JPWO2008044571A1 - Flow analysis method and flow analysis system for resin material containing particles - Google Patents

Flow analysis method and flow analysis system for resin material containing particles Download PDF

Info

Publication number
JPWO2008044571A1
JPWO2008044571A1 JP2008538677A JP2008538677A JPWO2008044571A1 JP WO2008044571 A1 JPWO2008044571 A1 JP WO2008044571A1 JP 2008538677 A JP2008538677 A JP 2008538677A JP 2008538677 A JP2008538677 A JP 2008538677A JP WO2008044571 A1 JPWO2008044571 A1 JP WO2008044571A1
Authority
JP
Japan
Prior art keywords
particles
load
resin material
convex
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008538677A
Other languages
Japanese (ja)
Inventor
河野 務
務 河野
小林 宏治
宏治 小林
和良 小島
和良 小島
眞行 美野
眞行 美野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corporation
Showa Denko Materials Co Ltd
Original Assignee
Resonac Corporation
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Resonac Corporation, Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Resonac Corporation
Publication of JPWO2008044571A1 publication Critical patent/JPWO2008044571A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads

Abstract

粒子の変形を伴う樹脂材料の流動挙動の解析技術を確立する。粒子の変形量と荷重の実験結果を入力値として、流体解析技術により樹脂材料の流動過程を予測すると同時に、樹脂材料の流動と粒子変形を予測する計算方法を実現することを特徴とする。具体的には、ある時間ステップにおいて、流体解析で求めた電極間の間隔から粒子の変形量を求め、粒子の変形量に対応した荷重を、電極を移動させるための荷重から引いて求めた荷重を、次の時間ステップの電極を移動するための荷重として用いることにより、流体の解析で、粒子が変形しながら樹脂材料が流動する過程を予測することが可能となる。Establish analysis technology of flow behavior of resin materials with particle deformation. The present invention is characterized by realizing a calculation method for predicting the flow of resin material and the deformation of the resin material at the same time as predicting the flow process of the resin material by the fluid analysis technique using the experimental results of the deformation amount and load of the particle as input values. Specifically, in a certain time step, the amount of deformation of the particle is determined from the distance between the electrodes determined by fluid analysis, and the load corresponding to the amount of deformation of the particle is subtracted from the load for moving the electrode. Is used as a load for moving the electrode of the next time step, it becomes possible to predict the process of flowing the resin material while the particles are deformed by analyzing the fluid.

Description

本発明は、粒子を内在させた樹脂材料の流動解析方法及び流動解析システムに関し、特に、デバイス、液晶などに用いられている半導体集積回路(IC)を基板に接続するため、電極間に導電性粒子を含む樹脂材料を流動させて、電極間の粒子数、粒子の変形量から導電性を評価する際の3次元流動解析方法に関する。   The present invention relates to a flow analysis method and flow analysis system for a resin material in which particles are contained, and in particular, to connect a semiconductor integrated circuit (IC) used in a device, a liquid crystal, etc. The present invention relates to a three-dimensional flow analysis method for evaluating conductivity from the number of particles between electrodes and the amount of deformation of particles by flowing a resin material containing particles.

熱硬化性材料の流動解析方法として、ポリウレタン発泡材料の密度が時間と共に減少する発泡挙動を解析可能な解析プログラムが、特許文献1、特許文献2に記載されている。
特許文献1では、発泡材料全体を均一の密度とみなし、さらに、その密度として、発泡原料を攪拌した発泡材料を出すノズルを最初に出た発泡材料のノズルを出てからの経過時間で算出した密度を用いている。また、特許文献2では、特許文献1の技術に加え、肉厚の変動によって発泡材料の密度が変化することを考慮した関数を用いて発泡材料の発泡流動解析を行うことが記載されている。
As a flow analysis method for thermosetting materials, Patent Literature 1 and Patent Literature 2 describe analysis programs that can analyze foaming behavior in which the density of a polyurethane foam material decreases with time.
In Patent Document 1, the entire foamed material is regarded as a uniform density, and the density is calculated by the elapsed time from the exit of the first foamed material nozzle that ejects the foamed material obtained by stirring the foaming material. Density is used. Patent Document 2 describes that in addition to the technique of Patent Document 1, foam flow analysis of a foam material is performed using a function that takes into account that the density of the foam material changes due to wall thickness variation.

また、粒子を内在させた樹脂材料を電極間で圧縮し、粒子変形を計算する手法として、非特許文献1のR.Dudekらの報告例がある。これは、構造解析(ソフト:ABAQUS)を用いて、電極、粒子および樹脂材料の形状、粒子と樹脂の物性値(ヤング率、ボアソン比、線膨張係数)を入力し、加熱した電極間で粒子及び樹脂を圧縮する計算方法である。
特開2001−318909号公報 特開2003−91561号公報 F10W Characterization and Thermo-Mechanical Response of Anisotropic Conductive Films 1998 IEEE, (R. Dudek, A. Schubert, S. Meinel, B. Michel (Fraunhofer Institute for Reliability and Microintegration (IZM) Berlin))
Further, as a technique for calculating the deformation of a particle by compressing a resin material in which particles are contained between the electrodes, R. There is a report by Dudek et al. This is based on the structure analysis (software: ABAQUS) and the electrode, particle and resin material shapes, particle and resin physical properties (Young's modulus, Boisson's ratio, linear expansion coefficient) are input, and the particles between heated electrodes And a calculation method for compressing the resin.
JP 2001-318909 A JP 2003-91561 A F10W Characterization and Thermo-Mechanical Response of Anisotropic Conductive Films 1998 IEEE, (R. Dudek, A. Schubert, S. Meinel, B. Michel (Fraunhofer Institute for Reliability and Microintegration (IZM) Berlin))

樹脂材料が流動しながら粒子が電極間で変形する解析を行う場合には、流体解析を用いて樹脂材料の流動を予測すると同時に、構造解析を用いて粒子の変形も予測する必要がある。上記の従来技術は、構造解析を用いた粒子変形の予測方法であるが、樹脂材料および粒子の流動状況、電極間に挟まれる粒子数、樹脂材料の粘度変化、発熱反応などを考慮することができない問題点がある。   When performing an analysis in which the particles are deformed between the electrodes while the resin material is flowing, it is necessary to predict the flow of the resin material using the fluid analysis and also predict the deformation of the particles using the structural analysis. The above prior art is a method for predicting particle deformation using structural analysis. However, it is necessary to consider the flow state of the resin material and particles, the number of particles sandwiched between the electrodes, the viscosity change of the resin material, the exothermic reaction, and the like. There is a problem that cannot be done.

このように、構造解析では発熱反応を伴いながら粘度変化する樹脂材料の流動過程を正確に予測することはできない。一方、現状の流体解析では、樹脂材料が流動しながら粒子の電極間の塑性変形を正確に計算することはできない。 Thus, in the structural analysis, it is impossible to accurately predict the flow process of the resin material that changes in viscosity with an exothermic reaction. On the other hand, in the current fluid analysis, the plastic deformation between the electrodes of the particles cannot be accurately calculated while the resin material flows.

したがって、本発明の目的は、電極間の圧縮により、樹脂材料および粒子の流動挙動を計算し、電極間に挟まれる粒子数を求めることにある。更に、樹脂粘度の上昇および粒子の荷重と変位の特性、電極間に挟まれる粒子数を考慮して、電極を移動させるために、電極に加えた荷重または速度条件によって、粒子の変形量を予測することを目的とする。   Accordingly, an object of the present invention is to calculate the flow behavior of a resin material and particles by compression between electrodes, and obtain the number of particles sandwiched between the electrodes. In addition, the amount of deformation of the particle is predicted by the load applied to the electrode or the speed condition in order to move the electrode in consideration of the increase in resin viscosity, the characteristics of the load and displacement of the particle, and the number of particles sandwiched between the electrodes. The purpose is to do.

本発明の他の目的は、粒子の変形量および電極間に挟まれる粒子数から電極間の導電性を予測することである。 Another object of the present invention is to predict the conductivity between electrodes from the amount of deformation of the particles and the number of particles sandwiched between the electrodes.

上記目的を達成するため、本発明は、少なくとも樹脂材料の粘度条件、粒子の変形量と荷重の実験結果を入力値として、流体解析技術により樹胎材料の流動過程を予測すると同時に、樹脂材料の流動と粒子変形を予測する計算方法を実現することを特徴とする。具体的には、粘度変化を慮した樹脂材料と粒子の流動過程の予測により、電極間に挟まれる粒子数の予測を可能とする。   In order to achieve the above object, the present invention predicts the flow process of an embryo material by a fluid analysis technique using at least the viscosity condition of the resin material, the experimental result of the deformation amount and the load of the particle as input values, and at the same time, It is characterized by realizing a calculation method for predicting flow and particle deformation. Specifically, the number of particles sandwiched between the electrodes can be predicted by predicting the flow process of the resin material and the particles in consideration of the viscosity change.

また、流体解析のある時間ステップにおいて、流体解析で求めた電極間の間隔から粒子の変形量を求め、電極を移動させるために外部から加えられる荷重から、粒子の変形量に対応した荷重を引いて求めた荷重を、次の時間ステップの電極を移動させるための荷重として用いることにより、構造解析で求めるべき粒子の変形量を流体解析で算出し、構造解析を用いないで、流体解析だけで粒子が変形しながら樹脂材料が流動する過程を予測することを可能とする。   Also, in a certain time step of fluid analysis, the amount of particle deformation is obtained from the distance between the electrodes obtained by fluid analysis, and the load corresponding to the amount of particle deformation is subtracted from the load applied from the outside to move the electrode. By using the calculated load as the load for moving the electrode at the next time step, the amount of deformation of the particles to be determined in the structural analysis is calculated by the fluid analysis. It is possible to predict a process in which the resin material flows while the particles are deformed.

更に、粒子の変形量と導電性の関係を入力することにより、粒子の変形量最大値、基板間に挟まれる粒子数から電極間の導電性を予測することを可能とする。   Furthermore, by inputting the relationship between the amount of deformation of the particles and the conductivity, it is possible to predict the conductivity between the electrodes from the maximum value of the amount of deformation of the particles and the number of particles sandwiched between the substrates.

本発明の解析技術は、以上説明したように、チップおよび基板の電極間に挟まれる粒子数および粒子の変形量を予測することができるので、樹脂材料の粘度変化などの材料処方、樹脂材料の肉厚などの初期形状、粒子および電極の形状、粒子の弾性率などの物性値、電極に加える荷重などの成形プロセス条件などの複雑に相互に影響しあう因子について解析上で最適化を図ることが出来る。   As described above, the analysis technique of the present invention can predict the number of particles sandwiched between the electrodes of the chip and the substrate and the amount of deformation of the particles. Analytical optimization of factors that interact with each other in a complex manner such as initial shape such as thickness, particle and electrode shape, physical properties such as particle elastic modulus, and molding process conditions such as load applied to the electrode I can do it.

なお、これらの因子を最適化するために、実験検討を行うことは、コストが高くなり、開発期間も長くなるので、現実的ではない。 In order to optimize these factors, it is not practical to conduct an experimental study because it increases the cost and the development period.

図1は解析対象となる導電性を有する粒子を含む樹脂材料を用いた半導体集積回路(IC)と基板の成型工程を示す模式図である。FIG. 1 is a schematic diagram showing a molding process of a semiconductor integrated circuit (IC) using a resin material containing conductive particles to be analyzed and a substrate. 図2は流動解析を行うハードウェア構成図である。FIG. 2 is a hardware configuration diagram for performing flow analysis. 図3は本発明の実施例1の半導体集積回路(IC)3および電極の移動が圧力制御となる計算のフローチャートである。FIG. 3 is a flowchart of the calculation in which the movement of the semiconductor integrated circuit (IC) 3 and the electrode according to the first embodiment of the present invention is pressure control. 図4は本発明の実施例2の半導体集積回路(IC)3および電極の移動が速度から圧力制御となる計算のフローチャートである。FIG. 4 is a flowchart of a calculation in which the movement of the semiconductor integrated circuit (IC) 3 and the electrodes according to the second embodiment of the present invention is controlled from the speed. 図5は本発明の実施例1又は2の電極の圧力制御の解析事例(一層樹脂)である。FIG. 5 is an analysis example (single layer resin) of pressure control of the electrode of Example 1 or 2 of the present invention. 図6は本発明の実施例1又は2の電極の圧力制御の解析事例(二層樹脂)である。FIG. 6 is an analysis example (double-layer resin) of pressure control of the electrode of Example 1 or 2 of the present invention. 図7は本発明の実施例3の導電性を予測する解析のフローチャート(半導体集積回路(IC)3および電極の移動が圧力制御となる計算)である。FIG. 7 is a flowchart of an analysis for predicting conductivity according to the third embodiment of the present invention (calculation in which the movement of the semiconductor integrated circuit (IC) 3 and the electrode is pressure control). 図8は本発明の実施例4の導電性を予測する解析のフローチャート(半導体集積回路(IC)3および電極の移動が速度から圧力制御となる計算)である。FIG. 8 is a flowchart of the analysis for predicting the conductivity of the fourth embodiment of the present invention (calculation in which the movement of the semiconductor integrated circuit (IC) 3 and the electrode is pressure control from the speed). 図9は入力した「粒子1の1個当たりに荷重が加わった場合の変形量」の関係を示す図である。FIG. 9 is a diagram showing the relationship of the input “deformation amount when a load is applied per particle 1”. 図10は入力した「粒子の任意数当たりの変形量と半導体集積回路(IC)の電極と基板の電極間の導電性」の関係を示す図である。FIG. 10 is a graph showing the relationship between the “deformation amount per arbitrary number of particles and the conductivity between the electrode of the semiconductor integrated circuit (IC) and the electrode of the substrate”. 解析対象となる導電性を有する粒子を含む樹脂材料を用いた半導体集積回路(IC)と基板の成型工程を示す模式図である。It is a schematic diagram showing a molding process of a semiconductor integrated circuit (IC) using a resin material containing conductive particles to be analyzed and a substrate. 流動解析を行うハードウェア構成図である。It is a hardware block diagram which performs a flow analysis. 本発明の実施例5の半導体集積回路(IC)3および電極の移動が圧力制御となる計算のフローチャートである。It is a flowchart of the calculation by which the movement of the semiconductor integrated circuit (IC) 3 and electrode of Example 5 of this invention becomes pressure control. 本発明の実施例6の半導体集積回路(IC)3および電極の移動が速度から圧力制御となる計算のフローチャートである。It is a flowchart of the calculation from which the movement of the semiconductor integrated circuit (IC) 3 and electrode of Example 6 of this invention becomes pressure control from speed. 本発明の実施例5又は6の電極の圧力制御の解析事例(一層樹脂)である。It is an analysis example (single layer resin) of the pressure control of the electrode of Example 5 or 6 of the present invention. 本発明の実施例5又は6の電極の圧力制御の解析事例(二層樹脂)である。It is an analysis example (double-layer resin) of the pressure control of the electrode of Example 5 or 6 of the present invention. 本発明の実施例7の導電性を予測する解析のフローチャート(半導体集積回路(IC)3および電極の移動が圧力制御となる計算)である。It is a flowchart (calculation by which movement of the semiconductor integrated circuit (IC) 3 and an electrode becomes pressure control) of the analysis which estimates the electroconductivity of Example 7 of this invention. 入力した「温度を考慮した粒子1の1個当たりに荷重が加わった場合の変形量」の関係を示す図である。It is a figure which shows the relationship of the input "the amount of deformation | transformation when a load is added per particle | grain 1 which considered temperature". 入力した「粒子の任意数当たりの変形量と半導体集積回路(IC)の電極と基板の電極間の導電性」の関係を示す図である。It is a figure which shows the relationship between the input "the deformation | transformation amount per arbitrary number of particle | grains, and the electroconductivity between the electrode of a semiconductor integrated circuit (IC), and a substrate. 電極4間に挟まれる接続部の粒子1の座標、電極4の移動速度を入力条件とした構造解析の結果である。It is the result of the structural analysis which made the input condition the coordinate of the particle | grains 1 of the connection part pinched | interposed between the electrodes 4, and the moving speed of the electrode 4. FIG. 「粒子の接触面積と半導体集積回路(IC)の電極と基板の電極間の導電性」の関係を示す図である。It is a figure which shows the relationship between "the contact area of particle | grains, and the electroconductivity between the electrode of a semiconductor integrated circuit (IC), and a substrate."

