been defined in advance, and determining that it is within the range as convergence. If it does not converge, return to step 200; At this time, prompt the operator for input and decide which step to return to.
  • step 2013, the appropriateness of particle deformation is determined.
  • the force with which the deformation amount of the particle is within the specified value range is determined, and if it is outside the specified range, the process returns to any one of Step 200;! -2004. At this time, prompt the operator for input and decide which step to return to.
  • step 2012 After determining that the calculation has converged in step 2012 and determining that the particle deformation is appropriate in step 2013, the calculation ends in step 2014.
  • step 2003 an example of the relationship of the deformation amount when a load is applied per particle 1 is shown.
  • a load per particle 1 When a load per particle 1 is applied It is assumed that the relationship between the deformation amount and the deformation rate can be input, and the relationship between the stress applied to the particle 1 and the deformation amount and the deformation rate can be input.
  • the exothermic formula is not limited to (Formula 7) to (Formula 11). Any function can be used.
  • the viscosity equation is not limited to (Equation 12) to (Equation 15), and any function including the temperature or reaction rate of the resin material 2 can be used.
  • any determination method can be used for the convergence determination. It is also possible to perform 2D analysis in addition to 3D analysis. The above calculation can be performed using the finite element method, the finite volume method, or the finite difference method.
  • Fig. 5 shows an example of analysis (two-dimensional analysis).
  • a resin material 2 containing conductive particles 1 is placed between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5.
  • the embryo material 2 is assumed to have an initial temperature of 30 ° C, and the exothermic equations (Equation 7) to (Equation 11) and the viscosity equations (Equation 12) to (Equation 15) are used.
  • constant values, density, thermal conductivity, specific heat values, particle diameter ( ⁇ ), density of exothermic equations (Equation 7) to (Equation 11), viscosity equations (Equation 12) to (Equation 15) Is shown in Table 1.
  • the temperature of the semiconductor integrated circuit (IC) 3 is set to be constant (185 ° C), moved by applying a pressure of 5 MPa in the direction of the substrate 5, and the resin material 2 including the particles 1 is compressed. This causes the embryo material 2 containing the particles 1 to flow. At this time, the temperature of the resin material 2 changes due to the contact between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the resin material 2, and the resin material 2 is compressed together with the particles 1 while causing a viscosity change accompanying the temperature change. Calculate the flow process.
  • the deformation amount of the particle 1 can be obtained from the distance between the electrodes.
  • the deformation amount AD of the particles can be obtained by (Equation 6).
  • D the diameter of the particle 1
  • D1 the distance between the substrates 4 after the analysis is completed.
  • the force S indicates the case where the movement of the electrode 4 is controlled by pressure, and the present invention is not limited to this.
  • the movement of the electrode is changed from speed to pressure. It is also possible to control.
  • the heat conduction calculation within the particle is not performed here, the heat conduction calculation within the particle can also be performed by inputting the specific heat of the particle, the heat conductivity, the heat transfer coefficient between the resin material and the particle, and the like.
  • Fig. 6 shows an example of analysis (two-dimensional analysis) in which the resin material is divided into two layers.
  • a resin material having a two-layer structure composed of a resin material 11 including particles 1 and having different physical property values is disposed on the upper part of the resin material 2 including the conductive particles 1.
  • a semiconductor integrated circuit (IC) It is installed between the electrode 4 of 3 and the electrode 4 of the substrate 5.
  • the resin material 2 is assumed to have an initial temperature of 30 ° C., and the exothermic formulas (Formula 7) to (Formula 11) and the viscosity formulas (Formula 12) to (Formula 15) are used.
  • the temperature of the semiconductor integrated circuit (IC) 3 is set to be constant (185 ° C.), moved by applying a pressure of 5 MPa in the direction of the substrate 5, and the resin materials 2 and 11 are compressed.
  • the resin materials 2 and 11 containing the particles 1 are caused to flow.
  • the resin material 2 and 11 Calculate the flow of 11 while being compressed with particle 1
  • the deformation amount of the particle 1 can be obtained from the distance between the electrodes.
  • the deformation amount AD of the particle 1 can be obtained by (Equation 6).
  • D the diameter of the particle 1
  • D1 the distance between the substrates 4 after the analysis is completed.
  • the force S indicates the case where the movement of the electrode 4 is controlled by pressure, and the present invention is not limited to this. As shown in the flowchart of FIG. 4, the movement of the electrode is changed from speed to pressure. It is also possible to control.
  • the heat conduction calculation within the particle is not performed here, the heat conduction calculation within the particle S can be performed by inputting the specific heat of the particle, the heat conductivity, the heat transfer coefficient between the resin material and the particle, and the like.
  • FIG. 7 is a flowchart for predicting the conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 according to the third embodiment of the present invention.
  • the conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 is predicted based on the input of the relationship between the particle deformation and the conductivity obtained in the flowchart of FIG.
  • the model shape creation step 3001 the analysis target model identified by the operator through the input device, that is, the electrode to be analyzed, the shape of the resin material including the initial particles, and the space in which the resin material including the particles can flow Day of Read data from storage device 10.
  • step 3002 for creating a 3D solid element the shape of the data read in model shape creating step 1001 is decomposed into a plurality of specific spaces (finite elements of a 3D solid).
  • the display prompts the operator to input the deformation amount when a load is applied per particle, density, diameter, and particle 1 and receives these data from the input device.
  • a display is made to prompt the operator to input the pressure applied to the top of the semiconductor integrated circuit (IC) 3 and the electrode 4, and the input device Force data is accepted.
  • the pressure applied to the top of the semiconductor integrated circuit (IC) 3 and the electrode 4 and the area of the top of the semiconductor integrated circuit (IC) 3 are applied to the top of the semiconductor integrated circuit (IC) 3 and the electrode 4. Calculate the load F.
  • an analysis opening instruction and an initial time increment from the operator are accepted.
  • step 30 05 based on this instruction, the continuous equation (1), Naviest status equation (2) to (4), and energy conservation equation (5) stored in the recording device are called and entered so far.
  • step 3006 it is determined whether or not the distance between the electrodes 4 is larger than the diameter of the particles.
  • the distance between the electrodes 4 becomes equal to the diameter ( ⁇ D) of the particles 1
  • step 3007 the number 1 of particles 1 at the connection portion sandwiched between the electrodes 4 is output.
  • step 3008 the deformation amount of the particles is output.
  • step 3009 the deformation amount per arbitrary number of particles 1 and the conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 are input.
  • the conductivity is the current value I when an arbitrary voltage is applied between the electrodes.
  • step 3007 the grain The number N sandwiched between the electrodes 4 of the child 1 is calculated in step 3007, and the deformation amount of the particle 1 is determined in step 3008.
  • FIG. 10 shows an example of the relationship of “conductivity between electrode 4 of substrate 4 and electrode 4 of substrate 5”.
  • Nl, N2, and N3 are shown as an arbitrary number of representative values of particle 1, Nl, N2, and N3 are shown.
  • the number of particles 1 in the connection part sandwiched between electrodes 4 is N1, N2, or N3. In the case of, the value can be obtained from the inner and outer cages.
  • step 3010 the conductivity per particle is calculated from the deformation amount of particle 1 obtained in step 3008, and the conductivity per particle and the electrode 4 obtained in step 3007 are calculated.
  • the conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 is calculated from the number of particles between them.
  • step 3011 calculation convergence is determined.
  • the convergence determination method compares the pressure with a predetermined pressure range, and determines that the pressure is within the range as convergence. If so, return to step 300; At this time, prompt the operator for input and decide which step to return to.
  • step 3012 appropriateness of conductivity is determined. Here, it is determined whether the conductivity is within the specified value range. If the conductivity is out of the specified range, the process returns to step 300; At this time, prompt the operator for input and decide which step to return to.
  • step 3011 it is determined that the calculation has converged.
  • step 3012 it is determined that the particle deformation is appropriate.
  • step 3013 the calculation ends. It should be noted that “the deformation amount per arbitrary number of particles 1 and the conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5” input in step 3009 is “per particle 1 per arbitrary number.
  • the contact area between particle 1 and electrode 4 and the conductivity between electrode 4 of semiconductor integrated circuit (IC) 3 and electrode 4 of substrate 5 obtained from the relationship between the deformation amount of particle and the contact area between particle 1 and electrode 4
  • the conductivity is the current value when an arbitrary voltage is applied between the electrodes
  • the present invention is not limited to this, and the resistance value between the electrodes is not limited to this. Can be used.
  • FIG. 8 is a flowchart for predicting the conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 according to the fourth embodiment of the present invention.
  • the conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 is predicted based on the input of the relationship between the amount of particle deformation and the conductivity obtained in the flowchart of FIG.
  • the analysis target model identified by the operator via the input device that is, the electrode to be analyzed, the shape of the resin material including the initial particles, and the embryo material including the particles are obtained. Reads the space data that can flow from the storage device 10.
  • step 4002 of creating the 3D solid element the shape of the data read in the model shape creating step 4001 is decomposed into a plurality of specific spaces (finite elements of the 3D solid), and the shape data of each finite element is obtained.
  • the moving speed Vd of the semiconductor integrated circuit (IC) 3 and the electrode 4 and the maximum pressure applied to the upper part of the semiconductor integrated circuit (IC) 3 and the electrode 4 are set.
  • the display prompts the operator to input, and accepts data from the input device.
  • the upper part of the semiconductor integrated circuit (IC) 3 and the electrode 4 Calculate the maximum load Fmax that can be applied.
  • Step 40 05 an analysis start instruction from the operator and an initial time increment are accepted. Based on this instruction as Step 40 05, the continuous equation (1), Naviest status equations (2) to (4), and energy conservation equation (5) stored in the recording device are called up and input so far. Substituting the initial time increment, the pressure applied to the top of the semiconductor integrated circuit (IC) 3 and the electrode 4, the density of the resin material, the specific heat, the thermal conductivity, the exothermic equation (1), and the viscosity equation (2) Calculate the velocity, pressure, temperature and viscosity associated with the flow of resin material 2 and particles 1 due to electrode compression. This Is stored in the storage device in association with the position of the finite element.
  • step 4006 it is determined whether or not the distance between the electrodes 4 is larger than the diameter of the particles.
  • the distance between the electrodes 4 is equal to the diameter ( ⁇ D) of the particles 1
  • step 4007 the number 1 of particles 1 at the connection portion sandwiched between the electrodes 4 is output.
  • step 4008 the deformation amount of the particles is output.
  • step 4009 the deformation amount per arbitrary number of particles 1 and the conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 are input.
  • the conductivity is the current value I when an arbitrary voltage is applied between the electrodes.
  • the number N sandwiched between the electrodes 4 of the particles 1 is calculated in step 4007, and the deformation amount of the particles 1 is determined in step 4008.
  • FIG. 10 shows an example of the relationship between the inputted “deformation amount per arbitrary number of particles 1 and the conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5”.
  • Nl, N2, and N3 are shown as representative values of an arbitrary number of particles 1.
  • the number of particles 1 at the connection part sandwiched between electrodes 4 is N1, N2, or N3.
  • the value can be obtained from the inner and outer cages.
  • Step 4010 the conductivity per particle is calculated from the deformation amount of Particle 1 obtained in Step 4008, and the conductivity per particle and the electrode 4 obtained in Step 4007 are calculated.
  • the conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 is calculated from the number of particles between them.
  • step 4011 calculation convergence is determined. Convergence is determined by comparing pressure with a pre-determined pressure range and determining that it is within the range as convergence. If it does not converge, return to step 400; At this time, prompt the operator for input and decide which step to return to.
  • step 4012 the appropriateness of conductivity is determined.
  • step 4013 After determining that the calculation has converged in step 4011 and determining that the particle deformation is appropriate in step 4012, the calculation ends in step 4013.
  • the “deformation amount per arbitrary number of particles 1 and the conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5” input in step 4009 is “per particle 1 per arbitrary number.
  • the contact area between particle 1 and electrode 4 and the distance between electrode 4 of semiconductor integrated circuit (IC) 3 and electrode 4 of substrate 5 obtained from the relationship between the deformation amount of particle and the contact area between particle 1 and electrode 4 “Conductivity” can also be entered.
  • the electrical conductivity is a current value when an arbitrary voltage is applied between the electrodes, the present invention is not limited to this, and a resistance value between the electrodes can be used.
  • the resin material 2 containing the conductive particles 1 is placed between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5.
  • the semiconductor integrated circuit (IC) 3 to which heat is applied is moved in the direction of the substrate 5 and the resin material 2 containing the particles 1 is compressed, whereby the resin material 2 containing the particles 1 flows.
  • the temperature of the resin material 2 changes due to the contact between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the resin material 2, and the resin material 2 together with the particles 1 changes in viscosity due to the temperature change. It flows while being compressed.
  • the distance between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 becomes smaller than the diameter of the particle 1, the particle 1 sandwiched between the electrodes 4 is compressed while being deformed.
  • the electrical conductivity between the particles 1 sandwiched between the electrodes 4 causes the electrical connection between the semiconductor integrated circuit (IC) 3 and the substrate 5 to occur. It is possible to convey a signal.
  • the contact area between the particle 1 and the electrode 4 is determined by the deformation amount of the particle 1, and the conductivity between the semiconductor integrated circuit (IC) 3 and the substrate 5 is determined by this contact area.
  • the conductivity is evaluated by a current flowing when a constant voltage is applied between the electrodes 4.
  • the deformation amount of particle 1 is the ability of the device to apply a load from the top of the semiconductor integrated circuit (IC) 3, the deformation amount of particle 1 when the load is applied, the number of particles 1 sandwiched between the electrodes, Determined by viscosity change of resin material 2.
  • the analysis system used to predict the flow process of resin material 2 due to particle 1 deformation.
  • the analysis system functions by executing software having the hardware configuration shown in FIG. 12 and having the flows shown in FIGS.
  • a computing device 6 includes a computing device 6, a computing device 7 provided with a recording device 10 (hard disk, MO, etc.), a LAN 8 connecting these two computing devices, and a display device 9 provided in the computing device 7. .
  • the CAD data created by the calculation device 6 may be transferred to the calculation device 7 via the LAN 8.
  • the CAD data transferred to the computing device 7 can be recorded on the recording device 10 (node, disk, MO, etc.) of the computing device 7 for use.
  • the calculation device 7 executes the calculation according to the flowcharts shown in FIGS. 13, 4, 7, and 8, records the result in the recording device 10, and displays the result on the display device 9.
  • the calculation devices 6 and 7 are naturally provided with input devices such as a keyboard and a mouse.
  • the analysis target model identified by the operator via the input device that is, the electrode to be analyzed, the shape of the resin material including the initial particles, and the resin material including the particles can flow.
  • the analysis target model identified by the operator via the input device that is, the electrode to be analyzed
  • the shape of the resin material including the initial particles and the resin material including the particles can flow.
  • step 1002 for creating a 3D solid element the shape of the data read in model shape creation step 1001 is decomposed into a plurality of specific spaces (finite elements of a 3D solid), and the shape data of each finite element is obtained.
  • reaction rate reaction rate
  • t time
  • T temperature
  • dA / dt reaction rate
  • XI, X2 coefficient as a function of temperature
  • N temperature
  • M material specific coefficients
  • Q Calorific value up to an arbitrary time
  • Qo Total calorific value until the end of reaction
  • dQ / dt Heat generation rate
  • Viscosity
  • a display prompting the operator to input the pressure applied to the top of the semiconductor integrated circuit (IC) 3 and the electrode 4 is performed, and the input device Force data is accepted.
  • the pressure applied to the top of the semiconductor integrated circuit (IC) 3 and the electrode 4 and the area of the top of the semiconductor integrated circuit (IC) 3 are applied to the top of the semiconductor integrated circuit (IC) 3 and the electrode 4. Calculate the load F.
  • an analysis start instruction from the operator, initial time increment and analysis end time tend are accepted.
  • the analysis increases the minute time and calculates the change for each time step.
  • the time increment indicates the time step interval.
  • step 1005 based on this instruction, continuous equations (1), Naviest status equations (2) to (4), and energy conservation equation (5) stored in the recording device are called.
  • Substituting the viscosity equations (Equation 12) to (Equation 15) calculate the velocity, pressure, temperature and viscosity associated with the flow of the resin material 2 and particles 1 due to the compression of the electrode. This calculation result is stored in the storage device in association with the position of the finite element.
  • step 1006 it is determined whether the analysis time is shorter than the set analysis end time tend. If the determination power is O, the analysis is terminated through calculation convergence determination and the like. If yes, go to step 1007.
  • Step 1007 it is determined whether or not the distance between the electrodes 4 is larger than the diameter of the particles.
  • the distance between the electrodes 4 becomes equal to the diameter ( ⁇ ) of the particles 1, in step 1008, the number of particles 1 at the connecting portion sandwiched between the electrodes 4 is output.
  • the flow process of the resin material 2 accompanied by the deformation of the particles 1 is calculated.
  • the input“ Load per particle 1 was applied.
  • the load ⁇ F1 per particle 1 is calculated from the deformation amount ⁇ 1 of the particle 1.
  • Fig. 18 shows an example of the relationship of the input "deformation amount when a load is applied per particle 1 considering temperature change”.
  • Tl, ⁇ 2, and ⁇ 3 represent temperature conditions, and ⁇ 1> ⁇ 2> ⁇ 3.
  • the load FJ2 applied to the top of the semiconductor integrated circuit (IC) 3 and the electrode 4 is equal to the set value F force of one particle 1 obtained in step 1009.
  • the difference between the value obtained by the product of the load applied AF1 AF1 and the number of particles sandwiched between the electrodes obtained in Step 1008 ⁇ (FJ2 F— ⁇ X AF1) is used! (Step 1011) .
  • step 1012 the calculation in steps 1009 to 1011 is repeated, and in the Mth step, the deformation amount ⁇ ( ⁇ ) of particle 1 and the load AF (M) applied to each particle are calculated. Then, the deformation amount of the particle 1 and the flow behavior of the resin material 2 are calculated (step 1012).
  • step 1013 it is determined whether the interval between the electrodes 4 is greater than 0 or shorter than the analysis end time tend set for the analysis time. If the determination is NO, the calculation is performed. The analysis is completed through the convergence determination, etc., and if the determination is YES, the process proceeds to the determination in step 1014.
  • step 1014 the load AF (M) applied per particle 1 from the load set value F applied to the upper part of the semiconductor integrated circuit (IC) 3 and electrode 4 and the electrode determined in step 1008 The value obtained by the product of the number N of particles sandwiched between the two is subtracted, and it is determined whether it is less than the value force (F—NX AF (M) ⁇ 0). If the judgment force is O, repeat the calculation in step 1012. If the judgment power is WES, in step 1015, calculate the resin temperature using the Enelki equation (5) when the electrode moving speed is zero. I do.
  • step 1012 it is determined whether or not the analysis time is shorter than the set analysis end time tend in step 1016. If the determination power is SYES, step 1012 is repeated.
  • the relationship between the compressive load input in step 1004 and the amount of particle deformation shows that when the physical property value considering temperature dependence is used, the increase in the resin temperature calculated in step 1015
  • the compressive load ⁇ F (M) is small even with the particle deformation amount ⁇ H, so if the judgment force O in step 1014 is F—NXAF (M) ⁇ 0, the electrode in step 1012 Calculate the movement speed of is not 0.
  • the resin temperature at an arbitrary place obtained by the analysis can be used.
  • the average value of the resin temperature between the electrodes 4 calculated by the calculation of the flow process of 1012 and the temperature such as the resin temperature in the vicinity of the particle 1 can be used.
  • step 1016 determines whether the determination in step 1016 is NO.
  • step 1017 calculation convergence is determined. Convergence is determined by comparing pressure with a pre-determined pressure range, and determining that it is within the range as convergence. If it does not converge, return to steps 1001 to 1004; At this time, prompt the operator for input and decide which step to return to.
  • step 1018 the appropriateness of particle deformation is determined.
  • the force in which the deformation amount of the particle is within the specified value range is determined, and if it is outside the specified range, the process returns to any one of steps 1001 to 1004. At this time, prompt the operator to input and decide which force to return to.
  • step 1017 determine that the calculation has converged.
  • step 1018 determine that the particle deformation is appropriate, and then end the calculation in step 1019. To do.
  • Step 1003 an example of the relationship of deformation amount when a load is applied per particle 1 is shown.
  • a load per particle 1 When a load per particle 1 is applied It is assumed that the relationship between the deformation amount and the deformation rate can be input, and the relationship between the stress applied to the particle 1 and the deformation amount and the deformation rate can be input.
  • the exothermic equation is not limited to (Equation 7) to (Equation 11), and an arbitrary function including the reaction rate of the resin material 2 is used.
  • the viscosity equation is not limited to (Equation 12) to (Equation 15), and any function including temperature or reaction rate of the embryo material 2 can be used.
  • the convergence determination can use any determination method. It is also assumed that 2D analysis can be performed in addition to 3D analysis alone.
  • the above calculation uses the finite element method, the finite volume method, or the finite difference method. Suppose V can be calculated.
  • the analysis target model specified by the operator through the input device that is, the electrode to be analyzed, the shape of the resin material including the initial particles, and the resin material including the particles can flow.
  • step 2002 of creating a 3D solid element the shape of the data read in model shape creation step 2001 is decomposed into a plurality of specific spaces (finite elements of a 3D solid), and the shape data of each finite element Create
  • the initial moving speed Vd of the semiconductor integrated circuit (IC) 3 and the electrode 4 and the maximum pressure applied to the upper part of the semiconductor integrated circuit (IC) 3 and the electrode 4 are The operator prompts the operator to enter data and receives data from the input device.
  • the semiconductor integrated circuit (IC) 3 and the electrode 4 are calculated from the received maximum pressure applied to the upper part of the semiconductor integrated circuit (IC) 3 and the electrode 4 and the area of the upper part of the semiconductor integrated circuit (IC) 3. Calculate the maximum load Fmax that can be applied to the top of.
  • an analysis start instruction from the operator, initial time increment, and analysis end time tend are accepted.
  • step 2005 based on this instruction, the continuous equation (1), Naviest status equations (2) to (4), and energy conservation equation (5) stored in the recording device are called, Accepted initial time increment, pressure applied on top of semiconductor integrated circuit (IC) 3 and electrode 4, density of embryo material, specific heat, thermal conductivity, exothermic equation (Equation 7) to (Equation 11), viscosity equation Substituting (Equation 12) to (Equation 15), calculate the velocity, pressure, temperature and viscosity associated with the flow of the embryo material 2 and particle 1 due to electrode compression. This calculation result is paired with the position of the finite element. Match and save to storage.
  • step 2006 it is determined whether or not the analysis end time set in step 2006 is shorter than the analysis end time tend. If the determination power is O, the analysis is terminated after calculation convergence is determined. If yes, go to Step 2007.
  • step 2007 the load FJ applied to the resin when the electrode is moved at the initial moving speed Vd input in step 2004 is expressed as "contact area between moving electrode 4 and resin material 2" and "contact part”. It is calculated as the product of “pressure of resin embryo 2”.
  • the maximum load Fmax applied to the upper part of electrode 4 in step 2008 is compared with the FJ obtained in step 2007. If Fmax> FJ, the electrode moves at the initial movement speed Vd entered in step 2004 in step 2009. If Fmax> FJ, switch to pressure control and calculate the electrode movement when the maximum load Fmax is applied to the top of electrode 4.
  • step 2010 it is determined whether the distance between the electrodes 4 is larger than the diameter of the particles. If the distance between the electrodes 4 is larger than the diameter of the particle, return to step 2005 and repeat the calculation.If the distance between the electrodes 4 is equal to the diameter D of the particle 1), it is shown in Fig. 13. Steps 1008 to 1016 are calculated.
  • step 2012 calculation convergence is determined. Convergence is determined by comparing the pressure with the force, and the pressure range that has been defined in advance, and determining that it is within the range as convergence. If it does not converge, return to step 200; At this time, prompt the operator for input and decide which step to return to.
  • step 2013, the appropriateness of particle deformation is determined.
  • the force with which the deformation amount of the particle is within the specified value range is determined, and if it is outside the specified range, the process returns to any one of Step 200;! -2004.
  • the operator prompt the operator to input and determine which force to return to.
  • step 2012 determine that the calculation has converged.
  • step 2013, determine that the particle deformation is appropriate, and then end the calculation in step 2014. To do.
  • step 2003 As an input condition in step 2003, an example of the relationship between the deformation amount when a load is applied per particle 1 is shown. When a load per particle 1 is applied The relationship between the amount of deformation and the rate of deformation) It is assumed that the relationship between the shape amount and the deformation rate can be input.
  • the exothermic equation is not limited to (Equation 7) to (Equation 11), and any function including the reaction rate of the resin material 2 can be used.
  • the viscosity equation is not limited to (Equation 12) to (Equation 15), and any function including the temperature or reaction rate of the resin material 2 can be used.
  • an arbitrary determination method can be used for the convergence determination. It is also possible to perform 2D analysis in addition to 3D analysis. The above calculation can be performed using the finite element method, the finite volume method, or the finite difference method.
  • Fig. 15 shows an example of analysis (two-dimensional analysis).
  • a resin material 2 containing conductive particles 1 is placed between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5.
  • the embryo material 2 is assumed to have an initial temperature of 30 ° C, and the exothermic equations (Equation 7) to (Equation 11) and the viscosity equations (Equation 12) to (Equation 15) are used.
  • constant values, density, thermal conductivity, specific heat values, particle diameter ( ⁇ ), density of exothermic equations (Equation 7) to (Equation 11), viscosity equations (Equation 12) to (Equation 15) Is shown in Table 1.
  • the temperature of the semiconductor integrated circuit (IC) 3 is set to be constant (185 ° C), moved by applying a pressure of 5 MPa in the direction of the substrate 5, and the resin material 2 including the particles 1 is compressed. This causes the embryo material 2 containing the particles 1 to flow. At this time, the temperature of the resin material 2 changes due to the contact between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the resin material 2, and the resin material 2 is compressed together with the particles 1 while causing a viscosity change accompanying the temperature change. Calculate the flow process.
  • the temperature at an arbitrary place determined by the analysis can be used.
  • the average value of the resin temperature between the electrodes 4 calculated by the calculation of the flow process 1012 shown in FIG. 13 and the temperature of the resin near the particle 1 can be used.
  • the heat conduction calculation inside the particle is not performed here, the heat conduction calculation inside the particle can also be performed by inputting the specific heat of the particle, the heat conductivity, the heat transfer coefficient of the resin material and the particle, The temperature at an arbitrary position of the particle obtained by this heat transfer calculation can also be used as the temperature shown in FIG.
  • the deformation amount AD of the particle is the force S obtained from (Equation 6).
  • D represents the diameter of the particle 1
  • D1 represents the distance between the substrates 4 after the analysis is completed.
  • Fig. 16 shows an example of analysis (two-dimensional analysis) in which the resin material is divided into two layers.
  • the particles 1 are contained on the upper part of the resin material 2 containing the conductive particles 1.
  • a resin material having a two-layer structure made of a resin material 11 having different physical property values is disposed between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5.
  • the resin material 2 is assumed to have an initial temperature of 30 ° C., and the exothermic formulas (Formula 7) to (Formula 11) and the viscosity formulas (Formula 12) to (Formula 15) are used.
  • the temperature of the semiconductor integrated circuit (IC) 3 is set to be constant (185 ° C), moved by applying a pressure of 5 MPa in the direction of the substrate 5, and the resin materials 2 and 11 are compressed.
  • the resin materials 2 and 11 containing the particles 1 are caused to flow.
  • the temperature of the embryo materials 2 and 11 changes, and while the viscosity change accompanying the temperature change occurs, the resin material 2 and 11 Calculate the flow of 11 while being compressed with particle 1
  • the pressure applied from the upper part of the semiconductor integrated circuit (IC) 3 is not the set value of 5 MPa, but as shown in the flowchart of FIG. 13, the relationship between the deformation amount of the particles and the compressive load shown in FIG. The value obtained by subtracting the load obtained from the number of particles sandwiched between the electrodes from the load obtained by the product of the set pressure and the area is used.
  • the temperature at an arbitrary place obtained by analysis can be used.
  • an average value of the resin temperature between the electrodes 4 calculated by calculation of the flow process of 1012, a temperature such as the resin temperature in the vicinity of the particle 1 can be used.
  • the heat conduction calculation inside the particle is not performed here, the heat conduction calculation within the particle can also be performed by inputting the specific heat of the particle, the heat conductivity, the heat transfer coefficient between the resin material and the particle, and the like.
  • the temperature at an arbitrary position of the particle obtained by this heat transfer calculation can also be used as the temperature shown in FIG.
  • the deformation amount AD of the particle is the force S obtained from (Equation 6).
  • D represents the diameter of the particle 1
  • D1 represents the distance between the substrates 4 after the analysis is completed.
  • the force S indicating the case where the movement of the electrode 4 is controlled by the pressure S, and the present invention is not limited to this.
  • the movement of the electrode is changed from speed to pressure. It is also possible to control.
  • the heat conduction calculation inside the particle is not performed here, the heat inside the particle is determined by inputting the specific heat of the particle, the heat conductivity, the heat transfer coefficient between the resin material and the particle, etc. Conduction calculations can also be performed.
  • FIG. 17 is a flowchart for predicting the conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 according to the seventh embodiment of the present invention.
  • the conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 is predicted based on the input of the relationship between the particle deformation amount and the conductivity obtained in the flowchart of FIG.
  • the analysis target model specified by the operator through the input device that is, the electrode to be analyzed, the shape of the resin material including the initial particles, and the resin material including the particles can flow.
  • step 3002 of creating a 3D solid element the shape of the data read in model shape creation step 1001 is decomposed into a plurality of specific spaces (finite elements of a 3D solid), and the shape data of each finite element Create
  • the display prompts the operator to input the conductivity between the electrode 4 of the substrate 5 and the electrode 4 of the substrate 5 and receives these data from the input device.
  • the operator is prompted to input pressure applied to the top of the semiconductor integrated circuit (IC) 3 and the electrode 4, and the input device Force data is accepted.
  • the pressure applied to the top of the semiconductor integrated circuit (IC) 3 and the electrode 4 and the area of the top of the semiconductor integrated circuit (IC) 3 are applied to the top of the semiconductor integrated circuit (IC) 3 and the electrode 4. Calculate the load F.
  • an analysis start instruction from the operator, initial time increment, and analysis end time tend Accept.
  • step 3005 based on this instruction, the continuous equation (1), Naviest status equation (2) to (4), and energy conservation equation (5) stored in the recording device are called, Accepted initial time increment, pressure applied on top of semiconductor integrated circuit (IC) 3 and electrode 4, density of embryo material, specific heat, thermal conductivity, exothermic equation (Equation 7) to (Equation 11), viscosity equation Substituting (Equation 12) to (Equation 15), calculate the velocity, pressure, temperature and viscosity associated with the flow of resin material 2 and particles 1 due to electrode compression. The calculation result is stored in the storage device in association with the position of the finite element.
  • step 3006 it is determined whether the analysis time is shorter than the set analysis end time tend. If the determination power is O, the analysis is terminated after calculation convergence is determined. If yes, go to decision 3007.
  • step 3007 it is determined whether the distance between the electrodes 4 is larger than the diameter of the particles. If the distance between electrodes 4 is larger than the particle diameter, return to step 3005 and repeat the calculation. If the distance between electrodes 4 is equal to the diameter of particle 1 ( ⁇ D), The number of particles 1 in the connection part sandwiched between the electrodes 4 or the coordinates of the particle 1 in the connection part sandwiched between the electrodes 4 is output. Next, the calculations in steps 1008 to 1016 shown in FIG. 13 are performed.
  • step 3010 the deformation amount of the particles and the moving speed of the electrode 4 obtained by the fluid analysis are output.
  • step 3011 the deformation amount of particle 1 output in step 3010, the deformation amount per arbitrary number of particles 1 input in step 3003, the electrode 4 of the semiconductor integrated circuit (IC) 3, and the electrode of the substrate 5
  • Conductivity force between 4 Calculate the conductivity per particle, and from the conductivity per particle and the number of particles between the electrodes 4 obtained in step 3008, the electrode 4 of the semiconductor integrated circuit (IC) 3
  • the conductivity between the electrodes 4 of the substrate 5 is calculated.
  • the electrical conductivity is the current value I when an arbitrary voltage is applied between the electrodes.
  • FIG. 9 shows an example of the relationship between the inputted “deformation amount per arbitrary number of particles 1 and conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5”.
  • Nl, N2 and N3 are shown as representative values of an arbitrary number of particles 1.
  • the number of particles 1 at the connection part sandwiched between electrodes 4 is Nl, N2, N3.
  • use the force S to find the value in the inner and outer cages.
  • step 3012 calculation convergence is determined.
  • Convergence is determined by comparing the pressure with the force, and the pressure range that has been defined in advance, and determining that it is within the range as convergence. If it does not converge, return to step 300; At this time, prompt the operator for input and decide which step to return to.
  • step 3013 appropriateness of particle deformation is determined.
  • the force with which the deformation amount of the particle is within the specified range is determined, and if it is out of the specified range, the process returns to step 300; any force from! To 3004. At this time, prompt the operator for input and decide which step to return to.
  • step 3012 it is determined that the calculation has converged.
  • step 3013 it is determined that the particle deformation is appropriate.
  • step 3014 the calculation ends. It should be noted that the “deformation amount per arbitrary number of particles 1 and the conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5” input in step 3003 is “per particle 1 per arbitrary number.
  • the contact area between particle 1 and electrode 4 and the conductivity between electrode 4 of semiconductor integrated circuit (IC) 3 and electrode 4 of substrate 5 obtained from the relationship between the deformation amount of particle and the contact area between particle 1 and electrode 4
  • the conductivity is the current value when an arbitrary voltage is applied between the electrodes
  • the present invention is not limited to this, and the resistance value between the electrodes is not limited to this. Can be used.
  • the coordinates of the particle 1 sandwiched between the electrodes 4 output in step 3008 and the moving speed of the electrode 4 output in step 3010 can be used as input conditions for the structural analysis. It is assumed that the coordinates of the output particle 1 can output an arbitrary position of the particle 1, and here, the coordinates of the center of the particle 1 are output.
  • the conductivity can be calculated from the contact area between the particle 1 and the electrode calculated in FIG. 20, using the relationship between the contact area between the particle 1 and the electrode 4 and the conductivity shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Wire Bonding (AREA)

Abstract

A technique of analyzing fluid behavior of a resin material including deformation of particles. A fluidity analysis method is characterized by establishing a calculating method in which the results of experiments on the deformation of and load on the particles are received as inputted values, the flow process of a resin material is predicted by a fluid analysis technique, and the flow and particle deformation of the resin material are predicted. Specifically, at a time step, the deformation of particles is determined from the interval between electrodes determined by fluid analysis, the load determined by subtracting the load corresponding to the deformation of the particles from the load to move the electrodes is used as the load to move the electrode at the next time step. With this, the process of flowing of a resin material while particles are deforming is predicted by fluid analysis.