符号の説明Explanation of symbols

1 粒子
2 樹脂材料
3 半導体集積回路(IC)
4 電極
5 基板
6 計算装置
7 計算装置
8 LAN
9 表示装置
10 記録装置
11 2層目の樹脂材料
1 Particle 2 Resin Material 3 Semiconductor Integrated Circuit (IC)
4 Electrode 5 Substrate 6 Calculator 7 Calculator 8 LAN
9 Display device 10 Recording device 11 Second layer resin material

以下、添付の図面を参照しながら、本発明に係る実施の形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

[移動電極の圧力制御]
まず、解析対象となる成形工程を、図1を用いて説明する。初期状態(1−a)では、導電性を有する粒子1を含む樹脂材料2が半導体集積回路(IC)3の電極4と基板5の電極4間に設置されている。成形工程では、熱を加えた半導体集積回路(IC)3を基板5の方向に移動させ、粒子1を含む樹脂材料2を圧縮することにより、粒子1を含む樹脂材料2が流動する。
[Moving electrode pressure control]
First, the forming process to be analyzed will be described with reference to FIG. In the initial state (1-a), the resin material 2 containing the conductive particles 1 is placed between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5. In the molding step, the semiconductor integrated circuit (IC) 3 to which heat is applied is moved in the direction of the substrate 5 and the resin material 2 containing the particles 1 is compressed, whereby the resin material 2 containing the particles 1 flows.

このとき、半導体集積回路(IC)3の電極4と樹脂材料2の接触により、樹脂材料2の温度が変化し、温度変化に伴う粘度変化を生じながら、樹脂材料2が粒子1と共に圧縮されながら流動する。なお、半導体集積回路(IC)3の電極4と基板5の電極4との間隔が粒子1の直径よりも小さくなったときには、電極4間に挟まれる粒子1は変形しながら圧縮される。   At this time, the temperature of the resin material 2 changes due to the contact between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the resin material 2, and the resin material 2 is compressed together with the particles 1 while the viscosity changes due to the temperature change. To flow. When the distance between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 becomes smaller than the diameter of the particle 1, the particle 1 sandwiched between the electrodes 4 is compressed while being deformed.

半導体集積回路(IC)3の移動が終了したとき(1−b)には、電極4間に挟まれる粒子1の導電性により、半導体集積回路(IC)3と基板5間の電気信号を伝えることが可能となる。ここで、粒子1の変形量により、粒子1と電極4との接触面積が決まり、この接触面積により半導体集積回路(IC)3と基板5間の導電性が決まる。なお、導電性は、電極4間に一定電圧を印加した場合に流れる電流によって評価される。ここで、粒子1の変形量は、半導体集積回路(IC)3の上部から荷重を加える装置の能力、荷重を加えたときの粒子1の変形量、電極間に挟まれる粒子1の数、樹脂材料2の粘度変化によって決まる。   When the movement of the semiconductor integrated circuit (IC) 3 is completed (1-b), an electrical signal is transmitted between the semiconductor integrated circuit (IC) 3 and the substrate 5 by the conductivity of the particles 1 sandwiched between the electrodes 4. It becomes possible. Here, the contact area between the particle 1 and the electrode 4 is determined by the deformation amount of the particle 1, and the conductivity between the semiconductor integrated circuit (IC) 3 and the substrate 5 is determined by this contact area. The conductivity is evaluated by a current that flows when a constant voltage is applied between the electrodes 4. Here, the deformation amount of the particles 1 is the ability of the device to apply a load from the upper part of the semiconductor integrated circuit (IC) 3, the deformation amount of the particles 1 when the load is applied, the number of particles 1 sandwiched between the electrodes, the resin It depends on the viscosity change of material 2.

[解析システムの構成]
次に、粒子1変形に伴う樹脂材料2の流動過程を予測するために用いる解析システムについて説明する。解析システムは、図2示すハードウェア構成で後述する図3、4、7、8のフローを備えたソフトウェアが実行されることにより機能する。
[Configuration of analysis system]
Next, an analysis system used for predicting the flow process of the resin material 2 accompanying the deformation of the particles 1 will be described. The analysis system functions by executing software having the hardware configuration shown in FIG. 2 and having the flows of FIGS. 3, 4, 7, and 8 to be described later.

具体的には、計算装置6、記録装置10(ハードディスク、MOなど)を備えた計算装置7、この2つの計算装置を繋ぐLAN8、計算装置7が備える表示装置9を備えている。また、計算装置6で作成したCADデータを、LAN8を介して計算装置7に転送するように構成しても良い。計算装置7に転送されたCADデータを、計算装置7の記録装置10(ハードディスク、MOなど)に記録して利用することもできる。計算装置7は図3、4、7、8で示すフローチャートに従って計算を実行し、結果を記録装置10に記録した後、表示装置9に結果を表示する。図示してはいないが、計算装置6及び7には、当然キーボードやマウス等の入力デバイスを備えている。   Specifically, it includes a computing device 6, a computing device 7 provided with a recording device 10 (hard disk, MO, etc.), a LAN 8 connecting these two computing devices, and a display device 9 provided in the computing device 7. Further, the CAD data created by the calculation device 6 may be transferred to the calculation device 7 via the LAN 8. The CAD data transferred to the computing device 7 can be recorded on the recording device 10 (hard disk, MO, etc.) of the computing device 7 for use. The calculation device 7 executes calculation according to the flowcharts shown in FIGS. 3, 4, 7, and 8, records the result in the recording device 10, and displays the result on the display device 9. Although not shown, the calculation devices 6 and 7 are naturally provided with input devices such as a keyboard and a mouse.

[フローチャート]
次に、図3のフローチャートに沿って解析プログラムの処理を説明する。まず、モデル形状作成ステップ1001では、オペレータによって入力装置を介して特定された解析対象モデル、つまり、解析対象の電極、初期の粒子を含む樹脂材料の形状、粒子を含む樹脂材料が流動できる空間のデータを記憶装置10から読み出す。
[flowchart]
Next, the processing of the analysis program will be described along the flowchart of FIG. First, in the model shape creation step 1001, the analysis target model specified by the operator through the input device, that is, the electrode to be analyzed, the shape of the resin material including the initial particles, and the space in which the resin material including the particles can flow is obtained. Data is read from the storage device 10.

次に、3次元ソリッド要素作成のステップ1002では、モデル形状作成ステップ1001で読み込んだデータの形状を複数の特定空間(3次元ソリッドの有限要素)に分解し、各有限要素の形状データを作成する。   Next, in step 1002 for creating a three-dimensional solid element, the shape of the data read in the model shape creating step 1001 is decomposed into a plurality of specific spaces (three-dimensional solid finite elements) to create shape data for each finite element. .

次に、物性値入カステップ1003では、解析を行う材料の物性値である密度、熱伝導率、比熱、発熱式(式7)〜(式11)、粘度式(式12)〜(式15)、粒子1の配置、密度、直径、粒子1の1個当たりに荷重が加わった場合の変形量を入力するように、オペレータに催促する表示を行い、入力装置からこれらのデータを受け付ける。なお、A:反応率、t:時間、T:温度、dA/dt:反応速度、X1,X2:温度の関数となる係数、N,M,Xa,Ea,Xb,Eb:材料固有の係数、Q:任意時刻までの発熱量、Qo:反応終了時までの総発熱量、dQ/dt:発熱速度、乃:粘度、乃0:初期粘度、t:時間、tO:ゲル化時間、T:温度、a、b、d、e、f、g:材料固有の定数を示す。

Figure 2008044571
Figure 2008044571
Figure 2008044571
Figure 2008044571
Figure 2008044571
Figure 2008044571
Figure 2008044571
Figure 2008044571
Figure 2008044571
Next, in the physical property value input step 1003, density, thermal conductivity, specific heat, exothermic equations (Equation 7) to (Equation 11), viscosity equations (Equation 12) to (Equation 15) which are physical property values of the material to be analyzed. ), A display prompting the operator to input the arrangement, density, diameter, and deformation amount when a load is applied to each particle 1 and accepts these data from the input device. A: reaction rate, t: time, T: temperature, dA / dt: reaction rate, X1, X2: coefficient as a function of temperature, N, M, Xa, Ea, Xb, Eb: material specific coefficient, Q: calorific value up to an arbitrary time, Qo: total calorific value until the end of reaction, dQ / dt: exothermic rate, no: viscosity, no 0: initial viscosity, t: time, tO: gelation time, T: temperature A, b, d, e, f, g: Constants specific to the material.
Figure 2008044571
Figure 2008044571
Figure 2008044571
Figure 2008044571
Figure 2008044571
Figure 2008044571
Figure 2008044571
Figure 2008044571
Figure 2008044571

次に、境界条件、成形条件入力ステップ1004において、半導体集積回路(IC)3および電極4の上部に加えられる圧力の入力をするように、オペレータに催促する表示を行い、入力装置からデータを受け付ける。ここで、受け付けた半導体集積回路(IC)3および電極4の上部に加えられる圧力と半導体集積回路(IC)3の上部の面積から半導体集積回路(IC)3および電極4の上部に加えられる荷重Fを算出する。   Next, in the boundary condition / molding condition input step 1004, a display prompting the operator to input pressure applied to the upper portion of the semiconductor integrated circuit (IC) 3 and the electrode 4 is performed, and data is received from the input device. . Here, the load applied to the upper part of the semiconductor integrated circuit (IC) 3 and the electrode 4 from the received pressure applied to the upper part of the semiconductor integrated circuit (IC) 3 and the electrode 4 and the area of the upper part of the semiconductor integrated circuit (IC) 3. F is calculated.

次に、オペレータからの解析開始の指示と初期時間増分を受け付ける。なお、解析は微小な時間を増加させて、それぞれの時間ステップごとの変化を計算するものであり、時間増分とは、時間ステップの間隔を示す。   Next, an analysis start instruction and an initial time increment from the operator are received. In the analysis, a minute time is increased and a change for each time step is calculated. The time increment indicates a time step interval.

ステップ1005として、この指示に基づいて、記録装置に格納された連続の式(1)およびナピエストークスの式(2)〜(4)、エネルギ保存式(5)を呼び出し、これまで入力を受け付けた、初期時間増分、半導体集積回路(IC)3および電極4の上部に加えられる圧力、樹脂材料の密度、比熱、熱伝導率、発熱式(式7)〜(式11)、粘度式(式12)〜(式15)を代入し、電極の圧縮による樹脂材料2と粒子1の流動に伴う、速度、圧力、温度および粘度を計算する。この計算結果を有限要素の位置と対応つけて記憶装置に保存する。   In step 1005, based on this instruction, the continuous equation (1), Napier Stokes equations (2) to (4), and energy conservation equation (5) stored in the recording device are called and the input has been accepted so far. In addition, initial time increment, pressure applied to the top of the semiconductor integrated circuit (IC) 3 and the electrode 4, density of resin material, specific heat, thermal conductivity, exothermic formula (formula 7) to (formula 11), viscosity formula (formula 12) to (Equation 15) are substituted, and the velocity, pressure, temperature and viscosity associated with the flow of the resin material 2 and the particles 1 due to compression of the electrode are calculated. The calculation result is stored in the storage device in association with the position of the finite element.

ここで、P;密度、u;X方向速度、U;y方向速度、∽;Z方向速度、T;温度、P;圧力、t;時間、乃;粘度、Cp;定圧比熱、β;体積膨張係数、入;熱伝導率を示している。

Figure 2008044571
Figure 2008044571
Figure 2008044571
Figure 2008044571
Figure 2008044571
Here, P: density, u: velocity in the X direction, U: velocity in the y direction, ∽: velocity in the Z direction, T: temperature, P; pressure, t; time, no; viscosity, Cp: specific heat at constant pressure, β: volume expansion Coefficient, input; indicates thermal conductivity.
Figure 2008044571
Figure 2008044571
Figure 2008044571
Figure 2008044571
Figure 2008044571

次に、ステップ1006で、電極4間の間隔が粒子の直径よりも大きいかどうかの判定を行う。ここで、電極4間の間隔が粒子1の直径(φD)と等しくなった場合には、ステップ1007において、電極4間に挟まれる接続部の粒子1数Nを出力する。   Next, in step 1006, it is determined whether the distance between the electrodes 4 is larger than the diameter of the particles. Here, when the distance between the electrodes 4 becomes equal to the diameter (φD) of the particles 1, the number N of particles 1 at the connection portion sandwiched between the electrodes 4 is output in Step 1007.

次のステップ1008からは、粒子1の変形を伴う樹脂材料2の流動過程の計算を行う。この粒子1の変形を伴う樹脂材料2の流動過程の計算を行う第一ステップ(1008)では、粒子1の変形は無視し、電極4の移動方向における樹脂材料2の移動量(=粒子1の変形量)△Hlを算出した後に、入力した「粒子1の1個当たりに荷重が加わった場合の変形量」から粒子1の変形量△Hlによって、粒子1の1個当たりに加わる荷重△Flを算出する。ここで、入力した「粒子1の1個当たりに荷重が加わった場合の変形量」の関係の一例を図9に示す。   From the next step 1008, the flow process of the resin material 2 accompanied by the deformation of the particles 1 is calculated. In the first step (1008) for calculating the flow process of the resin material 2 accompanied by the deformation of the particles 1, the deformation of the particles 1 is ignored, and the movement amount of the resin material 2 in the moving direction of the electrode 4 (= the particle 1) After calculating (deformation amount) ΔHl, the load ΔFl applied per particle 1 by the deformation amount ΔHl of particle 1 from the input “deformation amount when load is applied per particle 1”. Is calculated. Here, FIG. 9 shows an example of the relationship of the inputted “deformation amount when a load is applied per particle 1”.