Description

明 細 書  Specification
粒子を内在させた樹脂材料の流動解析方法及び流動解析システム 技術分野  Technical field of flow analysis method and flow analysis system for resin material containing particles
[0001] 本発明は、粒子を内在させた樹脂材料の流動解析方法及び流動解析システムに 関し、特に、デバイス、液晶などに用いられている半導体集積回路 (IC)を基板に接 続するため、電極間に導電性粒子を含む樹脂材料を流動させて、電極間の粒子数、 粒子の変形量から導電性を評価する際の 3次元流動解析方法に関する。  [0001] The present invention relates to a flow analysis method and a flow analysis system of a resin material in which particles are contained, and particularly to connect a semiconductor integrated circuit (IC) used in a device, a liquid crystal, or the like to a substrate. The present invention relates to a three-dimensional flow analysis method for evaluating conductivity from the number of particles between electrodes and the amount of deformation of the particles by flowing a resin material containing conductive particles between the electrodes.
背景技術  Background art
[0002] 熱硬化性材料の流動解析方法として、ポリウレタン発泡材料の密度が時間と共に 減少する発泡挙動を解析可能な解析プログラムが、特許文献 1、特許文献 2に記載 されている。  [0002] Patent Literature 1 and Patent Literature 2 describe analysis programs capable of analyzing foaming behavior in which the density of a polyurethane foam material decreases with time as a flow analysis method of a thermosetting material.
特許文献 1では、発泡材料全体を均一の密度とみなし、さらに、その密度として、発 泡原料を攪拌した発泡材料を出すノズルを最初に出た発泡材料のノズルを出てから の経過時間で算出した密度を用いている。また、特許文献 2では、特許文献 1の技術 に加え、肉厚の変動によって発泡材料の密度が変化することを考慮した関数を用い て発泡材料の発泡流動解析を行うことが記載されている。  In Patent Document 1, the entire foamed material is considered to have a uniform density, and the density is calculated as the elapsed time since the first nozzle of the foamed material that exits the nozzle that delivers the foamed material with the foaming material stirred. Density is used. Patent Document 2 describes that in addition to the technique of Patent Document 1, foam flow analysis of a foam material is performed using a function that takes into account that the density of the foam material changes due to fluctuations in thickness.
[0003] また、粒子を内在させた樹脂材料を電極間で圧縮し、粒子変形を計算する手法とし て、非特許文献 1の R. Dudekらの報告例がある。これは、構造解析(ソフト: ABAQ US)を用いて、電極、粒子および樹脂材料の形状、粒子と樹脂の物性値 (ヤング率 、ポアソン比、線膨張係数)を入力し、加熱した電極間で粒子及び樹脂を圧縮する計 算方法である。 [0003] Further, there is an example of a report by R. Dudek et al. In Non-Patent Document 1 as a method for compressing a resin material in which particles are contained between electrodes and calculating particle deformation. This is based on the structure analysis (software: ABAQ US) and the electrode, particle and resin material shapes, particle and resin physical properties (Young's modulus, Poisson's ratio, linear expansion coefficient) are input between heated electrodes. This is a calculation method for compressing particles and resin.
特許文献 1 :特開 2001— 318909号公報  Patent Document 1: Japanese Patent Laid-Open No. 2001-318909
特許文献 2:特開 2003— 91561号公報  Patent Document 2: Japanese Patent Laid-Open No. 2003-91561
非特千文献丄: Characterization ana Thermo-Mechanical Response or An isotropic Conductive Films 1998 IEEE, (R. Dudek, A. Schubert, S. Meinel, Non-special literature: Characterization ana Thermo-Mechanical Response or An isotropic Conductive Films 1998 IEEE, (R. Dudek, A. Schubert, S. Meinel,
B. Michel (Fraunhofer Institute for Reliability and Microintegration (IZM) B erlin)) 発明の開示 B. Michel (Fraunhofer Institute for Reliability and Microintegration (IZM) Berlin)) Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 樹脂材料が流動しながら粒子が電極間で変形する解析を行う場合には、流体解析 を用いて樹脂材料の流動を予測すると同時に、構造解析を用いて粒子の変形も予 測する必要がある。上記の従来技術は、構造解析を用いた粒子変形の予測方法で あるが、樹脂材料および粒子の流動状況、電極間に挟まれる粒子数、樹脂材料の粘 度変化、発熱反応などを考慮することができない問題点がある。  [0004] When performing analysis in which particles deform between electrodes while resin material flows, it is necessary to predict flow of resin material using fluid analysis and also predict deformation of particles using structural analysis There is. The above prior art is a method for predicting particle deformation using structural analysis, but it takes into account the flow state of resin material and particles, the number of particles sandwiched between electrodes, viscosity change of resin material, exothermic reaction, etc. There is a problem that can not be.
[0005] このように、構造解析では発熱反応を伴いながら粘度変化する樹脂材料の流動過程 を正確に予測することはできない。一方、現状の流体解析では、樹脂材料が流動し ながら粒子の電極間の塑性変形を正確に計算することはできない。  [0005] As described above, the structural analysis cannot accurately predict the flow process of a resin material that changes in viscosity with an exothermic reaction. On the other hand, in the current fluid analysis, the plastic deformation between the electrodes of the particles cannot be accurately calculated while the resin material flows.
[0006] したがって、本発明の目的は、電極間の圧縮により、樹脂材料および粒子の流動 挙動を計算し、電極間に挟まれる粒子数を求めることにある。更に、樹脂粘度の上昇 および粒子の荷重と変位の特性、電極間に挟まれる粒子数を考慮して、電極を移動 させるために、電極に加えた荷重または速度条件によって、粒子の変形量を予測す ることを目白勺とする。  [0006] Therefore, an object of the present invention is to calculate the flow behavior of a resin material and particles by compression between electrodes, and to obtain the number of particles sandwiched between the electrodes. In addition, considering the characteristics of the increase in resin viscosity, the load and displacement characteristics of the particles, and the number of particles sandwiched between the electrodes, the amount of deformation of the particles is predicted based on the load or speed conditions applied to the electrodes in order to move the electrodes. I will make it a mess.
[0007] 本発明の他の目的は、粒子の変形量および電極間に挟まれる粒子数から電極間の 導電性を予測することである。  [0007] Another object of the present invention is to predict the conductivity between electrodes from the deformation amount of the particles and the number of particles sandwiched between the electrodes.
課題を解決するための手段  Means for solving the problem
[0008] 上記目的を達成するため、本発明は、少なくとも樹脂材料の粘度条件、粒子の変 形量と荷重の実験結果を入力値として、流体解析技術により樹胎材料の流動過程を 予測すると同時に、樹脂材料の流動と粒子変形を予測する計算方法を実現すること を特徴とする。具体的には、粘度変化を慮した樹脂材料と粒子の流動過程の予測に より、電極間に挟まれる粒子数の予測を可能とする。  [0008] In order to achieve the above object, the present invention predicts the flow process of an embryo material by a fluid analysis technique using at least the viscosity condition of the resin material, the experimental result of the deformation amount of the particle and the load as input values. It is characterized by realizing a calculation method for predicting the flow and particle deformation of resin materials. Specifically, it is possible to predict the number of particles sandwiched between electrodes by predicting the flow process of resin material and particles in consideration of viscosity changes.
[0009] また、流体解析のある時間ステップにお!/、て、流体解析で求めた電極間の間隔か ら粒子の変形量を求め、電極を移動させるために外部から加えられる荷重から、粒子 の変形量に対応した荷重を引いて求めた荷重を、次の時間ステップの電極を移動さ せるための荷重として用いることにより、構造解析で求めるべき粒子の変形量を流体 解析で算出し、構造解析を用いないで、流体解析だけで粒子が変形しながら樹脂材 料が流動する過程を予測することを可能とする。 [0009] In addition, at a certain time step of the fluid analysis, the amount of deformation of the particle is obtained from the distance between the electrodes obtained by the fluid analysis, and the particle is calculated from the load applied from the outside in order to move the electrode. By using the load obtained by subtracting the load corresponding to the deformation amount of the particle as the load for moving the electrode at the next time step, the deformation amount of the particles to be obtained in the structural analysis is calculated by the fluid analysis, and the structure Resin material while particles are deformed only by fluid analysis without using analysis It is possible to predict the process of flow of fee.
[0010] 更に、粒子の変形量と導電性の関係を入力することにより、粒子の変形量最大値、 基板間に挟まれる粒子数から電極間の導電性を予測することを可能とする。 Furthermore, by inputting the relationship between the amount of deformation of the particles and the conductivity, the conductivity between the electrodes can be predicted from the maximum value of the amount of deformation of the particles and the number of particles sandwiched between the substrates.
発明の効果  The invention's effect
[0011] 本発明の解析技術は、以上説明したように、チップおよび基板の電極間に挟まれる 粒子数および粒子の変形量を予測することができるので、樹脂材料の粘度変化など の材料処方、樹脂材料の肉厚などの初期形状、粒子および電極の形状、粒子の弾 性率などの物性値、電極に加える荷重などの成形プロセス条件などの複雑に相互に 影響しあう因子について解析上で最適化を図ることが出来る。  [0011] As described above, the analysis technique of the present invention can predict the number of particles sandwiched between the electrodes of the chip and the substrate and the amount of deformation of the particles. Optimum for analysis of factors that interact with each other in a complex manner such as initial shape such as resin material thickness, particle and electrode shape, physical properties such as particle elasticity, and molding process conditions such as load applied to the electrode Can be achieved.
[0012] なお、これらの因子を最適化するために、実験検討を行うことは、コストが高くなり、開 発期間も長くなるので、現実的ではない。  [0012] Note that it is not practical to conduct an experimental study in order to optimize these factors because the cost increases and the development period becomes longer.
図面の簡単な説明  Brief Description of Drawings
[0013] [図 1]図 1は解析対象となる導電性を有する粒子を含む樹脂材料を用いた半導体集 積回路 (IC)と基板の成型工程を示す模式図である。  FIG. 1 is a schematic diagram showing a semiconductor integrated circuit (IC) and a substrate molding process using a resin material containing conductive particles to be analyzed.
[図 2]図 2は流動解析を行うハードウェア構成図である。  [FIG. 2] FIG. 2 is a hardware configuration diagram for performing flow analysis.
[図 3]図 3は本発明の実施例 1の半導体集積回路 (IC) 3および電極の移動が圧力制 御となる計算のフローチャートである。  FIG. 3 is a flowchart of a calculation in which the movement of the semiconductor integrated circuit (IC) 3 and the electrode according to the first embodiment of the present invention is pressure controlled.
[図 4]図 4は本発明の実施例 2の半導体集積回路 (IC) 3および電極の移動が速度か ら圧力制御となる計算のフローチャートである。  [FIG. 4] FIG. 4 is a flowchart of a calculation in which the movement of the semiconductor integrated circuit (IC) 3 and the electrode according to the second embodiment of the present invention is pressure controlled from the speed.
[図 5]図 5は本発明の実施例 1又は 2の電極の圧力制御の解析事例(一層樹脂)であ  [FIG. 5] FIG. 5 is an analysis example (single layer resin) of the electrode pressure control of Example 1 or 2 of the present invention.
[図 6]図 6は本発明の実施例 1又は 2の電極の圧力制御の解析事例(二層樹脂)であ [Fig. 6] Fig. 6 is an analysis example (double-layer resin) of pressure control of the electrode of Example 1 or 2 of the present invention.
[図 7]図 7は本発明の実施例 3の導電性を予測する解析のフローチャート(半導体集 積回路 (IC) 3および電極の移動が圧力制御となる計算)である。 [FIG. 7] FIG. 7 is a flowchart of an analysis for predicting the conductivity of Example 3 of the present invention (calculation in which the movement of the semiconductor integrated circuit (IC) 3 and the electrode is pressure control).
[図 8]図 8は本発明の実施例 4の導電性を予測する解析のフローチャート(半導体集 積回路 (IC) 3および電極の移動が速度から圧力制御となる計算)である。  [FIG. 8] FIG. 8 is a flowchart of an analysis for predicting the conductivity of Example 4 of the present invention (calculation in which the movement of the semiconductor integrated circuit (IC) 3 and the electrode is controlled by pressure from the speed).
[図 9]図 9は入力した「粒子 1の 1個当たりに荷重が加わった場合の変形量」の関係を 示す図である。 [Fig. 9] Fig. 9 shows the relationship of the input "deformation amount when a load is applied per particle 1". FIG.
園 10]図 10は入力した「粒子の任意数当たりの変形量と半導体集積回路 (IC)の電 極と基板の電極間の導電性」の関係を示す図である。 Fig. 10 is a graph showing the relationship between the input "deformation amount per arbitrary number of particles and the conductivity between the electrode of the semiconductor integrated circuit (IC) and the electrode of the substrate".
園 11]解析対象となる導電性を有する粒子を含む樹脂材料を用レ、た半導体集積回 路 (IC)と基板の成型工程を示す模式図である。 11] A schematic diagram showing a molding process of a semiconductor integrated circuit (IC) and a substrate using a resin material containing conductive particles to be analyzed.
園 12]流動解析を行うハードウェア構成図である。 12] It is a hardware configuration diagram that performs flow analysis.
[図 13]本発明の実施例 5の半導体集積回路 (IC) 3および電極の移動が圧力制御と なる計算のフローチャートである。  FIG. 13 is a flowchart of a calculation in which movement of the semiconductor integrated circuit (IC) 3 and the electrodes according to the fifth embodiment of the present invention is pressure control.
[図 14]本発明の実施例 6の半導体集積回路 (IC) 3および電極の移動が速度から圧 力制御となる計算のフローチャートである。  FIG. 14 is a flowchart of a calculation in which the movement of the semiconductor integrated circuit (IC) 3 and the electrodes according to the sixth embodiment of the present invention is pressure control from the speed.
園 15]本発明の実施例 5又は 6の電極の圧力制御の解析事例(一層樹脂)である。 園 16]本発明の実施例 5又は 6の電極の圧力制御の解析事例(二層樹脂)である。 園 17]本発明の実施例 7の導電性を予測する解析のフローチャート(半導体集積回 路 (IC) 3および電極の移動が圧力制御となる計算)である。 15] This is an analysis example (single layer resin) of the electrode pressure control in Example 5 or 6 of the present invention. 16] This is an analysis example (two-layer resin) of pressure control of the electrode of Example 5 or 6 of the present invention. 17] This is a flowchart of the analysis for predicting the conductivity of Example 7 of the present invention (calculation in which the movement of the semiconductor integrated circuit (IC) 3 and the electrode is pressure control).
園 18]入力した「温度を考慮した粒子 1の 1個当たりに荷重が加わった場合の変形量 」の関係を示す図である。 18] It is a diagram showing the relationship of the input “deformation amount when a load is applied to each particle 1 in consideration of temperature”.
園 19]入力した「粒子の任意数当たりの変形量と半導体集積回路 (IC)の電極と基板 の電極間の導電性」の関係を示す図である。 19] It is a diagram showing the relationship between the “deformation amount per arbitrary number of particles and the conductivity between the electrode of the semiconductor integrated circuit (IC) and the electrode of the substrate”.
園 20]電極 4間に挟まれる接続部の粒子 1の座標、電極 4の移動速度を入力条件とし た構造解析の結果である。 20] This is the result of the structural analysis using the coordinates of particle 1 at the connection part sandwiched between electrodes 4 and the moving speed of electrode 4 as input conditions.
[図 21]「粒子の接触面積と半導体集積回路 (IC)の電極と基板の電極間の導電性」の 関係を示す図である。  FIG. 21 is a view showing the relationship between “particle contact area and conductivity between an electrode of a semiconductor integrated circuit (IC) and an electrode of a substrate”.
符号の説明 Explanation of symbols
1 粒子  1 particle
2 樹脂材料  2 Resin material
3 半導体集積回路 (IC) 7 計算装置 3 Semiconductor integrated circuit (IC) 7 Computing device
8 LAN  8 LAN
9 表示装置  9 Display device
10 記録装置  10 Recording device
11 2層目の樹脂材料  11 Second layer resin material
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 以下、添付の図面を参照しながら、本発明に係る実施の形態について説明する。  Hereinafter, embodiments according to the present invention will be described with reference to the accompanying drawings.
実施例 1  Example 1
[0016] [移動電極の圧力制御]  [0016] [Controlling pressure of moving electrode]
まず、解析対象となる成形工程を、図 1を用いて説明する。初期状態(1— a)では、 導電性を有する粒子 1を含む樹脂材料 2が半導体集積回路 (IC) 3の電極 4と基板 5 の電極 4間に設置されている。成形工程では、熱を加えた半導体集積回路 (IC) 3を 基板 5の方向に移動させ、粒子 1を含む樹脂材料 2を圧縮することにより、粒子 1を含 む樹脂材料 2が流動する。  First, the molding process to be analyzed will be described with reference to FIG. In the initial state (1-a), the resin material 2 containing the conductive particles 1 is placed between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5. In the molding process, the semiconductor integrated circuit (IC) 3 to which heat is applied is moved in the direction of the substrate 5 and the resin material 2 containing the particles 1 is compressed, whereby the resin material 2 containing the particles 1 flows.
[0017] このとき、半導体集積回路 (IC) 3の電極 4と樹脂材料 2の接触により、樹脂材料 2の 温度が変化し、温度変化に伴う粘度変化を生じながら、樹脂材料 2が粒子 1と共に圧 縮されながら流動する。なお、半導体集積回路 (IC) 3の電極 4と基板 5の電極 4との 間隔が粒子 1の直径よりも小さくなつたときには、電極 4間に挟まれる粒子 1は変形し ながら圧縮される。  [0017] At this time, the temperature of the resin material 2 changes due to the contact between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the resin material 2, and the viscosity of the resin material 2 changes along with the temperature change. It flows while being compressed. When the distance between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 becomes smaller than the diameter of the particle 1, the particle 1 sandwiched between the electrodes 4 is compressed while being deformed.
[0018] 半導体集積回路 (IC) 3の移動が終了したとき(1 b)には、電極 4間に挟まれる粒 子 1の導電性により、半導体集積回路 (IC) 3と基板 5間の電気信号を伝えることが可 能となる。ここで、粒子 1の変形量により、粒子 1と電極 4との接触面積が決まり、この 接触面積により半導体集積回路 (IC) 3と基板 5間の導電性が決まる。なお、導電性 は、電極 4間に一定電圧を印加した場合に流れる電流によって評価される。ここで、 粒子 1の変形量は、半導体集積回路 (IC) 3の上部から荷重を加える装置の能力、荷 重を加えたときの粒子 1の変形量、電極間に挟まれる粒子 1の数、樹脂材料 2の粘度 変化によって決まる。 [0019] [角军析システムの構成] [0018] When the movement of the semiconductor integrated circuit (IC) 3 is completed (1b), the electric conductivity between the semiconductor integrated circuit (IC) 3 and the substrate 5 is caused by the conductivity of the particles 1 sandwiched between the electrodes 4. It is possible to convey a signal. Here, the contact area between the particle 1 and the electrode 4 is determined by the deformation amount of the particle 1, and the conductivity between the semiconductor integrated circuit (IC) 3 and the substrate 5 is determined by this contact area. The conductivity is evaluated by the current that flows when a constant voltage is applied between the electrodes 4. Here, the deformation amount of the particle 1 is the ability of the device to apply a load from the upper part of the semiconductor integrated circuit (IC) 3, the deformation amount of the particle 1 when the load is applied, the number of particles 1 sandwiched between the electrodes, It depends on the viscosity change of resin material 2. [0019] [Configuration of angle analysis system]
次に、粒子 1変形に伴う樹脂材料 2の流動過程を予測するために用いる解析システ ムについて説明する。解析システムは、図 2示すハードウェア構成で後述する図 3、 4 、 7、 8のフローを備えたソフトウェアが実行されることにより機能する。  Next, an analysis system used to predict the flow process of the resin material 2 accompanying the deformation of the particle 1 will be described. The analysis system functions by executing software having the hardware configuration shown in FIG. 2 and having the flows of FIGS. 3, 4, 7, and 8 described later.
[0020] 具体的には、計算装置 6、記録装置 10 (ハードディスク、 MOなど)を備えた計算装 置 7、この 2つの計算装置を繋ぐ LAN8、計算装置 7が備える表示装置 9を備えてい る。また、計算装置 6で作成した CADデータを、 LAN8を介して計算装置 7に転送す るように構成しても良い。計算装置 7に転送された CADデータを、計算装置 7の記録 装置 10 (ノ、ードディスク、 MOなど)に記録して利用することもできる。計算装置 7は図 3、 4、 7、 8で示すフローチャートに従って計算を実行し、結果を記録装置 10に記録 した後、表示装置 9に結果を表示する。図示してはいないが、計算装置 6及び 7には 、当然キーボードやマウス等の入力デバイスを備えている。  [0020] Specifically, it includes a computing device 7, a computing device 7 provided with a recording device 10 (hard disk, MO, etc.), a LAN 8 connecting these two computing devices, and a display device 9 provided in the computing device 7. . The CAD data created by the calculation device 6 may be transferred to the calculation device 7 via the LAN 8. The CAD data transferred to the computing device 7 can be recorded on the recording device 10 (node, disk, MO, etc.) of the computing device 7 for use. The calculation device 7 executes the calculation according to the flowcharts shown in FIGS. 3, 4, 7, and 8, records the result in the recording device 10, and then displays the result on the display device 9. Although not shown, the calculation devices 6 and 7 are naturally provided with input devices such as a keyboard and a mouse.
[0021] [フローチャート]  [0021] [Flowchart]
次に、図 3のフローチャートに沿って解析プログラムの処理を説明する。まず、モデ ル形状作成ステップ 1001では、オペレータによって入力装置を介して特定された解 析対象モデル、つまり、解析対象の電極、初期の粒子を含む樹脂材料の形状、粒子 を含む樹脂材料が流動できる空間のデータを記憶装置 10から読み出す。  Next, the processing of the analysis program will be described along the flowchart of FIG. First, in the model shape creation step 1001, the analysis target model specified by the operator through the input device, that is, the electrode to be analyzed, the shape of the resin material including the initial particles, and the resin material including the particles can flow. Read space data from storage device 10.
[0022] 次に、 3次元ソリッド要素作成のステップ 1002では、モデル形状作成ステップ 1001 で読み込んだデータの形状を複数の特定空間(3次元ソリッドの有限要素)に分解し 、各有限要素の形状データを作成する。  Next, in step 1002 for creating a 3D solid element, the shape of the data read in the model shape creating step 1001 is decomposed into a plurality of specific spaces (finite elements of a 3D solid), and the shape data of each finite element Create
[0023] 次に、物性値入力ステップ 1003では、解析を行う材料の物性値である密度、熱伝 導率、比熱、発熱式 (式 7)〜(式 11)、粘度式 (式 12)〜(式 15)、粒子 1の配置、密 度、直径、粒子 1の 1個当たりに荷重が加わった場合の変形量を入力するように、ォ ペレータに催促する表示を行い、入力装置からこれらのデータを受け付ける。なお、 A :反応率、 t :時間、 T :温度、 dA/dt :反応速度、 XI , X2 :温度の関数となる係数、 N, M, Xa, Ea, Xb, Eb :材料固有の係数、 Q:任意時刻までの発熱量、 Qo :反応 終了時までの総発熱量、 dQ/dt :発熱速度、乃:粘度、乃 0 :初期粘度、 t :時間、 tO :ゲル化時間、 T :温度、 a、 b、 d、 e、 f、 g :材料固有の定数を示す。 dA/dt={K,+ K2AM){l-A)N (7)[0023] Next, in the physical property value input step 1003, the density, thermal conductivity, specific heat, exothermic equation (Equation 7) to (Equation 11), viscosity equation (Equation 12) to (Equation 15), the arrangement, density, diameter of particle 1 and the amount of deformation when a load is applied to each particle 1 are displayed to prompt the operator, and these are displayed from the input device. Accept data. A: reaction rate, t: time, T: temperature, dA / dt: reaction rate, XI, X2: coefficient as a function of temperature, N, M, Xa, Ea, Xb, Eb: material specific coefficients, Q: Calorific value up to an arbitrary time, Qo: Total calorific value until the end of reaction, dQ / dt: Heat generation rate, No: Viscosity, No 0: Initial viscosity, t: Time, tO: Gelation time, T: Temperature , A, b, d, e, f, g: Constants specific to the material. dA / dt = (K, + K 2 A M ) {lA) N (7)
[数 8コ [Number 8
ΚΓΚα exp (-^ IT) (8) Γ Γ Κ α exp (-^ IT) (8)
[数 9コ [Number 9
K2=Kb exp (-^ IT) (9)K 2 = K b exp (-^ IT) (9)
[数 10][Equation 10]
Figure imgf000009_0001
Figure imgf000009_0001
[数 11] [Equation 11]
Figure imgf000009_0002
Figure imgf000009_0002
[数 12]  [Equation 12]
η = η0( t+t0 /t -t0) cm (12) η = η 0 (t + t 0 / t -t 0 ) c m (12)
Figure imgf000009_0003
C(T) = f/T - g
Figure imgf000009_0003
C (T) = f / T-g
[0024] 次に、境界条件、成形条件入力ステップ 1004において、半導体集積回路 (IC) 3 および電極 4の上部に加えられる圧力の入力をするように、オペレータに催促する表 示を行い、入力装置力 データを受け付ける。ここで、受け付けた半導体集積回路 (I C) 3および電極 4の上部に加えられる圧力と半導体集積回路(IC) 3の上部の面積か ら半導体集積回路 (IC) 3および電極 4の上部に加えられる荷重 Fを算出する。 [0024] Next, in the boundary condition and molding condition input step 1004, a display prompting the operator to input the pressure applied to the top of the semiconductor integrated circuit (IC) 3 and the electrode 4 is performed. Force data is accepted. Here, the pressure applied to the top of the semiconductor integrated circuit (IC) 3 and the electrode 4 and the area of the top of the semiconductor integrated circuit (IC) 3 are applied to the top of the semiconductor integrated circuit (IC) 3 and the electrode 4. Calculate the load F.
[0025] 次に、オペレータからの解析開始の指示と初期時間増分を受け付ける。なお、解析 は微小な時間を増加させて、それぞれの時間ステップごとの変化を計算するものであ り、時間増分とは、時間ステップの間隔を示す。  Next, an analysis start instruction from the operator and an initial time increment are received. The analysis increases the minute time and calculates the change at each time step, and the time increment indicates the time step interval.
[0026] ステップ 1005として、この指示に基づいて、記録装置に格納された連続の式(1)お よびナビエスト一タスの式(2)〜(4)、エネルギ保存式(5)を呼び出し、これまで入力 を受け付けた、初期時間増分、半導体集積回路 (IC) 3および電極 4の上部に加えら れる圧力、樹脂材料の密度、比熱、熱伝導率、発熱式 (式 7)〜(式 11)、粘度式 (式 12)〜(式 15)を代入し、電極の圧縮による樹脂材料 2と粒子 1の流動に伴う、速度、 圧力、温度および粘度を計算する。この計算結果を有限要素の位置と対応つけて記 憶装置に保存する。  [0026] In step 1005, based on this instruction, continuous equations (1), Naviest status equations (2) to (4), and energy conservation equation (5) stored in the recording device are called. Initial time increment, pressure applied on top of semiconductor integrated circuit (IC) 3 and electrode 4, density of resin material, specific heat, thermal conductivity, exothermic equation (Equation 7) to (Equation 11) Substituting the viscosity equations (Equation 12) to (Equation 15), calculate the velocity, pressure, temperature and viscosity associated with the flow of the resin material 2 and particles 1 due to the compression of the electrode. This calculation result is stored in the storage device in association with the position of the finite element.
[0027] ここで、 P ;密度、 u ;X方向速度、 U ;y方向速度、 c ; Z方向速度、 T ;温度、 P ;圧力 、 t ;時間、乃;粘度、 Cp ;定圧比熱、 13;体積膨張係数、入;熱伝導率を示している。 [0027] where, P: density, u: velocity in the X direction, U: velocity in the y direction, c: velocity in the Z direction, T: temperature, P: pressure, t; time, no; viscosity, Cp: specific heat at constant pressure, 13 ; Volume expansion coefficient, input; thermal conductivity.
[数 1]  [Number 1]
Figure imgf000010_0001
Figure imgf000010_0001
Figure imgf000011_0001
Figure imgf000011_0002
Figure imgf000011_0003
Figure imgf000011_0001
Figure imgf000011_0002
Figure imgf000011_0003
[数 5] [Equation 5]
Figure imgf000011_0004
Figure imgf000011_0004
[0028] 次に、ステップ 1006で、電極 4間の間隔が粒子の直径よりも大きし、かどうかの判定 を行う。ここで、電極 4間の間隔が粒子 1の直径( φ D)と等しくなつた場合には、ステ ップ 1007において、電極 4間に挟まれる接続部の粒子 1数 Nを出力する。 [0028] Next, in step 1006, it is determined whether or not the distance between the electrodes 4 is larger than the diameter of the particles. Here, when the distance between the electrodes 4 becomes equal to the diameter (φD) of the particles 1, in step 1007, the number 1 of particles 1 at the connection portion sandwiched between the electrodes 4 is output.
[0029] 次のステップ 1008からは、粒子 1の変形を伴う樹脂材料 2の流動過程の計算を行う 。この粒子 1の変形を伴う樹脂材料 2の流動過程の計算を行う第一ステップ(1008) では、粒子 1の変形は無視し、電極 4の移動方向における樹脂材料 2の移動量(=粒 子 1の変形量) ΔΗ1を算出した後に、入力した「粒子 1の 1個当たりに荷重が加わった 場合の変形量」から粒子 1の変形量 ΔΗ1によって、粒子 1の 1個当たりに加わる荷重 △F1を算出する。ここで、入力した「粒子 1の 1個当たりに荷重が加わった場合の変形 量」の関係の一例を図 9に示す。 [0029] From the next step 1008, the flow process of the resin material 2 accompanied by the deformation of the particles 1 is calculated. In the first step (1008) for calculating the flow process of the resin material 2 accompanied by the deformation of the particle 1, the deformation of the particle 1 is ignored and the amount of movement of the resin material 2 in the moving direction of the electrode 4 (= grain Deformation amount of child 1) After calculating ΔΗ1, the load applied per particle 1 by the deformation amount ΔΗ1 of particle 1 from the input “deformation amount when load is applied per particle 1” △ Calculate F1. Here, Fig. 9 shows an example of the relationship of the input "deformation amount when a load is applied per particle 1".
[0030] 次の第二ステップ(1009)においては、半導体集積回路(IC) 3および電極 4の上 部に加えられる荷重 FJ2は、設定値の F力もステップ 1008で求めた粒子 1の 1個当た りに加わる荷重 AF1とステップ 1007で求めた電極間に挟まれる粒子数 Nの積で求め られる値の差(FJ2 = F— N X AF1)を用!/、た計算を行う(ステップ 1010)。この荷重 F J2を加えた場合の電極 4の移動による樹脂材料 2の移動量 ΔΗ2 ( =粒子 1の変形量 )を算出した後に、粒子 1の変形量 ΔΗ2によって、粒子 1個当たりに加わる荷重 AF 2を算出し、 FJ3 = F— N X AF2を次の時間ステップの計算における半導体集積回 路 (IC) 3に加えられる荷重条件とする。  [0030] In the next second step (1009), the load FJ2 applied to the tops of the semiconductor integrated circuit (IC) 3 and the electrode 4 is equal to the set value F force per particle 1 obtained in step 1008. The difference between the value obtained by the product of the additional load AF1 and the number of particles N sandwiched between the electrodes obtained in step 1007 (FJ2 = F – NX AF1) is used! (Step 1010). After calculating the movement amount ΔΗ2 of the resin material 2 due to the movement of the electrode 4 when this load F J2 is applied (= deformation amount of particle 1), the load applied per particle by the deformation amount ΔΗ2 of particle 1 AF 2. Calculate FJ3 = F—NX AF2 as the load condition applied to the semiconductor integrated circuit (IC) 3 in the next time step calculation.
[0031] ステップ 1011において、ステップ 1008〜; 1010の計算を,橾返し、 M回目のステツ プにおいて、粒子 1の変形量 ΔΗ (Μ)、粒子 1個当たりに加わる荷重 AF (M)を算出 し、半導体集積回路 (IC) 3および電極 4の上部に加えられる荷重設定値 Fから粒子 1 の 1個当たりに加わる荷重 AF (M)とステップ 1007で求めた電極間に挟まれる粒子 数 Nの積で求められる値が 0以下になるまで(F— NXAF (M)≤0)、または電極に 加えられる荷重 Fが樹脂材料の粘度の上昇 (ゲル化粘度)により電極が移動できなく なるまで、または電極 4間の間隔が 0になるまで、粒子 1の変形量および樹脂材料 2の 流動挙動を計算する (ステップ 1012)。  [0031] In step 1011, the calculation in steps 1008 to 1010 is repeated, and in the Mth step, the deformation amount ΔΗ (Μ) of particle 1 and the load AF (M) applied to each particle are calculated. The product of the load AF (M) applied per particle 1 from the load setting value F applied to the top of the semiconductor integrated circuit (IC) 3 and electrode 4 and the number N of particles sandwiched between the electrodes determined in step 1007 Until the value obtained in (1) falls below 0 (F—NXAF (M) ≤0), or the load F applied to the electrode becomes incapable of moving due to the increase in the viscosity of the resin material (gel viscosity), or The deformation amount of the particles 1 and the flow behavior of the resin material 2 are calculated until the distance between the electrodes 4 becomes 0 (step 1012).
[0032] ステップ 1013において、計算の収束判定を行う 0収束の判定手法は、圧力とあらか じめ定めておいた圧力範囲とを対比し、範囲内にある場合を収束として判定する。収 束しない場合には、ステップ 1001〜; 1004のいずれ力、に戻る。この際、オペレータに 入力を促し、どのステップに戻るかを決める。  [0032] In step 1013, calculation convergence determination is performed. The zero convergence determination method compares the pressure with a predetermined pressure range, and determines that the pressure is within the range as convergence. If it does not converge, return to steps 1001 to 1004; At this time, prompt the operator for input and decide which step to return to.
[0033] ステップ 1014において粒子変形の適正判定を行う。ここでは、粒子の変形量が規 定された値の範囲内である力、を判定し、規定された範囲外である場合には、ステップ 1001〜; 1004のいずれ力、に戻る。この際、オペレータに入力を促し、どのステップに 戻る力、を決めるステップ 1013で計算が収束したことを判定し、ステップ 1014で粒子 変形が適正であることを判定した後、ステップ 1015において計算を終了する。 [0033] In step 1014, the appropriateness of particle deformation is determined. Here, the force in which the deformation amount of the particle is within the specified value range is determined, and if it is outside the specified range, the process returns to any one of steps 1001 to 1004. At this time, the operator is prompted to input, and which step force to return to is determined. In step 1013, it is determined that the calculation has converged. After determining that the deformation is appropriate, the calculation ends in step 1015.
[0034] なお、ステップ 1003における入力条件として、粒子 1の 1個当たりに荷重が加わつ た場合の変形量の関係の例を示した力 粒子 1の複数個当たりの荷重が加わった場 合の変形量ほたは変形率)の関係を入力することができ、粒子 1に加わる応力と変 形量ほたは変形率)の関係を入力することができるものとする。また、発熱式は(式 7 )〜(式 11)に限定されるものではなぐ樹脂材料 2の反応率を含む任意の関数を用 いること力 Sでさる。 [0034] It should be noted that as an input condition in Step 1003, an example of the relationship between deformation amounts when a load is applied per particle 1 is shown. When a load per particle 1 is applied It is assumed that the relationship between the deformation amount and the deformation rate can be input, and the relationship between the stress applied to the particle 1 and the deformation amount and the deformation rate can be input. In addition, the exothermic equation is not limited to (Equation 7) to (Equation 11), and an arbitrary function including the reaction rate of the resin material 2 is used.
[0035] また、粘度式は(式 12)〜(式 15)に限定されるものではなぐ樹胎材料 2の温度ま たは反応率を含む任意の関数を用いることができる。また、収束判定は任意の判定 方法を用いることができる 'また、 3次元の解析だけではなぐ 2次元の解析もできるも のとする。なお、以上の計算は有限要素法または有限体積法または有限差分法を用 V、て計算を行えるものとする。  [0035] The viscosity equation is not limited to (Equation 12) to (Equation 15), and an arbitrary function including the temperature or reaction rate of the embryo material 2 can be used. In addition, it is possible to use any judgment method for convergence judgment. It is also assumed that two-dimensional analysis is possible in addition to three-dimensional analysis. The above calculations can be performed using the finite element method, finite volume method, or finite difference method.