次の第二ステップ(1009)においては、半導体集積回路(IC)3および電極4の上部に加えられる荷重FJ2は、設定値のFからステップ1008で求めた粒子1の1個当たりに加わる荷重△Flとステップ1007で求めた電極間に挟まれる粒子数Nの積で求められる値の差(FJ2=F−N×△Fl)を用いた計算を行う(ステップ1010)。この荷重FJ2を加えた場合の電極4の移動による樹脂材料2の移動量△H2(=粒子1の変形量)を算出した後に、粒子1の変形量△H2によって、粒子1個当たりに加わる荷重△F2を算出し、FJ3=F−N×△F2を次の時間ステップの計算における半導体集積回路(IC)3に加えられる荷重条件とする。   In the next second step (1009), the load FJ2 applied to the upper portions of the semiconductor integrated circuit (IC) 3 and the electrode 4 is the load Δ applied per particle 1 obtained in step 1008 from the set value F. Calculation is performed using the difference between the values obtained by the product of Fl and the number N of particles sandwiched between the electrodes obtained in Step 1007 (FJ2 = F−N × ΔFl) (Step 1010). After calculating the movement amount ΔH2 of the resin material 2 due to the movement of the electrode 4 when the load FJ2 is applied (= deformation amount of the particle 1), the load applied per particle by the deformation amount ΔH2 of the particle 1 ΔF2 is calculated, and FJ3 = F−N × ΔF2 is set as a load condition applied to the semiconductor integrated circuit (IC) 3 in the calculation of the next time step.

ステップ1011において、ステップ1008〜1010の計算を繰返し、M回目のステップにおいて、粒子1の変形量△H(M)、粒子1個当たりに加わる荷重△F(M)を算出し、半導体集積回路(IC)3および電極4の上部に加えられる荷重設定値Fから粒子1の1個当たりに加わる荷重△F(M)とステップ1007で求めた電極間に挟まれる粒子数Nの積で求められる値が0以下になるまで(F−NX△F(M)≦0)、または電極に加えられる荷重Fが樹脂材料の粘度の上昇(ゲル化粘度)により電極が移動できなくなるまで、または電極4間の間隔が0になるまで、粒子1の変形量および樹脂材料2の流動挙動を計算する(ステップ1012)。   In Step 1011, the calculations in Steps 1008 to 1010 are repeated. In the Mth step, the deformation amount ΔH (M) of the particle 1 and the load ΔF (M) applied to each particle are calculated, and the semiconductor integrated circuit ( IC) A value obtained by multiplying the load ΔF (M) applied per particle 1 from the load setting value F applied to the upper part of the electrode 3 and the electrode 4 and the number N of particles sandwiched between the electrodes obtained in Step 1007 Until F becomes less than or equal to 0 (F−NXΔF (M) ≦ 0), or until the load F applied to the electrodes becomes unable to move due to an increase in the viscosity of the resin material (gel viscosity), or between the electrodes 4 Until the interval becomes zero, the deformation amount of the particles 1 and the flow behavior of the resin material 2 are calculated (step 1012).

ステップ1013において、計算の収束判定を行う0収束の判定手法は、圧力とあらかじめ定めておいた圧力範囲とを対比し、範囲内にある場合を収束として判定する。収束しない場合には、ステップ1001〜1004のいずれかに戻る。この際、オペレータに入力を促し、どのステップに戻るかを決める。   In step 1013, the zero convergence determination method for determining the convergence of the calculation compares the pressure with a predetermined pressure range and determines that the pressure is within the range as convergence. If it does not converge, the process returns to one of steps 1001 to 1004. At this time, the operator is prompted to input and a step to be returned is determined.

ステップ1014において粒子変形の適正判定を行う。ここでは、粒子の変形量が規定された値の範囲内であるかを判定し、規定された範囲外である場合には、ステップ1001〜1004のいずれかに戻る。この際、オペレータに入力を促し、どのステップに戻るかを決めるステップ1013で計算が収束したことを判定し、ステップ1014で粒子変形が適正であることを判定した後、ステップ1015において計算を終了する。   In step 1014, the appropriateness of particle deformation is determined. Here, it is determined whether the deformation amount of the particles is within the specified value range, and if it is outside the specified range, the process returns to one of steps 1001 to 1004. At this time, the operator is prompted to input, and it is determined that the calculation has converged in Step 1013 for determining which step to return to. After it is determined in Step 1014 that the particle deformation is appropriate, the calculation is terminated in Step 1015. .

なお、ステップ1003における入力条件として、粒子1の1個当たりに荷重が加わった場合の変形量の関係の例を示したが、粒子1の複数個当たりの荷重が加わった場合の変形量(または変形率)の関係を入力することができ、粒子1に加わる応力と変形量(または変形率)の関係を入力することができるものとする。また、発熱式は(式7)〜(式11)に限定されるものではなく、樹脂材料2の反応率を含む任意の関数を用いることができる。   In addition, although the example of the relationship of the deformation amount when a load is applied per particle 1 is shown as the input condition in step 1003, the deformation amount when a load per particle 1 is applied (or It is possible to input the relationship between the deformation rate) and the relationship between the stress applied to the particles 1 and the amount of deformation (or the deformation rate). Further, the exothermic equation is not limited to (Equation 7) to (Equation 11), and any function including the reaction rate of the resin material 2 can be used.

また、粘度式は(式12)〜(式15)に限定されるものではなく、樹胎材料2の温度または反応率を含む任意の関数を用いることができる。また、収束判定は任意の判定方法を用いることができる・また、3次元の解析だけではなく、2次元の解析もできるものとする。なお、以上の計算は有限要素法または有限体積法または有限差分法を用いて計算を行えるものとする。   The viscosity formula is not limited to (Formula 12) to (Formula 15), and any function including the temperature or reaction rate of the embryo material 2 can be used. In addition, an arbitrary determination method can be used for convergence determination. It is assumed that not only three-dimensional analysis but also two-dimensional analysis can be performed. The above calculation can be performed using the finite element method, the finite volume method, or the finite difference method.

[電極の速度〜圧力制御への切り替え]
次に、図4のフローチャートに沿って解析プログラムの処理を説明する。まず、モデル形状作成ステップ2001では、オペレータによって入力装置を介して特定された解析対象モデル、つまり、解析対象の電極、初期の粒子を含む樹脂材料の形状、粒子を含む樹脂材料が流動できる空間のデータを記憶装置10から読み出す。
[Switching from electrode speed to pressure control]
Next, the processing of the analysis program will be described along the flowchart of FIG. First, in the model shape creation step 2001, the analysis target model specified by the operator via the input device, that is, the electrode to be analyzed, the shape of the resin material including the initial particles, and the space in which the resin material including the particles can flow is obtained. Data is read from the storage device 10.

次に、3次元ソリッド要素作成のステップ2002では、モデル形状作成ステップ2001で読み込んだデータの形状を複数の特定空間(3次元ソリッドの有限要素)に分解し、各有限要素の形状データを作成する。   Next, in step 2002 for creating a three-dimensional solid element, the shape of the data read in the model shape creating step 2001 is decomposed into a plurality of specific spaces (three-dimensional solid finite elements) to create shape data for each finite element. .

次に、物性値入カステップ2003では、解析を行う材料の物性値である密度、熱伝導率、比熱、発熱式(式7)〜(式11)、粘度式(式12)〜(式15)、粒子1の配置、密度、直径、粒子1の1個当たりに荷重が加わった場合の変形量を入力するように、オペレータに催促する表示を行い、入力装置からこれらのデータを受け付ける。   Next, in the physical property value input step 2003, density, thermal conductivity, specific heat, exothermic equation (Equation 7) to (Equation 11), viscosity equation (Equation 12) to (Equation 15) which are physical property values of the material to be analyzed. ), A display prompting the operator to input the arrangement, density, diameter, and deformation amount when a load is applied to each particle 1 and accepts these data from the input device.

次に、境界条件、成形条件入力ステップ2004において、半導体集積回路(IC)3および電極4の移動速度Vdおよび半導体集積回路(IC)3および電極4の上部に加えられる最大圧力の入力をするように、オペレータに催促する表示を行い、入力装置からデータを受け付ける。   Next, in the boundary condition / molding condition input step 2004, the moving speed Vd of the semiconductor integrated circuit (IC) 3 and the electrode 4 and the maximum pressure applied to the upper part of the semiconductor integrated circuit (IC) 3 and the electrode 4 are input. And prompting the operator to receive data from the input device.

ここで、受け付けた半導体集積回路(IC)3および電極4の上部に加えられる最大圧力と半導体集積回路(IC)3の上部の面積から、半導体集積回路(IC)3および電極4の上部に加えられる最大荷重Fmaxを算出する。   Here, from the received maximum pressure applied to the upper part of the semiconductor integrated circuit (IC) 3 and the electrode 4 and the area of the upper part of the semiconductor integrated circuit (IC) 3, it is added to the upper part of the semiconductor integrated circuit (IC) 3 and the electrode 4. The maximum load Fmax that can be obtained is calculated.

次に、オペレータからの解析開始の指示と初期時間増分を受け付ける。ステップ2005として、この指示に基づいて、記録装置に格納された連続の式(1)およびナピエストークスの式(2)〜(4)、エネルギ保存式(5)を呼び出し、これまで入力を受け付けた、初期時間増分、半導体集積回路(IC)3および電極4の上部に加えられる圧力、樹胎材料の密度、比熱、熱伝導率、発熱式(式7)〜(式11)、粘度式(式12)〜(式15)を代入し、電極の圧縮による樹胎材料2と粒子1の流動に伴う、速度、圧力、温度および粘度を計算する。この計算結果を有限要素の位置と対応つけて記憶装置に保存する。   Next, an analysis start instruction and an initial time increment from the operator are received. In step 2005, based on this instruction, the continuous equation (1), Napier Stokes equations (2) to (4), and energy conservation equation (5) stored in the recording device are called and the input has been accepted so far. In addition, initial time increment, pressure applied to the top of the semiconductor integrated circuit (IC) 3 and the electrode 4, density of the seed material, specific heat, thermal conductivity, exothermic formula (formula 7) to (formula 11), viscosity formula ( Substituting equations (12) to (15), the velocity, pressure, temperature and viscosity associated with the flow of the embryo material 2 and the particles 1 due to compression of the electrodes are calculated. The calculation result is stored in the storage device in association with the position of the finite element.

次にステップ2006で、電極4間の間隔が粒子の直径よりも大きいかどうかの判定を行う。ここで、電極4間の間隔が粒子1の直径(φD)と等しくなった場合には、ステップ2007において、電極4間に挟まれる接続部の粒子1数Nを出力する。   Next, in step 2006, it is determined whether the distance between the electrodes 4 is larger than the diameter of the particles. Here, when the distance between the electrodes 4 becomes equal to the diameter (φD) of the particles 1, the number N of particles 1 at the connection portion sandwiched between the electrodes 4 is output in step 2007.

次のステップ2008からは、粒子1の変形を伴う樹脂材料2の流動過程の計算を行う。ステップ2008では、電極4の移動方向における樹脂材料2の移動量(=粒子1の変形量)△Hを算出した後に、入力した粒子1の1個当たりに荷重が加わった場合の変形量から粒子1の変形量△Hによって、粒子1の1個当たりに加わる荷重△Fを算出し、粒子1に加わる荷重FR=N×△Fを算出する。更に、樹脂に加わる荷重FJを、「移動する電極4と樹脂材料2の接触面積」と「接触部分の樹脂樹胎2の圧力」の積として算出する。   From the next step 2008, the flow process of the resin material 2 accompanied by the deformation of the particles 1 is calculated. In step 2008, after calculating the movement amount of the resin material 2 in the movement direction of the electrode 4 (= deformation amount of the particle 1) ΔH, the particle is calculated from the deformation amount when a load is applied to each of the input particles 1. A load ΔF applied to each particle 1 is calculated based on a deformation amount ΔH of 1, and a load FR = N × ΔF applied to the particle 1 is calculated. Further, the load FJ applied to the resin is calculated as a product of “the contact area between the moving electrode 4 and the resin material 2” and “the pressure of the resin embryo 2 at the contact portion”.

ここで、入力した「粒子1の1個当たりに荷重が加わった場合の変形量」の関係の一例を図9に示す。ここで、ステップ2009で半導体集積回路(IC)3および電極4の上部に加えられる最大荷重Fmaxが、樹胎材料2に加えられる荷重FJと粒子に加えられる荷重FRとの和より大きいかの判定(Fmax≧FJl+FRl)を行う。   Here, FIG. 9 shows an example of the relationship of the inputted “deformation amount when a load is applied per particle 1”. Here, in step 2009, it is determined whether the maximum load Fmax applied to the tops of the semiconductor integrated circuit (IC) 3 and the electrode 4 is greater than the sum of the load FJ applied to the embryo material 2 and the load FR applied to the particles. (Fmax ≧ FJl + FRl) is performed.

ここで、Fmax<FJl+FRlとなる場合には、最大荷重Fmaxを加えても設定した電極4の移動速度Vdを実現することができない。従って、電極4の移動の制御方法として、速度Vdの制御ではなく、最大荷重Fmaxを加えた場合の制御に切り替える。
即ち、図3で示したステップ1008〜1011の計算を行い、粒子1の変形と樹脂材料2の流動過程を計算する。
Here, when Fmax <FJl + FR1, the set moving speed Vd of the electrode 4 cannot be realized even when the maximum load Fmax is applied. Therefore, the control method of the movement of the electrode 4 is switched to the control when the maximum load Fmax is applied instead of the control of the speed Vd.
That is, the calculation in steps 1008 to 1011 shown in FIG. 3 is performed, and the deformation process of the particles 1 and the flow process of the resin material 2 are calculated.

ここで、半導体集積回路(IC)3および電極4の上部に加えられる荷重設定値Fから粒子1の1個当たりに加わる荷重△F(M)とステップ1007で求めた電極間に挟まれる粒子数Nの積で求められる値が0以下になった場合(F−N×△F(M)≦0)、または電極に加えられる荷重Fが樹脂材料の粘度の上昇(ゲル化粘度)により電極が移動できなくなるまで、または電極4間の間隔が0になるまで、粒子1の変形量および樹脂材料2の流動挙動を計算する。   Here, the load ΔF (M) applied per particle 1 from the load setting value F applied to the upper part of the semiconductor integrated circuit (IC) 3 and the electrode 4 and the number of particles sandwiched between the electrodes determined in step 1007 When the value obtained by the product of N becomes 0 or less (F−N × ΔF (M) ≦ 0), or the load F applied to the electrode increases due to the increase in the viscosity of the resin material (gel viscosity). The deformation amount of the particles 1 and the flow behavior of the resin material 2 are calculated until they cannot move or until the interval between the electrodes 4 becomes zero.

また、ステップ2009において、Fmax≧FJl+FRlである場合には、電極に加えられる荷重Fが樹脂材料の粘度の上昇(ゲル化粘度)により電極が移動できなくなるまで、または電極4間の間隔が0になるまで、ステップ2008の計算及びステップ2009の判定を繰り返す。   In step 2009, when Fmax ≧ FJl + FR1, the load F applied to the electrodes cannot be moved due to the increase in the viscosity of the resin material (gel viscosity), or the interval between the electrodes 4 becomes zero. Until it is, the calculation in step 2008 and the determination in step 2009 are repeated.

ここで、ステップ2012にて計算の収束判定を行う。収束の判定手法は、圧力とあらかじめ定めておいた圧力範囲とを対比し、範囲内にある場合を収束として判定する。収束しない場合には、ステップ2001〜2004のいずれかに戻る。この際、オペレータに入力を促し、どのステップに戻るかを決める。   Here, in step 2012, calculation convergence is determined. The convergence determination method compares the pressure with a predetermined pressure range, and determines that the pressure is within the range as convergence. If it does not converge, the process returns to one of steps 2001 to 2004. At this time, the operator is prompted to input and a step to be returned is determined.

ステップ2013において粒子変形の適正判定を行う。ここでは、粒子の変形量が規定された値の範囲内であるかを判定し、規定された範囲外である場合には、ステップ2001〜2004のいずれかに戻る。この際、オペレータに入力を促し、どのステップに戻るかを決める。   In step 2013, the appropriateness of particle deformation is determined. Here, it is determined whether the deformation amount of the particles is within a specified value range, and if it is outside the specified range, the process returns to one of steps 2001 to 2004. At this time, the operator is prompted to input and a step to be returned is determined.

ステップ2012で計算が収束したことを判定し、ステップ2013で粒子変形が適正であることを判定した後、ステップ2014において計算を終了する。   In step 2012, it is determined that the calculation has converged. In step 2013, it is determined that the particle deformation is appropriate. In step 2014, the calculation is terminated.

なお、ステップ2003における入力条件として、粒子1の1個当たりに荷重が加わった場合の変形量の関係の例を示したが、粒子1の複数個当たりの荷重が加わった場合の変形量(または変形率)の関係を入力することができ、粒子1に加わる応力と変形量(または変形率)の関係を入力することができるものとする。   In addition, although the example of the relationship of the deformation amount when a load is applied per particle 1 is shown as the input condition in step 2003, the deformation amount when a load per particle 1 is applied (or It is possible to input the relationship between the deformation rate) and the relationship between the stress applied to the particles 1 and the amount of deformation (or the deformation rate).

また、発熱式は(式7)〜(式11)に限定されるものではなく、樹脂材料2の反応率を含む任意の関数を用いることができる。また、粘度式は(式12)〜(式15)に限定されるものではなく、樹脂材料2の温度または反応率を含む任意の関数を用いることができる。   Further, the exothermic equation is not limited to (Equation 7) to (Equation 11), and any function including the reaction rate of the resin material 2 can be used. The viscosity formula is not limited to (Formula 12) to (Formula 15), and any function including the temperature or the reaction rate of the resin material 2 can be used.

また、収束判定は任意の判定方法を用いることができる。また、3次元の解析だけではなく、2次元の解析もできるものとする。なお、以上の計算は有限要素法または有限体積法または有限差分法を用いて計算を行えるものとする。   The convergence determination can use any determination method. Further, not only three-dimensional analysis but also two-dimensional analysis can be performed. The above calculation can be performed using the finite element method, the finite volume method, or the finite difference method.

[電極の圧力制御の解析事例(一層樹脂)]
ここで、図5に解析事例の一例(2次元解析)を示す。初期状態において、導電性を有する粒子1を含む樹脂材料2が半導体集積回路(IC)3の電極4と基板5の電極4間に設置されている。ここで、樹胎材料2は初期温度30℃とし、発熱式(式7)〜(式11)、粘度式(式12)〜(式15)を用いるものとする。なお、発熱式(式7)〜(式11)、粘度式(式12)〜(式15)の定数の値、密度、熱伝導率、比熱の値、粒子の直径(φD)、密度を表1に示す。

Figure 2008044571
[Analysis example of electrode pressure control (single layer resin)]
Here, FIG. 5 shows an example of analysis (two-dimensional analysis). In an initial state, a resin material 2 containing conductive particles 1 is placed between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5. Here, the embryo material 2 has an initial temperature of 30 ° C., and the exothermic equations (Equation 7) to (Equation 11) and the viscosity equations (Equation 12) to (Equation 15) are used. The constant value, density, thermal conductivity, specific heat value, particle diameter (φD), and density of the exothermic formulas (Formula 7) to (Formula 11) and viscosity formulas (Formula 12) to (Formula 15) are shown. It is shown in 1.
Figure 2008044571

また、半導体集積回路(IC)3の温度は一定(185℃)に設定し、基板5の方向に圧力5MPaを加えて移動させ、粒子1を含む樹脂材料2を圧縮することにより、粒子1を含む樹胎材料2を流動させる。このとき、半導体集積回路(IC)3の電極4と樹脂材料2の接触により、樹脂材料2の温度が変化し、温度変化に伴う粘度変化を生じながら、樹脂材料2が粒子1と共に圧縮されながら流動する過程を計算できる。   Further, the temperature of the semiconductor integrated circuit (IC) 3 is set to be constant (185 ° C.), moved by applying a pressure of 5 MPa in the direction of the substrate 5, and the resin material 2 including the particles 1 is compressed, whereby the particles 1 are compressed. The containing embryo material 2 is flowed. At this time, the temperature of the resin material 2 changes due to the contact between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the resin material 2, and the resin material 2 is compressed together with the particles 1 while the viscosity changes due to the temperature change. Calculate the flow process.

なお、半導体集積回路(IC)3の電極4と基板5の電極4との間隔が粒子1の直径よりも小さくなったときには、解析上では、粒子1と電極4の接触の計算は行わない。つまり、解析上では、粒子1同士、粒子1と電極4が接触する場合には、粒子1が電極4をすり抜けるなどの設定を行うことにより、樹脂材料2だけの流動性の計算を行う。このとき、半導体集積回路(IC)3の上部から加える圧力は設定値の5MPaではなく、図3のフローチャートで示したように、設定圧力と面積との積で求めた荷重から粒子1の変形量に対応した荷重を引いた値を用いる。   When the distance between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 becomes smaller than the diameter of the particle 1, the calculation of the contact between the particle 1 and the electrode 4 is not performed in the analysis. That is, in the analysis, when the particles 1 are in contact with each other, and when the particles 1 and the electrode 4 are in contact with each other, the fluidity of only the resin material 2 is calculated by setting such that the particles 1 pass through the electrode 4. At this time, the pressure applied from the upper part of the semiconductor integrated circuit (IC) 3 is not the set value of 5 MPa, but the deformation amount of the particles 1 from the load obtained by the product of the set pressure and the area as shown in the flowchart of FIG. The value obtained by subtracting the load corresponding to is used.

この計算の結果、樹脂粘度が大きくなり、荷重を加えても半導体集積回路(IC)3と電極4の移動ができなくなり、解析が終了する。このとき、電極間の間隔から粒子1の変形量を求めることができる。なお、粒子の変形量△Dは、(式6)で求めることができる。

Figure 2008044571
As a result of this calculation, the resin viscosity increases, and even if a load is applied, the semiconductor integrated circuit (IC) 3 and the electrode 4 cannot be moved, and the analysis ends. At this time, the deformation amount of the particle 1 can be obtained from the interval between the electrodes. In addition, the deformation amount ΔD of the particles can be obtained by (Expression 6).
Figure 2008044571

ここで、D:粒子1の直径、Dl:解析終了後の基板4の間隔を表す。なお、以上では電極4の移動が圧力により制御される事例を示したが、本発明はこれだけに限定されるものではなく、図4のフローチャートで示したように、電極の移動を速度から圧力に制御することも可能とする。また、ここでは粒子内の熱伝導計算は行っていないが、粒子の比熱、熱伝導率、樹脂材料と粒子の熱伝達率などの入力により、粒子内の熱伝導計算も行うことができる。   Here, D: the diameter of the particle 1 and Dl: the distance between the substrates 4 after the analysis is completed. In the above, the case where the movement of the electrode 4 is controlled by the pressure is shown. However, the present invention is not limited to this, and the movement of the electrode is changed from speed to pressure as shown in the flowchart of FIG. It is also possible to control. In addition, although the heat conduction calculation within the particle is not performed here, the heat conduction calculation within the particle can also be performed by inputting the specific heat of the particle, the heat conductivity, the heat transfer coefficient between the resin material and the particle, and the like.

[電極の圧力制御の解析事例(二層樹脂)]
ここで、図6に樹脂材料が2層に分かれている解析事例(2次元解析)の一例を示す。
[Analysis example of electrode pressure control (two-layer resin)]
Here, FIG. 6 shows an example of an analysis example (two-dimensional analysis) in which the resin material is divided into two layers.

初期状態において、導電性を有する粒子1を含む樹脂材料2の上部に、粒子1を含む物性値が異なる樹脂材料11からなる2層構造の樹脂材料が、半導体集積回路(IC)3の電極4と基板5の電極4間に設置されている。ここで、樹脂材料2は初期温度30℃とし、発熱式(式7)〜(式11)、粘度式(式12)〜(式15)を用いるものとする。なお、発熱式(式7)〜(式11)、粘度式(式12)〜(式15)の定数の値、密度、熱伝導率、比熱の値、粒子の直径(φD)、密度に関して、一層目の樹脂材料2および粒子1は表1の値を用いて、2層目の樹胎材料11および粒子1の値を表2に示す。

Figure 2008044571
Figure 2008044571
In an initial state, a resin material having a two-layer structure made of a resin material 11 having different physical property values including particles 1 is formed on the resin material 2 including the conductive particles 1, and the electrode 4 of the semiconductor integrated circuit (IC) 3. And between the electrodes 4 of the substrate 5. Here, the resin material 2 has an initial temperature of 30 ° C., and the exothermic formulas (Formula 7) to (Formula 11) and the viscosity formulas (Formula 12) to (Formula 15) are used. In addition, regarding the constant value, density, thermal conductivity, specific heat value, particle diameter (φD), and density of the exothermic formulas (Formula 7) to (Formula 11) and the viscosity formulas (Formula 12) to (Formula 15), The resin material 2 and particle 1 in the first layer use the values in Table 1, and the values of the embryo material 11 and particles 1 in the second layer are shown in Table 2.
Figure 2008044571
Figure 2008044571

ここで、半導体集積回路(IC)3の温度は一定(185℃)に設定し、基板5の方向に圧力5MPaを加えて移動させ、樹脂材料2、11を圧縮することにより、粒子1を含む樹脂材料2、11を流動させる。このとき、半導体集積回路(IC)3の電極4と樹脂材料2、11の接触により、樹胎材料2、11の温度が変化し、温度変化に伴う粘度変化を生じながら、樹脂材料2、11が粒子1と共に圧縮されながら流動する過程を計算できる。   Here, the temperature of the semiconductor integrated circuit (IC) 3 is set to be constant (185 ° C.), moved by applying a pressure of 5 MPa in the direction of the substrate 5, and the resin materials 2 and 11 are compressed to include the particles 1. Resin materials 2 and 11 are caused to flow. At this time, due to the contact between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the resin materials 2 and 11, the temperature of the tree material 2 and 11 is changed, and the viscosity change due to the temperature change is generated, while the resin material 2 and 11 is changed. It is possible to calculate the process of flowing while being compressed together with the particles 1.

なお、半導体集積回路(IC)3の電極4と基板5の電極4との間隔が粒子1の直径よりも小さくなったときには、解析上では、粒子1と電極4の接触の計算は行わない。つまり、解析上では、粒子1同士、粒子1と電極4が接触する場合には、粒子1が電極4をすり抜けるなどの設定を行うことにより、樹脂材料2、11だけの流動性の計算を行う。このとき、半導体集積回路(IC)3の上部から加える圧力は設定値の5MPaではなく、図3のフローチャートで示したように、設定圧力と面積との積で求めた荷重から粒子1の変形量に対応した荷重を引いた値を用いる。   When the distance between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 becomes smaller than the diameter of the particle 1, the calculation of the contact between the particle 1 and the electrode 4 is not performed in the analysis. That is, in the analysis, when the particles 1 are in contact with each other, and when the particles 1 and the electrode 4 are in contact with each other, the fluidity of only the resin materials 2 and 11 is calculated by setting such that the particles 1 pass through the electrode 4. . At this time, the pressure applied from the upper part of the semiconductor integrated circuit (IC) 3 is not the set value of 5 MPa, but the deformation amount of the particles 1 from the load obtained by the product of the set pressure and the area as shown in the flowchart of FIG. The value obtained by subtracting the load corresponding to is used.

この計算の結果、樹胎粘度が大きくなり、荷重を加えても半導体集積回路(IC)3と電極4の移動ができなくなり、解析が終了する。このとき、電極間の間隔から粒子1の変形量を求めることができる。なお、粒子1の変形量△Dは、(式6)で求めることができる。

Figure 2008044571
As a result of this calculation, the viscosity of the embryo increases, and even if a load is applied, the semiconductor integrated circuit (IC) 3 and the electrode 4 cannot be moved, and the analysis ends. At this time, the deformation amount of the particle 1 can be obtained from the interval between the electrodes. The deformation amount ΔD of the particles 1 can be obtained by (Expression 6).
Figure 2008044571

ここで、D:粒子1の直径、Dl:解析終了後の基板4の間隔を表す。なお、以上では電極4の移動が圧力により制御される事例を示したが、本発明はこれだけに限定されるものではなく、図4のフローチャートで示したように、電極の移動を速度から圧力に制御することも可能とする。また、ここでは粒子内の熱伝導計算は行っていないが、粒子の比熱、熱伝導率、樹脂材料と粒子の熱伝達率などの入力により、粒子内の熱伝導計算も行うことができる。なお、以上では二相日の樹脂材料11に粒子1が含まれる解析の事例を示したが、本発明はこれだけに限定されるものではなく、二相日の樹脂材料11には粒子1が含まれない状態での解析も行えるものとする。   Here, D: the diameter of the particle 1 and Dl: the distance between the substrates 4 after the analysis is completed. In the above, the case where the movement of the electrode 4 is controlled by the pressure is shown. However, the present invention is not limited to this, and the movement of the electrode is changed from speed to pressure as shown in the flowchart of FIG. It is also possible to control. In addition, although the heat conduction calculation within the particle is not performed here, the heat conduction calculation within the particle can also be performed by inputting the specific heat of the particle, the heat conductivity, the heat transfer coefficient between the resin material and the particle, and the like. In addition, although the example of the analysis in which the particle 1 is included in the resin material 11 of the two-phase day has been described above, the present invention is not limited to this, and the resin material 11 of the two-phase day includes the particle 1. It is also possible to perform analysis in a state where

[導電性の予測(電極移動の圧力制御)]
図7は、本発明の実施例3の半導体集積回路(IC)3の電極4と基板5の電極4間の導電性を予測するフローチャートである。ここでは、図3のフローチャートで求めた粒子変形量と導電性の関係の入力により、半導体集積回路(IC)3の電極4と基板5の電極4間の導電性を予測する。まず、モデル形状作成ステップ3001では、オペレータによって入力装置を介して特定された解析対象モデル、つまり、解析対象の電極、初期の粒子を含む樹脂材料の形状、粒子を含む樹脂材料が流動できる空間のデータを記憶装置10から読み出す。
[Prediction of conductivity (pressure control for electrode movement)]
FIG. 7 is a flowchart for predicting the conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 according to the third embodiment of the present invention. Here, the conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 is predicted based on the input of the relationship between the particle deformation amount and the conductivity obtained in the flowchart of FIG. First, in the model shape creation step 3001, the analysis target model specified by the operator through the input device, that is, the electrode to be analyzed, the shape of the resin material including the initial particles, and the space in which the resin material including the particles can flow is obtained. Data is read from the storage device 10.