実施例 2  Example 2
[0036] [電極の速度〜圧力制御への切り替え]  [0036] [Switching from electrode speed to pressure control]
次に、図 4のフローチャートに沿って解析プログラムの処理を説明する。まず、モデ ル形状作成ステップ 2001では、オペレータによって入力装置を介して特定された解 析対象モデル、つまり、解析対象の電極、初期の粒子を含む樹脂材料の形状、粒子 を含む樹脂材料が流動できる空間のデータを記憶装置 10から読み出す。  Next, processing of the analysis program will be described along the flowchart of FIG. First, in the model shape creation step 2001, the analysis target model specified by the operator via the input device, that is, the electrode to be analyzed, the shape of the resin material including the initial particles, and the resin material including the particles can flow. Read space data from storage device 10.
[0037] 次に、 3次元ソリッド要素作成のステップ 2002では、モデル形状作成ステップ 2001 で読み込んだデータの形状を複数の特定空間(3次元ソリッドの有限要素)に分解し 、各有限要素の形状データを作成する。  [0037] Next, in step 2002 of creating the 3D solid element, the shape of the data read in the model shape creating step 2001 is decomposed into a plurality of specific spaces (finite elements of the 3D solid), and the shape data of each finite element Create
[0038] 次に、物性値入力ステップ 2003では、解析を行う材料の物性値である密度、熱伝 導率、比熱、発熱式 (式 7)〜(式 11)、粘度式 (式 12)〜(式 15)、粒子 1の配置、密 度、直径、粒子 1の 1個当たりに荷重が加わった場合の変形量を入力するように、ォ ペレータに催促する表示を行い、入力装置からこれらのデータを受け付ける。  [0038] Next, in physical property value input step 2003, density, thermal conductivity, specific heat, exothermic equation (Equation 7) to (Equation 11), viscosity equation (Equation 12) to (Equation 15), the arrangement, density, diameter of particle 1 and the amount of deformation when a load is applied to each particle 1 are displayed to prompt the operator, and these are displayed from the input device. Accept data.
[0039] 次に、境界条件、成形条件入力ステップ 2004において、半導体集積回路 (IC) 3 および電極 4の移動速度 Vdおよび半導体集積回路(IC) 3および電極 4の上部に加 えられる最大圧力の入力をするように、オペレータに催促する表示を行い、入力装置 力もデータを受け付ける。 [0039] Next, in the boundary condition and molding condition input step 2004, the moving speed Vd of the semiconductor integrated circuit (IC) 3 and the electrode 4 and the maximum pressure applied to the upper part of the semiconductor integrated circuit (IC) 3 and the electrode 4 are set. A display prompting the operator to enter and input device Force also accepts data.
[0040] ここで、受け付けた半導体集積回路 (IC) 3および電極 4の上部に加えられる最大 圧力と半導体集積回路 (IC) 3の上部の面積から、半導体集積回路 (IC) 3および電 極 4の上部に加えられる最大荷重 Fmaxを算出する。  Here, from the received maximum pressure applied to the top of the semiconductor integrated circuit (IC) 3 and the electrode 4 and the area of the top of the semiconductor integrated circuit (IC) 3, the semiconductor integrated circuit (IC) 3 and the electrode 4 Calculate the maximum load Fmax that can be applied to the top of.
[0041] 次に、オペレータからの解析開始の指示と初期時間増分を受け付ける。ステップ 20 05として、この指示に基づいて、記録装置に格納された連続の式(1)およびナビエ スト一タスの式(2)〜(4)、エネルギ保存式(5)を呼び出し、これまで入力を受け付け た、初期時間増分、半導体集積回路 (IC) 3および電極 4の上部に加えられる圧力、 樹胎材料の密度、比熱、熱伝導率、発熱式 (式 7)〜(式 11)、粘度式 (式 12)〜(式 1 5)を代入し、電極の圧縮による樹胎材料 2と粒子 1の流動に伴う、速度、圧力、温度 および粘度を計算する。この計算結果を有限要素の位置と対応つけて記憶装置に 保存する。  Next, an analysis start instruction and an initial time increment from the operator are received. In Step 20 05, based on this instruction, the continuous equation (1), Naviest status equation (2) to (4), and energy conservation equation (5) stored in the recording device are called and entered so far. Initial time increment, pressure applied on top of semiconductor integrated circuit (IC) 3 and electrode 4, density of embryo material, specific heat, thermal conductivity, exothermic equation (Equation 7) to (Equation 11), viscosity Substituting the equations (Equation 12) to (Equation 15), calculate the velocity, pressure, temperature and viscosity associated with the flow of the embryo material 2 and particles 1 due to electrode compression. This calculation result is stored in the storage device in association with the position of the finite element.
[0042] 次にステップ 2006で、電極 4間の間隔が粒子の直径よりも大き!/、かどうかの判定を 行う。ここで、電極 4間の間隔が粒子 1の直径( φ D)と等しくなつた場合には、ステツ プ 2007において、電極 4間に挟まれる接続部の粒子 1数 Nを出力する。  [0042] Next, in step 2006, it is determined whether the distance between the electrodes 4 is larger than the diameter of the particles! Here, when the distance between the electrodes 4 is equal to the diameter (φD) of the particles 1, in step 2007, the number N of particles 1 at the connecting portion sandwiched between the electrodes 4 is output.
[0043] 次のステップ 2008からは、粒子 1の変形を伴う樹脂材料 2の流動過程の計算を行う 。ステップ 2008では、電極 4の移動方向における樹脂材料 2の移動量(=粒子 1の 変形量) ΔΗを算出した後に、入力した粒子 1の 1個当たりに荷重が加わった場合の 変形量から粒子 1の変形量 ΔΗによって、粒子 1の 1個当たりに加わる荷重 AFを算 出し、粒子 1に加わる荷重 FR=N X AFを算出する。更に、樹脂に加わる荷重 FJを、 「移動する電極 4と樹脂材料 2の接触面積」と「接触部分の樹脂樹胎 2の圧力」の積と して算出する。  [0043] From the next step 2008, the flow process of the resin material 2 accompanied by the deformation of the particles 1 is calculated. In step 2008, after calculating the amount of movement of resin material 2 in the moving direction of electrode 4 (= deformation amount of particle 1) ΔΗ, particle 1 is calculated from the deformation amount when a load is applied per particle 1 input. The load AF applied to each particle 1 is calculated from the amount of deformation ΔΗ, and the load FR = NX AF applied to the particle 1 is calculated. Furthermore, the load FJ applied to the resin is calculated as the product of “the contact area between the moving electrode 4 and the resin material 2” and “the pressure of the resin embryo 2 at the contact portion”.
[0044] ここで、入力した「粒子 1の 1個当たりに荷重が加わった場合の変形量」の関係の一 例を図 9に示す。ここで、ステップ 2009で半導体集積回路(IC) 3および電極 4の上 部に加えられる最大荷重 Fmax力 S、樹胎材料 2に加えられる荷重 FJと粒子に加えら れる荷重 FRとの和より大きいかの判定(Fmax≥FJl + FRl)を行う。  Here, FIG. 9 shows an example of the input “deformation amount when a load is applied per particle 1”. Here, in step 2009, the maximum load Fmax force S applied to the tops of the semiconductor integrated circuit (IC) 3 and the electrode 4 is greater than the sum of the load FJ applied to the embryo material 2 and the load FR applied to the particles. (Fmax≥FJl + FRl).
[0045] ここで、 Fmaxく FJ1 + FR1となる場合には、最大荷重 Fmaxを加えても設定した電 極 4の移動速度 Vdを実現することができない。従って、電極 4の移動の制御方法とし て、速度 Vdの制御ではなぐ最大荷重 Fmaxを加えた場合の制御に切り替える。 即ち、図 3で示したステップ 1008〜; 1011の計算を行い、粒子 1の変形と樹脂材料 2の流動過程を計算する。 [0045] Here, when Fmax is greater than FJ1 + FR1, even if the maximum load Fmax is applied, the set moving speed Vd of the electrode 4 cannot be realized. Therefore, the method for controlling the movement of electrode 4 Therefore, the control is switched to the control when the maximum load Fmax is exceeded in the control of the speed Vd. That is, the calculation in steps 1008 to 1011 shown in FIG. 3 is performed to calculate the deformation process of the particles 1 and the flow process of the resin material 2.
[0046] ここで、半導体集積回路(IC) 3および電極 4の上部に加えられる荷重設定値 Fから 粒子 1の 1個当たりに加わる荷重 AF (M)とステップ 1007で求めた電極間に挟まれ る粒子数 Nの積で求められる値が 0以下になった場合(F— N X AF (M)≤0)、また は電極に加えられる荷重 Fが樹脂材料の粘度の上昇 (ゲル化粘度)により電極が移 動できなくなるまで、または電極 4間の間隔が 0になるまで、粒子 1の変形量および樹 脂材料 2の流動挙動を計算する。  Here, the load AF (M) applied per particle 1 from the load set value F applied to the upper part of the semiconductor integrated circuit (IC) 3 and the electrode 4 is sandwiched between the electrode obtained in Step 1007 When the value obtained by the product of the number of particles N is less than 0 (F—NX AF (M) ≤0) or the load F applied to the electrode is increased by the increase in the viscosity of the resin material (gel viscosity) Calculate the amount of deformation of particle 1 and the flow behavior of resin material 2 until the electrodes cannot move or until the distance between the electrodes 4 becomes zero.
[0047] また、ステップ 2009において、 Fmax≥FJl + FRlである場合には、電極に加えられ る荷重 Fが樹脂材料の粘度の上昇 (ゲル化粘度)により電極が移動できなくなるまで 、または電極 4間の間隔が 0になるまで、ステップ 2008の計算及びステップ 2009の 判定を繰り返す。  [0047] In step 2009, if Fmax≥FJl + FRl, the load F applied to the electrode is increased until the electrode cannot move due to the increase in the viscosity of the resin material (gel viscosity), or the electrode 4 Repeat the calculation in step 2008 and the judgment in step 2009 until the interval between them becomes zero.
[0048] ここで、ステップ 2012にて計算の収束判定を行う。収束の判定手法は、圧力とあら 力、じめ定めておいた圧力範囲とを対比し、範囲内にある場合を収束として判定する。 収束しない場合には、ステップ 200;!〜 2004のいずれ力、に戻る。この際、オペレータ に入力を促し、どのステップに戻るかを決める。  Here, at step 2012, calculation convergence is determined. Convergence is determined by comparing the pressure with the force, and the pressure range that has been defined in advance, and determining that it is within the range as convergence. If it does not converge, return to step 200; At this time, prompt the operator for input and decide which step to return to.
[0049] ステップ 2013において粒子変形の適正判定を行う。ここでは、粒子の変形量が規 定された値の範囲内である力、を判定し、規定された範囲外である場合には、ステップ 200;!〜 2004のいずれ力、に戻る。この際、オペレータに入力を促し、どのステップに 戻るかを決める。  [0049] In step 2013, the appropriateness of particle deformation is determined. Here, the force with which the deformation amount of the particle is within the specified value range is determined, and if it is outside the specified range, the process returns to any one of Step 200;! -2004. At this time, prompt the operator for input and decide which step to return to.
[0050] ステップ 2012で計算が収束したことを判定し、ステップ 2013で粒子変形が適正で あることを判定した後、ステップ 2014において計算を終了する。  [0050] After determining that the calculation has converged in step 2012 and determining that the particle deformation is appropriate in step 2013, the calculation ends in step 2014.
[0051] なお、ステップ 2003における入力条件として、粒子 1の 1個当たりに荷重が加わつ た場合の変形量の関係の例を示した力 粒子 1の複数個当たりの荷重が加わった場 合の変形量ほたは変形率)の関係を入力することができ、粒子 1に加わる応力と変 形量ほたは変形率)の関係を入力することができるものとする。  [0051] It should be noted that as an input condition in step 2003, an example of the relationship of the deformation amount when a load is applied per particle 1 is shown. When a load per particle 1 is applied It is assumed that the relationship between the deformation amount and the deformation rate can be input, and the relationship between the stress applied to the particle 1 and the deformation amount and the deformation rate can be input.
[0052] また、発熱式は(式 7)〜(式 11)に限定されるものではなぐ樹脂材料 2の反応率を 含む任意の関数を用いることができる。また、粘度式は(式 12)〜(式 15)に限定され るものではなぐ樹脂材料 2の温度または反応率を含む任意の関数を用いることがで きる。 [0052] The exothermic formula is not limited to (Formula 7) to (Formula 11). Any function can be used. The viscosity equation is not limited to (Equation 12) to (Equation 15), and any function including the temperature or reaction rate of the resin material 2 can be used.
[0053] また、収束判定は任意の判定方法を用いることができる。また、 3次元の解析だけで はなぐ 2次元の解析もできるものとする。なお、以上の計算は有限要素法または有 限体積法または有限差分法を用いて計算を行えるものとする。  [0053] In addition, any determination method can be used for the convergence determination. It is also possible to perform 2D analysis in addition to 3D analysis. The above calculation can be performed using the finite element method, the finite volume method, or the finite difference method.
[0054] [電極の圧力制御の解析事例(一層樹脂) ]  [0054] [Analysis example of electrode pressure control (single layer resin)]
ここで、図 5に解析事例の一例(2次元解析)を示す。初期状態において、導電性を 有する粒子 1を含む樹脂材料 2が半導体集積回路 (IC) 3の電極 4と基板 5の電極 4 間に設置されている。ここで、樹胎材料 2は初期温度 30°Cとし、発熱式 (式 7)〜(式 1 1)、粘度式 (式 12)〜(式 15)を用いるものとする。なお、発熱式 (式 7)〜(式 11)、粘 度式 (式 12)〜(式 15)の定数の値、密度、熱伝導率、比熱の値、粒子の直径(φ ϋ) 、密度を表 1に示す。  Here, Fig. 5 shows an example of analysis (two-dimensional analysis). In an initial state, a resin material 2 containing conductive particles 1 is placed between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5. Here, the embryo material 2 is assumed to have an initial temperature of 30 ° C, and the exothermic equations (Equation 7) to (Equation 11) and the viscosity equations (Equation 12) to (Equation 15) are used. In addition, constant values, density, thermal conductivity, specific heat values, particle diameter (φϋ), density of exothermic equations (Equation 7) to (Equation 11), viscosity equations (Equation 12) to (Equation 15) Is shown in Table 1.
[表 1] [table 1]
站度式の定数 Constant of the degree formula
Figure imgf000017_0001
Figure imgf000017_0001
その他物性  Other physical properties
Figure imgf000017_0002
Figure imgf000017_0002
[0055] また、半導体集積回路 (IC) 3の温度は一定(185°C)に設定し、基板 5の方向に圧 力 5MPaを加えて移動させ、粒子 1を含む樹脂材料 2を圧縮することにより、粒子 1を 含む樹胎材料 2を流動させる。このとき、半導体集積回路(IC) 3の電極 4と樹脂材料 2の接触により、樹脂材料 2の温度が変化し、温度変化に伴う粘度変化を生じながら 、樹脂材料 2が粒子 1と共に圧縮されながら流動する過程を計算できる。 [0055] Further, the temperature of the semiconductor integrated circuit (IC) 3 is set to be constant (185 ° C), moved by applying a pressure of 5 MPa in the direction of the substrate 5, and the resin material 2 including the particles 1 is compressed. This causes the embryo material 2 containing the particles 1 to flow. At this time, the temperature of the resin material 2 changes due to the contact between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the resin material 2, and the resin material 2 is compressed together with the particles 1 while causing a viscosity change accompanying the temperature change. Calculate the flow process.
[0056] なお、半導体集積回路(IC) 3の電極 4と基板 5の電極 4との間隔が粒子 1の直径よ りも小さくなつたときには、解析上では、粒子 1と電極 4の接触の計算は行わない。つ まり、解析上では、粒子 1同士、粒子 1と電極 4が接触する場合には、粒子 1が電極 4 をすり抜けるなどの設定を行うことにより、樹脂材料 2だけの流動性の計算を行う。こ のとき、半導体集積回路 (IC) 3の上部から加える圧力は設定値の 5MPaではなぐ 図 3のフローチャートで示したように、設定圧力と面積との積で求めた荷重から粒子 1 の変形量に対応した荷重を引いた値を用いる。 [0056] When the distance between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 becomes smaller than the diameter of the particle 1, the calculation of the contact between the particle 1 and the electrode 4 is made in the analysis. Do not do. In other words, in the analysis, when the particles 1 are in contact with each other, and when the particles 1 and the electrode 4 are in contact with each other, the fluidity of only the resin material 2 is calculated by setting such that the particles 1 pass through the electrode 4. This In this case, the pressure applied from the upper part of the semiconductor integrated circuit (IC) 3 is not the set value of 5 MPa.As shown in the flowchart of Fig. 3, the deformation obtained by the product of the set pressure and the area is changed to the deformation amount of particle Use the value minus the corresponding load.
この計算の結果、樹脂粘度が大きくなり、荷重を加えても半導体集積回路 (IC) 3と 電極 4の移動ができなくなり、解析が終了する。このとき、電極間の間隔から粒子 1の 変形量を求めることができる。なお、粒子の変形量 ADは、(式 6)で求めることができ  As a result of this calculation, the resin viscosity increases, and even if a load is applied, the semiconductor integrated circuit (IC) 3 and the electrode 4 cannot move, and the analysis ends. At this time, the deformation amount of the particle 1 can be obtained from the distance between the electrodes. The deformation amount AD of the particles can be obtained by (Equation 6).
[数 6] [Equation 6]
△ D = D— D 1 ( 6 ) △ D = D— D 1 (6)
[0058] ここで、 D :粒子 1の直径、 D1 :解析終了後の基板 4の間隔を表す。なお、以上では 電極 4の移動が圧力により制御される事例を示した力 S、本発明はこれだけに限定され るものではなぐ図 4のフローチャートで示したように、電極の移動を速度から圧力に 制御することも可能とする。また、ここでは粒子内の熱伝導計算は行っていないが、 粒子の比熱、熱伝導率、樹脂材料と粒子の熱伝達率などの入力により、粒子内の熱 伝導計算も行うことができる。 [0058] Here, D: the diameter of the particle 1 and D1: the distance between the substrates 4 after the analysis is completed. In the above description, the force S indicates the case where the movement of the electrode 4 is controlled by pressure, and the present invention is not limited to this. As shown in the flowchart of FIG. 4, the movement of the electrode is changed from speed to pressure. It is also possible to control. In addition, although the heat conduction calculation within the particle is not performed here, the heat conduction calculation within the particle can also be performed by inputting the specific heat of the particle, the heat conductivity, the heat transfer coefficient between the resin material and the particle, and the like.
[0059] [電極の圧力制御の解析事例(二層樹脂) ]  [0059] [Analysis example of electrode pressure control (double-layer resin)]
ここで、図 6に樹脂材料が 2層に分かれている解析事例(2次元解析)の一例を示す  Here, Fig. 6 shows an example of analysis (two-dimensional analysis) in which the resin material is divided into two layers.
[0060] 初期状態において、導電性を有する粒子 1を含む樹脂材料 2の上部に、粒子 1を含 む物性値が異なる樹脂材料 11からなる 2層構造の樹脂材料が、半導体集積回路 (I C) 3の電極 4と基板 5の電極 4間に設置されている。ここで、樹脂材料 2は初期温度 3 0°Cとし、発熱式 (式 7)〜(式 11)、粘度式 (式 12)〜(式 15)を用いるものとする。な お、発熱式 (式 7)〜(式 11)、粘度式 (式 12)〜(式 15)の定数の値、密度、熱伝導率 、比熱の値、粒子の直径( φ D)、密度に関して、一層目の樹脂材料 2および粒子 1は 表 1の値を用いて、 2層目の樹胎材料 11および粒子 1の値を表 2に示す。 [0060] In an initial state, a resin material having a two-layer structure composed of a resin material 11 including particles 1 and having different physical property values is disposed on the upper part of the resin material 2 including the conductive particles 1. A semiconductor integrated circuit (IC) It is installed between the electrode 4 of 3 and the electrode 4 of the substrate 5. Here, the resin material 2 is assumed to have an initial temperature of 30 ° C., and the exothermic formulas (Formula 7) to (Formula 11) and the viscosity formulas (Formula 12) to (Formula 15) are used. The constant value, density, thermal conductivity, specific heat value, particle diameter (φD), density of the exothermic formula (Formula 7) to (Formula 11), viscosity formula (Formula 12) to (Formula 15) As for the first-layer resin material 2 and particle 1, the values of Table 1 are used, and the values of the second-layer embryo material 11 and particle 1 are shown in Table 2.
[表 1] 粘度式の定数 [table 1] Viscosity formula constant
Figure imgf000019_0001
Figure imgf000019_0001
その他物性  Other physical properties
Figure imgf000019_0002
Figure imgf000019_0002
[表 2] [Table 2]
2層目榭脂の材料物性 粘度式の定数 Material properties of the second layer of resin
Figure imgf000020_0001
Figure imgf000020_0001
その他物性  Other physical properties
比熱凍 g 'K) 密度 熱伝導率  Specific heat freezing g 'K) Density Thermal conductivity
(Kg/rr^) (W/(m 'Κ))  (Kg / rr ^) (W / (m 'Κ))
1000 1.95e3 0.97 粒 子  1000 1.95e3 0.97 particles
直径(〃m) 密度  Diameter (〃m) Density
(Kg/  (Kg/
2 1.00e3  2 1.00e3
[0061] ここで、半導体集積回路 (IC) 3の温度は一定(185°C)に設定し、基板 5の方向に 圧力 5MPaを加えて移動させ、樹脂材料 2、 11を圧縮することにより、粒子 1を含む 樹脂材料 2、 11を流動させる。このとき、半導体集積回路 (IC) 3の電極 4と樹脂材料 2、 11の接触により、樹胎材料 2、 11の温度が変化し、温度変化に伴う粘度変化を生 じながら、樹脂材料 2、 11が粒子 1と共に圧縮されながら流動する過程を計算できるHere, the temperature of the semiconductor integrated circuit (IC) 3 is set to be constant (185 ° C.), moved by applying a pressure of 5 MPa in the direction of the substrate 5, and the resin materials 2 and 11 are compressed. The resin materials 2 and 11 containing the particles 1 are caused to flow. At this time, due to the contact between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the resin materials 2 and 11, the temperature of the embryo materials 2 and 11 changes, and while the viscosity change accompanying the temperature change occurs, the resin material 2 and 11 Calculate the flow of 11 while being compressed with particle 1
Yes
[0062] なお、半導体集積回路(IC) 3の電極 4と基板 5の電極 4との間隔が粒子 1の直径よ りも小さくなつたときには、解析上では、粒子 1と電極 4の接触の計算は行わない。つ まり、解析上では、粒子 1同士、粒子 1と電極 4が接触する場合には、粒子 1が電極 4 をすり抜けるなどの設定を行うことにより、樹脂材料 2、 11だけの流動性の計算を行う 。このとき、半導体集積回路 (IC) 3の上部から加える圧力は設定値の 5MPaではなく 、図 3のフローチャートで示したように、設定圧力と面積との積で求めた荷重から粒子 1の変形量に対応した荷重を引いた値を用いる。 [0062] When the distance between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 becomes smaller than the diameter of the particle 1, the calculation of the contact between the particle 1 and the electrode 4 is made in the analysis. Do not do. In other words, in the analysis, if particles 1 are in contact with each other, and particle 1 and electrode 4 are in contact, particle 1 is in contact with electrode 4 By making settings such as slipping through, calculate the fluidity of resin materials 2 and 11 only. At this time, the pressure applied from the upper part of the semiconductor integrated circuit (IC) 3 is not the set value of 5 MPa, but as shown in the flowchart of FIG. 3, the deformation amount of the particle 1 is determined from the load obtained by the product of the set pressure and the area. The value obtained by subtracting the load corresponding to is used.
この計算の結果、樹胎粘度が大きくなり、荷重を加えても半導体集積回路 (IC) 3と 電極 4の移動ができなくなり、解析が終了する。このとき、電極間の間隔から粒子 1の 変形量を求めることができる。なお、粒子 1の変形量 ADは、(式 6)で求めることがで きる。  As a result of this calculation, the viscosity of the embryo increases, and even if a load is applied, the semiconductor integrated circuit (IC) 3 and the electrode 4 cannot move, and the analysis ends. At this time, the deformation amount of the particle 1 can be obtained from the distance between the electrodes. The deformation amount AD of the particle 1 can be obtained by (Equation 6).
[数 6]  [Equation 6]
△ D = D— D 1 ( 6 ) △ D = D— D 1 (6)
[0064] ここで、 D :粒子 1の直径、 D1 :解析終了後の基板 4の間隔を表す。なお、以上では 電極 4の移動が圧力により制御される事例を示した力 S、本発明はこれだけに限定され るものではなぐ図 4のフローチャートで示したように、電極の移動を速度から圧力に 制御することも可能とする。また、ここでは粒子内の熱伝導計算は行っていないが、 粒子の比熱、熱伝導率、樹脂材料と粒子の熱伝達率などの入力により、粒子内の熱 伝導計算も行うこと力 Sできる。なお、以上では二相日の樹脂材料 11に粒子 1が含ま れる解析の事例を示したが、本発明はこれだけに限定されるものではなぐ二相日の 樹脂材料 11には粒子 1が含まれない状態での解析も行えるものとする。 [0064] Here, D: the diameter of the particle 1 and D1: the distance between the substrates 4 after the analysis is completed. In the above description, the force S indicates the case where the movement of the electrode 4 is controlled by pressure, and the present invention is not limited to this. As shown in the flowchart of FIG. 4, the movement of the electrode is changed from speed to pressure. It is also possible to control. In addition, although the heat conduction calculation within the particle is not performed here, the heat conduction calculation within the particle S can be performed by inputting the specific heat of the particle, the heat conductivity, the heat transfer coefficient between the resin material and the particle, and the like. In the above, an example of the analysis in which the particle 1 is included in the resin material 11 of the two-phase day is shown, but the present invention is not limited to this, and the resin material 11 of the two-phase day 11 includes the particle 1. It is assumed that the analysis can be performed in the absence.
実施例 3  Example 3
[0065] [導電性の予測(電極移動の圧力制御) ]  [0065] [Prediction of conductivity (pressure control for electrode movement)]
図 7は、本発明の実施例 3の半導体集積回路(IC) 3の電極 4と基板 5の電極 4間の 導電性を予測するフローチャートである。ここでは、図 3のフローチャートで求めた粒 子変形量と導電性の関係の入力により、半導体集積回路 (IC) 3の電極 4と基板 5の 電極 4間の導電性を予測する。まず、モデル形状作成ステップ 3001では、オペレー タによって入力装置を介して特定された解析対象モデル、つまり、解析対象の電極、 初期の粒子を含む樹脂材料の形状、粒子を含む樹脂材料が流動できる空間のデー タを記憶装置 10から読み出す。 FIG. 7 is a flowchart for predicting the conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 according to the third embodiment of the present invention. Here, the conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 is predicted based on the input of the relationship between the particle deformation and the conductivity obtained in the flowchart of FIG. First, in the model shape creation step 3001, the analysis target model identified by the operator through the input device, that is, the electrode to be analyzed, the shape of the resin material including the initial particles, and the space in which the resin material including the particles can flow Day of Read data from storage device 10.
[0066] 次に、 3次元ソリッド要素作成のステップ 3002では、モデル形状作成ステップ 1001 で読み込んだデータの形状を複数の特定空間(3次元ソリッドの有限要素)に分解し[0066] Next, in step 3002 for creating a 3D solid element, the shape of the data read in model shape creating step 1001 is decomposed into a plurality of specific spaces (finite elements of a 3D solid).
、各有限要素の形状データを作成する。 Create shape data for each finite element.
[0067] 次に、物性値入力ステップ 3003では、解析を行う材料材料の物性値である密度、 熱伝導率、比熱、発熱式 (式 7)〜(式 11)、粘度式 (式 12)〜(式 15)、粒子 1の配置[0067] Next, in the physical property value input step 3003, density, thermal conductivity, specific heat, exothermic equation (Equation 7) to (Equation 11), viscosity equation (Equation 12) to (Equation 15), arrangement of particle 1
、密度、直径、粒子 1の 1個当たりに荷重が加わった場合の変形量を入力するように、 オペレータに催促する表示を行い、入力装置からこれらのデータを受け付ける。 The display prompts the operator to input the deformation amount when a load is applied per particle, density, diameter, and particle 1 and receives these data from the input device.
[0068] 次に、境界条件、成形条件入力ステップ 3004において、半導体集積回路 (IC) 3 および電極 4の上部に加えられる圧力の入力をするように、オペレータに催促する表 示を行い、入力装置力 データを受け付ける。ここで、受け付けた半導体集積回路 (I C) 3および電極 4の上部に加えられる圧力と半導体集積回路(IC) 3の上部の面積か ら半導体集積回路 (IC) 3および電極 4の上部に加えられる荷重 Fを算出する。  [0068] Next, in the boundary condition and molding condition input step 3004, a display is made to prompt the operator to input the pressure applied to the top of the semiconductor integrated circuit (IC) 3 and the electrode 4, and the input device Force data is accepted. Here, the pressure applied to the top of the semiconductor integrated circuit (IC) 3 and the electrode 4 and the area of the top of the semiconductor integrated circuit (IC) 3 are applied to the top of the semiconductor integrated circuit (IC) 3 and the electrode 4. Calculate the load F.
[0069] 次に、オペレータからの解析開姑の指示と初期時間増分を受け付ける。ステップ 30 05として、この指示に基づいて、記録装置に格納された連続の式(1)およびナビエ スト一タスの式(2)〜(4)、エネルギ保存式(5)を呼び出し、これまで入力を受け付け た、初期時間増分、半導体集積回路 (IC) 3および電極 4の上部に加えられる圧力、 樹胎材料の密度、比熱、熱伝導率、発熱式 (式 7)〜(式 11)、粘度式 (式 12)〜(式 1 5)を代入し、電極の圧縮による樹脂材料 2と粒子 1の流動に伴う速度、圧力、温度お よび粘度を計算する。この計算結果を有限要素の位置と対応つけて記憶装置に保 存する。  Next, an analysis opening instruction and an initial time increment from the operator are accepted. In step 30 05, based on this instruction, the continuous equation (1), Naviest status equation (2) to (4), and energy conservation equation (5) stored in the recording device are called and entered so far. Initial time increment, pressure applied on top of semiconductor integrated circuit (IC) 3 and electrode 4, density of embryo material, specific heat, thermal conductivity, exothermic equation (Equation 7) to (Equation 11), viscosity Substituting Equations (Equation 12) to (Equation 15), calculate the velocity, pressure, temperature and viscosity associated with the flow of resin material 2 and particles 1 due to electrode compression. This calculation result is stored in the storage device in association with the position of the finite element.
[0070] 次にステップ 3006で、電極 4間の間隔が粒子の直径よりも大き!/、かどうかの判定を 行う。ここで、電極 4間の間隔が粒子 1の直径( φ D)と等しくなつた場合には、ステツ プ 3007において、電極 4間に挟まれる接続部の粒子 1数 Nを出力する。  [0070] Next, in step 3006, it is determined whether or not the distance between the electrodes 4 is larger than the diameter of the particles. Here, when the distance between the electrodes 4 becomes equal to the diameter (φD) of the particles 1, in step 3007, the number 1 of particles 1 at the connection portion sandwiched between the electrodes 4 is output.
[0071] 次のステップ 1008から 1015は図 3のフローチャートで示した計算方法であり、ステ ップ 3008で粒子の変形量を出力する。ステップ 3009にて、粒子 1の任意数当たりの 変形量と半導体集積回路 (IC) 3の電極 4と基板 5の電極 4間の導電性を入力する。 なお、導電性は、電極間に任意の電圧を印加した場合の電流値 Iとする。ここで、粒 子 1の電極 4間に挟まれる数 Nは、ステップ 3007において算出し、粒子 1の変形量は 、ステップ 3008で求めるものとする。 Next steps 1008 to 1015 are the calculation method shown in the flowchart of FIG. 3. In step 3008, the deformation amount of the particles is output. In step 3009, the deformation amount per arbitrary number of particles 1 and the conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 are input. The conductivity is the current value I when an arbitrary voltage is applied between the electrodes. Where the grain The number N sandwiched between the electrodes 4 of the child 1 is calculated in step 3007, and the deformation amount of the particle 1 is determined in step 3008.
[0072] ここで、入力した「粒子 1の任意数当たりの変形量と半導体集積回路 (IC) 3の電極  [0072] Here, the input "deformation amount per arbitrary number of particles 1 and electrodes of the semiconductor integrated circuit (IC) 3"
4と基板 5の電極 4間の導電性」の関係の一例を図 10に示す。なお、ここでは粒子 1 の任意数の代表値として、 Nl、 N2、 N3の場合を示しており、ステップ 3007において 、電極 4間に挟まれる接続部の粒子 1数 Nが Nl, N2, N3以外の場合には、内揷、外 揷にて値を求めることができる。  FIG. 10 shows an example of the relationship of “conductivity between electrode 4 of substrate 4 and electrode 4 of substrate 5”. Here, as an arbitrary number of representative values of particle 1, Nl, N2, and N3 are shown. In step 3007, the number of particles 1 in the connection part sandwiched between electrodes 4 is N1, N2, or N3. In the case of, the value can be obtained from the inner and outer cages.
[0073] ここで、ステップ 3010にて、ステップ 3008で求めた粒子 1の変形量から粒子 1個当 たりの導電性を算出し、この粒子 1個当たりの導電性とステップ 3007で求めた電極 4 間の粒子数から、半導体集積回路 (IC) 3の電極 4と基板 5の電極 4間の導電性を算 出する。  Here, in step 3010, the conductivity per particle is calculated from the deformation amount of particle 1 obtained in step 3008, and the conductivity per particle and the electrode 4 obtained in step 3007 are calculated. The conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 is calculated from the number of particles between them.
[0074] 次にステップ 3011において、計算の収束判定を行う.収束の判定手法は、圧力と あらかじめ定めておいた圧力範囲とを対比し、範囲内にある場合を収束として判定す る.収束しない場合には、ステップ 300;!〜 3004のいずれ力、に戻る。この際、ォペレ ータに入力を促し、どのステップに戻るかを決める。  [0074] Next, in step 3011, calculation convergence is determined. The convergence determination method compares the pressure with a predetermined pressure range, and determines that the pressure is within the range as convergence. If so, return to step 300; At this time, prompt the operator for input and decide which step to return to.
[0075] ステップ 3012において導電性の適正判定を行う。ここでは、導電性が規定された 値の範囲内であるかを判定し、規定された範囲外である場合には、ステップ 300;!〜 3004のいずれ力、に戻る。この際、オペレータに入力を促し、どのステップに戻るかを 決める。  [0075] In step 3012, appropriateness of conductivity is determined. Here, it is determined whether the conductivity is within the specified value range. If the conductivity is out of the specified range, the process returns to step 300; At this time, prompt the operator for input and decide which step to return to.
[0076] ステップ 3011で計算が収束したことを判定し、ステップ 3012で粒子変形が適正で あることを判定した後、ステップ 3013において計算を終了する。なお、ステップ 3009 にて入力した「粒子 1の任意数当たりの変形量と半導体集積回路 (IC) 3の電極 4と基 板 5の電極 4間の導電性」は、「粒子 1の任意数当たりの変形量と、粒子 1と電極 4との 接触面積」の関係から求めた「粒子 1と電極 4との接触面積と半導体集積回路 (IC) 3 の電極 4と基板 5の電極 4間の導電性」を入力することもできる.また、導電性は電極 間に任意電圧を印加した場合の電流値としたが、本発明はこれだけに限定されるも のではなく、電極間の抵抗値などを用いることができる。  [0076] In step 3011, it is determined that the calculation has converged. In step 3012, it is determined that the particle deformation is appropriate. In step 3013, the calculation ends. It should be noted that “the deformation amount per arbitrary number of particles 1 and the conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5” input in step 3009 is “per particle 1 per arbitrary number. The contact area between particle 1 and electrode 4 and the conductivity between electrode 4 of semiconductor integrated circuit (IC) 3 and electrode 4 of substrate 5 obtained from the relationship between the deformation amount of particle and the contact area between particle 1 and electrode 4 In addition, although the conductivity is the current value when an arbitrary voltage is applied between the electrodes, the present invention is not limited to this, and the resistance value between the electrodes is not limited to this. Can be used.
実施例 4 [0077] [導電性の予測(電極移動の速度〜圧力制御) ] Example 4 [0077] [Prediction of conductivity (speed of electrode movement to pressure control)]
図 8は、本発明の実施例 4の半導体集積回路(IC) 3の電極 4と基板 5の電極 4間の 導電性を予測するフローチャートを示す。ここで、図 4のフローチャートで求めた粒子 変形量と導電性の関係の入力により、半導体集積回路 (IC) 3の電極 4と基板 5の電 極 4間の導電性を予測する。  FIG. 8 is a flowchart for predicting the conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 according to the fourth embodiment of the present invention. Here, the conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 is predicted based on the input of the relationship between the amount of particle deformation and the conductivity obtained in the flowchart of FIG.
[0078] まず、モデル形状作成ステップ 4001では、オペレータによって入力装置を介して 特定された解析対象モデル、つまり、解析対象の電極、初期の粒子を含む樹脂材料 の形状、粒子を含む樹胎材料が流動できる空間のデータを記憶装置 10から読み出 す。  [0078] First, in the model shape creation step 4001, the analysis target model identified by the operator via the input device, that is, the electrode to be analyzed, the shape of the resin material including the initial particles, and the embryo material including the particles are obtained. Reads the space data that can flow from the storage device 10.
[0079] 次に、 3次元ソリッド要素作成のステップ 4002では、モデル形状作成ステップ 4001 で読み込んだデータの形状を複数の特定空間(3次元ソリッドの有限要素)に分解し 、各有限要素の形状データを作成する。  [0079] Next, in step 4002 of creating the 3D solid element, the shape of the data read in the model shape creating step 4001 is decomposed into a plurality of specific spaces (finite elements of the 3D solid), and the shape data of each finite element is obtained. Create
[0080] 次に、物性値入力ステップ 4003では、解析を行う材料材料の物性値である密度、 熱伝導率、比熱、発熱式 (式 7)〜(式 11)、粘度式 (式 12)〜(式 15)、粒子の密度、 直径、粒子 1の 1個当たりに荷重が加わった場合の変形量を入力するように、ォペレ ータに催促する表示を行い、入力装置からこれらのデータを受け付ける。  [0080] Next, in the physical property value input step 4003, density, thermal conductivity, specific heat, exothermic equation (Equation 7) to (Equation 11), viscosity equation (Equation 12) to (Equation 15), particle density, diameter, display a prompt to the operator to input the deformation amount when a load is applied per particle 1 and accept these data from the input device .
[0081] 次に、境界条件、成形条件入力ステップ 4004において、半導体集積回路 (IC) 3 および電極 4の移動速度 Vdおよび半導体集積回路(IC) 3および電極 4の上部に加 えられる最大圧力の入力をするように、オペレータに催促する表示を行い、入力装置 力、らデータを受け付ける。ここで、受け付けた半導体集積回路 (IC) 3および電極 4の 上部に加えられる最大圧力と半導体集積回路 (IC) 3の上部の面積から、半導体集 積回路 (IC) 3および電極 4の上部に加えられる最大荷重 Fmaxを算出する。  [0081] Next, in the boundary condition / molding condition input step 4004, the moving speed Vd of the semiconductor integrated circuit (IC) 3 and the electrode 4 and the maximum pressure applied to the upper part of the semiconductor integrated circuit (IC) 3 and the electrode 4 are set. The display prompts the operator to input, and accepts data from the input device. Here, from the received maximum pressure applied to the upper part of the semiconductor integrated circuit (IC) 3 and the electrode 4 and the area of the upper part of the semiconductor integrated circuit (IC) 3, the upper part of the semiconductor integrated circuit (IC) 3 and the electrode 4 Calculate the maximum load Fmax that can be applied.
[0082] 次に、オペレータからの解析開始の指示と初期時間増分を受け付ける。ステップ 40 05として、この指示に基づいて、記録装置に格納された連続の式(1)およびナビエ スト一タスの式(2)〜(4)、エネルギ保存式(5)を呼び出し、これまで入力を受け付け た、初期時間増分、半導体集積回路 (IC) 3および電極 4の上部に加えられる圧力、 樹脂材料の密度、比熱、熱伝導率、発熱式(1)、粘度式 (2)を代入し、電極の圧縮 による樹脂材料 2と粒子 1の流動に伴う、速度、圧力、温度および粘度を計算する。こ の計算結果を有限要素の位置と対応つけて記憶装置に保存する。 Next, an analysis start instruction from the operator and an initial time increment are accepted. Based on this instruction as Step 40 05, the continuous equation (1), Naviest status equations (2) to (4), and energy conservation equation (5) stored in the recording device are called up and input so far. Substituting the initial time increment, the pressure applied to the top of the semiconductor integrated circuit (IC) 3 and the electrode 4, the density of the resin material, the specific heat, the thermal conductivity, the exothermic equation (1), and the viscosity equation (2) Calculate the velocity, pressure, temperature and viscosity associated with the flow of resin material 2 and particles 1 due to electrode compression. This Is stored in the storage device in association with the position of the finite element.
[0083] 次にステップ 4006で、電極 4間の間隔が粒子の直径よりも大き!/、かどうかの判定を 行う。ここで、電極 4間の間隔が粒子 1の直径( φ D)と等しくなつた場合には、ステツ プ 4007において、電極 4間に挟まれる接続部の粒子 1数 Nを出力する。 [0083] Next, in step 4006, it is determined whether or not the distance between the electrodes 4 is larger than the diameter of the particles. Here, when the distance between the electrodes 4 is equal to the diameter (φD) of the particles 1, in step 4007, the number 1 of particles 1 at the connection portion sandwiched between the electrodes 4 is output.
[0084] 次のステップ 2008から 2014は図 4のフローチャートで示した計算方法であり、ステ ップ 4008で粒子の変形量を出力する。ステップ 4009にて、粒子 1の任意数当たりの 変形量と半導体集積回路 (IC) 3の電極 4と基板 5の電極 4間の導電性を入力する。 なお、導電性は、電極間に任意の電圧を印加した場合の電流値 Iとする。ここで、粒 子 1の電極 4間に挟まれる数 Nは、ステップ 4007において算出し、粒子 1の変形量は 、ステップ 4008で求めるものとする。ここで、入力した「粒子 1の任意数当たりの変形 量と半導体集積回路 (IC) 3の電極 4と基板 5の電極 4間の導電性」の関係の一例を 図 10に示す。なお、ここでは粒子 1の任意数の代表値として、 Nl、 N2、 N3の場合を 示しており、ステップ 4007において、電極 4間に挟まれる接続部の粒子 1数 Nが N1, N2, N3以外の場合には、内揷、外揷にて値を求めることができる。 The next steps 2008 to 2014 are the calculation method shown in the flowchart of FIG. 4. In step 4008, the deformation amount of the particles is output. In step 4009, the deformation amount per arbitrary number of particles 1 and the conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 are input. The conductivity is the current value I when an arbitrary voltage is applied between the electrodes. Here, the number N sandwiched between the electrodes 4 of the particles 1 is calculated in step 4007, and the deformation amount of the particles 1 is determined in step 4008. Here, FIG. 10 shows an example of the relationship between the inputted “deformation amount per arbitrary number of particles 1 and the conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5”. Note that here, Nl, N2, and N3 are shown as representative values of an arbitrary number of particles 1. In step 4007, the number of particles 1 at the connection part sandwiched between electrodes 4 is N1, N2, or N3. In the case of, the value can be obtained from the inner and outer cages.
[0085] ここで、ステップ 4010にて、ステップ 4008で求めた粒子 1の変形量から粒子 1個当 たりの導電性を算出し、この粒子 1個当たりの導電性とステップ 4007で求めた電極 4 間の粒子数から、半導体集積回路 (IC) 3の電極 4と基板 5の電極 4間の導電性を算 出する。 Here, in Step 4010, the conductivity per particle is calculated from the deformation amount of Particle 1 obtained in Step 4008, and the conductivity per particle and the electrode 4 obtained in Step 4007 are calculated. The conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 is calculated from the number of particles between them.
[0086] 次にステップ 4011において、計算の収束判定を行う。収束の判定手法は、圧力と あらかじめ定めておいた圧力範囲とを対比し、範囲内にある場合を収束として判定す る。収束しない場合には、ステップ 400;!〜 4004のいずれ力、に戻る。この際、ォペレ ータに入力を促し、どのステップに戻るかを決める。  Next, in step 4011, calculation convergence is determined. Convergence is determined by comparing pressure with a pre-determined pressure range and determining that it is within the range as convergence. If it does not converge, return to step 400; At this time, prompt the operator for input and decide which step to return to.
[0087] ステップ 4012において導電性の適正判定を行う。ここでは、導電性が規定された 値の範囲内であるかを判定し、規定された範囲外である場合には、ステップ 400;!〜 4004のいずれ力、に戻る。この際、オペレータに入力を促し、どのステップに戻るかを 決める。  [0087] In step 4012, the appropriateness of conductivity is determined. Here, it is determined whether the conductivity is within the specified value range, and if it is out of the specified range, the process returns to step 400; At this time, prompt the operator for input and decide which step to return to.
[0088] ステップ 4011で計算が収束したことを判定し、ステップ 4012で粒子変形が適正で あることを判定した後、ステップ 4013において計算を終了する。 なお、ステップ 4009にて入力した「粒子 1の任意数当たりの変形量と半導体集積回 路 (IC) 3の電極 4と基板 5の電極 4間の導電性」は、「粒子 1の任意数当たりの変形量 と、粒子 1と電極 4との接触面積」の関係から求めた「粒子 1と電極 4との接触面積と半 導体集積回路 (IC) 3の電極 4と基板 5の電極 4間の導電性」を入力することもできる。 また、導電性は電極間に任意電圧を印加した場合の電流値としたが、本発明はこれ だけに限定されるものではなぐ電極間の抵抗値などを用いることができる。 [0088] After determining that the calculation has converged in step 4011 and determining that the particle deformation is appropriate in step 4012, the calculation ends in step 4013. It should be noted that the “deformation amount per arbitrary number of particles 1 and the conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5” input in step 4009 is “per particle 1 per arbitrary number. The contact area between particle 1 and electrode 4 and the distance between electrode 4 of semiconductor integrated circuit (IC) 3 and electrode 4 of substrate 5 obtained from the relationship between the deformation amount of particle and the contact area between particle 1 and electrode 4 “Conductivity” can also be entered. In addition, although the electrical conductivity is a current value when an arbitrary voltage is applied between the electrodes, the present invention is not limited to this, and a resistance value between the electrodes can be used.
実施例 5  Example 5
[0089] [移動電極の圧力制御]  [0089] [Pressure control of moving electrode]
まず、解析対象となる成形工程を、図 11を用いて説明する。初期状態(1— a)では 、導電性を有する粒子 1を含む樹脂材料 2が半導体集積回路 (IC) 3の電極 4と基板 5の電極 4間に設置されている。成形工程では、熱を加えた半導体集積回路 (IC) 3 を基板 5の方向に移動させ、粒子 1を含む樹脂材料 2を圧縮することにより、粒子 1を 含む樹脂材料 2が流動する。  First, the forming process to be analyzed will be described with reference to FIG. In the initial state (1-a), the resin material 2 containing the conductive particles 1 is placed between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5. In the molding step, the semiconductor integrated circuit (IC) 3 to which heat is applied is moved in the direction of the substrate 5 and the resin material 2 containing the particles 1 is compressed, whereby the resin material 2 containing the particles 1 flows.
[0090] このとき、半導体集積回路 (IC) 3の電極 4と樹脂材料 2の接触により、樹脂材料 2の 温度が変化し、温度変化に伴う粘度変化を生じながら、樹脂材料 2が粒子 1と共に圧 縮されながら流動する。なお、半導体集積回路 (IC) 3の電極 4と基板 5の電極 4との 間隔が粒子 1の直径よりも小さくなつたときには、電極 4間に挟まれる粒子 1は変形し ながら圧縮される。  [0090] At this time, the temperature of the resin material 2 changes due to the contact between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the resin material 2, and the resin material 2 together with the particles 1 changes in viscosity due to the temperature change. It flows while being compressed. When the distance between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 becomes smaller than the diameter of the particle 1, the particle 1 sandwiched between the electrodes 4 is compressed while being deformed.
[0091] 半導体集積回路 (IC) 3の移動が終了したとき(1 b)には、電極 4間に挟まれる粒 子 1の導電性により、半導体集積回路 (IC) 3と基板 5間の電気信号を伝えることが可 能となる。ここで、粒子 1の変形量により、粒子 1と電極 4との接触面積が決まり、この 接触面積により半導体集積回路 (IC) 3と基板 5間の導電性が決まる。  [0091] When the movement of the semiconductor integrated circuit (IC) 3 is completed (1b), the electrical conductivity between the particles 1 sandwiched between the electrodes 4 causes the electrical connection between the semiconductor integrated circuit (IC) 3 and the substrate 5 to occur. It is possible to convey a signal. Here, the contact area between the particle 1 and the electrode 4 is determined by the deformation amount of the particle 1, and the conductivity between the semiconductor integrated circuit (IC) 3 and the substrate 5 is determined by this contact area.
[0092] なお、導電性は、電極 4間に一定電圧を印加した場合に流れる電流によって評価さ れる。ここで、粒子 1の変形量は、半導体集積回路 (IC) 3の上部から荷重を加える装 置の能力、荷重を加えたときの粒子 1の変形量、電極間に挟まれる粒子 1の数、樹脂 材料 2の粘度変化によって決まる。  Note that the conductivity is evaluated by a current flowing when a constant voltage is applied between the electrodes 4. Here, the deformation amount of particle 1 is the ability of the device to apply a load from the top of the semiconductor integrated circuit (IC) 3, the deformation amount of particle 1 when the load is applied, the number of particles 1 sandwiched between the electrodes, Determined by viscosity change of resin material 2.
[0093] [角科斤システムの構成]  [0093] [Composition of Kakushin Sakai System]
次に、粒子 1変形に伴う樹脂材料 2の流動過程を予測するために用いる解析システ ムについて説明する。解析システムは、図 12示すハードウェア構成で後述する図 13 , 14, 17のフローを備えたソフトウェアが実行されることにより機能する。 Next, the analysis system used to predict the flow process of resin material 2 due to particle 1 deformation. Explain the system. The analysis system functions by executing software having the hardware configuration shown in FIG. 12 and having the flows shown in FIGS.
[0094] 具体的には、計算装置 6、記録装置 10 (ハードディスク、 MOなど)を備えた計算装 置 7、この 2つの計算装置を繋ぐ LAN8、計算装置 7が備える表示装置 9を備えてい る。また、計算装置 6で作成した CADデータを、 LAN8を介して計算装置 7に転送す るように構成しても良い。計算装置 7に転送された CADデータを、計算装置 7の記録 装置 10 (ノ、ードディスク、 MOなど)に記録して利用することもできる。  [0094] Specifically, it includes a computing device 6, a computing device 7 provided with a recording device 10 (hard disk, MO, etc.), a LAN 8 connecting these two computing devices, and a display device 9 provided in the computing device 7. . The CAD data created by the calculation device 6 may be transferred to the calculation device 7 via the LAN 8. The CAD data transferred to the computing device 7 can be recorded on the recording device 10 (node, disk, MO, etc.) of the computing device 7 for use.
[0095] 計算装置 7は図 13、 4、 7、 8で示すフローチャートに従って計算を実行し、結果を 記録装置 10に記録した後、表示装置 9に結果を表示する。図示してはいないが、計 算装置 6及び 7には、当然キーボードやマウス等の入力デバイスを備えている。  The calculation device 7 executes the calculation according to the flowcharts shown in FIGS. 13, 4, 7, and 8, records the result in the recording device 10, and displays the result on the display device 9. Although not shown, the calculation devices 6 and 7 are naturally provided with input devices such as a keyboard and a mouse.
[0096] [フローチャート]  [0096] [Flowchart]
次に、図 13のフローチャートに沿って解析プログラムの処理を説明する。まず、モ デル形状作成ステップ 1001では、オペレータによって入力装置を介して特定された 解析対象モデル、つまり、解析対象の電極、初期の粒子を含む樹脂材料の形状、粒 子を含む樹脂材料が流動できる空間のデータを記憶装置 10から読み出す。  Next, the processing of the analysis program will be described along the flowchart of FIG. First, in the model shape creation step 1001, the analysis target model identified by the operator via the input device, that is, the electrode to be analyzed, the shape of the resin material including the initial particles, and the resin material including the particles can flow. Read space data from storage device 10.
[0097] 次に、 3次元ソリッド要素作成のステップ 1002では、モデル形状作成ステップ 1001 で読み込んだデータの形状を複数の特定空間(3次元ソリッドの有限要素)に分解し 、各有限要素の形状データを作成する。  [0097] Next, in step 1002 for creating a 3D solid element, the shape of the data read in model shape creation step 1001 is decomposed into a plurality of specific spaces (finite elements of a 3D solid), and the shape data of each finite element is obtained. Create
[0098] 次に、物性値入力ステップ 1003では、解析を行う材料の物性値である密度、熱伝 導率、比熱、発熱式 (式 7)〜(式 11)、粘度式 (式 12)〜(式 15)、粒子 1の配置、密 度、直径、粒子 1の 1個当たりに荷重が加わった場合の変形量を入力するように、ォ ペレータに催促する表示を行い、入力装置からこれらのデータを受け付ける。なお、 A :反応率、 t :時間、 T :温度、 dA/dt :反応速度、 XI , X2 :温度の関数となる係数、 N, M, Xa, Ea, Xb, Eb :材料固有の係数、 Q:任意時刻までの発熱量、 Qo :反応 終了時までの総発熱量、 dQ/dt :発熱速度、 η:粘度、 7] 0 :初期粘度、 t :時間、 tO :ゲル化時間、 T :温度、 a、 b、 d、 e、 f、 g :材料固有の定数を示す。  [0098] Next, in the physical property value input step 1003, density, thermal conductivity, specific heat, exothermic equation (Equation 7) to (Equation 11), viscosity equation (Equation 12) to (Equation 15), the arrangement, density, diameter of particle 1 and the amount of deformation when a load is applied to each particle 1 are displayed to prompt the operator, and these are displayed from the input device. Accept data. A: reaction rate, t: time, T: temperature, dA / dt: reaction rate, XI, X2: coefficient as a function of temperature, N, M, Xa, Ea, Xb, Eb: material specific coefficients, Q: Calorific value up to an arbitrary time, Qo: Total calorific value until the end of reaction, dQ / dt: Heat generation rate, η: Viscosity, 7] 0: Initial viscosity, t: Time, tO: Gelation time, T: Temperature, a, b, d, e, f, g: Indicates material-specific constants.
[数 1] [Number 1]
Figure imgf000028_0001
Figure imgf000028_0001
m  m
Z P A P X P 1 0Z P A P X P 1 0
( Ί ) 0 E_ + L_ 4. ― + -LI (Ί) 0 E_ + L_ 4. ― + -LI
[ l ) u一 (cod) ρ (π ρ (n e (l) u one (cod) ρ (π ρ (ne
T9C690/.00Zdf/X3d 93 △ D = D— D l ( 6 ) T9C690 / .00Zdf / X3d 93 △ D = D— D l (6)
[数 7] [Equation 7]
dA/dt ={ Kj+ K2AM) {l- A)N (7) dA / dt = (Kj + K 2 A M ) (l- A) N (7)
[数 8]  [Equation 8]
ΚΓΚα exp (-^ IT) (8) Γ Γ Κ α exp (-^ IT) (8)
[数 9]  [Equation 9]
K2=Kb exp (-^ IT) (9) K 2 = K b exp (-^ IT) (9)
[0099] 次に、境界条件、成形条件入力ステップ 1004において、半導体集積回路 (IC) 3 および電極 4の上部に加えられる圧力の入力をするように、オペレータに催促する表 示を行い、入力装置力 データを受け付ける。ここで、受け付けた半導体集積回路 (I C) 3および電極 4の上部に加えられる圧力と半導体集積回路(IC) 3の上部の面積か ら半導体集積回路 (IC) 3および電極 4の上部に加えられる荷重 Fを算出する。  [0099] Next, in the boundary condition / molding condition input step 1004, a display prompting the operator to input the pressure applied to the top of the semiconductor integrated circuit (IC) 3 and the electrode 4 is performed, and the input device Force data is accepted. Here, the pressure applied to the top of the semiconductor integrated circuit (IC) 3 and the electrode 4 and the area of the top of the semiconductor integrated circuit (IC) 3 are applied to the top of the semiconductor integrated circuit (IC) 3 and the electrode 4. Calculate the load F.
[0100] 次に、オペレータからの解析開始の指示と初期時間増分および解析終了時間 tend を受け付ける。なお、解析は微小な時間を増加させて、それぞれの時間ステップごと の変化を計算するものであり、時間増分とは、時間ステップの間隔を示す。  Next, an analysis start instruction from the operator, initial time increment and analysis end time tend are accepted. The analysis increases the minute time and calculates the change for each time step. The time increment indicates the time step interval.
[0101] ステップ 1005として、この指示に基づいて、記録装置に格納された連続の式(1)お よびナビエスト一タスの式(2)〜(4)、エネルギ保存式(5)を呼び出し、これまで入力 を受け付けた、初期時間増分、半導体集積回路 (IC) 3および電極 4の上部に加えら れる圧力、樹脂材料の密度、比熱、熱伝導率、発熱式 (式 7)〜(式 11)、粘度式 (式 12)〜(式 15)を代入し、電極の圧縮による樹脂材料 2と粒子 1の流動に伴う、速度、 圧力、温度および粘度を計算する。この計算結果を有限要素の位置と対応つけて記 憶装置に保存する。 [0102] ここで、 P;密度、 u;X方向速度、 v;y方向速度、 ω; Ζ方向速度、 Τ;温度、 Ρ;圧力、 t;時間、 ;粘度、 Cp;定圧比熱、 13;体積膨張係数、 λ;熱伝導率を示している。 [0101] In step 1005, based on this instruction, continuous equations (1), Naviest status equations (2) to (4), and energy conservation equation (5) stored in the recording device are called. Initial time increment, pressure applied on top of semiconductor integrated circuit (IC) 3 and electrode 4, density of resin material, specific heat, thermal conductivity, exothermic equation (Equation 7) to (Equation 11) Substituting the viscosity equations (Equation 12) to (Equation 15), calculate the velocity, pressure, temperature and viscosity associated with the flow of the resin material 2 and particles 1 due to the compression of the electrode. This calculation result is stored in the storage device in association with the position of the finite element. [0102] where P; density, u; velocity in X direction, v; velocity in y direction, ω; velocity in Ζ direction, Τ; temperature, Ρ; pressure, t; time,; viscosity, Cp; Volume expansion coefficient, λ; thermal conductivity.
[数 10]
Figure imgf000030_0001
[Equation 10]
Figure imgf000030_0001
[数 11] dO/dt=Q0(K1+K2AM){l-A)N [Equation 11] dO / dt = Q 0 (K 1 + K 2 A M ) {lA) N
Figure imgf000030_0002
Figure imgf000030_0002
[0103] 次に、ステップ 1006で解析における時間が設定した解析終了時間 tendよりも短い かの判定を行い、判定力 Oの場合は計算の収束判定などを経て解析を終了させ、 判定力 SYESの場合には、ステップ 1007の判定に進む。  [0103] Next, in step 1006, it is determined whether the analysis time is shorter than the set analysis end time tend. If the determination power is O, the analysis is terminated through calculation convergence determination and the like. If yes, go to step 1007.
[0104] ステップ 1007で、電極 4間の間隔が粒子の直径よりも大きいかどうかの判定を行う 。ここで、電極 4間の間隔が粒子 1の直径(φϋ)と等しくなつた場合には、ステップ 10 08において、電極 4間に挟まれる接続部の粒子 1数 Νを出力する。  [0104] In Step 1007, it is determined whether or not the distance between the electrodes 4 is larger than the diameter of the particles. Here, if the distance between the electrodes 4 becomes equal to the diameter (φϋ) of the particles 1, in step 1008, the number of particles 1 at the connecting portion sandwiched between the electrodes 4 is output.
[0105] 次のステップ 1009からは、粒子 1の変形を伴う樹脂材料 2の流動過程の計算を行う 。この粒子 1の変形を伴う樹脂材料 2の流動過程の計算を行う第一ステップ(1009) では、粒子 1の変形は無視し、電極 4の移動方向における樹脂材料 2の移動量(=粒 子 1の変形量) ΔΗ1を算出した後に、入力した「粒子 1の 1個当たりに荷重が加わった 場合の変形量」から粒子 1の変形量 ΔΗ1によって、粒子 1の 1個当たりに加わる荷重 △F1を算出する。ここで、入力した「温度変化を考慮した粒子 1の 1個当たりに荷重が 加わった場合の変形量」の関係の一例を図 18に示す。ここで、 Tl、 Τ2,Τ3は温度条 件を表し、 Τ1〉Τ2〉Τ3とする。 [0105] From the next step 1009, the flow process of the resin material 2 accompanied by the deformation of the particles 1 is calculated. In the first step (1009) for calculating the flow process of the resin material 2 accompanied by the deformation of the particle 1, the deformation of the particle 1 is ignored, and the movement amount of the resin material 2 in the moving direction of the electrode 4 (= particle 1 Deformation amount) After calculating Δ 「1, the input“ Load per particle 1 was applied. From the “deformation amount in the case”, the load ΔF1 per particle 1 is calculated from the deformation amount ΔΗ1 of the particle 1. Here, Fig. 18 shows an example of the relationship of the input "deformation amount when a load is applied per particle 1 considering temperature change". Here, Tl, Τ2, and Τ3 represent temperature conditions, and Τ1>Τ2> Τ3.
[0106] 次の第二ステップ(1010)においては、半導体集積回路(IC) 3および電極 4の上 部に加えられる荷重 FJ2は、設定値の F力もステップ 1009で求めた粒子 1の 1個当た りに加わる荷重 AF1とステップ 1008で求めた電極間に挟まれる粒子数 Νの積で求め られる値の差(FJ2 = F— Ν X AF1)を用!/、た計算を行う(ステップ 1011)。  [0106] In the next second step (1010), the load FJ2 applied to the top of the semiconductor integrated circuit (IC) 3 and the electrode 4 is equal to the set value F force of one particle 1 obtained in step 1009. The difference between the value obtained by the product of the load applied AF1 AF1 and the number of particles sandwiched between the electrodes obtained in Step 1008 Ν (FJ2 = F— Ν X AF1) is used! (Step 1011) .
[0107] この荷重 FJ2を加えた場合の電極 4の移動による樹脂材料 2の移動量 ΔΗ2 ( =粒 子 1の変形量)を算出した後に、粒子 1の変形量 ΔΗ2によって、粒子 1個当たりに加 わる荷重 AF2を算出し、 FJ3 = F— N X AF2を次の時間ステップの計算における半 導体集積回路 (IC) 3に加えられる荷重条件とする。  [0107] After calculating the movement amount Δ 材料 2 of the resin material 2 due to the movement of the electrode 4 when this load FJ2 is applied (= deformation amount of particle 1), the deformation amount of particle 1 ΔΗ2 Calculate the applied load AF2, and let FJ3 = F—NX AF2 be the load condition applied to the semiconductor integrated circuit (IC) 3 in the next time step calculation.
[0108] ステップ 1012において、ステップ 1009〜; 1011の計算を,橾返し、 M回目のステツ プにおいて、粒子 1の変形量 ΔΗ (Μ)、粒子 1個当たりに加わる荷重 AF (M)を算出 し、粒子 1の変形量および樹脂材料 2の流動挙動を計算する (ステップ 1012)。  [0108] In step 1012, the calculation in steps 1009 to 1011 is repeated, and in the Mth step, the deformation amount ΔΜ (Μ) of particle 1 and the load AF (M) applied to each particle are calculated. Then, the deformation amount of the particle 1 and the flow behavior of the resin material 2 are calculated (step 1012).
[0109] ステップ 1013で電極 4間の間隔が 0よりも大きいか、または解析における時間が設 定した解析終了時間 tendよりも短!/、かの判定を行い、判定が NOの場合は計算の収 束判定などを経て解析を終了させ、判定が YESの場合には、ステップ 1014の判定に 進む。  [0109] In step 1013, it is determined whether the interval between the electrodes 4 is greater than 0 or shorter than the analysis end time tend set for the analysis time. If the determination is NO, the calculation is performed. The analysis is completed through the convergence determination, etc., and if the determination is YES, the process proceeds to the determination in step 1014.
[0110] ステップ 1014においては、半導体集積回路(IC) 3および電極 4の上部に加えられ る荷重設定値 Fから粒子 1の 1個当たりに加わる荷重 AF (M)とステップ 1008で求め た電極間に挟まれる粒子数 Nの積で求められる値を引レ、た値力 以下であるかの判 定を行う(F— N X AF (M)≤0)。判定力 Oの場合には、ステップ 1012の繰り返し 計算を行い、判定力 WESであれば、ステップ 1015において、電極の移動速度が 0の 状態でのエネルキ"方程式(5)を用いた樹脂温度の計算を行う。  [0110] In step 1014, the load AF (M) applied per particle 1 from the load set value F applied to the upper part of the semiconductor integrated circuit (IC) 3 and electrode 4 and the electrode determined in step 1008 The value obtained by the product of the number N of particles sandwiched between the two is subtracted, and it is determined whether it is less than the value force (F—NX AF (M) ≤0). If the judgment force is O, repeat the calculation in step 1012. If the judgment power is WES, in step 1015, calculate the resin temperature using the Enelki equation (5) when the electrode moving speed is zero. I do.
[0111] 次に、ステップ 1016において解析における時間が設定した解析終了時間 tendより も短いかの判定を行い、判定力 SYESの場合には、ステップ 1012の繰り返し計算を行 5。 ここで、ステップ 1004で入力した圧縮荷重と粒子変形量の関係が図 18に示すよう に、温度依存性を考慮した物性値を用いる場合には、ステップ 1015で計算した樹脂 温度の上昇により、等し!/、粒子変形量 Δ Hでも圧縮荷重 Δ F (M)は小さくなるので、 ステップ 1014において、 F— NXAF (M)≤0の判定力 Oとなった場合には、ステツ プ 1012における電極の移動速度が 0ではない計算を行う。 [0111] Next, it is determined whether or not the analysis time is shorter than the set analysis end time tend in step 1016. If the determination power is SYES, step 1012 is repeated. Here, as shown in Fig. 18, the relationship between the compressive load input in step 1004 and the amount of particle deformation shows that when the physical property value considering temperature dependence is used, the increase in the resin temperature calculated in step 1015 However, the compressive load Δ F (M) is small even with the particle deformation amount Δ H, so if the judgment force O in step 1014 is F—NXAF (M) ≤0, the electrode in step 1012 Calculate the movement speed of is not 0.
[0112] また、図 18に示す温度は、解析で求めた任意場所の樹脂温度を用いることができ る。例えば、 1012の流動過程の計算で算出した電極 4間の樹脂温度の平均値、粒 子 1近傍の樹脂温度などの温度を用いることができる。  [0112] Further, as the temperature shown in FIG. 18, the resin temperature at an arbitrary place obtained by the analysis can be used. For example, the average value of the resin temperature between the electrodes 4 calculated by the calculation of the flow process of 1012 and the temperature such as the resin temperature in the vicinity of the particle 1 can be used.
[0113] ここで、ステップ 1016における判定が NOの場合には、  [0113] Here, if the determination in step 1016 is NO,
ステップ 1017において、計算の収束判定を行う。収束の判定手法は、圧力とあらか じめ定めておいた圧力範囲とを対比し、範囲内にある場合を収束として判定する。収 束しない場合には、ステップ 1001〜; 1004のいずれ力、に戻る。この際、オペレータに 入力を促し、どのステップに戻るかを決める。  In step 1017, calculation convergence is determined. Convergence is determined by comparing pressure with a pre-determined pressure range, and determining that it is within the range as convergence. If it does not converge, return to steps 1001 to 1004; At this time, prompt the operator for input and decide which step to return to.
[0114] ステップ 1018において粒子変形の適正判定を行う。ここでは、粒子の変形量が規 定された値の範囲内である力、を判定し、規定された範囲外である場合には、ステップ 1001〜; 1004のいずれ力、に戻る。この際、オペレータに入力を促し、どのステップに 戻る力、を決めるステップ 1017で計算が収束したことを判定し、ステップ 1018で粒子 変形が適正であることを判定した後、ステップ 1019において計算を終了する。  [0114] In step 1018, the appropriateness of particle deformation is determined. Here, the force in which the deformation amount of the particle is within the specified value range is determined, and if it is outside the specified range, the process returns to any one of steps 1001 to 1004. At this time, prompt the operator to input and decide which force to return to. In step 1017, determine that the calculation has converged. In step 1018, determine that the particle deformation is appropriate, and then end the calculation in step 1019. To do.
[0115] なお、ステップ 1003における入力条件として、粒子 1の 1個当たりに荷重が加わつ た場合の変形量の関係の例を示した力 粒子 1の複数個当たりの荷重が加わった場 合の変形量ほたは変形率)の関係を入力することができ、粒子 1に加わる応力と変 形量ほたは変形率)の関係を入力することができるものとする。また、発熱式は(式 7 )〜(式 11)に限定されるものではなぐ樹脂材料 2の反応率を含む任意の関数を用 いること力 Sでさる。  [0115] Note that as an input condition in Step 1003, an example of the relationship of deformation amount when a load is applied per particle 1 is shown. When a load per particle 1 is applied It is assumed that the relationship between the deformation amount and the deformation rate can be input, and the relationship between the stress applied to the particle 1 and the deformation amount and the deformation rate can be input. In addition, the exothermic equation is not limited to (Equation 7) to (Equation 11), and an arbitrary function including the reaction rate of the resin material 2 is used.
[0116] また、粘度式は(式 12)〜(式 15)に限定されるものではなぐ樹胎材料 2の温度ま たは反応率を含む任意の関数を用いることができる。また、収束判定は任意の判定 方法を用いることができる。また、 3次元の解析だけではなぐ 2次元の解析もできるも のとする。なお、以上の計算は有限要素法または有限体積法または有限差分法を用 V、て計算を行えるものとする。 [0116] The viscosity equation is not limited to (Equation 12) to (Equation 15), and any function including temperature or reaction rate of the embryo material 2 can be used. In addition, the convergence determination can use any determination method. It is also assumed that 2D analysis can be performed in addition to 3D analysis alone. The above calculation uses the finite element method, the finite volume method, or the finite difference method. Suppose V can be calculated.
実施例 6  Example 6
[0117] [電極の速度〜圧力制御への切り替え]  [0117] [Switching from electrode speed to pressure control]
次に、図 14のフローチャートに沿って解析プログラムの処理を説明する。まず、モ デル形状作成ステップ 2001では、オペレータによって入力装置を介して特定された 解析対象モデル、つまり、解析対象の電極、初期の粒子を含む樹脂材料の形状、粒 子を含む樹脂材料が流動できる空間のデータを記憶装置 10から読み出す。  Next, processing of the analysis program will be described along the flowchart of FIG. First, in the model shape creation step 2001, the analysis target model specified by the operator through the input device, that is, the electrode to be analyzed, the shape of the resin material including the initial particles, and the resin material including the particles can flow. Read space data from storage device 10.
[0118] 次に、 3次元ソリッド要素作成のステップ 2002では、モデル形状作成ステップ 2001 で読み込んだデータの形状を複数の特定空間(3次元ソリッドの有限要素)に分解し 、各有限要素の形状データを作成する。  [0118] Next, in step 2002 of creating a 3D solid element, the shape of the data read in model shape creation step 2001 is decomposed into a plurality of specific spaces (finite elements of a 3D solid), and the shape data of each finite element Create
[0119] 次に、物性値入力ステップ 2003では、解析を行う材料の物性値である密度、熱伝 導率、比熱、発熱式 (式 7)〜(式 11)、粘度式 (式 12)〜(式 15)、粒子 1の配置、密 度、直径、粒子 1の 1個当たりに荷重が加わった場合の変形量を入力するように、ォ ペレータに催促する表示を行い、入力装置からこれらのデータを受け付ける。  [0119] Next, in the physical property value input step 2003, the density, thermal conductivity, specific heat, exothermic equation (Equation 7) to (Equation 11), viscosity equation (Equation 12) to (Equation 15), the arrangement, density, diameter of particle 1 and the amount of deformation when a load is applied to each particle 1 are displayed to prompt the operator, and these are displayed from the input device. Accept data.
[0120] 次に、境界条件、成形条件入力ステップ 2004において、半導体集積回路 (IC) 3 および電極 4の初期移動速度 Vdおよび半導体集積回路(IC) 3および電極 4の上部 に加えられる最大圧力の入力をするように、オペレータに催促する表示を行い、入力 装置からデータを受け付ける。  [0120] Next, in the boundary condition and molding condition input step 2004, the initial moving speed Vd of the semiconductor integrated circuit (IC) 3 and the electrode 4 and the maximum pressure applied to the upper part of the semiconductor integrated circuit (IC) 3 and the electrode 4 are The operator prompts the operator to enter data and receives data from the input device.
[0121] ここで、受け付けた半導体集積回路 (IC) 3および電極 4の上部に加えられる最大 圧力と半導体集積回路 (IC) 3の上部の面積から、半導体集積回路 (IC) 3および電 極 4の上部に加えられる最大荷重 Fmaxを算出する。  Here, the semiconductor integrated circuit (IC) 3 and the electrode 4 are calculated from the received maximum pressure applied to the upper part of the semiconductor integrated circuit (IC) 3 and the electrode 4 and the area of the upper part of the semiconductor integrated circuit (IC) 3. Calculate the maximum load Fmax that can be applied to the top of.