次に、3次元ソリッド要素作成のステップ3002では、モデル形状作成ステップ1001で読み込んだデータの形状を複数の特定空間(3次元ソリッドの有限要素)に分解し、各有限要素の形状データを作成する。   Next, in step 3002 for creating a three-dimensional solid element, the shape of the data read in the model shape creating step 1001 is decomposed into a plurality of specific spaces (three-dimensional solid finite elements) to create shape data for each finite element. .

次に、物性値入カステップ3003では、解析を行う材料材料の物性値である密度、熱伝導率、比熱、発熱式(式7)〜(式11)、粘度式(式12)〜(式15)、粒子1の配置、密度、直径、粒子1の1個当たりに荷重が加わった場合の変形量を入力するように、オペレータに催促する表示を行い、入力装置からこれらのデータを受け付ける。   Next, in the physical property value input step 3003, the density, thermal conductivity, specific heat, exothermic equation (Equation 7) to (Equation 11), viscosity equation (Equation 12) to (Equation) which are the physical property values of the material to be analyzed. 15) A display prompting the operator to input the arrangement, density, diameter, and deformation amount when a load is applied to each particle 1 is received, and these data are received from the input device.

次に、境界条件、成形条件入力ステップ3004において、半導体集積回路(IC)3および電極4の上部に加えられる圧力の入力をするように、オペレータに催促する表示を行い、入力装置からデータを受け付ける。ここで、受け付けた半導体集積回路(IC)3および電極4の上部に加えられる圧力と半導体集積回路(IC)3の上部の面積から半導体集積回路(IC)3および電極4の上部に加えられる荷重Fを算出する。   Next, in the boundary condition / molding condition input step 3004, a display prompting the operator to input pressure applied to the upper portion of the semiconductor integrated circuit (IC) 3 and the electrode 4 is performed, and data is received from the input device. . Here, the load applied to the upper part of the semiconductor integrated circuit (IC) 3 and the electrode 4 from the received pressure applied to the upper part of the semiconductor integrated circuit (IC) 3 and the electrode 4 and the area of the upper part of the semiconductor integrated circuit (IC) 3. F is calculated.

次に、オペレータからの解析開姑の指示と初期時間増分を受け付ける。ステップ3005として、この指示に基づいて、記録装置に格納された連続の式(1)およびナピエストークスの式(2)〜(4)、エネルギ保存式(5)を呼び出し、これまで入力を受け付けた、初期時間増分、半導体集積回路(IC)3および電極4の上部に加えられる圧力、樹胎材料の密度、比熱、熱伝導率、発熱式(式7)〜(式11)、粘度式(式12)〜(式15)を代入し、電極の圧縮による樹脂材料2と粒子1の流動に伴う速度、圧力、温度および粘度を計算する。この計算結果を有限要素の位置と対応つけて記憶装置に保存する。   Next, an analysis opening instruction from the operator and an initial time increment are received. In step 3005, based on this instruction, the continuous equation (1), Napier Stokes equations (2) to (4), and the energy conservation equation (5) stored in the recording device are called and the input has been accepted so far. In addition, initial time increment, pressure applied to the top of the semiconductor integrated circuit (IC) 3 and the electrode 4, density of the seed material, specific heat, thermal conductivity, exothermic formula (formula 7) to (formula 11), viscosity formula ( Substituting Equations 12) to 15 to calculate the velocity, pressure, temperature, and viscosity associated with the flow of the resin material 2 and the particles 1 due to compression of the electrodes. The calculation result is stored in the storage device in association with the position of the finite element.

次にステップ3006で、電極4間の間隔が粒子の直径よりも大きいかどうかの判定を行う。ここで、電極4間の間隔が粒子1の直径(φD)と等しくなった場合には、ステップ3007において、電極4間に挟まれる接続部の粒子1数Nを出力する。   Next, in step 3006, it is determined whether the distance between the electrodes 4 is larger than the diameter of the particles. Here, when the distance between the electrodes 4 becomes equal to the diameter (φD) of the particles 1, the number N of particles 1 at the connection portion sandwiched between the electrodes 4 is output in Step 3007.

次のステップ1008から1015は図3のフローチャートで示した計算方法であり、ステップ3008で粒子の変形量を出力する。ステップ3009にて、粒子1の任意数当たりの変形量と半導体集積回路(IC)3の電極4と基板5の電極4間の導電性を入力する。なお、導電性は、電極間に任意の電圧を印加した場合の電流値Iとする。ここで、粒子1の電極4間に挟まれる数Nは、ステップ3007において算出し、粒子1の変形量は、ステップ3008で求めるものとする。   The next steps 1008 to 1015 are the calculation method shown in the flowchart of FIG. 3, and the deformation amount of the particles is output in step 3008. In step 3009, the deformation amount per arbitrary number of particles 1 and the conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 are input. The conductivity is a current value I when an arbitrary voltage is applied between the electrodes. Here, the number N sandwiched between the electrodes 4 of the particles 1 is calculated in step 3007, and the deformation amount of the particles 1 is obtained in step 3008.

ここで、入力した「粒子1の任意数当たりの変形量と半導体集積回路(IC)3の電極4と基板5の電極4間の導電性」の関係の一例を図10に示す。なお、ここでは粒子1の任意数の代表値として、Nl、N2、N3の場合を示しており、ステップ3007において、電極4間に挟まれる接続部の粒子1数NがNl,N2,N3以外の場合には、内挿、外挿にて値を求めることができる。   Here, FIG. 10 shows an example of the relationship between the input “deformation amount per arbitrary number of particles 1 and conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5”. Here, Nl, N2, and N3 are shown as representative values of an arbitrary number of particles 1, and in step 3007, the number of particles 1 in the connection portion sandwiched between the electrodes 4 is other than Nl, N2, and N3. In this case, the value can be obtained by interpolation and extrapolation.

ここで、ステップ3010にて、ステップ3008で求めた粒子1の変形量から粒子1個当たりの導電性を算出し、この粒子1個当たりの導電性とステップ3007で求めた電極4間の粒子数から、半導体集積回路(IC)3の電極4と基板5の電極4間の導電性を算出する。   Here, in step 3010, the conductivity per particle is calculated from the deformation amount of the particle 1 obtained in step 3008, and the conductivity per particle and the number of particles 4 between the electrodes 4 obtained in step 3007. From the above, the conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 is calculated.

次にステップ3011において、計算の収束判定を行う.収束の判定手法は、圧力とあらかじめ定めておいた圧力範囲とを対比し、範囲内にある場合を収束として判定する.収束しない場合には、ステップ3001〜3004のいずれかに戻る。この際、オペレータに入力を促し、どのステップに戻るかを決める。   Next, at step 3011, the convergence of the calculation is determined. Convergence is determined by comparing pressure with a pre-determined pressure range and determining that it is within the range as convergence. If it does not converge, the process returns to one of steps 3001 to 3004. At this time, the operator is prompted to input and a step to be returned is determined.

ステップ3012において導電性の適正判定を行う。ここでは、導電性が規定された値の範囲内であるかを判定し、規定された範囲外である場合には、ステップ3001〜3004のいずれかに戻る。この際、オペレータに入力を促し、どのステップに戻るかを決める。   In step 3012, the appropriateness of conductivity is determined. Here, it is determined whether or not the conductivity is within the specified value range, and if it is outside the specified range, the process returns to any of steps 3001 to 3004. At this time, the operator is prompted to input and a step to be returned is determined.

ステップ3011で計算が収束したことを判定し、ステップ3012で粒子変形が適正であることを判定した後、ステップ3013において計算を終了する。なお、ステップ3009にて入力した「粒子1の任意数当たりの変形量と半導体集積回路(IC)3の電極4と基板5の電極4間の導電性」は、「粒子1の任意数当たりの変形量と、粒子1と電極4との接触面積」の関係から求めた「粒子1と電極4との接触面積と半導体集積回路(IC)3の電極4と基板5の電極4間の導電性」を入力することもできる.また、導電性は電極間に任意電圧を印加した場合の電流値としたが、本発明はこれだけに限定されるものではなく、電極間の抵抗値などを用いることができる。   In step 3011, it is determined that the calculation has converged. In step 3012, it is determined that the particle deformation is appropriate. In step 3013, the calculation ends. The “deformation amount per arbitrary number of particles 1 and the conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5” input in step 3009 are “per number of particles 1. “The contact area between the particle 1 and the electrode 4 and the conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 obtained from the relationship between the deformation amount and the contact area between the particle 1 and the electrode 4”. "Can also be entered. In addition, although the electrical conductivity is a current value when an arbitrary voltage is applied between the electrodes, the present invention is not limited to this, and a resistance value between the electrodes can be used.

[導電性の予測(電極移動の速度〜圧力制御)]
図8は、本発明の実施例4の半導体集積回路(IC)3の電極4と基板5の電極4間の導電性を予測するフローチャートを示す。ここで、図4のフローチャートで求めた粒子変形量と導電性の関係の入力により、半導体集積回路(IC)3の電極4と基板5の電極4間の導電性を予測する。
[Prediction of conductivity (speed of electrode movement ~ pressure control)]
FIG. 8 is a flowchart for predicting the conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 according to the fourth embodiment of the present invention. Here, the conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 is predicted based on the input of the relationship between the particle deformation amount and the conductivity obtained in the flowchart of FIG.

まず、モデル形状作成ステップ4001では、オペレータによって入力装置を介して特定された解析対象モデル、つまり、解析対象の電極、初期の粒子を含む樹脂材料の形状、粒子を含む樹胎材料が流動できる空間のデータを記憶装置10から読み出す。   First, in the model shape creation step 4001, the analysis target model specified by the operator via the input device, that is, the electrode to be analyzed, the shape of the resin material including the initial particles, and the space in which the embryo material including the particles can flow. Are read from the storage device 10.

次に、3次元ソリッド要素作成のステップ4002では、モデル形状作成ステップ4001で読み込んだデータの形状を複数の特定空間(3次元ソリッドの有限要素)に分解し、各有限要素の形状データを作成する。   Next, in step 4002 for creating a three-dimensional solid element, the shape of the data read in the model shape creating step 4001 is decomposed into a plurality of specific spaces (three-dimensional solid finite elements) to create shape data for each finite element. .

次に、物性値入カステップ4003では、解析を行う材料材料の物性値である密度、熱伝導率、比熱、発熱式(式7)〜(式11)、粘度式(式12)〜(式15)、粒子の密度、直径、粒子1の1個当たりに荷重が加わった場合の変形量を入力するように、オペレータに催促する表示を行い、入力装置からこれらのデータを受け付ける。   Next, in the physical property value input step 4003, density, thermal conductivity, specific heat, exothermic equations (Equation 7) to (Equation 11), viscosity equations (Equation 12) to (Equation) that are physical property values of the material to be analyzed. 15) A display prompting the operator to input the deformation density when a load is applied to each particle density, diameter, and particle 1 is received, and these data are received from the input device.

次に、境界条件、成形条件入力ステップ4004において、半導体集積回路(IC)3および電極4の移動速度Vdおよび半導体集積回路(IC)3および電極4の上部に加えられる最大圧力の入力をするように、オペレータに催促する表示を行い、入力装置からデータを受け付ける。ここで、受け付けた半導体集積回路(IC)3および電極4の上部に加えられる最大圧力と半導体集積回路(IC)3の上部の面積から、半導体集積回路(IC)3および電極4の上部に加えられる最大荷重Fmaxを算出する。   Next, in the boundary condition / molding condition input step 4004, the moving speed Vd of the semiconductor integrated circuit (IC) 3 and the electrode 4 and the maximum pressure applied to the upper part of the semiconductor integrated circuit (IC) 3 and the electrode 4 are input. And prompting the operator to receive data from the input device. Here, from the received maximum pressure applied to the upper part of the semiconductor integrated circuit (IC) 3 and the electrode 4 and the area of the upper part of the semiconductor integrated circuit (IC) 3, it is added to the upper part of the semiconductor integrated circuit (IC) 3 and the electrode 4. The maximum load Fmax that can be obtained is calculated.

次に、オペレータからの解析開始の指示と初期時間増分を受け付ける。ステップ4005として、この指示に基づいて、記録装置に格納された連続の式(1)およびナピエストークスの式(2)〜(4)、エネルギ保存式(5)を呼び出し、これまで入力を受け付けた、初期時間増分、半導体集積回路(IC)3および電極4の上部に加えられる圧力、樹脂材料の密度、比熱、熱伝導率、発熱式(1)、粘度式(2)を代入し、電極の圧縮による樹脂材料2と粒子1の流動に伴う、速度、圧力、温度および粘度を計算する。この計算結果を有限要素の位置と対応つけて記憶装置に保存する。   Next, an analysis start instruction and an initial time increment from the operator are received. In step 4005, based on this instruction, the continuous equation (1), Napier Stokes equations (2) to (4), and energy conservation equation (5) stored in the recording device are called and the input has been accepted so far. Further, the initial time increment, the pressure applied to the top of the semiconductor integrated circuit (IC) 3 and the electrode 4, the density of the resin material, the specific heat, the thermal conductivity, the exothermic formula (1), and the viscosity formula (2) are substituted, and the electrode The velocity, pressure, temperature and viscosity accompanying the flow of the resin material 2 and the particles 1 due to the compression of are calculated. The calculation result is stored in the storage device in association with the position of the finite element.

次にステップ4006で、電極4間の間隔が粒子の直径よりも大きいかどうかの判定を行う。ここで、電極4間の間隔が粒子1の直径(φD)と等しくなった場合には、ステップ4007において、電極4間に挟まれる接続部の粒子1数Nを出力する。   Next, in step 4006, it is determined whether the distance between the electrodes 4 is larger than the particle diameter. Here, when the distance between the electrodes 4 becomes equal to the diameter (φD) of the particles 1, the number N of particles 1 at the connection portion sandwiched between the electrodes 4 is output in Step 4007.