[0122] 次に、オペレータからの解析開始の指示と初期時間増分および解析終了時間 tend を受け付ける。ステップ 2005として、この指示に基づいて、記録装置に格納された連 続の式(1)およびナビエスト一タスの式(2)〜(4)、エネルギ保存式(5)を呼び出し、 これまで入力を受け付けた、初期時間増分、半導体集積回路 (IC) 3および電極 4の 上部に加えられる圧力、樹胎材料の密度、比熱、熱伝導率、発熱式 (式 7)〜(式 11) 、粘度式 (式 12)〜(式 15)を代入し、電極の圧縮による樹胎材料 2と粒子 1の流動に 伴う、速度、圧力、温度および粘度を計算する。この計算結果を有限要素の位置と対 応つけて記憶装置に保存する。 Next, an analysis start instruction from the operator, initial time increment, and analysis end time tend are accepted. In step 2005, based on this instruction, the continuous equation (1), Naviest status equations (2) to (4), and energy conservation equation (5) stored in the recording device are called, Accepted initial time increment, pressure applied on top of semiconductor integrated circuit (IC) 3 and electrode 4, density of embryo material, specific heat, thermal conductivity, exothermic equation (Equation 7) to (Equation 11), viscosity equation Substituting (Equation 12) to (Equation 15), calculate the velocity, pressure, temperature and viscosity associated with the flow of the embryo material 2 and particle 1 due to electrode compression. This calculation result is paired with the position of the finite element. Match and save to storage.
[0123] 次に、ステップ 2006で解析における時間が設定した解析終了時間 tendよりも短い かの判定を行い、判定力 Oの場合は計算の収束判定などを経て解析を終了させ、 判定力 SYESの場合には、ステップ 2007に進む。 [0123] Next, it is determined whether or not the analysis end time set in step 2006 is shorter than the analysis end time tend. If the determination power is O, the analysis is terminated after calculation convergence is determined. If yes, go to Step 2007.
[0124] ステップ 2007にて、ステップ 2004で入力した初期移動速度 Vdで電極を移動させ た場合に樹脂に加わる荷重 FJを、「移動する電極 4と樹脂材料 2の接触面積」と「接 触部分の樹脂樹胎 2の圧力」の積として算出する。 [0124] In step 2007, the load FJ applied to the resin when the electrode is moved at the initial moving speed Vd input in step 2004 is expressed as "contact area between moving electrode 4 and resin material 2" and "contact part". It is calculated as the product of “pressure of resin embryo 2”.
[0125] ステップ 2008において電極 4の上部に加えられる最大荷重 Fmaxとステップ 2007 で求めた FJを比較し、 Fmax〉FJであれば、ステップ 2009においてステップ 2004で 入力した初期移動速度 Vdで電極が移動する計算をし、 Fmax〉FJでなければ、圧力 制御に切り替え、最大荷重 Fmaxが電極 4の上部に加えられた場合の電極の移動を 計算する。 [0125] The maximum load Fmax applied to the upper part of electrode 4 in step 2008 is compared with the FJ obtained in step 2007. If Fmax> FJ, the electrode moves at the initial movement speed Vd entered in step 2004 in step 2009. If Fmax> FJ, switch to pressure control and calculate the electrode movement when the maximum load Fmax is applied to the top of electrode 4.
[0126] ステップ 2010で、電極 4間の間隔が粒子の直径よりも大きいかどうかの判定を行う 。電極 4間の間隔が粒子の直径よりも大きい場合には、ステップ 2005に戻って計算 を繰り返し、電極 4間の間隔が粒子 1の直径 D)と等しくなつた場合には、図 13で 示したステップ 1008から 1016の計算を行う。  [0126] In step 2010, it is determined whether the distance between the electrodes 4 is larger than the diameter of the particles. If the distance between the electrodes 4 is larger than the diameter of the particle, return to step 2005 and repeat the calculation.If the distance between the electrodes 4 is equal to the diameter D of the particle 1), it is shown in Fig. 13. Steps 1008 to 1016 are calculated.
[0127] ステップ 2012において、計算の収束判定を行う。収束の判定手法は、圧力とあら 力、じめ定めておいた圧力範囲とを対比し、範囲内にある場合を収束として判定する。 収束しない場合には、ステップ 200;!〜 2004のいずれ力、に戻る。この際、オペレータ に入力を促し、どのステップに戻るかを決める。  [0127] In step 2012, calculation convergence is determined. Convergence is determined by comparing the pressure with the force, and the pressure range that has been defined in advance, and determining that it is within the range as convergence. If it does not converge, return to step 200; At this time, prompt the operator for input and decide which step to return to.
[0128] ステップ 2013において粒子変形の適正判定を行う。ここでは、粒子の変形量が規 定された値の範囲内である力、を判定し、規定された範囲外である場合には、ステップ 200;!〜 2004のいずれ力、に戻る。この際、オペレータに入力を促し、どのステップに 戻る力、を決めるステップ 2012で計算が収束したことを判定し、ステップ 2013で粒子 変形が適正であることを判定した後、ステップ 2014において計算を終了する。  [0128] In step 2013, the appropriateness of particle deformation is determined. Here, the force with which the deformation amount of the particle is within the specified value range is determined, and if it is outside the specified range, the process returns to any one of Step 200;! -2004. At this time, prompt the operator to input and determine which force to return to. In step 2012, determine that the calculation has converged. In step 2013, determine that the particle deformation is appropriate, and then end the calculation in step 2014. To do.
[0129] なお、ステップ 2003における入力条件として、粒子 1の 1個当たりに荷重が加わつ た場合の変形量の関係の例を示した力 粒子 1の複数個当たりの荷重が加わった場 合の変形量ほたは変形率)の関係を入力することができ、粒子 1に加わる応力と変 形量ほたは変形率)の関係を入力することができるものとする。 [0129] As an input condition in step 2003, an example of the relationship between the deformation amount when a load is applied per particle 1 is shown. When a load per particle 1 is applied The relationship between the amount of deformation and the rate of deformation) It is assumed that the relationship between the shape amount and the deformation rate can be input.
[0130] また、発熱式は(式 7)〜(式 11)に限定されるものではなぐ樹脂材料 2の反応率を 含む任意の関数を用いることができる。また、粘度式は(式 12)〜(式 15)に限定され るものではなぐ樹脂材料 2の温度または反応率を含む任意の関数を用いることがで きる。 [0130] The exothermic equation is not limited to (Equation 7) to (Equation 11), and any function including the reaction rate of the resin material 2 can be used. The viscosity equation is not limited to (Equation 12) to (Equation 15), and any function including the temperature or reaction rate of the resin material 2 can be used.
[0131] また、収束判定は任意の判定方法を用いることができる。また、 3次元の解析だけで はなぐ 2次元の解析もできるものとする。なお、以上の計算は有限要素法または有 限体積法または有限差分法を用いて計算を行えるものとする。  [0131] In addition, an arbitrary determination method can be used for the convergence determination. It is also possible to perform 2D analysis in addition to 3D analysis. The above calculation can be performed using the finite element method, the finite volume method, or the finite difference method.
[0132] [電極の圧力制御の解析事例(一層樹脂) ]  [0132] [Electrode pressure control analysis example (single layer resin)]
ここで、図 15に解析事例の一例(2次元解析)を示す。初期状態において、導電性 を有する粒子 1を含む樹脂材料 2が半導体集積回路 (IC) 3の電極 4と基板 5の電極 4 間に設置されている。ここで、樹胎材料 2は初期温度 30°Cとし、発熱式 (式 7)〜(式 1 1)、粘度式 (式 12)〜(式 15)を用いるものとする。なお、発熱式 (式 7)〜(式 11)、粘 度式 (式 12)〜(式 15)の定数の値、密度、熱伝導率、比熱の値、粒子の直径(φ ϋ) 、密度を表 1に示す。  Here, Fig. 15 shows an example of analysis (two-dimensional analysis). In an initial state, a resin material 2 containing conductive particles 1 is placed between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5. Here, the embryo material 2 is assumed to have an initial temperature of 30 ° C, and the exothermic equations (Equation 7) to (Equation 11) and the viscosity equations (Equation 12) to (Equation 15) are used. In addition, constant values, density, thermal conductivity, specific heat values, particle diameter (φϋ), density of exothermic equations (Equation 7) to (Equation 11), viscosity equations (Equation 12) to (Equation 15) Is shown in Table 1.
[表 1] [table 1]
粘度式の定数 Viscosity formula constant
Figure imgf000036_0001
Figure imgf000036_0001
その他物性  Other physical properties
Figure imgf000036_0002
Figure imgf000036_0002
[0133] また、半導体集積回路 (IC) 3の温度は一定(185°C)に設定し、基板 5の方向に圧 力 5MPaを加えて移動させ、粒子 1を含む樹脂材料 2を圧縮することにより、粒子 1を 含む樹胎材料 2を流動させる。このとき、半導体集積回路 (IC) 3の電極 4と樹脂材料 2の接触により、樹脂材料 2の温度が変化し、温度変化に伴う粘度変化を生じながら 、樹脂材料 2が粒子 1と共に圧縮されながら流動する過程を計算できる。 [0133] Further, the temperature of the semiconductor integrated circuit (IC) 3 is set to be constant (185 ° C), moved by applying a pressure of 5 MPa in the direction of the substrate 5, and the resin material 2 including the particles 1 is compressed. This causes the embryo material 2 containing the particles 1 to flow. At this time, the temperature of the resin material 2 changes due to the contact between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the resin material 2, and the resin material 2 is compressed together with the particles 1 while causing a viscosity change accompanying the temperature change. Calculate the flow process.
[0134] なお、半導体集積回路(IC) 3の電極 4と基板 5の電極 4との間隔が粒子 1の直径よ りも小さくなつたときには、解析上では、粒子 1と電極 4の接触の計算は行わない。つ まり、解析上では、粒子 1同士、粒子 1と電極 4が接触する場合には、粒子 1が電極 4 をすり抜けるなどの設定を行うことにより、樹脂材料 2だけの流動性の計算を行う。 [0135] このとき、半導体集積回路 (IC) 3の上部から加える圧力は設定値の 5MPaではなく 、図 13のフローチャートで示したように、図 18に示す粒子の変形量と圧縮荷重の関 係および電極間に挟まれる粒子数から求めた荷重を設定圧力と面積との積で求めた 荷重から引いた値を用いる。 [0134] When the distance between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 becomes smaller than the diameter of the particle 1, the calculation of the contact between the particle 1 and the electrode 4 is made in the analysis. Do not do. In other words, in the analysis, when the particles 1 are in contact with each other, and when the particles 1 and the electrode 4 are in contact with each other, the fluidity of only the resin material 2 is calculated by setting such that the particles 1 pass through the electrode 4. At this time, the pressure applied from the upper part of the semiconductor integrated circuit (IC) 3 is not the set value of 5 MPa, but as shown in the flowchart of FIG. 13, the relationship between the deformation amount of the particle and the compressive load shown in FIG. The value obtained by subtracting the load obtained from the number of particles sandwiched between the electrodes from the load obtained by the product of the set pressure and the area is used.
[0136] この計算の結果、電極の上部から加えられる荷重と、粒子を変形させるために必要 な圧縮荷重が等しくなれば、電極の移動速度が 0となり、電極移動を伴わない樹脂の 温度計算を行う。ここで、樹脂温度が高くなると、図 18に示すように粒子を変形させる ために必要な圧縮荷重が少なくなるので、再度、電極移動を伴った計算を行う。  [0136] As a result of this calculation, if the load applied from the top of the electrode is equal to the compressive load required to deform the particles, the moving speed of the electrode becomes 0, and the temperature calculation of the resin without electrode movement is performed. Do. Here, as the resin temperature rises, the compressive load required to deform the particles decreases as shown in FIG. 18, so the calculation involving electrode movement is performed again.
[0137] ここで、図 18に示す温度は、解析で求めた任意場所の温度を用いることができる。  Here, as the temperature shown in FIG. 18, the temperature at an arbitrary place determined by the analysis can be used.
例えば、図 13で示した 1012の流動過程の計算で算出した電極 4間の樹脂温度の平 均値、粒子 1近傍の樹脂温度などの温度を用いることができる。また、ここでは粒子内 の熱伝導計算は行っていないが、粒子の比熱、熱伝導率、樹脂材料と粒子の熱伝 達率などの入力により、粒子内の熱伝導計算も行うことができ、この伝熱計算で求め た粒子の任意位置の温度を図 18に示す温度として用いることもできる。  For example, the average value of the resin temperature between the electrodes 4 calculated by the calculation of the flow process 1012 shown in FIG. 13 and the temperature of the resin near the particle 1 can be used. In addition, although the heat conduction calculation inside the particle is not performed here, the heat conduction calculation inside the particle can also be performed by inputting the specific heat of the particle, the heat conductivity, the heat transfer coefficient of the resin material and the particle, The temperature at an arbitrary position of the particle obtained by this heat transfer calculation can also be used as the temperature shown in FIG.
[0138] その後、設定した解析終了時間において解析が終了する。このとき、電極間の間隔 力、ら粒子 1の変形量を求めることができる。なお、粒子の変形量 ADは、(式 6)で求め ること力 Sでさる。  Thereafter, the analysis ends at the set analysis end time. At this time, the spacing force between the electrodes and the deformation amount of the particles 1 can be obtained. The deformation amount AD of the particle is the force S obtained from (Equation 6).
[数 15]  [Equation 15]
C(T) = f/T - g (15) C (T) = f / T-g (15)
[0139] ここで、 D :粒子 1の直径、 D1 :解析終了後の基板 4の間隔を表す。なお、以上では 電極 4の移動が圧力により制御される事例を示した力 S、本発明はこれだけに限定され るものではなぐ図 14のフローチャートで示したように、電極の移動を速度から圧力に 制御することも可能とする。 [0139] Here, D represents the diameter of the particle 1, D1 represents the distance between the substrates 4 after the analysis is completed. Note that, in the above, the force S indicating the case where the movement of the electrode 4 is controlled by the pressure S, and the present invention is not limited to this. As shown in the flowchart of FIG. 14, the movement of the electrode is changed from speed to pressure. It is also possible to control.
[0140] [電極の圧力制御の解析事例(二層樹脂) ]  [0140] [Analysis example of electrode pressure control (double-layer resin)]
ここで、図 16に樹脂材料が 2層に分かれている解析事例(2次元解析)の一例を示 す。  Here, Fig. 16 shows an example of analysis (two-dimensional analysis) in which the resin material is divided into two layers.
[0141] 初期状態において、導電性を有する粒子 1を含む樹脂材料 2の上部に、粒子 1を含 む物性値が異なる樹脂材料 11からなる 2層構造の樹脂材料が、半導体集積回路 (I C) 3の電極 4と基板 5の電極 4間に設置されている。ここで、樹脂材料 2は初期温度 3 0°Cとし、発熱式 (式 7)〜(式 11)、粘度式 (式 12)〜(式 15)を用いるものとする。な お、発熱式 (式 7)〜(式 11)、粘度式 (式 12)〜(式 15)の定数の値、密度、熱伝導率 、比熱の値、粒子の直径( φ D)、密度に関して、一層目の樹脂材料 2および粒子 1は 表 1の値を用いて、 2層目の樹胎材料 11および粒子 1の値を表 2に示す。 [0141] In the initial state, the particles 1 are contained on the upper part of the resin material 2 containing the conductive particles 1. A resin material having a two-layer structure made of a resin material 11 having different physical property values is disposed between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5. Here, the resin material 2 is assumed to have an initial temperature of 30 ° C., and the exothermic formulas (Formula 7) to (Formula 11) and the viscosity formulas (Formula 12) to (Formula 15) are used. The constant value, density, thermal conductivity, specific heat value, particle diameter (φD), density of the exothermic formula (Formula 7) to (Formula 11), viscosity formula (Formula 12) to (Formula 15) As for the first-layer resin material 2 and particle 1, the values of Table 1 are used, and the values of the second-layer embryo material 11 and particle 1 are shown in Table 2.
[表 1] 粘度式の定数 [Table 1] Constants of viscosity formula
Figure imgf000038_0001
Figure imgf000038_0001
その他物性  Other physical properties
Figure imgf000038_0002
Figure imgf000038_0002
[表 2] 2層目榭脂の材料物性 粘度式の定数 [Table 2] Material properties of the second layer of resin
Figure imgf000039_0001
Figure imgf000039_0001
その他物性  Other physical properties
比熱凍 g 'K) 密度 熱伝導率  Specific heat freezing g 'K) Density Thermal conductivity
(Kg/rr^) (W/(m 'Κ))  (Kg / rr ^) (W / (m 'Κ))
1000 1.95e3 0.97 粒 子  1000 1.95e3 0.97 particles
直径(〃m) 密度  Diameter (〃m) Density
(Kg/  (Kg/
2 1.00e3  2 1.00e3
[0142] ここで、半導体集積回路 (IC) 3の温度は一定(185°C)に設定し、基板 5の方向に 圧力 5MPaを加えて移動させ、樹脂材料 2、 11を圧縮することにより、粒子 1を含む 樹脂材料 2、 11を流動させる。このとき、半導体集積回路 (IC) 3の電極 4と樹脂材料 2、 11の接触により、樹胎材料 2、 11の温度が変化し、温度変化に伴う粘度変化を生 じながら、樹脂材料 2、 11が粒子 1と共に圧縮されながら流動する過程を計算できる[0142] Here, the temperature of the semiconductor integrated circuit (IC) 3 is set to be constant (185 ° C), moved by applying a pressure of 5 MPa in the direction of the substrate 5, and the resin materials 2 and 11 are compressed. The resin materials 2 and 11 containing the particles 1 are caused to flow. At this time, due to the contact between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the resin materials 2 and 11, the temperature of the embryo materials 2 and 11 changes, and while the viscosity change accompanying the temperature change occurs, the resin material 2 and 11 Calculate the flow of 11 while being compressed with particle 1
Yes
[0143] なお、半導体集積回路(IC) 3の電極 4と基板 5の電極 4との間隔が粒子 1の直径よ りも小さくなつたときには、解析上では、粒子 1と電極 4の接触の計算は行わない。つ まり、解析上では、粒子 1同士、粒子 1と電極 4が接触する場合には、粒子 1が電極 4 をすり抜けるなどの設定を行うことにより、樹脂材料 2、 11だけの流動性の計算を行う[0143] When the distance between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 becomes smaller than the diameter of the particle 1, the calculation of the contact between the particle 1 and the electrode 4 is made in the analysis. Do not do. In other words, in the analysis, if particles 1 are in contact with each other, and particle 1 and electrode 4 are in contact, particle 1 is in contact with electrode 4 Calculate the fluidity of resin materials 2 and 11 only by making settings such as slipping through
Yes
[0144] このとき、半導体集積回路 (IC) 3の上部から加える圧力は設定値の 5MPaではなく 、図 13のフローチャートで示したように、図 18に示す粒子の変形量と圧縮荷重の関 係および電極間に挟まれる粒子数から求めた荷重を設定圧力と面積との積で求めた 荷重から引いた値を用いる。  At this time, the pressure applied from the upper part of the semiconductor integrated circuit (IC) 3 is not the set value of 5 MPa, but as shown in the flowchart of FIG. 13, the relationship between the deformation amount of the particles and the compressive load shown in FIG. The value obtained by subtracting the load obtained from the number of particles sandwiched between the electrodes from the load obtained by the product of the set pressure and the area is used.
[0145] この計算の結果、電極の上部から加えられる荷重と、粒子を変形させるために必要 な圧縮荷重が等しくなれば、電極の移動速度が 0となり、電極移動を伴わない樹脂の 温度計算を行う。ここで、樹脂温度が高くなると、図 18に示すように粒子を変形させる ために必要な圧縮荷重が少なくなるので、再度、電極移動を伴った計算を行う。  [0145] As a result of this calculation, if the load applied from the top of the electrode is equal to the compressive load required to deform the particles, the moving speed of the electrode becomes 0, and the temperature calculation of the resin without electrode movement is performed. Do. Here, as the resin temperature rises, the compressive load required to deform the particles decreases as shown in FIG. 18, so the calculation involving electrode movement is performed again.
[0146] ここで、図 18に示す温度は、解析で求めた任意場所の温度を用いることができる。  Here, as the temperature shown in FIG. 18, the temperature at an arbitrary place obtained by analysis can be used.
例えば、 1012の流動過程の計算で算出した電極 4間の樹脂温度の平均値、粒子 1 近傍の樹脂温度などの温度を用いることができる。また、ここでは粒子内の熱伝導計 算は行っていないが、粒子の比熱、熱伝導率、樹脂材料と粒子の熱伝達率などの入 力により、粒子内の熱伝導計算も行うことができ、この伝熱計算で求めた粒子の任意 位置の温度を図 18に示す温度として用いることもできる。  For example, an average value of the resin temperature between the electrodes 4 calculated by calculation of the flow process of 1012, a temperature such as the resin temperature in the vicinity of the particle 1 can be used. In addition, although the heat conduction calculation inside the particle is not performed here, the heat conduction calculation within the particle can also be performed by inputting the specific heat of the particle, the heat conductivity, the heat transfer coefficient between the resin material and the particle, and the like. The temperature at an arbitrary position of the particle obtained by this heat transfer calculation can also be used as the temperature shown in FIG.
[0147] その後、設定した解析終了時間において解析が終了する。このとき、電極間の間隔 力、ら粒子 1の変形量を求めることができる。なお、粒子の変形量 ADは、(式 6)で求め ること力 Sでさる。  [0147] Thereafter, the analysis ends at the set analysis end time. At this time, the spacing force between the electrodes and the deformation amount of the particles 1 can be obtained. The deformation amount AD of the particle is the force S obtained from (Equation 6).
[数 6]  [Equation 6]
△ D = D - D 1 ( 6 ) △ D = D-D 1 (6)
[0148] ここで、 D :粒子 1の直径、 D1 :解析終了後の基板 4の間隔を表す。なお、以上では 電極 4の移動が圧力により制御される事例を示した力 S、本発明はこれだけに限定され るものではなぐ図 14のフローチャートで示したように、電極の移動を速度から圧力に 制御することも可能とする。また、ここでは粒子内の熱伝導計算は行っていないが、 粒子の比熱、熱伝導率、樹脂材料と粒子の熱伝達率などの入力により、粒子内の熱 伝導計算も行うことができる。 [0148] Here, D represents the diameter of the particle 1, D1 represents the distance between the substrates 4 after the analysis is completed. Note that, in the above, the force S indicating the case where the movement of the electrode 4 is controlled by the pressure S, and the present invention is not limited to this. As shown in the flowchart of FIG. 14, the movement of the electrode is changed from speed to pressure. It is also possible to control. In addition, although the heat conduction calculation inside the particle is not performed here, the heat inside the particle is determined by inputting the specific heat of the particle, the heat conductivity, the heat transfer coefficient between the resin material and the particle, etc. Conduction calculations can also be performed.
[0149] なお、以上では二相日の樹脂材料 11に粒子 1が含まれる解析の事例を示したが、 本発明はこれだけに限定されるものではなぐ二相日の樹脂材料 11には粒子 1が含 まれな!/、状態での解析も行えるものとする。 [0149] In the above, an example of the analysis in which the particle material 1 is included in the two-phase date resin material 11 is shown, but the present invention is not limited to this. It is assumed that the analysis can be performed in the state.
実施例 7  Example 7
[0150] [導電性の予測、粒子の座標の主力(電極移動の圧力制御) ]  [0150] [Prediction of conductivity, main force of particle coordinates (pressure control of electrode movement)]
図 17は、本発明の実施例 7の半導体集積回路 (IC) 3の電極 4と基板 5の電極 4間 の導電性を予測するフローチャートである。  FIG. 17 is a flowchart for predicting the conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 according to the seventh embodiment of the present invention.
[0151] ここでは、図 13のフローチャートで求めた粒子変形量と導電性の関係の入力により 、半導体集積回路 (IC) 3の電極 4と基板 5の電極 4間の導電性を予測する。まず、モ デル形状作成ステップ 3001では、オペレータによって入力装置を介して特定された 解析対象モデル、つまり、解析対象の電極、初期の粒子を含む樹脂材料の形状、粒 子を含む樹脂材料が流動できる空間のデータを記憶装置 10から読み出す。  Here, the conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 is predicted based on the input of the relationship between the particle deformation amount and the conductivity obtained in the flowchart of FIG. First, in the model shape creation step 3001, the analysis target model specified by the operator through the input device, that is, the electrode to be analyzed, the shape of the resin material including the initial particles, and the resin material including the particles can flow. Read space data from storage device 10.
[0152] 次に、 3次元ソリッド要素作成のステップ 3002では、モデル形状作成ステップ 1001 で読み込んだデータの形状を複数の特定空間(3次元ソリッドの有限要素)に分解し 、各有限要素の形状データを作成する。  [0152] Next, in step 3002 of creating a 3D solid element, the shape of the data read in model shape creation step 1001 is decomposed into a plurality of specific spaces (finite elements of a 3D solid), and the shape data of each finite element Create
[0153] 次に、物性値入力ステップ 3003では、解析を行う材料の物性値である密度、熱伝 導率、比熱、発熱式 (式 7)〜(式 11)、粘度式 (式 12)〜(式 15)、粒子 1の配置、密 度、直径、粒子 1の 1個当たりに荷重が加わった場合の変形量、粒子 1の任意数当た りの変形量と半導体集積回路 (IC) 3の電極 4と基板 5の電極 4間の導電性を入力す るように、オペレータに催促する表示を行い、入力装置からこれらのデータを受け付 ける。  [0153] Next, in the physical property value input step 3003, the density, thermal conductivity, specific heat, exothermic equation (Equation 7) to (Equation 11), viscosity equation (Equation 12) to (Equation 15), particle 1 arrangement, density, diameter, deformation amount when a load is applied to each particle 1, deformation amount per arbitrary number of particles 1 and semiconductor integrated circuit (IC) 3 The display prompts the operator to input the conductivity between the electrode 4 of the substrate 5 and the electrode 4 of the substrate 5 and receives these data from the input device.
[0154] 次に、境界条件、成形条件入力ステップ 3004において、半導体集積回路 (IC) 3 および電極 4の上部に加えられる圧力の入力をするように、オペレータに催促する表 示を行い、入力装置力 データを受け付ける。ここで、受け付けた半導体集積回路 (I C) 3および電極 4の上部に加えられる圧力と半導体集積回路(IC) 3の上部の面積か ら半導体集積回路 (IC) 3および電極 4の上部に加えられる荷重 Fを算出する。  [0154] Next, in the boundary condition / molding condition input step 3004, the operator is prompted to input pressure applied to the top of the semiconductor integrated circuit (IC) 3 and the electrode 4, and the input device Force data is accepted. Here, the pressure applied to the top of the semiconductor integrated circuit (IC) 3 and the electrode 4 and the area of the top of the semiconductor integrated circuit (IC) 3 are applied to the top of the semiconductor integrated circuit (IC) 3 and the electrode 4. Calculate the load F.
[0155] 次に、オペレータからの解析開始の指示と初期時間増分および解析終了時間 tend を受け付ける。ステップ 3005として、この指示に基づいて、記録装置に格納された連 続の式(1)およびナビエスト一タスの式(2)〜(4)、エネルギ保存式(5)を呼び出し、 これまで入力を受け付けた、初期時間増分、半導体集積回路 (IC) 3および電極 4の 上部に加えられる圧力、樹胎材料の密度、比熱、熱伝導率、発熱式 (式 7)〜(式 11) 、粘度式 (式 12)〜(式 15)を代入し、電極の圧縮による樹脂材料 2と粒子 1の流動に 伴う速度、圧力、温度および粘度を計算する。この計算結果を有限要素の位置と対 応つけて記憶装置に保存する。 [0155] Next, an analysis start instruction from the operator, initial time increment, and analysis end time tend Accept. In step 3005, based on this instruction, the continuous equation (1), Naviest status equation (2) to (4), and energy conservation equation (5) stored in the recording device are called, Accepted initial time increment, pressure applied on top of semiconductor integrated circuit (IC) 3 and electrode 4, density of embryo material, specific heat, thermal conductivity, exothermic equation (Equation 7) to (Equation 11), viscosity equation Substituting (Equation 12) to (Equation 15), calculate the velocity, pressure, temperature and viscosity associated with the flow of resin material 2 and particles 1 due to electrode compression. The calculation result is stored in the storage device in association with the position of the finite element.
[0156] 次に、ステップ 3006で解析における時間が設定した解析終了時間 tendよりも短い かの判定を行い、判定力 Oの場合は計算の収束判定などを経て解析を終了させ、 判定力 SYESの場合には、 3007の判定に進む。  [0156] Next, in step 3006, it is determined whether the analysis time is shorter than the set analysis end time tend. If the determination power is O, the analysis is terminated after calculation convergence is determined. If yes, go to decision 3007.
[0157] ステップ 3007で、電極 4間の間隔が粒子の直径よりも大きいかどうかの判定を行う 。電極 4間の間隔が粒子の直径よりも大きい場合には、ステップ 3005に戻って計算 を繰り返し、電極 4間の間隔が粒子 1の直径( φ D)と等しくなつた場合には、ステップ 3008において、電極 4間に挟まれる接続部の粒子 1数 Nまたは電極 4間に挟まれる 接続部の粒子 1の座標を出力する。次に、図 13で示したステップ 1008から 1016の 計算を行う。  [0157] In step 3007, it is determined whether the distance between the electrodes 4 is larger than the diameter of the particles. If the distance between electrodes 4 is larger than the particle diameter, return to step 3005 and repeat the calculation. If the distance between electrodes 4 is equal to the diameter of particle 1 (φ D), The number of particles 1 in the connection part sandwiched between the electrodes 4 or the coordinates of the particle 1 in the connection part sandwiched between the electrodes 4 is output. Next, the calculations in steps 1008 to 1016 shown in FIG. 13 are performed.
[0158] 次に、ステップ 3010で粒子の変形量および流体解析で求めた電極 4の移動速度 を出力する。ステップ 3011にて、ステップ 3010で出力した粒子 1の変形量と、ステツ プ 3003にて入力した、粒子 1の任意数当たりの変形量と半導体集積回路 (IC) 3の 電極 4と基板 5の電極 4間の導電性力 粒子 1個当たりの導電性を算出し、この粒子 1 個当たりの導電性とステップ 3008で求めた電極 4間の粒子数から、半導体集積回路 (IC) 3の電極 4と基板 5の電極 4間の導電性を算出する。  Next, in step 3010, the deformation amount of the particles and the moving speed of the electrode 4 obtained by the fluid analysis are output. In step 3011, the deformation amount of particle 1 output in step 3010, the deformation amount per arbitrary number of particles 1 input in step 3003, the electrode 4 of the semiconductor integrated circuit (IC) 3, and the electrode of the substrate 5 Conductivity force between 4 Calculate the conductivity per particle, and from the conductivity per particle and the number of particles between the electrodes 4 obtained in step 3008, the electrode 4 of the semiconductor integrated circuit (IC) 3 The conductivity between the electrodes 4 of the substrate 5 is calculated.
[0159] なお、導電性は、電極間に任意の電圧を印加した場合の電流値 Iとする。ここで、入 力した「粒子 1の任意数当たりの変形量と半導体集積回路 (IC) 3の電極 4と基板 5の 電極 4間の導電性」の関係の一例を図 9に示す。なお、ここでは粒子 1の任意数の代 表値として、 Nl、 N2、 N3の場合を示しており、ステップ 3008において、電極 4間に 挟まれる接続部の粒子 1数 Nが Nl, N2, N3以外の場合には、内揷、外揷にて値を 求めること力 Sでさる。 [0160] ここで、ステップ 3012にて計算の収束判定を行う。収束の判定手法は、圧力とあら 力、じめ定めておいた圧力範囲とを対比し、範囲内にある場合を収束として判定する。 収束しない場合には、ステップ 300;!〜 3004のいずれ力、に戻る。この際、オペレータ に入力を促し、どのステップに戻るかを決める。 [0159] The electrical conductivity is the current value I when an arbitrary voltage is applied between the electrodes. Here, FIG. 9 shows an example of the relationship between the inputted “deformation amount per arbitrary number of particles 1 and conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5”. Here, Nl, N2 and N3 are shown as representative values of an arbitrary number of particles 1. In step 3008, the number of particles 1 at the connection part sandwiched between electrodes 4 is Nl, N2, N3. In cases other than, use the force S to find the value in the inner and outer cages. [0160] Here, in step 3012, calculation convergence is determined. Convergence is determined by comparing the pressure with the force, and the pressure range that has been defined in advance, and determining that it is within the range as convergence. If it does not converge, return to step 300; At this time, prompt the operator for input and decide which step to return to.
[0161] ステップ 3013において粒子変形の適正判定を行う。ここでは、粒子の変形量が規 定された値の範囲内である力、を判定し、規定された範囲外である場合には、ステップ 300;!〜 3004のいずれ力、に戻る。この際、オペレータに入力を促し、どのステップに 戻るかを決める。  [0161] In step 3013, appropriateness of particle deformation is determined. Here, the force with which the deformation amount of the particle is within the specified range is determined, and if it is out of the specified range, the process returns to step 300; any force from! To 3004. At this time, prompt the operator for input and decide which step to return to.
[0162] ステップ 3012で計算が収束したことを判定し、ステップ 3013で粒子変形が適正で あることを判定した後、ステップ 3014において計算を終了する。なお、ステップ 3003 にて入力した「粒子 1の任意数当たりの変形量と半導体集積回路 (IC) 3の電極 4と基 板 5の電極 4間の導電性」は、「粒子 1の任意数当たりの変形量と、粒子 1と電極 4との 接触面積」の関係から求めた「粒子 1と電極 4との接触面積と半導体集積回路 (IC) 3 の電極 4と基板 5の電極 4間の導電性」を入力することもできる.また、導電性は電極 間に任意電圧を印加した場合の電流値としたが、本発明はこれだけに限定されるも のではなく、電極間の抵抗値などを用いることができる。  [0162] In step 3012, it is determined that the calculation has converged. In step 3013, it is determined that the particle deformation is appropriate. Then, in step 3014, the calculation ends. It should be noted that the “deformation amount per arbitrary number of particles 1 and the conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5” input in step 3003 is “per particle 1 per arbitrary number. The contact area between particle 1 and electrode 4 and the conductivity between electrode 4 of semiconductor integrated circuit (IC) 3 and electrode 4 of substrate 5 obtained from the relationship between the deformation amount of particle and the contact area between particle 1 and electrode 4 In addition, although the conductivity is the current value when an arbitrary voltage is applied between the electrodes, the present invention is not limited to this, and the resistance value between the electrodes is not limited to this. Can be used.
[0163] ここで、ステップ 3008で出力した電極 4間に挟まれた粒子 1の座標とステップ 3010 で出力した電極 4の移動速度を用いて構造解析の入力条件として用いることができる 。なお、出力した粒子 1の座標は、粒子 1の任意位置を出力できるものとし、ここでは 、粒子 1の中心の座標を出力するものとする。  Here, the coordinates of the particle 1 sandwiched between the electrodes 4 output in step 3008 and the moving speed of the electrode 4 output in step 3010 can be used as input conditions for the structural analysis. It is assumed that the coordinates of the output particle 1 can output an arbitrary position of the particle 1, and here, the coordinates of the center of the particle 1 are output.
[0164] この流体の計算で出力した入力条件(電極 4間に挟まれた粒子 1の座標と、電極 4 移動速度)および粒子の物性値(弾性率、密度、ポアソン比など)を用いた構造解析 により、図 20に示すように、電極 4の速度を入力値とした基板 4に、座標が入力された 粒子 1が圧縮される場合の変形形態、粒子 1と電極との接触面積を解析で求めること ができる。  [0164] Structure using input conditions (coordinate of particle 1 sandwiched between electrodes 4 and moving speed of electrode 4) and physical properties of particles (elastic modulus, density, Poisson's ratio, etc.) output in the calculation of this fluid As shown in Fig. 20, the analysis shows the deformation form when the particle 1 with coordinates input is compressed on the substrate 4 with the velocity of the electrode 4 as the input value, and the contact area between the particle 1 and the electrode. You can ask for it.
[0165] なお、図 21に示す粒子 1と電極 4の接触面積と導電性の関係を用いて、図 20で算 出した粒子 1と電極との接触面積から導電性を算出することもできる。  Note that the conductivity can be calculated from the contact area between the particle 1 and the electrode calculated in FIG. 20, using the relationship between the contact area between the particle 1 and the electrode 4 and the conductivity shown in FIG.

Claims

請求の範囲  The scope of the claims
[1] (1)解析対象の凸形状のある基板、初期の粒子を含む樹脂材料の形状、粒子を含 む樹脂材料が流動できる空間のデータを記憶装置力 計算装置に取り込み、 [1] (1) Import the data of the convex substrate to be analyzed, the shape of the resin material including the initial particles, and the space in which the resin material including the particles can flow into the storage device power calculation device,
(2)当該データに基づいて 3次元ソリッド要素に分解処理をし、 (2) Based on the data, decompose into 3D solid elements,
(3)少なくとも樹脂材料の密度、熱伝導率、比熱、粘度、粒子の外形寸法、密度、粒 子 1個当たりに加わる荷重一変位の関係、凸形状のある基板に加えられる外部から の荷重 Fを入力し、  (3) At least the density of resin material, thermal conductivity, specific heat, viscosity, particle external dimensions, density, load-displacement applied to each particle, external load applied to convex substrate F Enter
(4)連続の式、ナビエスト一タスの式、エネルギ保存式を、前記 3次元ソリッド要素に 基づいて演算処理することにより、凸形状のある基板と樹脂材料の接触により、樹脂 温度の変化を計算し、凸形状のある基板の移動により、樹脂材料が粒子と共に圧縮 されながら流動する過程を計算し、  (4) By calculating the continuous equation, Naviest Itas equation, and energy conservation equation based on the 3D solid element, the change in the resin temperature is calculated by the contact between the convex substrate and the resin material. And calculate the process in which the resin material flows while being compressed along with the particles by the movement of the convex substrate,
(5)圧縮後の凸形状のある基板間の隙間が粒子の直径と等しくなる時間において、 凸形状のある基板間に挟まれる粒子数 Nを出力演算し、  (5) During the time when the gap between the compressed convex substrates is equal to the diameter of the particles, the number N of particles sandwiched between the convex substrates is output and calculated.
(6)上記(5)の圧縮後の凸形状のある基板間の隙間が粒子の直径と等しくなる時間 以降においては、電極と粒子の接触を無視し、凸形状のある基板に加わる荷重を、 上記(3)で入力した荷重 Fから、凸形状のある基板間の隙間から上記(3)で入力した 粒子 1個当たりに加わる荷重一変位の関係と上記(5)で求めた凸形状のある基板間 に挟まれる粒子数 Nとの積によって求めた荷重を引いた値を用いて、粒子を含む樹 脂材料を 2方向から凸形状のある基板で圧縮することにより、樹脂材料および粒子を 流動させる工程を計算することを特徴とする粒子を内在させた樹脂材料の流動解析 方法。  (6) After the time when the gap between the convex substrate after compression in (5) is equal to the diameter of the particle, the contact between the electrode and the particle is ignored, and the load applied to the convex substrate is From the load F input in (3) above, the relationship between the displacement of the load applied per particle input in (3) above from the gap between convex substrates and the convex shape obtained in (5) above Using the value obtained by subtracting the load obtained by the product of the number of particles N sandwiched between the substrates and N, the resin material containing the particles is compressed with a convex substrate from two directions, allowing the resin material and particles to flow. The flow analysis method of the resin material which included the particle | grains characterized by calculating the process made to do.
[2] (1)解析対象の凸形状のある基板、初期の粒子を含む樹脂材料の形状、粒子を含 む樹脂材料が流動できる空間のデータを記憶装置力 計算装置に取り込み、 [2] (1) Import the data of the convex substrate to be analyzed, the shape of the resin material containing the initial particles, and the space in which the resin material containing the particles can flow into the storage device power calculation device,
(2)当該データに基づいて 3次元ソリッド要素に分解処理をし、 (2) Based on the data, decompose into 3D solid elements,
(3)少なくとも樹脂材料の密度、熱伝導率、比熱、粘度、粒子の密度、外形寸法、粒 子 1個当たりに加わる荷重 変位の関係を入力し、  (3) Enter at least the relationship of resin material density, thermal conductivity, specific heat, viscosity, particle density, external dimensions, and load displacement applied per particle,
(4)凸形状のある基板の移動速度 Vd、凸形状のある基板に加えられる外部からの最 大荷重 Fmaxを入力し、 (5)連続の式、ナビエスト一タスの式、エネルギ保存式を、前記 3次元ソリッド要素に 基づいて演算処理することにより、凸形状のある基板と樹胎材料の接触により、樹脂 温度の変化を計算し、凸形状のある基板の移動速度 Vdにより、樹脂材料が粒子と共 に圧縮されながら流動する過程を計算し、 (4) Enter the movement speed Vd of the convex substrate and the maximum external load Fmax applied to the convex substrate. (5) By calculating the continuous equation, Naviest-Itaus equation, and energy conservation equation based on the 3D solid element, the resin temperature changes due to the contact between the convex substrate and the tree material. Calculate the process by which the resin material flows while being compressed together with the particles, using the moving velocity Vd of the convex substrate,
(6)圧縮後の凸形状のある基板間の隙間が粒子の直径と等しくなる時間以降におい ては、凸形状のある基板間に挟まれる粒子数 Nを出力演算し、  (6) After the time when the gap between the convex shaped substrates after compression becomes equal to the particle diameter, the number N of particles sandwiched between the convex shaped substrates is output and calculated.
(7)上記(6)の圧縮後の凸形状のある基板間の隙間が粒子の直径と等しくなる時間 以降においては、凸形状のある基板と粒子の接触を無視し、凸形状のある基板の移 動量から粒子の変形量 ΔΗを算出した後に、上記 (4)で入力した粒子 1個当たりに 加わる荷重一変位の関係式から粒子の変形量 ΔΗによって、粒子 1個当たりに加わ る荷重 AFを算出し、粒子に加わる荷重 (FR=NXAF)を算出し、また、移動する凸 形状のある基板により樹脂に加わる荷重 FJを、移動する凸形状のある基板と樹脂の 接触面積と部分の樹脂圧力の積として算出し、  (7) After the time (6), when the gap between the convex substrate after compression becomes equal to the diameter of the particle, contact between the convex substrate and the particle is ignored, and the convex substrate After calculating the deformation amount ΔΗ of the particle from the amount of movement, the load AF applied per particle by the deformation amount ΔΗ of the particle is calculated from the relational expression of the load-displacement applied per particle input in (4) above. Calculate the load applied to the particles (FR = NXAF), and the load FJ applied to the resin by the moving convex substrate and the contact area between the moving convex substrate and the resin and the resin pressure of the part As the product of
(8)入力した凸形状のある基板に加えられる外部からの最大荷重 Fmaxが樹脂に加 えられる荷重 FJと粒子に加えられる荷重 FRの和以上(Fmax≥FJ + FR)であれば、 凸形状のある基板を移動速度 Vdで制御し、入力した凸形状のある基板に加えられる 外部からの最大荷重 Fmaxが樹脂に加えられる荷重 FJと粒子に加えられる荷重 FR よりも小さければ (Fmax< FJ + FR)、凸形状のある基板移動の境界条件が、凸形状 のある基板に加えられる外部からの荷重 (最大荷重 Fmax)に切り替えられ、粒子を 含む樹脂材料を 2方向から凸形状のある基板で圧縮することにより、樹脂材料および 粒子を流動させる工程を計算することを特徴とする粒子を内在させた樹脂材料の流 動解析方法。  (8) If the maximum external load Fmax applied to the substrate with an input convex shape is greater than the sum of the load FJ applied to the resin FJ and the load FR applied to the particles (Fmax≥FJ + FR), the convex shape If the maximum external load Fmax applied to the convex substrate is controlled by the moving speed Vd and the load FJ applied to the resin is smaller than the load FR applied to the particles (Fmax <FJ + FR), the boundary condition of convex substrate movement is switched to the external load (maximum load Fmax) applied to the convex substrate, and the resin material containing particles is transferred from two directions to the convex substrate. A flow analysis method for a resin material containing particles, characterized in that a step of causing the resin material and particles to flow by compression is calculated.
[3] 請求項 1又は請求項 2に記載の粒子を内在させた樹脂材料の流動解析方法にお いて、  [3] In the flow analysis method of the resin material in which the particles according to claim 1 or claim 2 are contained,
粒子に加わる荷重と変位の関係の入力方法として、任意数の粒子当たりに加わる 荷重と変位の関係、または任意数の粒子当たりに加わる応力と変形率の関係を入力 することを特徴とする粒子を内在させた樹脂材料の流動解析方法。  As a method of inputting the relationship between the load applied to the particle and the displacement, the particle is characterized by inputting the relationship between the load applied to any number of particles and the displacement, or the relationship between the stress applied to any number of particles and the deformation rate. Flow analysis method for internal resin materials.
[4] 請求項 1又は請求項 2に記載の粒子を内在させた樹脂材料の流動解析方法にお いて、 [4] In a flow analysis method for a resin material in which the particles according to claim 1 or 2 are contained, And
粒子が導電性を有しており、接続部分の粒子数と変形率と導零性の関係を入力す ることにより、凸形状のある基板間の導電性を出力演算することを特徴とする粒子を 内在させた樹脂材料の流動解析方法。  Particles having electrical conductivity, and calculating the electrical conductivity between convex substrates by inputting the relationship between the number of particles at the connecting portion, the deformation rate, and the conductivity. A flow analysis method for resin materials that contain.
[5] 請求項 1又は請求項 2に記載の粒子を内在させた樹脂材料の流動解析方法にお いて、 [5] In the flow analysis method of a resin material in which the particles according to claim 1 or claim 2 are contained,
粒子が導電性を有しており、接続部分の粒子数と粒子と凸形状のある基板の接触 面積と導電性の関係を入力することにより、凸形状のある基板間の導電性を出力演 算することを特徴とする粒子を内在させた樹脂材料の流動解析方法。  The particle has conductivity, and by inputting the relationship between the number of particles in the connecting part, the contact area between the particle and the convex substrate, and the conductivity, the conductivity between the convex substrates is output. A flow analysis method for a resin material in which particles are contained.
[6] 請求項 1又は請求項 2に記載の粒子を内在させた樹脂材料の流動解析方法にお いて、 [6] In the flow analysis method of the resin material in which the particles according to claim 1 or claim 2 are contained,
樹脂材料の発熱反応式、樹脂温度を含む関数である粘度式を入力し、樹脂材料 および粒子の流動過程を出力することを特徴とする粒子を内在させた樹脂材料の流 動解析方法。  A flow analysis method for a resin material containing particles, wherein the exothermic reaction equation of the resin material and a viscosity equation that is a function including the resin temperature are input and the flow process of the resin material and particles is output.
[7] 請求項 1又は請求項 2に記載の粒子を内在させた樹脂材料の流動解析方法にお いて、  [7] In the flow analysis method of a resin material in which the particles according to claim 1 or claim 2 are contained,
樹脂材料が物性値の異なる二層以上で形成され、粒子が一層以上の樹脂中に配 置されており、二層以上の樹脂の発熱反応式、樹脂温度を含む関数である粘度式を 入力し、二層以上の樹脂および粒子の流動過程を出力することを特徴とする粒子を 内在させた樹脂材料の流動解析方法。  The resin material is formed of two or more layers with different physical properties, the particles are arranged in one or more resins, and an exothermic reaction formula of two or more layers of resin and a viscosity equation that is a function including the resin temperature are input. A flow analysis method for a resin material containing particles, characterized by outputting a flow process of two or more layers of resin and particles.
[8] 請求項 1又は請求項 2に記載の粒子を内在させた樹脂材料の流動解析方法にお いて、 [8] In the flow analysis method of the resin material in which the particles according to claim 1 or claim 2 are contained,
凸形状のある基板が、電極を備えた半導体集積回路と電極を備えた基板とである ことを特徴とする粒子を内在させた樹脂材料の流動解析方法。  The method for analyzing the flow of a resin material containing particles, wherein the convex substrate is a semiconductor integrated circuit including an electrode and a substrate including an electrode.
[9] (1)解析対象の凸形状のある基板、初期の粒子を含む樹脂材料の形状、粒子を含 む樹脂材料が流動できる空間のデータを記憶装置力 計算装置に取り込む入力部 [9] (1) An input unit that imports into the storage device power calculator the data of the convex substrate to be analyzed, the shape of the resin material containing the initial particles, and the space in which the resin material containing the particles can flow
(2)当該データに基づいて 3次元ソリッド要素に分解処理を行う処理部、 (3)少なくとも樹脂材料の密度、熱伝導率、比熱、粘度、粒子の外形寸法、密度、粒 子 1個当たりに加わる荷重一変位の関係、凸形状のある基板に加えられる外部から の荷重 Fを入力する入力部、 (2) A processing unit that performs decomposition processing into a three-dimensional solid element based on the data, (3) At least the density of resin material, thermal conductivity, specific heat, viscosity, particle external dimensions, density, load-displacement applied to each particle, external load applied to convex substrate F Input part to input,
(4)連続の式、ナビエスト一タスの式、エネルギ保存式を、前記 3次元ソリッド要素に 基づいて演算処理することにより、凸形状のある基板と樹脂材料の接触により、樹脂 温度の変化を計算し、凸形状のある基板の移動により、樹脂材料が粒子と共に圧縮 されながら流動する過程を計算する演算部、  (4) By calculating the continuous equation, Naviest Itas equation, and energy conservation equation based on the 3D solid element, the change in the resin temperature is calculated by the contact between the convex substrate and the resin material. And a calculation unit that calculates a process in which the resin material flows while being compressed together with the particles by the movement of the convex substrate,
(5)圧縮後の凸形状のある基板間の隙間が粒子の直径と等しくなる時間において、 凸形状のある基板間に挟まれる粒子数 Nを出力演算する出力部、  (5) an output unit that outputs and calculates the number N of particles sandwiched between the convex-shaped substrates at a time when the gap between the compressed convex-shaped substrates is equal to the particle diameter;
(6)上記(5)の圧縮後の凸形状のある基板間の隙間が粒子の直径と等しくなる時間 以降においては、凸形状のある基板と粒子の接触を無視し、凸形状のある基板に加 わる荷重を、上記(3)で入力した荷重 Fから、凸形状のある基板間の隙間から上記( 3)で入力した粒子 1個当たりに加わる荷重 変位の関係と上記(5)で求めた凸形状 のある基板間に挟まれる粒子数 Nとの積によって求めた荷重を引いた値を用いて、 粒子を含む樹脂材料を 2方向から凸形状のある基板で圧縮することにより、樹脂材料 および粒子を流動させる工程を計算する演算部を備えたことを特徴とする粒子を内 在させた樹脂材料の流動解析システム。  (6) After the time when the gap between the convex substrate after compression in (5) is equal to the diameter of the particle, contact between the convex substrate and the particle is ignored, and the convex substrate is formed. The applied load was calculated from the load F input in (3) above, the load displacement applied per particle input in (3) above from the gap between the convex substrates, and (5) above. By compressing a resin material containing particles from two directions with a substrate having a convex shape using a value obtained by subtracting the load determined by the product of the number N of particles sandwiched between the convex substrates, the resin material and A flow analysis system for resin material containing particles, comprising a calculation unit for calculating a process of flowing particles.
(1)解析対象の凸形状のある基板、初期の粒子を含む樹脂材料の形状、粒子を含 む樹脂材料が流動できる空間のデータを記憶装置力 計算装置に取り込む入力部  (1) An input unit that imports into the storage device power calculation device data on the convex substrate to be analyzed, the shape of the resin material containing the initial particles, and the space in which the resin material containing the particles can flow
(2)当該データに基づいて 3次元ソリッド要素に分解処理を行う処理部、 (2) A processing unit that performs decomposition processing into a three-dimensional solid element based on the data,
(3)少なくとも樹脂材料の密度、熱伝導率、比熱、粘度、粒子の密度、外形寸法、粒 子 1個当たりに加わる荷重一変位の関係を入力する入力部、  (3) An input unit for inputting at least the relationship of resin material density, thermal conductivity, specific heat, viscosity, particle density, external dimensions, and load-displacement applied to each particle,
(4)凸形状のある基板の移動速度 Vd、凸形状のある基板に加えられる外部からの最 大荷重 Fmaxを入力する入力部、  (4) Input part for inputting the movement speed Vd of the convex substrate, the maximum external load Fmax applied to the convex substrate,
(5)連続の式、ナビエスト一タスの式、エネルギ保存式を、前記 3次元ソリッド要素に 基づいて演算処理することにより、凸形状のある基板と樹胎材料の接触により、樹脂 温度の変化を計算し、凸形状のある基板の移動速度 Vdにより、樹脂材料が粒子と共 に圧縮されながら流動する過程を計算する演算部、 (5) By calculating the continuous equation, Naviest-Itaus equation, and energy conservation equation based on the 3D solid element, the resin temperature changes due to the contact between the convex substrate and the tree material. Calculate and move the resin material together with the particles by the moving speed Vd of the convex substrate. An arithmetic unit that calculates the process of flowing while being compressed
(6)圧縮後の凸形状のある基板間の隙間が粒子の直径と等しくなる時間以降におい ては、凸形状のある基板間に挟まれる粒子数 Nを出力演算する出力演算部、 (6) After the time when the gap between the convex substrates after compression becomes equal to the diameter of the particles, an output calculation unit that outputs and calculates the number N of particles sandwiched between the convex substrates,
(7)上記(6)の圧縮後の凸形状のある基板間の隙間が粒子の直径と等しくなる時間 以降においては、凸形状のある基板と粒子の接触を無視し、凸形状のある基板の移 動方向における樹脂材料の移動量力 粒子の変形量 ΔΗを算出した後に、上記 (4) で入力した粒子 1個当たりに加わる荷重一変位の関係式から粒子の変形量 ΔΗによ つて、粒子 1個当たりに加わる荷重 AFを算出し、粒子に加わる荷重(FR=NXAF) を算出し、また、移動する凸形状のある基板により樹脂に加わる荷重 FJを、移動する 凸形状のある基板と樹脂の接触面積と部分の樹脂圧力の積として算出する演算部、(7) After the time (6), when the gap between the convex substrate after compression becomes equal to the diameter of the particle, contact between the convex substrate and the particle is ignored, and the convex substrate After calculating the deformation force ΔΗ of the resin material in the moving direction, the particle deformation amount Δ 1 is calculated from the relational expression of the load-displacement applied to each particle input in (4) above. Calculate the load AF applied to each piece, calculate the load applied to the particles (FR = NXAF), and add the load FJ applied to the resin by the moving convex substrate to the moving convex substrate and the resin. A calculation unit that calculates the product of the contact area and the resin pressure of the part,
(8)入力した凸形状のある基板に加えられる外部からの最大荷重 Fmaxが樹脂に加 えられる荷重 FJと粒子に加えられる荷重 FRの和以上(Fmax≥FJ + FR)であれば、 凸形状のある基板を移動速度 Vdで制御し、入力した凸形状のある基板に加えられる 外部からの最大荷重 Fmaxが樹脂に加えられる荷重 FJと粒子に加えられる荷重 FR よりも小さければ (Fmax< FJ + FR)、凸形状のある基板移動の境界条件が、凸形状 のある基板に加えられる外部からの荷重 (最大荷重 Fmax)に切り替えられ、粒子を 含む樹脂材料を 2方向から凸形状のある基板で圧縮することにより、樹脂材料および 粒子を流動させる工程を計算する演算部を備えたことを特徴とする粒子を内在させ た樹脂材料の流動解析システム。 (8) If the maximum external load Fmax applied to the substrate with an input convex shape is equal to or greater than the sum of the load FJ applied to the resin FJ and the load FR applied to the particles (Fmax≥FJ + FR), the convex shape If the maximum external load Fmax applied to the substrate with convex shape is controlled by the moving speed Vd and the load FJ applied to the resin and the load FR applied to the particles FR (Fmax <FJ + FR), the boundary condition of convex substrate movement is switched to the external load (maximum load Fmax) applied to the convex substrate, and the resin material containing particles is transferred from two directions to the convex substrate. A flow analysis system for resin material containing particles, comprising a calculation unit that calculates a process of causing the resin material and particles to flow by being compressed.
(1)解析対象の凸形状のある基板、初期の粒子を含む樹脂材料の形状、粒子を含 む樹脂材料が流動できる空間のデータを記憶装置力 計算装置に取り込み、 (1) Import the data of the convex substrate to be analyzed, the shape of the resin material containing the initial particles, and the space in which the resin material containing the particles can flow into the storage device power calculation device,
(2)当該データに基づいて 3次元ソリッド要素に分解処理をし、 (2) Based on the data, decompose into 3D solid elements,
(3)少なくとも樹脂材料の密度、熱伝導率、比熱、粘度、粒子の外形寸法、密度、粒 子 1個当たりに加わる荷重一変位の関係、凸形状のある基板に加えられる外部から の荷重 Fを入力し、  (3) At least the density of resin material, thermal conductivity, specific heat, viscosity, particle external dimensions, density, load-displacement applied to each particle, external load applied to convex substrate F Enter
(4)連続の式、ナビエスト一タスの式、エネルギ保存式を、前記 3次元ソリッド要素に 基づいて演算処理することにより、凸形状のある基板と樹脂材料の接触により、樹脂 温度の変化を計算し、凸形状のある基板の移動により、樹脂材料が粒子と共に圧縮 されながら流動する過程を計算し、 (4) By calculating the continuous equation, Naviest Itas equation, and energy conservation equation based on the 3D solid element, the change in the resin temperature is calculated by the contact between the convex substrate and the resin material. The resin material is compressed together with the particles by moving the convex substrate. The process of flowing while being
(5)圧縮後の凸形状のある基板間の隙間が粒子の直径と等しくなる時間において、 凸形状のある基板間に挟まれる粒子数 Nを出力演算し、  (5) During the time when the gap between the compressed convex substrates is equal to the diameter of the particles, the number N of particles sandwiched between the convex substrates is output and calculated.
(6)上記(5)の圧縮後の凸形状のある基板間の隙間が粒子の直径と等しくなる時間 以降においては、電極と粒子の接触を無視し、凸形状のある基板に加わる荷重を、 上記(3)で入力した荷重 Fから、凸形状のある基板間の隙間から上記(3)で入力した 粒子 1個当たりに加わる荷重一変位の関係と上記(5)で求めた凸形状のある基板間 に挟まれる粒子数 Nとの積によって求めた荷重を引いた値を用いて、粒子を含む樹 脂材料を 2方向から凸形状のある基板で圧縮する過程を計算することを特徴とする 粒子を内在させた樹脂材料の流動解析方法。  (6) After the time when the gap between the convex substrate after compression in (5) is equal to the diameter of the particle, the contact between the electrode and the particle is ignored, and the load applied to the convex substrate is From the load F input in (3) above, the relationship between the displacement of the load applied per particle input in (3) above from the gap between convex substrates and the convex shape obtained in (5) above Using the value obtained by subtracting the load obtained by the product of the number of particles N sandwiched between the substrates and N, the process of compressing the resin material containing particles from two directions with a convex substrate is calculated. A flow analysis method for resin materials containing particles.
(1)解析対象の凸形状のある基板、初期の粒子を含む樹脂材料の形状、粒子を含 む樹脂材料が流動できる空間のデータを記憶装置力 計算装置に取り込み、 (1) Import the data of the convex substrate to be analyzed, the shape of the resin material containing the initial particles, and the space in which the resin material containing the particles can flow into the storage device power calculation device,
(2)当該データに基づいて 3次元ソリッド要素に分解処理をし、 (2) Based on the data, decompose into 3D solid elements,
(3)少なくとも樹脂材料の密度、熱伝導率、比熱、粘度、粒子の外形寸法、密度、粒 子 1個当たりに加わる温度変化を考慮した荷重一変位の関係、凸形状のある基板に 加えられる外部からの荷重 Fを入力し、  (3) At least the resin material density, thermal conductivity, specific heat, viscosity, particle external dimensions, density, load-displacement relationship taking into account the temperature change per particle, added to a convex substrate Input the external load F,
(4)連続の式、ナビエスト一タスの式、エネルギ保存式を、前記 3次元ソリッド要素に 基づいて演算処理することにより、凸形状のある基板と樹脂材料の接触により、樹脂 温度の変化を計算し、凸形状のある基板の移動により、樹脂材料が粒子と共に圧縮 されながら流動する過程を計算し、  (4) By calculating the continuous equation, Naviest Itas equation, and energy conservation equation based on the 3D solid element, the change in the resin temperature is calculated by the contact between the convex substrate and the resin material. And calculate the process in which the resin material flows while being compressed along with the particles by the movement of the convex substrate,
(5)圧縮後の凸形状のある基板間の隙間が粒子の直径と等しくなる時間において、 凸形状のある基板間に挟まれる粒子数 Nを出力演算し、  (5) During the time when the gap between the compressed convex substrates is equal to the diameter of the particles, the number N of particles sandwiched between the convex substrates is output and calculated.
(6)上記(5)の圧縮後の凸形状のある基板間の隙間が粒子の直径と等しくなる時間 以降においては、電極と粒子の接触を無視し、凸形状のある基板に加わる荷重を、 上記(3)で入力した荷重 Fから、凸形状のある基板間の隙間から上記(3)で入力した 粒子 1個当たりに加わる温度変化を考慮した荷重一変位の関係と上記(5)で求めた 凸形状のある基板間に挟まれる粒子数 Nとの積によって求めた荷重を引いた値を用 いて、粒子を含む樹脂材料を 2方向から凸形状のある基板で圧縮する過程を計算し (7)上記(3)で入力した荷重 Fが、 (6) After the time when the gap between the convex substrate after compression in (5) is equal to the diameter of the particle, the contact between the electrode and the particle is ignored, and the load applied to the convex substrate is From the load F input in (3) above, the relationship between the load and displacement taking into account the temperature change per particle input in (3) above from the gap between the convex substrates and the above (5) Using the value obtained by subtracting the load obtained from the product of the number of particles N sandwiched between the convex substrates, the process of compressing the resin material containing particles from the two directions on the convex substrate is calculated. (7) The load F entered in (3) above is
上記(3)で入力した粒子 1個当たりに加わる荷重 変位の関係と上記(5)で求めた 凸形状のある基板間に挟まれる粒子数 Nとの積によって求めた荷重よりも大きければ 、上記 ½)の粒子を含む樹脂材料を 2方向から凸形状のある基板で圧縮する過程を 繰り返し計算し、 If the load is greater than the load calculated by the product of the relationship between the load displacement applied per particle input in (3) above and the number of particles N sandwiched between the convex substrates determined in (5) above, The process of compressing a resin material containing particles of ½) with a convex substrate from two directions is repeatedly calculated,
上記(3)で入力した荷重 Fが、 The load F entered in (3) above is
上記(3)で入力した粒子 1個当たりに加わる荷重 変位の関係と上記(5)で求めた 凸形状のある基板間に挟まれる粒子数 Nとの積によって求めた荷重と等しくなれば、 電極の移動速度は 0とし、エネルギ方程式を用いた樹脂材料の温度計算を行い、温 度上昇により、上記(3)で入力した粒子 1個当たりに加わる荷重一変位の関係が変 化することにより、 If the load applied per particle input in (3) above is equal to the load calculated by the product of the relationship between displacement and the number of particles sandwiched between the convex substrates determined in (5) above, the electrode The movement speed of is assumed to be 0, the temperature of the resin material is calculated using the energy equation, and the relationship between the load and displacement applied to each particle input in (3) above changes as the temperature rises.
上記(3)で入力した荷重 Fが、上記(3)で入力した粒子 1個当たりに加わる荷重 変 位の関係と上記(5)で求めた凸形状のある基板間に挟まれる粒子数 Nとの積によつ て求めた荷重よりも大きくなれば、 The load F input in (3) above is the relationship between the load displacement applied per particle input in (3) above and the number of particles N sandwiched between the convex substrates determined in (5) above. If it becomes larger than the load obtained by the product of
上記(6)の粒子を含む樹脂材料を 2方向から凸形状のある基板で圧縮する過程を繰 り返し計算することにより、樹脂材料および粒子を流動させる工程を計算することを特 徴とする粒子を内在させた樹脂材料の流動解析方法。 Particles characterized by calculating the flow of the resin material and the particles by repeatedly calculating the process of compressing the resin material containing the particles of (6) above with a convex substrate from two directions. Of flow analysis of resin material that contains.
(1)解析対象の凸形状のある基板、初期の粒子を含む樹脂材料の形状、粒子を含 む樹脂材料が流動できる空間のデータを記憶装置力 計算装置に取り込み、 (1) Import the data of the convex substrate to be analyzed, the shape of the resin material containing the initial particles, and the space in which the resin material containing the particles can flow into the storage device power calculation device,