次のステップ2008から2014は図4のフローチャートで示した計算方法であり、ステップ4008で粒子の変形量を出力する。ステップ4009にて、粒子1の任意数当たりの変形量と半導体集積回路(IC)3の電極4と基板5の電極4間の導電性を入力する。なお、導電性は、電極間に任意の電圧を印加した場合の電流値Iとする。ここで、粒子1の電極4間に挟まれる数Nは、ステップ4007において算出し、粒子1の変形量は、ステップ4008で求めるものとする。ここで、入力した「粒子1の任意数当たりの変形量と半導体集積回路(IC)3の電極4と基板5の電極4間の導電性」の関係の一例を図10に示す。なお、ここでは粒子1の任意数の代表値として、Nl、N2、N3の場合を示しており、ステップ4007において、電極4間に挟まれる接続部の粒子1数NがNl,N2,N3以外の場合には、内挿、外挿にて値を求めることができる。   The next steps 2008 to 2014 are the calculation method shown in the flowchart of FIG. 4, and the deformation amount of the particles is output at step 4008. In step 4009, the deformation amount per arbitrary number of particles 1 and the conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 are input. The conductivity is a current value I when an arbitrary voltage is applied between the electrodes. Here, the number N sandwiched between the electrodes 4 of the particles 1 is calculated in step 4007, and the deformation amount of the particles 1 is obtained in step 4008. Here, FIG. 10 shows an example of the relationship between the input “deformation amount per arbitrary number of particles 1 and conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5”. Here, Nl, N2, and N3 are shown as representative values of an arbitrary number of particles 1, and in step 4007, the number of particles 1 at the connecting portion sandwiched between the electrodes 4 is other than Nl, N2, and N3. In this case, the value can be obtained by interpolation and extrapolation.

ここで、ステップ4010にて、ステップ4008で求めた粒子1の変形量から粒子1個当たりの導電性を算出し、この粒子1個当たりの導電性とステップ4007で求めた電極4間の粒子数から、半導体集積回路(IC)3の電極4と基板5の電極4間の導電性を算出する。   Here, in Step 4010, the conductivity per particle is calculated from the deformation amount of the particle 1 obtained in Step 4008, and the conductivity per particle and the number of particles between the electrodes 4 obtained in Step 4007. From the above, the conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 is calculated.

次にステップ4011において、計算の収束判定を行う。収束の判定手法は、圧力とあらかじめ定めておいた圧力範囲とを対比し、範囲内にある場合を収束として判定する。収束しない場合には、ステップ4001〜4004のいずれかに戻る。この際、オペレータに入力を促し、どのステップに戻るかを決める。   Next, in step 4011, calculation convergence is determined. The convergence determination method compares the pressure with a predetermined pressure range, and determines that the pressure is within the range as convergence. If not converged, the process returns to one of steps 4001 to 4004. At this time, the operator is prompted to input and a step to be returned is determined.

ステップ4012において導電性の適正判定を行う。ここでは、導電性が規定された値の範囲内であるかを判定し、規定された範囲外である場合には、ステップ4001〜4004のいずれかに戻る。この際、オペレータに入力を促し、どのステップに戻るかを決める。   In step 4012, the appropriateness of conductivity is determined. Here, it is determined whether or not the conductivity is within a specified value range. If the conductivity is outside the specified range, the process returns to any of steps 4001 to 4004. At this time, the operator is prompted to input and a step to be returned is determined.

ステップ4011で計算が収束したことを判定し、ステップ4012で粒子変形が適正であることを判定した後、ステップ4013において計算を終了する。
なお、ステップ4009にて入力した「粒子1の任意数当たりの変形量と半導体集積回路(IC)3の電極4と基板5の電極4間の導電性」は、「粒子1の任意数当たりの変形量と、粒子1と電極4との接触面積」の関係から求めた「粒子1と電極4との接触面積と半導体集積回路(IC)3の電極4と基板5の電極4間の導電性」を入力することもできる。また、導電性は電極間に任意電圧を印加した場合の電流値としたが、本発明はこれだけに限定されるものではなく、電極間の抵抗値などを用いることができる。
In step 4011, it is determined that the calculation has converged. In step 4012, it is determined that the particle deformation is appropriate. In step 4013, the calculation ends.
The “deformation amount per arbitrary number of particles 1 and the conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5” input in step 4009 is “per arbitrary number of particles 1. “The contact area between the particle 1 and the electrode 4 and the conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 obtained from the relationship between the deformation amount and the contact area between the particle 1 and the electrode 4”. "Can also be entered. In addition, although the electrical conductivity is a current value when an arbitrary voltage is applied between the electrodes, the present invention is not limited to this, and a resistance value between the electrodes can be used.

[移動電極の圧力制御]
まず、解析対象となる成形工程を、図11を用いて説明する。初期状態(1−a)では、導電性を有する粒子1を含む樹脂材料2が半導体集積回路(IC)3の電極4と基板5の電極4間に設置されている。成形工程では、熱を加えた半導体集積回路(IC)3を基板5の方向に移動させ、粒子1を含む樹脂材料2を圧縮することにより、粒子1を含む樹脂材料2が流動する。
[Moving electrode pressure control]
First, the forming process to be analyzed will be described with reference to FIG. In the initial state (1-a), the resin material 2 containing the conductive particles 1 is placed between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5. In the molding step, the semiconductor integrated circuit (IC) 3 to which heat is applied is moved in the direction of the substrate 5 and the resin material 2 containing the particles 1 is compressed, whereby the resin material 2 containing the particles 1 flows.

このとき、半導体集積回路(IC)3の電極4と樹脂材料2の接触により、樹脂材料2の温度が変化し、温度変化に伴う粘度変化を生じながら、樹脂材料2が粒子1と共に圧縮されながら流動する。なお、半導体集積回路(IC)3の電極4と基板5の電極4との間隔が粒子1の直径よりも小さくなったときには、電極4間に挟まれる粒子1は変形しながら圧縮される。   At this time, the temperature of the resin material 2 changes due to the contact between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the resin material 2, and the resin material 2 is compressed together with the particles 1 while the viscosity changes due to the temperature change. To flow. When the distance between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 becomes smaller than the diameter of the particle 1, the particle 1 sandwiched between the electrodes 4 is compressed while being deformed.

半導体集積回路(IC)3の移動が終了したとき(1−b)には、電極4間に挟まれる粒子1の導電性により、半導体集積回路(IC)3と基板5間の電気信号を伝えることが可能となる。ここで、粒子1の変形量により、粒子1と電極4との接触面積が決まり、この接触面積により半導体集積回路(IC)3と基板5間の導電性が決まる。   When the movement of the semiconductor integrated circuit (IC) 3 is completed (1-b), an electrical signal is transmitted between the semiconductor integrated circuit (IC) 3 and the substrate 5 by the conductivity of the particles 1 sandwiched between the electrodes 4. It becomes possible. Here, the contact area between the particle 1 and the electrode 4 is determined by the deformation amount of the particle 1, and the conductivity between the semiconductor integrated circuit (IC) 3 and the substrate 5 is determined by this contact area.

なお、導電性は、電極4間に一定電圧を印加した場合に流れる電流によって評価される。ここで、粒子1の変形量は、半導体集積回路(IC)3の上部から荷重を加える装置の能力、荷重を加えたときの粒子1の変形量、電極間に挟まれる粒子1の数、樹脂材料2の粘度変化によって決まる。   The conductivity is evaluated by a current that flows when a constant voltage is applied between the electrodes 4. Here, the deformation amount of the particles 1 is the ability of the device to apply a load from the upper part of the semiconductor integrated circuit (IC) 3, the deformation amount of the particles 1 when the load is applied, the number of particles 1 sandwiched between the electrodes, the resin It depends on the viscosity change of material 2.

[解析システムの構成]
次に、粒子1変形に伴う樹脂材料2の流動過程を予測するために用いる解析システムについて説明する。解析システムは、図12示すハードウェア構成で後述する図13,14,17のフローを備えたソフトウェアが実行されることにより機能する。
[Configuration of analysis system]
Next, an analysis system used for predicting the flow process of the resin material 2 accompanying the deformation of the particles 1 will be described. The analysis system functions by executing software having the hardware configuration shown in FIG. 12 and having the flows of FIGS.

具体的には、計算装置6、記録装置10(ハードディスク、MOなど)を備えた計算装置7、この2つの計算装置を繋ぐLAN8、計算装置7が備える表示装置9を備えている。また、計算装置6で作成したCADデータを、LAN8を介して計算装置7に転送するように構成しても良い。計算装置7に転送されたCADデータを、計算装置7の記録装置10(ハードディスク、MOなど)に記録して利用することもできる。   Specifically, it includes a computing device 6, a computing device 7 provided with a recording device 10 (hard disk, MO, etc.), a LAN 8 connecting these two computing devices, and a display device 9 provided in the computing device 7. Further, the CAD data created by the calculation device 6 may be transferred to the calculation device 7 via the LAN 8. The CAD data transferred to the computing device 7 can be recorded on the recording device 10 (hard disk, MO, etc.) of the computing device 7 for use.

計算装置7は図13、4、7、8で示すフローチャートに従って計算を実行し、結果を記録装置10に記録した後、表示装置9に結果を表示する。図示してはいないが、計算装置6及び7には、当然キーボードやマウス等の入力デバイスを備えている。   The calculation device 7 performs calculations according to the flowcharts shown in FIGS. 13, 4, 7, and 8, records the results in the recording device 10, and displays the results on the display device 9. Although not shown, the calculation devices 6 and 7 are naturally provided with input devices such as a keyboard and a mouse.

[フローチャート]
次に、図13のフローチャートに沿って解析プログラムの処理を説明する。まず、モデル形状作成ステップ1001では、オペレータによって入力装置を介して特定された解析対象モデル、つまり、解析対象の電極、初期の粒子を含む樹脂材料の形状、粒子を含む樹脂材料が流動できる空間のデータを記憶装置10から読み出す。
[flowchart]
Next, the processing of the analysis program will be described along the flowchart of FIG. First, in the model shape creation step 1001, the analysis target model specified by the operator through the input device, that is, the electrode to be analyzed, the shape of the resin material including the initial particles, and the space in which the resin material including the particles can flow is obtained. Data is read from the storage device 10.

次に、3次元ソリッド要素作成のステップ1002では、モデル形状作成ステップ1001で読み込んだデータの形状を複数の特定空間(3次元ソリッドの有限要素)に分解し、各有限要素の形状データを作成する。   Next, in step 1002 for creating a three-dimensional solid element, the shape of the data read in the model shape creating step 1001 is decomposed into a plurality of specific spaces (three-dimensional solid finite elements) to create shape data for each finite element. .

次に、物性値入カステップ1003では、解析を行う材料の物性値である密度、熱伝導率、比熱、発熱式(式7)〜(式11)、粘度式(式12)〜(式15)、粒子1の配置、密度、直径、粒子1の1個当たりに荷重が加わった場合の変形量を入力するように、オペレータに催促する表示を行い、入力装置からこれらのデータを受け付ける。なお、A:反応率、t:時間、T:温度、dA/dt:反応速度、X1,X2:温度の関数となる係数、N,M,Xa,Ea,Xb,Eb:材料固有の係数、Q:任意時刻までの発熱量、Qo:反応終了時までの総発熱量、dQ/dt:発熱速度、η:粘度、η0:初期粘度、t:時間、tO:ゲル化時間、T:温度、a、b、d、e、f、g:材料固有の定数を示す。

Figure 2008044571
Figure 2008044571
Figure 2008044571
Figure 2008044571
Figure 2008044571
Figure 2008044571
Figure 2008044571
Figure 2008044571
Figure 2008044571
Next, in the physical property value input step 1003, density, thermal conductivity, specific heat, exothermic equations (Equation 7) to (Equation 11), viscosity equations (Equation 12) to (Equation 15) which are physical property values of the material to be analyzed. ), A display prompting the operator to input the arrangement, density, diameter, and deformation amount when a load is applied to each particle 1 and accepts these data from the input device. A: reaction rate, t: time, T: temperature, dA / dt: reaction rate, X1, X2: coefficient as a function of temperature, N, M, Xa, Ea, Xb, Eb: material specific coefficient, Q: calorific value up to an arbitrary time, Qo: total calorific value until the end of reaction, dQ / dt: exothermic rate, η: viscosity, η0: initial viscosity, t: time, tO: gelation time, T: temperature, a, b, d, e, f, g: Constants specific to the material.
Figure 2008044571
Figure 2008044571
Figure 2008044571
Figure 2008044571
Figure 2008044571
Figure 2008044571
Figure 2008044571
Figure 2008044571
Figure 2008044571

次に、境界条件、成形条件入力ステップ1004において、半導体集積回路(IC)3および電極4の上部に加えられる圧力の入力をするように、オペレータに催促する表示を行い、入力装置からデータを受け付ける。ここで、受け付けた半導体集積回路(IC)3および電極4の上部に加えられる圧力と半導体集積回路(IC)3の上部の面積から半導体集積回路(IC)3および電極4の上部に加えられる荷重Fを算出する。   Next, in the boundary condition / molding condition input step 1004, a display prompting the operator to input pressure applied to the upper portion of the semiconductor integrated circuit (IC) 3 and the electrode 4 is performed, and data is received from the input device. . Here, the load applied to the upper part of the semiconductor integrated circuit (IC) 3 and the electrode 4 from the received pressure applied to the upper part of the semiconductor integrated circuit (IC) 3 and the electrode 4 and the area of the upper part of the semiconductor integrated circuit (IC) 3. F is calculated.

次に、オペレータからの解析開始の指示と初期時間増分および解析終了時間tendを受け付ける。なお、解析は微小な時間を増加させて、それぞれの時間ステップごとの変化を計算するものであり、時間増分とは、時間ステップの間隔を示す。   Next, an analysis start instruction, an initial time increment and an analysis end time tend are received from the operator. In the analysis, a minute time is increased and a change for each time step is calculated. The time increment indicates a time step interval.

ステップ1005として、この指示に基づいて、記録装置に格納された連続の式(1)およびナピエストークスの式(2)〜(4)、エネルギ保存式(5)を呼び出し、これまで入力を受け付けた、初期時間増分、半導体集積回路(IC)3および電極4の上部に加えられる圧力、樹脂材料の密度、比熱、熱伝導率、発熱式(式7)〜(式11)、粘度式(式12)〜(式15)を代入し、電極の圧縮による樹脂材料2と粒子1の流動に伴う、速度、圧力、温度および粘度を計算する。この計算結果を有限要素の位置と対応つけて記憶装置に保存する。   In step 1005, based on this instruction, the continuous equation (1), Napier Stokes equations (2) to (4), and energy conservation equation (5) stored in the recording device are called and the input has been accepted so far. In addition, initial time increment, pressure applied to the top of the semiconductor integrated circuit (IC) 3 and the electrode 4, density of resin material, specific heat, thermal conductivity, exothermic formula (formula 7) to (formula 11), viscosity formula (formula 12) to (Equation 15) are substituted, and the velocity, pressure, temperature and viscosity associated with the flow of the resin material 2 and the particles 1 due to compression of the electrode are calculated. The calculation result is stored in the storage device in association with the position of the finite element.

ここで、P;密度、u;X方向速度、v;y方向速度、ω;Z方向速度、T;温度、P;圧力、t;時間、η;粘度、Cp;定圧比熱、β;体積膨張係数、λ;熱伝導率を示している。

Figure 2008044571
Figure 2008044571
Figure 2008044571
Figure 2008044571
Figure 2008044571
Here, P: density, u: velocity in the X direction, v: velocity in the y direction, ω: velocity in the Z direction, T: temperature, P: pressure, t; time, η; viscosity, Cp: constant pressure specific heat, β: volume expansion Coefficient, λ; indicates thermal conductivity.
Figure 2008044571
Figure 2008044571
Figure 2008044571
Figure 2008044571
Figure 2008044571

次に、ステップ1006で解析における時間が設定した解析終了時間tendよりも短いかの判定を行い、判定がNOの場合は計算の収束判定などを経て解析を終了させ、判定がYESの場合には、ステップ1007の判定に進む。   Next, in step 1006, it is determined whether or not the analysis time is shorter than the set analysis end time tend. If the determination is NO, the analysis is terminated through calculation convergence determination or the like. If the determination is YES, The process proceeds to step 1007 for determination.

ステップ1007で、電極4間の間隔が粒子の直径よりも大きいかどうかの判定を行う。ここで、電極4間の間隔が粒子1の直径(φD)と等しくなった場合には、ステップ1008において、電極4間に挟まれる接続部の粒子1数Nを出力する。   In step 1007, it is determined whether the distance between the electrodes 4 is larger than the particle diameter. Here, when the distance between the electrodes 4 becomes equal to the diameter (φD) of the particles 1, the number N of particles 1 at the connection portion sandwiched between the electrodes 4 is output in step 1008.

次のステップ1009からは、粒子1の変形を伴う樹脂材料2の流動過程の計算を行う。この粒子1の変形を伴う樹脂材料2の流動過程の計算を行う第一ステップ(1009)では、粒子1の変形は無視し、電極4の移動方向における樹脂材料2の移動量(=粒子1の変形量)△Hlを算出した後に、入力した「粒子1の1個当たりに荷重が加わった場合の変形量」から粒子1の変形量△Hlによって、粒子1の1個当たりに加わる荷重△Flを算出する。ここで、入力した「温度変化を考慮した粒子1の1個当たりに荷重が加わった場合の変形量」の関係の一例を図18に示す。ここで、T1、T2,T3は温度条件を表し、T1>T2>T3とする。   From the next step 1009, the flow process of the resin material 2 accompanied by the deformation of the particles 1 is calculated. In the first step (1009) for calculating the flow process of the resin material 2 accompanied by the deformation of the particle 1, the deformation of the particle 1 is ignored, and the movement amount of the resin material 2 in the movement direction of the electrode 4 (= the particle 1) After calculating (deformation amount) ΔHl, the load ΔFl applied per particle 1 by the deformation amount ΔHl of particle 1 from the input “deformation amount when load is applied per particle 1”. Is calculated. Here, FIG. 18 shows an example of the relationship of the inputted “deformation amount when a load is applied per particle 1 in consideration of temperature change”. Here, T1, T2, and T3 represent temperature conditions, and T1> T2> T3.

次の第二ステップ(1010)においては、半導体集積回路(IC)3および電極4の上部に加えられる荷重FJ2は、設定値のFからステップ1009で求めた粒子1の1個当たりに加わる荷重△Flとステップ1008で求めた電極間に挟まれる粒子数Nの積で求められる値の差(FJ2=F−N×△Fl)を用いた計算を行う(ステップ1011)。   In the next second step (1010), the load FJ2 applied to the upper portion of the semiconductor integrated circuit (IC) 3 and the electrode 4 is the load Δ applied per particle 1 obtained in step 1009 from the set value F. Calculation is performed using the difference between the values obtained by the product of Fl and the number N of particles sandwiched between the electrodes obtained in Step 1008 (FJ2 = F−N × ΔFl) (Step 1011).

この荷重FJ2を加えた場合の電極4の移動による樹脂材料2の移動量△H2(=粒子1の変形量)を算出した後に、粒子1の変形量△H2によって、粒子1個当たりに加わる荷重△F2を算出し、FJ3=F−N×△F2を次の時間ステップの計算における半導体集積回路(IC)3に加えられる荷重条件とする。   After calculating the movement amount ΔH2 of the resin material 2 due to the movement of the electrode 4 when the load FJ2 is applied (= deformation amount of the particle 1), the load applied per particle by the deformation amount ΔH2 of the particle 1 ΔF2 is calculated, and FJ3 = F−N × ΔF2 is set as a load condition applied to the semiconductor integrated circuit (IC) 3 in the calculation of the next time step.

ステップ1012において、ステップ1009〜1011の計算を繰返し、M回目のステップにおいて、粒子1の変形量△H(M)、粒子1個当たりに加わる荷重△F(M)を算出し、粒子1の変形量および樹脂材料2の流動挙動を計算する(ステップ1012)。   In step 1012, the calculations in steps 1009 to 1011 are repeated. In the Mth step, the deformation amount ΔH (M) of the particle 1 and the load ΔF (M) applied to each particle are calculated, and the deformation of the particle 1 is calculated. The amount and the flow behavior of the resin material 2 are calculated (step 1012).

ステップ1013で電極4間の間隔が0よりも大きいか、または解析における時間が設定した解析終了時間tendよりも短いかの判定を行い、判定がNOの場合は計算の収束判定などを経て解析を終了させ、判定がYESの場合には、ステップ1014の判定に進む。   In step 1013, it is determined whether the interval between the electrodes 4 is larger than 0 or shorter than the set analysis end time tend in the analysis time. If the determination is NO, the analysis is performed through a calculation convergence determination or the like. If the determination is YES, the process proceeds to the determination of step 1014.

ステップ1014においては、半導体集積回路(IC)3および電極4の上部に加えられる荷重設定値Fから粒子1の1個当たりに加わる荷重△F(M)とステップ1008で求めた電極間に挟まれる粒子数Nの積で求められる値を引いた値が0以下であるかの判定を行う(F−N×△F(M)≦0)。判定がNOの場合には、ステップ1012の繰り返し計算を行い、判定がYESであれば、ステップ1015において、電極の移動速度が0の状態でのエネルキ゛方程式(5)を用いた樹脂温度の計算を行う。   In step 1014, the load ΔF (M) applied to each particle 1 from the load set value F applied to the upper part of the semiconductor integrated circuit (IC) 3 and the electrode 4 is sandwiched between the electrode obtained in step 1008. It is determined whether the value obtained by subtracting the value obtained by the product of the number of particles N is 0 or less (FN−ΔF (M) ≦ 0). If the determination is NO, the calculation of step 1012 is repeated. If the determination is YES, the resin temperature is calculated in step 1015 using the energy equation (5) when the electrode moving speed is zero. Do.

次に、ステップ1016において解析における時間が設定した解析終了時間tendよりも短いかの判定を行い、判定がYESの場合には、ステップ1012の繰り返し計算を行う。
ここで、ステップ1004で入力した圧縮荷重と粒子変形量の関係が図18に示すように、温度依存性を考慮した物性値を用いる場合には、ステップ1015で計算した樹脂温度の上昇により、等しい粒子変形量ΔHでも圧縮荷重ΔF(M)は小さくなるので、ステップ1014において、F−NX△F(M)≦0の判定がNOとなった場合には、ステップ1012における電極の移動速度が0ではない計算を行う。
Next, in step 1016, it is determined whether or not the analysis time is shorter than the set analysis end time tend. If the determination is YES, step 1012 is repeatedly calculated.
Here, as shown in FIG. 18, the relationship between the compressive load input in step 1004 and the amount of particle deformation is equal to the increase in the resin temperature calculated in step 1015 when the physical property value considering the temperature dependence is used. Since the compression load ΔF (M) is small even with the particle deformation amount ΔH, if the determination of F−NXΔF (M) ≦ 0 is NO in step 1014, the moving speed of the electrode in step 1012 is 0. Do not calculate.

また、図18に示す温度は、解析で求めた任意場所の樹脂温度を用いることができる。例えば、1012の流動過程の計算で算出した電極4間の樹脂温度の平均値、粒子1近傍の樹脂温度などの温度を用いることができる。   Moreover, the resin temperature of the arbitrary places calculated | required by analysis can be used for the temperature shown in FIG. For example, an average value of the resin temperature between the electrodes 4 calculated by calculation of the flow process of 1012, a temperature such as the resin temperature in the vicinity of the particles 1 can be used.

ここで、ステップ1016における判定がNOの場合には、
ステップ1017において、計算の収束判定を行う。収束の判定手法は、圧力とあらかじめ定めておいた圧力範囲とを対比し、範囲内にある場合を収束として判定する。収束しない場合には、ステップ1001〜1004のいずれかに戻る。この際、オペレータに入力を促し、どのステップに戻るかを決める。
Here, if the determination in step 1016 is NO,
In step 1017, calculation convergence is determined. The convergence determination method compares the pressure with a predetermined pressure range, and determines that the pressure is within the range as convergence. If it does not converge, the process returns to one of steps 1001 to 1004. At this time, the operator is prompted to input and a step to be returned is determined.

ステップ1018において粒子変形の適正判定を行う。ここでは、粒子の変形量が規定された値の範囲内であるかを判定し、規定された範囲外である場合には、ステップ1001〜1004のいずれかに戻る。この際、オペレータに入力を促し、どのステップに戻るかを決めるステップ1017で計算が収束したことを判定し、ステップ1018で粒子変形が適正であることを判定した後、ステップ1019において計算を終了する。   In step 1018, the appropriateness of particle deformation is determined. Here, it is determined whether the deformation amount of the particles is within the specified value range, and if it is outside the specified range, the process returns to one of steps 1001 to 1004. At this time, the operator is prompted to input, and it is determined that the calculation has converged in step 1017 for determining which step to return to. After it is determined in step 1018 that the particle deformation is appropriate, the calculation is terminated in step 1019. .

なお、ステップ1003における入力条件として、粒子1の1個当たりに荷重が加わった場合の変形量の関係の例を示したが、粒子1の複数個当たりの荷重が加わった場合の変形量(または変形率)の関係を入力することができ、粒子1に加わる応力と変形量(または変形率)の関係を入力することができるものとする。また、発熱式は(式7)〜(式11)に限定されるものではなく、樹脂材料2の反応率を含む任意の関数を用いることができる。   In addition, although the example of the relationship of the deformation amount when a load is applied per particle 1 is shown as the input condition in step 1003, the deformation amount when a load per particle 1 is applied (or It is possible to input the relationship between the deformation rate) and the relationship between the stress applied to the particles 1 and the amount of deformation (or the deformation rate). Further, the exothermic equation is not limited to (Equation 7) to (Equation 11), and any function including the reaction rate of the resin material 2 can be used.

また、粘度式は(式12)〜(式15)に限定されるものではなく、樹胎材料2の温度または反応率を含む任意の関数を用いることができる。また、収束判定は任意の判定方法を用いることができる。また、3次元の解析だけではなく、2次元の解析もできるものとする。なお、以上の計算は有限要素法または有限体積法または有限差分法を用いて計算を行えるものとする。   The viscosity formula is not limited to (Formula 12) to (Formula 15), and any function including the temperature or reaction rate of the embryo material 2 can be used. The convergence determination can use any determination method. Further, not only three-dimensional analysis but also two-dimensional analysis can be performed. The above calculation can be performed using the finite element method, the finite volume method, or the finite difference method.

[電極の速度〜圧力制御への切り替え]
次に、図14のフローチャートに沿って解析プログラムの処理を説明する。まず、モデル形状作成ステップ2001では、オペレータによって入力装置を介して特定された解析対象モデル、つまり、解析対象の電極、初期の粒子を含む樹脂材料の形状、粒子を含む樹脂材料が流動できる空間のデータを記憶装置10から読み出す。
[Switching from electrode speed to pressure control]
Next, the processing of the analysis program will be described along the flowchart of FIG. First, in the model shape creation step 2001, the analysis target model specified by the operator via the input device, that is, the electrode to be analyzed, the shape of the resin material including the initial particles, and the space in which the resin material including the particles can flow is obtained. Data is read from the storage device 10.

次に、3次元ソリッド要素作成のステップ2002では、モデル形状作成ステップ2001で読み込んだデータの形状を複数の特定空間(3次元ソリッドの有限要素)に分解し、各有限要素の形状データを作成する。   Next, in step 2002 for creating a three-dimensional solid element, the shape of the data read in the model shape creating step 2001 is decomposed into a plurality of specific spaces (three-dimensional solid finite elements) to create shape data for each finite element. .

次に、物性値入カステップ2003では、解析を行う材料の物性値である密度、熱伝導率、比熱、発熱式(式7)〜(式11)、粘度式(式12)〜(式15)、粒子1の配置、密度、直径、粒子1の1個当たりに荷重が加わった場合の変形量を入力するように、オペレータに催促する表示を行い、入力装置からこれらのデータを受け付ける。   Next, in the physical property value input step 2003, density, thermal conductivity, specific heat, exothermic equation (Equation 7) to (Equation 11), viscosity equation (Equation 12) to (Equation 15) which are physical property values of the material to be analyzed. ), A display prompting the operator to input the arrangement, density, diameter, and deformation amount when a load is applied to each particle 1 and accepts these data from the input device.

次に、境界条件、成形条件入力ステップ2004において、半導体集積回路(IC)3および電極4の初期移動速度Vdおよび半導体集積回路(IC)3および電極4の上部に加えられる最大圧力の入力をするように、オペレータに催促する表示を行い、入力装置からデータを受け付ける。   Next, in the boundary condition / molding condition input step 2004, the initial moving speed Vd of the semiconductor integrated circuit (IC) 3 and the electrode 4 and the maximum pressure applied to the upper part of the semiconductor integrated circuit (IC) 3 and the electrode 4 are input. As described above, a display prompting the operator is performed, and data is received from the input device.

ここで、受け付けた半導体集積回路(IC)3および電極4の上部に加えられる最大圧力と半導体集積回路(IC)3の上部の面積から、半導体集積回路(IC)3および電極4の上部に加えられる最大荷重Fmaxを算出する。   Here, from the received maximum pressure applied to the upper part of the semiconductor integrated circuit (IC) 3 and the electrode 4 and the area of the upper part of the semiconductor integrated circuit (IC) 3, it is added to the upper part of the semiconductor integrated circuit (IC) 3 and the electrode 4. The maximum load Fmax that can be obtained is calculated.

次に、オペレータからの解析開始の指示と初期時間増分および解析終了時間tendを受け付ける。ステップ2005として、この指示に基づいて、記録装置に格納された連続の式(1)およびナピエストークスの式(2)〜(4)、エネルギ保存式(5)を呼び出し、これまで入力を受け付けた、初期時間増分、半導体集積回路(IC)3および電極4の上部に加えられる圧力、樹胎材料の密度、比熱、熱伝導率、発熱式(式7)〜(式11)、粘度式(式12)〜(式15)を代入し、電極の圧縮による樹胎材料2と粒子1の流動に伴う、速度、圧力、温度および粘度を計算する。この計算結果を有限要素の位置と対応つけて記憶装置に保存する。   Next, an analysis start instruction, an initial time increment, and an analysis end time tend are received from the operator. In step 2005, based on this instruction, the continuous equation (1), Napier Stokes equations (2) to (4), and energy conservation equation (5) stored in the recording device are called and the input has been accepted so far. In addition, initial time increment, pressure applied to the top of the semiconductor integrated circuit (IC) 3 and the electrode 4, density of the seed material, specific heat, thermal conductivity, exothermic formula (formula 7) to (formula 11), viscosity formula ( Substituting equations (12) to (15), the velocity, pressure, temperature and viscosity associated with the flow of the embryo material 2 and the particles 1 due to compression of the electrodes are calculated. The calculation result is stored in the storage device in association with the position of the finite element.