(2)当該データに基づいて 3次元ソリッド要素に分解処理をし、 (2) Based on the data, decompose into 3D solid elements,
(3)少なくとも樹脂材料の密度、熱伝導率、比熱、粘度、粒子の密度、外形寸法、粒 子 1個当たりに加わる温度変化を考慮した荷重一変位の関係を入力し、  (3) Enter at least the relationship of load / displacement considering the density, thermal conductivity, specific heat, viscosity, particle density, external dimensions, and temperature change per particle,
(4)凸形状のある基板の移動速度 Vd、凸形状のある基板に加えられる外部からの荷 重 Fを入力し、  (4) Enter the movement speed Vd of the convex substrate and the external load F applied to the convex substrate.
(5)連続の式、ナビエスト一タスの式、エネルギ保存式を、前記 3次元ソリッド要素に 基づいて演算処理することにより、凸形状のある基板と樹胎材料の接触により、樹脂 温度の変化を計算し、凸形状のある基板の移動速度 Vdにより、樹脂材料が粒子と共 に圧縮されながら流動する過程を計算し、 (5) By calculating the continuous equation, Naviest-Itaus equation, and energy conservation equation based on the 3D solid element, the resin temperature changes due to the contact between the convex substrate and the tree material. Calculate and move the resin material together with the particles by the moving speed Vd of the convex substrate. Calculate the process of flowing while being compressed,
(6)移動する凸形状のある基板により樹脂に加わる荷重 FJを、移動する凸形状のあ る基板と樹脂の接触面積と樹脂圧力の積として算出し、上記 (4)で入力した荷重 F FJの関係が、  (6) The load FJ applied to the resin by the moving convex substrate is calculated as the product of the contact area between the moving convex substrate and the resin and the resin pressure, and the load F FJ entered in (4) above. Relationship
F≥FJであれば、電極は上記(4)で入力した凸形状のある基板の移動速度 Vdで移 動する過程を計算し、  If F≥FJ, calculate the process in which the electrode moves at the moving speed Vd of the convex substrate entered in (4) above.
F< FJであれば、電極は上記 (4)で入力した荷重 Fによって圧縮され、移動する過程 を計算し、  If F <FJ, the electrode is compressed by the load F input in (4) above, and the process of movement is calculated.
(7)圧縮後の凸形状のある基板間の隙間が粒子の直径と等しくなる時間以降におい ては、凸形状のある基板間に挟まれる粒子数 Nを出力演算し、  (7) After the time when the gap between the convex shaped substrates after compression becomes equal to the particle diameter, the number N of particles sandwiched between the convex shaped substrates is output and calculated.
(8)上記(7)の圧縮後の凸形状のある基板間の隙間が粒子の直径と等しくなる時間 以降においては、電極と粒子の接触を無視し、凸形状のある基板に加わる荷重を、 上記 (4)で入力した荷重 Fから、凸形状のある基板間の隙間から上記(3)で入力した 粒子 1個当たりに加わる温度変化を考慮した荷重一変位の関係と上記(7)で求めた 凸形状のある基板間に挟まれる粒子数 Nとの積によって求めた荷重を引いた値を用 いて、粒子を含む樹脂材料を 2方向から凸形状のある基板で圧縮する過程を計算し  (8) After the time when the gap between the convex substrate after compression in (7) is equal to the diameter of the particle, the contact between the electrode and the particle is ignored, and the load applied to the convex substrate is From the load F input in (4) above, the relationship between the load and displacement taking into account the temperature change per particle input in (3) above from the gap between the convex substrates, and the above (7) Using the value obtained by subtracting the load obtained from the product of the number of particles N sandwiched between the convex substrates, the process of compressing the resin material containing particles from the two directions on the convex substrate is calculated.
(9)上記 (4)で入力した荷重 Fが、 (9) The load F entered in (4) above is
上記(3)で入力した粒子 1個当たりに加わる荷重 変位の関係と上記(7)で求めた 凸形状のある基板間に挟まれる粒子数 Nとの積によって求めた荷重よりも大きければ 上記(8)の粒子を含む樹脂材料を 2方向から凸形状のある基板で圧縮する過程を繰 り返し計算し、 If the load is greater than the load obtained by the product of the relationship between the load displacement per particle input in (3) above and the number of particles N sandwiched between the convex substrates obtained in (7) above ( 8) Repeatedly calculate the process of compressing the resin material containing the particles from two directions with a convex substrate,
上記 (4)で入力した荷重 Fが、 The load F entered in (4) above is
上記(3)で入力した粒子 1個当たりに加わる荷重 変位の関係と上記(7)で求めた 凸形状のある基板間に挟まれる粒子数 Nとの積によって求めた荷重と等しくなれば、 電極の移動速度は 0とし、エネルギ方程式を用いた樹脂材料の温度計算を行い、温 度上昇により、上記(3)で入力した粒子 1個当たりに加わる荷重一変位の関係が変 化することにより、 If the load applied per particle input in (3) above is equal to the load calculated by the product of the relationship between the displacement and the number of particles sandwiched between the convex substrates determined in (7) above, the electrode The movement speed of the resin is assumed to be 0, the temperature of the resin material is calculated using the energy equation, and the relationship between the load and displacement applied per particle input in (3) above changes as the temperature rises. By
上記 (4)で入力した荷重 Fが、上記(3)で入力した粒子 1個当たりに加わる荷重 変 位の関係と上記(7)で求めた凸形状のある基板間に挟まれる粒子数 Nとの積によつ て求めた荷重よりも大きくなれば、  The load F input in (4) above is the relationship between the load displacement applied per particle input in (3) above and the number of particles N sandwiched between the convex substrates determined in (7) above. If it becomes larger than the load obtained by the product of
上記(8)の粒子を含む樹脂材料を 2方向から凸形状のある基板で圧縮する過程を繰 り返し計算することにより、樹脂材料および粒子を流動させる工程を計算することを特 徴とする粒子を内在させた樹脂材料の流動解析方法。  Particles characterized by calculating the flow of the resin material and the particles by repeatedly calculating the process of compressing the resin material containing the particles of (8) with a convex substrate from two directions. Of flow analysis of resin material that contains.
[14] 請求項 11又は請求項 12又は請求項 13に記載の粒子を内在させた樹脂材料の流 動解析方法において、粒子に加わる荷重と変位の関係の入力方法として、任意数の 粒子当たりに加わる荷重と変位の温度変化を考慮した関係、または任意数の粒子当 たりに加わる応力と変形率の温度変化を考慮した関係を入力することを特徴とする粒 子を内在させた樹脂材料の流動解析方法。  [14] In the flow analysis method of the resin material in which the particles according to claim 11 or claim 12 or claim 13 are contained, as an input method of the relationship between the load applied to the particles and the displacement, per arbitrary number of particles Flow of resin material containing particles, characterized by inputting the relationship considering the temperature change of applied load and displacement, or the stress applied to any number of particles and the relationship considering temperature change of deformation rate analysis method.
[15] 請求項 14に記載の粒子に加わる荷重と変位の温度変化を考慮した関係において 温度は、解析で求めた基板間の樹脂温度の平均値、または基板間の任意場所の 樹脂温度を用いることを特徴とする粒子を内在させた樹脂材料の流動解析方法。  [15] In the relationship considering the temperature change of the load and displacement applied to the particles according to claim 14, the temperature uses the average value of the resin temperature between the substrates obtained by analysis or the resin temperature at any place between the substrates. A flow analysis method of a resin material containing particles characterized by the above.
[16] 請求項 11又は請求項 12又は請求項 13に記載の粒子を内在させた樹脂材料の流 動解析方法において、 [16] In the flow analysis method of the resin material in which the particles according to claim 11 or claim 12 or claim 13 are contained,
請求項 14記載の温度変化を考慮した変形量の関係を入力した粒子が導電性を有 しており、接続部分の粒子数と変形率と導零性の関係を入力することにより、凸形状 のある基板間の導電性を出力演算することを特徴とする粒子を内在させた樹脂材料 の流動解析方法。  The particles to which the relationship of the deformation amount considering the temperature change according to claim 14 is input have conductivity. By inputting the relationship between the number of particles at the connecting portion, the deformation rate, and the conductivity, the convex shape A method for analyzing the flow of a resin material containing particles, characterized in that the conductivity between certain substrates is output.
[17] 請求項 11又は請求項 12又は請求項 13に記載の粒子を内在させた樹脂材料の流 動解析方法において、  [17] In the flow analysis method of a resin material containing particles according to claim 11 or claim 12 or claim 13,
請求項 14記載の温度変化を考慮した変形量の関係を入力した粒子が導電性を有 しており、接続部分の粒子数と粒子と凸形状のある基板の接触面積と導電性の関係 を入力することにより、凸形状のある基板間の導電性を出力演算することを特徴とす る粒子を内在させた樹脂材料の流動解析方法。 [18] 請求項 11又は請求項 12又は請求項 13に記載の粒子を内在させた樹脂材料の流 動解析方法において、 The particle having the relationship of the deformation amount considering the temperature change described in claim 14 has conductivity, and the relationship between the number of particles at the connecting portion, the contact area between the particle and the convex substrate, and the conductivity is input. A flow analysis method for a resin material containing particles, characterized in that the conductivity between the convex substrates is output. [18] In the flow analysis method for a resin material containing particles according to claim 11 or claim 12 or claim 13,
樹脂材料が物性値の異なる二層以上で形成され、請求項 4記載の温度変化を考 慮した変形量の関係を入力した粒子が一層以上の樹脂中に配置されており、ニ層以 上の樹脂の発熱反応式、樹脂温度を含む関数である粘度式を入力し、二層以上の 樹脂および粒子の流動過程を出力することを特徴とする粒子を内在させた樹脂材料 の流動解析方法。  The resin material is formed of two or more layers having different physical property values, and the particles having the relationship of the deformation amount considering the temperature change according to claim 4 are arranged in one or more resins, and the two or more layers are arranged. A flow analysis method for a resin material containing particles, wherein the exothermic reaction equation of the resin and the viscosity equation, which is a function including the resin temperature, are input and the flow process of two or more layers of resin and particles is output.
[19] 請求項 11又は請求項 12又は請求項 13に記載の粒子を内在させた樹脂材料の流 動解析方法において、  [19] In the flow analysis method of a resin material containing particles according to claim 11 or claim 12 or claim 13,
算出された電極間に挟まれる粒子の位置を出力することを特徴とする粒子を内在さ せた樹脂材料の流動解析方法。  A flow analysis method for a resin material containing particles, wherein the calculated position of the particles sandwiched between the electrodes is output.
[20] 請求項 11又は請求項 12又は請求項 13に記載の粒子を内在させた樹脂材料の流 動解析方法で算出した電極の移動速度、請求項 18記載の計算方法で出力した基 板間に挟まれる粒子の位置を入力条件として構造解析を行い、粒子の変形量、また は粒子の変形形態、または粒子と電極の接触面積を算出することを特徴とする計算 方法。  [20] The moving speed of the electrode calculated by the flow analysis method of the resin material in which the particles according to claim 11 or claim 12 or claim 13 are contained, and between the substrates output by the calculation method of claim 18. A calculation method characterized in that a structural analysis is performed using the position of a particle sandwiched between two particles as an input condition, and the deformation amount of the particle, the deformation mode of the particle, or the contact area between the particle and the electrode is calculated.
[21] 請求項 20に記載の計算方法で算出した粒子の変形量、または粒子と電極の接触 面積と、  [21] The deformation amount of the particle calculated by the calculation method according to claim 20, or the contact area between the particle and the electrode,
接続部分の粒子数と変形率と導零性の関係、または接続部分の粒子数と粒子と凸 形状のある基板の接触面積と導電性の関係をもちいて、凸形状のある基板間の導電 性を出力演算することを特徴とする粒子を内在させた樹脂材料の計算方法。  Using the relationship between the number of particles in the connecting portion, deformation rate, and conductivity, or the relationship between the number of particles in the connecting portion and the contact area between the particle and the convex substrate, the conductivity between the convex substrates The calculation method of the resin material which included the particle | grains characterized by carrying out output calculation of this.
[22] (1)解析対象の凸形状のある基板、初期の粒子を含む樹脂材料の形状、粒子を含 む樹脂材料が流動できる空間のデータを記憶装置力 計算装置に取り込む入力部 [22] (1) Input unit for importing into the storage device power calculation device data on the convex substrate to be analyzed, the shape of the resin material containing the initial particles, and the space in which the resin material containing the particles can flow
(2)当該データに基づいて 3次元ソリッド要素に分解処理を行う処理部、 (2) A processing unit that performs decomposition processing into a three-dimensional solid element based on the data,
(3)少なくとも樹脂材料の密度、熱伝導率、比熱、粘度、粒子の外形寸法、密度、粒 子 1個当たりに加わる荷重一変位の関係、凸形状のある基板に加えられる外部から の荷重 Fを入力する入力部、 (4)連続の式、ナビエスト一タスの式、エネルギ保存式を、前記 3次元ソリッド要素に 基づいて演算処理することにより、凸形状のある基板と樹脂材料の接触により、樹脂 温度の変化を計算し、凸形状のある基板の移動により、樹脂材料が粒子と共に圧縮 されながら流動する過程を計算する演算部、 (3) At least the density of resin material, thermal conductivity, specific heat, viscosity, particle external dimensions, density, load-displacement applied to each particle, external load applied to convex substrate F Input part to input, (4) By calculating the continuous equation, Naviest Itas equation, and energy conservation equation based on the 3D solid element, the change in the resin temperature is calculated by the contact between the convex substrate and the resin material. And a calculation unit that calculates a process in which the resin material flows while being compressed together with the particles by the movement of the convex substrate,
(5)圧縮後の凸形状のある基板間の隙間が粒子の直径と等しくなる時間において、 凸形状のある基板間に挟まれる粒子数 Nを出力演算する出力部、  (5) an output unit that outputs and calculates the number N of particles sandwiched between the convex-shaped substrates at a time when the gap between the compressed convex-shaped substrates is equal to the particle diameter;
(6)上記(5)の圧縮後の凸形状のある基板間の隙間が粒子の直径と等しくなる時間 以降においては、電極と粒子の接触を無視し、凸形状のある基板に加わる荷重を、 上記(3)で入力した荷重 Fから、凸形状のある基板間の隙間から上記(3)で入力した 粒子 1個当たりに加わる荷重一変位の関係と上記(5)で求めた凸形状のある基板間 に挟まれる粒子数 Nとの積によって求めた荷重を引いた値を用いて、粒子を含む樹 脂材料を 2方向から凸形状のある基板で圧縮する過程を計算する演算部を備えたこ とを特徴とする粒子を内在させた樹脂材料の流動解析システム。  (6) After the time when the gap between the convex substrate after compression in (5) is equal to the diameter of the particle, the contact between the electrode and the particle is ignored, and the load applied to the convex substrate is From the load F input in (3) above, the relationship between the displacement of the load applied per particle input in (3) above from the gap between convex substrates and the convex shape obtained in (5) above A calculation unit is provided that calculates the process of compressing the resin material containing particles from two directions with a convex substrate using the value obtained by subtracting the load obtained by the product of the number N of particles sandwiched between the substrates. A flow analysis system for resin materials containing particles.
(1)解析対象の凸形状のある基板、初期の粒子を含む樹脂材料の形状、粒子を含 む樹脂材料が流動できる空間のデータを記憶装置力 計算装置に取り込む入力部  (1) An input unit that imports into the storage device power calculation device data on the convex substrate to be analyzed, the shape of the resin material containing the initial particles, and the space in which the resin material containing the particles can flow
(2)当該データに基づいて 3次元ソリッド要素に分解処理を行う処理部、 (2) A processing unit that performs decomposition processing into a three-dimensional solid element based on the data,
(3)少なくとも樹脂材料の密度、熱伝導率、比熱、粘度、粒子の外形寸法、密度、粒 子 1個当たりに加わる温度変化を考慮した荷重一変位の関係、凸形状のある基板に 加えられる外部からの荷重 Fを入力する入力部、  (3) At least the resin material density, thermal conductivity, specific heat, viscosity, particle external dimensions, density, load-displacement relationship taking into account the temperature change per particle, added to a convex substrate Input section for inputting external load F,
(4)連続の式、ナビエスト一タスの式、エネルギ保存式を、前記 3次元ソリッド要素に 基づいて演算処理することにより、凸形状のある基板と樹脂材料の接触により、樹脂 温度の変化を計算し、凸形状のある基板の移動により、樹脂材料が粒子と共に圧縮 されながら流動する過程を計算する演算部、  (4) By calculating the continuous equation, Naviest Itas equation, and energy conservation equation based on the 3D solid element, the change in the resin temperature is calculated by the contact between the convex substrate and the resin material. And a calculation unit that calculates a process in which the resin material flows while being compressed together with the particles by the movement of the convex substrate,
(5)圧縮後の凸形状のある基板間の隙間が粒子の直径と等しくなる時間において、 凸形状のある基板間に挟まれる粒子数 Nを出力演算する出力部、  (5) an output unit that outputs and calculates the number N of particles sandwiched between the convex-shaped substrates at a time when the gap between the compressed convex-shaped substrates is equal to the particle diameter;
(6)上記(5)の圧縮後の凸形状のある基板間の隙間が粒子の直径と等しくなる時間 以降においては、電極と粒子の接触を無視し、凸形状のある基板に加わる荷重を、 上記(3)で入力した荷重 Fから、凸形状のある基板間の隙間から上記(3)で入力した 粒子 1個当たりに加わる温度変化を考慮した荷重一変位の関係と上記(5)で求めた 凸形状のある基板間に挟まれる粒子数 Nとの積によって求めた荷重を引いた値を用 V、て、粒子を含む樹脂材料を 2方向から凸形状のある基板で圧縮する過程を計算す る演算部、 (6) After the time when the gap between the convex substrate after compression in (5) is equal to the diameter of the particle, the contact between the electrode and the particle is ignored, and the load applied to the convex substrate is From the load F input in (3) above, the relationship between the load and displacement taking into account the temperature change per particle input in (3) above from the gap between the convex substrates and the above (5) Calculate the process of compressing the resin material containing particles from two directions with a convex substrate by using the value obtained by subtracting the load obtained by the product of the number N of particles sandwiched between convex substrates and N Computing unit,
(7)上記(3)で入力した荷重 Fが、  (7) The load F entered in (3) above is
上記(3)で入力した粒子 1個当たりに加わる荷重 変位の関係と上記(5)で求めた 凸形状のある基板間に挟まれる粒子数 Nとの積によって求めた荷重よりも大きければ 上記(6)の粒子を含む樹脂材料を 2方向から凸形状のある基板で圧縮する過程を繰 り返し計算し、 If the load is larger than the load obtained by the product of the relationship between the load displacement per particle input in (3) above and the number N of particles sandwiched between the convex substrates obtained in (5) above ( 6) Repeatedly calculating the process of compressing the resin material containing the particles from two directions with a convex substrate,
上記(3)で入力した荷重 Fが、 The load F entered in (3) above is
上記(3)で入力した粒子 1個当たりに加わる荷重 変位の関係と上記(5)で求めた 凸形状のある基板間に挟まれる粒子数 Nとの積によって求めた荷重と等しくなれば、 電極の移動速度は 0とし、エネルギ方程式を用いた樹脂材料の温度計算を行い、温 度上昇により、上記(3)で入力した粒子 1個当たりに加わる荷重一変位の関係が変 化することにより、 If the load calculated by the product of the relationship between the load and displacement applied per particle input in (3) above and the number of particles N sandwiched between the convex substrates determined in (5) above is equal to the electrode The movement speed of the resin is assumed to be 0, the temperature of the resin material is calculated using the energy equation, and as the temperature rises, the relationship between the load and displacement applied to each particle input in (3) above changes.
上記(3)で入力した荷重 Fが、上記(3)で入力した粒子 1個当たりに加わる荷重 変 位の関係と上記(5)で求めた凸形状のある基板間に挟まれる粒子数 Nとの積によつ て求めた荷重よりも大きくなれば、 The load F input in (3) above is the relationship between the load displacement applied per particle input in (3) above and the number of particles N sandwiched between the convex substrates determined in (5) above. If it becomes larger than the load obtained by the product of
上記(6)の粒子を含む樹脂材料を 2方向から凸形状のある基板で圧縮する過程を繰 り返し計算することにより、樹脂材料および粒子を流動させる工程を計算する演算部 を備えたことを特徴とする粒子を内在させた樹脂材料の流動解析方法。 A calculation unit for calculating the flow of the resin material and the particles by repeatedly calculating the process of compressing the resin material containing the particles of (6) with a convex substrate from two directions is provided. A flow analysis method for a resin material containing characteristic particles.
(1)解析対象の凸形状のある基板、初期の粒子を含む樹脂材料の形状、粒子を含 む樹脂材料が流動できる空間のデータを記憶装置力 計算装置に取り込む入力部  (1) An input unit that imports into the storage device power calculation device data on the convex substrate to be analyzed, the shape of the resin material containing the initial particles, and the space in which the resin material containing the particles can flow
(2)当該データに基づいて 3次元ソリッド要素に分解処理をし、 (2) Based on the data, decompose into 3D solid elements,
(3)少なくとも樹脂材料の密度、熱伝導率、比熱、粘度、粒子の密度、外形寸法、粒 子 1個当たりに加わる温度変化を考慮した荷重一変位の関係を入力する入力部、(3) At least resin material density, thermal conductivity, specific heat, viscosity, particle density, external dimensions, grains An input unit that inputs the relationship between load and displacement in consideration of the temperature change applied to each child,
(4)凸形状のある基板の移動速度 Vd、凸形状のある基板に加えられる外部からの最 大荷重 Fmaxを入力する入力部、 (4) Input part for inputting the movement speed Vd of the convex substrate, the maximum external load Fmax applied to the convex substrate,
(5)連続の式、ナビエスト一タスの式、エネルギ保存式を、前記 3次元ソリッド要素に 基づいて演算処理することにより、凸形状のある基板と樹胎材料の接触により、樹脂 温度の変化を計算し、凸形状のある基板の移動速度 Vdにより、樹脂材料が粒子と共 に圧縮されながら流動する過程を計算する演算部、  (5) By calculating the continuous equation, Naviest-Itaus equation, and energy conservation equation based on the 3D solid element, the resin temperature changes due to the contact between the convex substrate and the tree material. An arithmetic unit that calculates and calculates the process in which the resin material flows while being compressed along with the particles, based on the moving velocity Vd of the convex substrate,
(6)移動する凸形状のある基板により樹脂に加わる荷重 FJを、移動する凸形状のあ る基板と樹脂の接触面積と樹脂圧力の積として算出し、上記 (4)で入力した最大荷 重 Fmaxと FJの関係が、  (6) The load FJ applied to the resin by the moving convex substrate is calculated as the product of the contact area of the moving convex substrate and the resin and the resin pressure, and the maximum load input in (4) above. The relationship between Fmax and FJ is
Fmax≥FJであれば、電極は上記(4)で入力した凸形状のある基板の移動速度 Vdで 移動する過程を計算し、  If Fmax≥FJ, calculate the process in which the electrode moves at the moving velocity Vd of the convex substrate input in (4) above.
Fmax< FJであれば、電極は上記(4)で入力した荷重 Fmaxによって圧縮され、移動 する過程を計算する演算部、  If Fmax <FJ, the electrode is compressed by the load Fmax input in (4) above, and a calculation unit that calculates the process of movement,
(7)圧縮後の凸形状のある基板間の隙間が粒子の直径と等しくなる時間以降におい ては、凸形状のある基板間に挟まれる粒子数 Nを出力演算する出力部、  (7) After the time when the gap between the convex substrates after compression becomes equal to the diameter of the particles, an output unit that outputs and calculates the number N of particles sandwiched between the convex substrates;
(8)上記(7)の圧縮後の凸形状のある基板間の隙間が粒子の直径と等しくなる時間 以降においては、電極と粒子の接触を無視し、凸形状のある基板に加わる荷重を、 上記 (4)で入力した荷重 Fmaxから、凸形状のある基板間の隙間から上記(3)で入力 した粒子 1個当たりに加わる温度変化を考慮した荷重一変位の関係と上記(7)で求 めた凸形状のある基板間に挟まれる粒子数 Nとの積によって求めた荷重を引いた値 を用いて、粒子を含む樹脂材料を 2方向から凸形状のある基板で圧縮する過程を計 算する演算部、  (8) After the time when the gap between the convex substrate after compression in (7) is equal to the diameter of the particle, the contact between the electrode and the particle is ignored, and the load applied to the convex substrate is From the load Fmax input in (4) above, the relationship between the load-displacement considering the temperature change applied per particle input in (3) above from the gap between the convex substrates and the above (7) is obtained. Using the value obtained by subtracting the load obtained from the product of the number of particles N sandwiched between the curved convex substrates, the process of compressing the resin material containing the particles with the convex substrate from two directions is calculated. Computing unit,
(9)上記(4)で入力した荷重 Fmaxが、  (9) The load Fmax entered in (4) above is
上記(3)で入力した粒子 1個当たりに加わる荷重 変位の関係と上記(7)で求めた 凸形状のある基板間に挟まれる粒子数 Nとの積によって求めた荷重よりも大きければ 上記(8)の粒子を含む樹脂材料を 2方向から凸形状のある基板で圧縮する過程を繰 り返し計算し、 If the load is greater than the load obtained by the product of the relationship between the load displacement per particle input in (3) above and the number of particles N sandwiched between the convex substrates obtained in (7) above ( 8) Repeat the process of compressing the resin material containing the particles from two directions with a convex substrate. Calculate repeatedly,
上記(4)で入力した荷重 Fmaxが、 The load Fmax entered in (4) above is
上記(3)で入力した粒子 1個当たりに加わる荷重 変位の関係と上記(7)で求めた 凸形状のある基板間に挟まれる粒子数 Nとの積によって求めた荷重と等しくなれば、 電極の移動速度は 0とし、エネルギ方程式を用いた樹脂材料の温度計算を行い、温 度上昇により、上記(3)で入力した粒子 1個当たりに加わる荷重一変位の関係が変 化することにより、 If the load applied per particle input in (3) above is equal to the load calculated by the product of the relationship between the displacement and the number of particles sandwiched between the convex substrates determined in (7) above, the electrode The movement speed of the resin is assumed to be 0, the temperature of the resin material is calculated using the energy equation, and as the temperature rises, the relationship between the load and displacement applied to each particle input in (3) above changes.
上記 (4)で入力した荷重 Fmax力 上記(3)で入力した粒子 1個当たりに加わる荷重 一変位の関係と上記(7)で求めた凸形状のある基板間に挟まれる粒子数 Nとの積に よって求めた荷重よりも大きくなれば、 The load Fmax force input in (4) above The load applied per particle input in (3) above and the relationship between the displacement and the number of particles N sandwiched between the convex substrates obtained in (7) above If it becomes larger than the load determined by the product,
上記(8)の粒子を含む樹脂材料を 2方向から凸形状のある基板で圧縮する過程を繰 り返し計算することにより、樹脂材料および粒子を流動させる工程を計算する演算部 を備えたことを特徴とする粒子を内在させた樹脂材料の流動解析システム。 A calculation unit that calculates the flow of the resin material and the particles by repeatedly calculating the process of compressing the resin material including the particles of (8) with a convex substrate from two directions. A flow analysis system for resin materials containing the characteristic particles.
PCT/JP2007/069361 2006-10-06 2007-10-03 Method for analyzing fluidity of resin material including particles and fluidity analysis system WO2008044571A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008538677A JPWO2008044571A1 (en) 2006-10-06 2007-10-03 Flow analysis method and flow analysis system for resin material containing particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-275575 2006-10-06
JP2006275575 2006-10-06

Publications (1)

Publication Number Publication Date
WO2008044571A1 true WO2008044571A1 (en) 2008-04-17

Family

ID=39282780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/069361 WO2008044571A1 (en) 2006-10-06 2007-10-03 Method for analyzing fluidity of resin material including particles and fluidity analysis system

Country Status (5)

Country Link
JP (1) JPWO2008044571A1 (en)
KR (1) KR20090064428A (en)
CN (1) CN101523394A (en)
TW (1) TW200834364A (en)
WO (1) WO2008044571A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010186395A (en) * 2009-02-13 2010-08-26 Hitachi Chem Co Ltd Method and system for analyzing particle deformation for resin material containing particle
DE102010050963A1 (en) 2009-11-11 2011-05-12 Hitachi Ltd. A method of predicting the volume change of voids in synthetic resins in porous bodies and methods of analyzing the flow of synthetic resin material in a porous body
CN102707291A (en) * 2012-05-24 2012-10-03 中国工程物理研究院流体物理研究所 Real-time measurement method of high-speed particle flow distribution and measuring device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5498523B2 (en) * 2012-03-07 2014-05-21 住友ゴム工業株式会社 Method and apparatus for simulation of extrusion of plastic material
US9990455B1 (en) * 2017-12-13 2018-06-05 Tactotek Oy Arrangement and method for facilitating electronics design in connection with 3D structures
KR102455721B1 (en) * 2018-03-06 2022-10-17 쇼와덴코머티리얼즈가부시끼가이샤 A method for evaluating the fluidity of a resin composition, a method for screening a resin composition, and a method for manufacturing a semiconductor device
CN112632813B (en) * 2020-12-03 2022-05-31 浙江大学 Optimization method of curing system of large-thickness resin-based composite material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05314091A (en) * 1992-05-01 1993-11-26 Toyota Central Res & Dev Lab Inc Method for analyzing motion of grain in fluidized substrate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05314091A (en) * 1992-05-01 1993-11-26 Toyota Central Res & Dev Lab Inc Method for analyzing motion of grain in fluidized substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010186395A (en) * 2009-02-13 2010-08-26 Hitachi Chem Co Ltd Method and system for analyzing particle deformation for resin material containing particle
DE102010050963A1 (en) 2009-11-11 2011-05-12 Hitachi Ltd. A method of predicting the volume change of voids in synthetic resins in porous bodies and methods of analyzing the flow of synthetic resin material in a porous body
US8543363B2 (en) 2009-11-11 2013-09-24 Hitachi, Ltd. Method for predicting volume change of void generated in resin filled in porous body, and method for analyzing flow of resin material in porous body
CN102707291A (en) * 2012-05-24 2012-10-03 中国工程物理研究院流体物理研究所 Real-time measurement method of high-speed particle flow distribution and measuring device

Also Published As

Publication number Publication date
KR20090064428A (en) 2009-06-18
JPWO2008044571A1 (en) 2010-02-12
TWI343992B (en) 2011-06-21
CN101523394A (en) 2009-09-02
TW200834364A (en) 2008-08-16

Similar Documents

Publication Publication Date Title
WO2008044571A1 (en) Method for analyzing fluidity of resin material including particles and fluidity analysis system
Lee et al. Ultrasonic welding simulations for multiple layers of lithium-ion battery tabs
JP2010108150A (en) Thermal stress analysis method of electronic component and resin flow analysis method
JP4820318B2 (en) Resin molded product design support apparatus, support method, and support program
Saeedi et al. Delaminated multilayered plates under uniaxial extension. Part II: Efficient layerwise mesh strategy for the prediction of delamination onset
Lu et al. Multi-parametric space-time computational vademecum for parametric studies: Application to real time welding simulations
Wolloch et al. Ab initio friction forces on the nanoscale: A density functional theory study of fcc Cu (111)
Post et al. Physical model based digital twins in manufacturing processes
Khani et al. The Lowe-Andersen thermostat as an alternative to the dissipative particle dynamics in the mesoscopic simulation of entangled polymers
Johannes et al. Modeling and convergence analysis of directed energy deposition simulations with hybrid implicit/explicit and implicit solutions
Marhöfer et al. Gate design in injection molding of microfluidic components using process simulations
Yang et al. Parametric study of particle sedimentation by dissipative particle dynamics simulation
JP5190045B2 (en) Prediction method of void volume change generated in resin filled in porous material
JP2010186395A (en) Method and system for analyzing particle deformation for resin material containing particle
Das et al. Influences of streaming potential on cross stream migration of flexible polymer molecules in nanochannel flows
Zheng et al. Active control of piezothermoelastic FGM shells using integrated piezoelectric sensor/actuator layers
Yang et al. Physical mechanism of interfacial thermal resistance in electronic packaging based on a mixed MD/FE model
CN114912377A (en) Multilayer fluid analysis program, multilayer fluid analysis system, and multilayer fluid analysis method
JP2008033380A (en) Method and program for analyzing heat insulation performance of product
JP2019082929A (en) Compression molding analysis system, compression molding analysis method, and compression molding analysis program
JP5562807B2 (en) Shrinkage strain calculation method and analysis program
JP5235573B2 (en) Strength analysis method, strength analysis apparatus, and strength analysis program
Suzuki Three-scale modeling of laminated structures employing the seamless-domain method
WO2018047809A1 (en) Curvature deformation prevention design method for resin molded article, program, recording medium, and curvature deformation prevention design apparatus for resin molded article
JP6726600B2 (en) Resin viscosity formula coefficient determination system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780037091.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07829100

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008538677

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020097006932

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07829100

Country of ref document: EP

Kind code of ref document: A1