次に、ステップ2006で解析における時間が設定した解析終了時間tendよりも短いかの判定を行い、判定がNOの場合は計算の収束判定などを経て解析を終了させ、判定がYESの場合には、ステップ2007に進む。   Next, in step 2006, it is determined whether or not the analysis time is shorter than the set analysis end time tend. If the determination is NO, the analysis is terminated through calculation convergence determination, and if the determination is YES, The process proceeds to step 2007.

ステップ2007にて、ステップ2004で入力した初期移動速度Vdで電極を移動させた場合に樹脂に加わる荷重FJを、「移動する電極4と樹脂材料2の接触面積」と「接触部分の樹脂樹胎2の圧力」の積として算出する。   In step 2007, when the electrode is moved at the initial moving speed Vd input in step 2004, the load FJ applied to the resin is expressed as “the contact area between the moving electrode 4 and the resin material 2” and “the resin tree of the contact portion”. Calculated as the product of “pressure of 2”.

ステップ2008において電極4の上部に加えられる最大荷重Fmaxとステップ2007で求めたFJを比較し、Fmax>FJであれば、ステップ2009においてステップ2004で入力した初期移動速度Vdで電極が移動する計算をし、Fmax>FJでなければ、圧力制御に切り替え、最大荷重Fmaxが電極4の上部に加えられた場合の電極の移動を計算する。   In step 2008, the maximum load Fmax applied to the upper part of the electrode 4 is compared with the FJ obtained in step 2007. If Fmax> FJ, the calculation is performed in which the electrode moves at the initial moving speed Vd input in step 2004 in step 2009. If Fmax> FJ, the control is switched to pressure control, and the movement of the electrode when the maximum load Fmax is applied to the upper part of the electrode 4 is calculated.

ステップ2010で、電極4間の間隔が粒子の直径よりも大きいかどうかの判定を行う。電極4間の間隔が粒子の直径よりも大きい場合には、ステップ2005に戻って計算を繰り返し、電極4間の間隔が粒子1の直径(φD)と等しくなった場合には、図13で示したステップ1008から1016の計算を行う。   In step 2010, it is determined whether the distance between the electrodes 4 is larger than the diameter of the particles. When the distance between the electrodes 4 is larger than the diameter of the particle, the process returns to step 2005 and the calculation is repeated. When the distance between the electrodes 4 becomes equal to the diameter (φD) of the particle 1, it is shown in FIG. Steps 1008 to 1016 are calculated.

ステップ2012において、計算の収束判定を行う。収束の判定手法は、圧力とあらかじめ定めておいた圧力範囲とを対比し、範囲内にある場合を収束として判定する。収束しない場合には、ステップ2001〜2004のいずれかに戻る。この際、オペレータに入力を促し、どのステップに戻るかを決める。   At step 2012, calculation convergence is determined. The convergence determination method compares the pressure with a predetermined pressure range, and determines that the pressure is within the range as convergence. If it does not converge, the process returns to one of steps 2001 to 2004. At this time, the operator is prompted to input and a step to be returned is determined.

ステップ2013において粒子変形の適正判定を行う。ここでは、粒子の変形量が規定された値の範囲内であるかを判定し、規定された範囲外である場合には、ステップ2001〜2004のいずれかに戻る。この際、オペレータに入力を促し、どのステップに戻るかを決めるステップ2012で計算が収束したことを判定し、ステップ2013で粒子変形が適正であることを判定した後、ステップ2014において計算を終了する。   In step 2013, the appropriateness of particle deformation is determined. Here, it is determined whether the deformation amount of the particles is within a specified value range, and if it is outside the specified range, the process returns to one of steps 2001 to 2004. At this time, the operator is prompted to input, and it is determined that the calculation has converged in step 2012 for determining which step to return to. After it is determined in step 2013 that the particle deformation is appropriate, the calculation is terminated in step 2014. .

なお、ステップ2003における入力条件として、粒子1の1個当たりに荷重が加わった場合の変形量の関係の例を示したが、粒子1の複数個当たりの荷重が加わった場合の変形量(または変形率)の関係を入力することができ、粒子1に加わる応力と変形量(または変形率)の関係を入力することができるものとする。   In addition, although the example of the relationship of the deformation amount when a load is applied per particle 1 is shown as the input condition in step 2003, the deformation amount when a load per particle 1 is applied (or It is possible to input the relationship between the deformation rate) and the relationship between the stress applied to the particles 1 and the amount of deformation (or the deformation rate).

また、発熱式は(式7)〜(式11)に限定されるものではなく、樹脂材料2の反応率を含む任意の関数を用いることができる。また、粘度式は(式12)〜(式15)に限定されるものではなく、樹脂材料2の温度または反応率を含む任意の関数を用いることができる。   Further, the exothermic equation is not limited to (Equation 7) to (Equation 11), and any function including the reaction rate of the resin material 2 can be used. The viscosity formula is not limited to (Formula 12) to (Formula 15), and any function including the temperature or the reaction rate of the resin material 2 can be used.

また、収束判定は任意の判定方法を用いることができる。また、3次元の解析だけではなく、2次元の解析もできるものとする。なお、以上の計算は有限要素法または有限体積法または有限差分法を用いて計算を行えるものとする。   The convergence determination can use any determination method. Further, not only three-dimensional analysis but also two-dimensional analysis can be performed. The above calculation can be performed using the finite element method, the finite volume method, or the finite difference method.

[電極の圧力制御の解析事例(一層樹脂)]
ここで、図15に解析事例の一例(2次元解析)を示す。初期状態において、導電性を有する粒子1を含む樹脂材料2が半導体集積回路(IC)3の電極4と基板5の電極4間に設置されている。ここで、樹胎材料2は初期温度30℃とし、発熱式(式7)〜(式11)、粘度式(式12)〜(式15)を用いるものとする。なお、発熱式(式7)〜(式11)、粘度式(式12)〜(式15)の定数の値、密度、熱伝導率、比熱の値、粒子の直径(φD)、密度を表1に示す。

Figure 2008044571
[Analysis example of electrode pressure control (single layer resin)]
Here, FIG. 15 shows an example of analysis (two-dimensional analysis). In an initial state, a resin material 2 containing conductive particles 1 is placed between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5. Here, the embryo material 2 has an initial temperature of 30 ° C., and the exothermic equations (Equation 7) to (Equation 11) and the viscosity equations (Equation 12) to (Equation 15) are used. The constant value, density, thermal conductivity, specific heat value, particle diameter (φD), and density of the exothermic formulas (Formula 7) to (Formula 11) and viscosity formulas (Formula 12) to (Formula 15) are shown. It is shown in 1.
Figure 2008044571

また、半導体集積回路(IC)3の温度は一定(185℃)に設定し、基板5の方向に圧力5MPaを加えて移動させ、粒子1を含む樹脂材料2を圧縮することにより、粒子1を含む樹胎材料2を流動させる。このとき、半導体集積回路(IC)3の電極4と樹脂材料2の接触により、樹脂材料2の温度が変化し、温度変化に伴う粘度変化を生じながら、樹脂材料2が粒子1と共に圧縮されながら流動する過程を計算できる。   Further, the temperature of the semiconductor integrated circuit (IC) 3 is set to be constant (185 ° C.), moved by applying a pressure of 5 MPa in the direction of the substrate 5, and the resin material 2 including the particles 1 is compressed, whereby the particles 1 are compressed. The containing embryo material 2 is flowed. At this time, the temperature of the resin material 2 changes due to the contact between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the resin material 2, and the resin material 2 is compressed together with the particles 1 while the viscosity changes due to the temperature change. Calculate the flow process.

なお、半導体集積回路(IC)3の電極4と基板5の電極4との間隔が粒子1の直径よりも小さくなったときには、解析上では、粒子1と電極4の接触の計算は行わない。つまり、解析上では、粒子1同士、粒子1と電極4が接触する場合には、粒子1が電極4をすり抜けるなどの設定を行うことにより、樹脂材料2だけの流動性の計算を行う。   When the distance between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 becomes smaller than the diameter of the particle 1, the calculation of the contact between the particle 1 and the electrode 4 is not performed in the analysis. That is, in the analysis, when the particles 1 are in contact with each other, and when the particles 1 and the electrode 4 are in contact with each other, the fluidity of only the resin material 2 is calculated by setting such that the particles 1 pass through the electrode 4.

このとき、半導体集積回路(IC)3の上部から加える圧力は設定値の5MPaではなく、図13のフローチャートで示したように、図18に示す粒子の変形量と圧縮荷重の関係および電極間に挟まれる粒子数から求めた荷重を設定圧力と面積との積で求めた荷重から引いた値を用いる。   At this time, the pressure applied from the upper part of the semiconductor integrated circuit (IC) 3 is not the set value of 5 MPa, but as shown in the flowchart of FIG. 13, the relationship between the deformation amount of the particle and the compressive load shown in FIG. A value obtained by subtracting the load obtained from the number of sandwiched particles from the load obtained by the product of the set pressure and the area is used.

この計算の結果、電極の上部から加えられる荷重と、粒子を変形させるために必要な圧縮荷重が等しくなれば、電極の移動速度が0となり、電極移動を伴わない樹脂の温度計算を行う。ここで、樹脂温度が高くなると、図18に示すように粒子を変形させるために必要な圧縮荷重が少なくなるので、再度、電極移動を伴った計算を行う。   As a result of this calculation, if the load applied from the upper part of the electrode is equal to the compressive load required to deform the particles, the electrode moving speed becomes 0, and the resin temperature calculation without electrode movement is performed. Here, as the resin temperature increases, the compressive load required to deform the particles decreases as shown in FIG. 18, so that the calculation involving the electrode movement is performed again.

ここで、図18に示す温度は、解析で求めた任意場所の温度を用いることができる。例えば、図13で示した1012の流動過程の計算で算出した電極4間の樹脂温度の平均値、粒子1近傍の樹脂温度などの温度を用いることができる。また、ここでは粒子内の熱伝導計算は行っていないが、粒子の比熱、熱伝導率、樹脂材料と粒子の熱伝達率などの入力により、粒子内の熱伝導計算も行うことができ、この伝熱計算で求めた粒子の任意位置の温度を図18に示す温度として用いることもできる。   Here, as the temperature shown in FIG. 18, the temperature at an arbitrary place obtained by analysis can be used. For example, an average value of the resin temperature between the electrodes 4 calculated by calculation of the flow process 1012 shown in FIG. In addition, although the heat conduction calculation within the particle is not performed here, the heat conduction calculation within the particle can also be performed by inputting the specific heat of the particle, the heat conductivity, the heat transfer coefficient between the resin material and the particle, etc. The temperature at an arbitrary position of the particle obtained by heat transfer calculation can also be used as the temperature shown in FIG.

その後、設定した解析終了時間において解析が終了する。このとき、電極間の間隔から粒子1の変形量を求めることができる。なお、粒子の変形量△Dは、(式6)で求めることができる。

Figure 2008044571
Thereafter, the analysis ends at the set analysis end time. At this time, the deformation amount of the particle 1 can be obtained from the interval between the electrodes. In addition, the deformation amount ΔD of the particles can be obtained by (Expression 6).
Figure 2008044571

ここで、D:粒子1の直径、Dl:解析終了後の基板4の間隔を表す。なお、以上では電極4の移動が圧力により制御される事例を示したが、本発明はこれだけに限定されるものではなく、図14のフローチャートで示したように、電極の移動を速度から圧力に制御することも可能とする。   Here, D: the diameter of the particle 1 and Dl: the distance between the substrates 4 after the analysis is completed. In addition, although the case where the movement of the electrode 4 is controlled by the pressure has been described above, the present invention is not limited to this, and the movement of the electrode is changed from speed to pressure as shown in the flowchart of FIG. It is also possible to control.

[電極の圧力制御の解析事例(二層樹脂)]
ここで、図16に樹脂材料が2層に分かれている解析事例(2次元解析)の一例を示す。
[Analysis example of electrode pressure control (two-layer resin)]
Here, FIG. 16 shows an example of an analysis example (two-dimensional analysis) in which the resin material is divided into two layers.

初期状態において、導電性を有する粒子1を含む樹脂材料2の上部に、粒子1を含む物性値が異なる樹脂材料11からなる2層構造の樹脂材料が、半導体集積回路(IC)3の電極4と基板5の電極4間に設置されている。ここで、樹脂材料2は初期温度30℃とし、発熱式(式7)〜(式11)、粘度式(式12)〜(式15)を用いるものとする。なお、発熱式(式7)〜(式11)、粘度式(式12)〜(式15)の定数の値、密度、熱伝導率、比熱の値、粒子の直径(φD)、密度に関して、一層目の樹脂材料2および粒子1は表1の値を用いて、2層目の樹胎材料11および粒子1の値を表2に示す。

Figure 2008044571
Figure 2008044571
In an initial state, a resin material having a two-layer structure made of a resin material 11 having different physical property values including particles 1 is formed on the resin material 2 including the conductive particles 1, and the electrode 4 of the semiconductor integrated circuit (IC) 3. And between the electrodes 4 of the substrate 5. Here, the resin material 2 has an initial temperature of 30 ° C., and the exothermic formulas (Formula 7) to (Formula 11) and the viscosity formulas (Formula 12) to (Formula 15) are used. In addition, regarding the constant value, density, thermal conductivity, specific heat value, particle diameter (φD), and density of the exothermic formulas (Formula 7) to (Formula 11) and the viscosity formulas (Formula 12) to (Formula 15), The resin material 2 and particle 1 in the first layer use the values in Table 1, and the values of the embryo material 11 and particles 1 in the second layer are shown in Table 2.
Figure 2008044571
Figure 2008044571

ここで、半導体集積回路(IC)3の温度は一定(185℃)に設定し、基板5の方向に圧力5MPaを加えて移動させ、樹脂材料2、11を圧縮することにより、粒子1を含む樹脂材料2、11を流動させる。このとき、半導体集積回路(IC)3の電極4と樹脂材料2、11の接触により、樹胎材料2、11の温度が変化し、温度変化に伴う粘度変化を生じながら、樹脂材料2、11が粒子1と共に圧縮されながら流動する過程を計算できる。   Here, the temperature of the semiconductor integrated circuit (IC) 3 is set to be constant (185 ° C.), moved by applying a pressure of 5 MPa in the direction of the substrate 5, and the resin materials 2 and 11 are compressed to include the particles 1. Resin materials 2 and 11 are caused to flow. At this time, due to the contact between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the resin materials 2 and 11, the temperature of the tree material 2 and 11 is changed, and the viscosity change due to the temperature change is generated, while the resin material 2 and 11 is changed. It is possible to calculate the process of flowing while being compressed together with the particles 1.

なお、半導体集積回路(IC)3の電極4と基板5の電極4との間隔が粒子1の直径よりも小さくなったときには、解析上では、粒子1と電極4の接触の計算は行わない。つまり、解析上では、粒子1同士、粒子1と電極4が接触する場合には、粒子1が電極4をすり抜けるなどの設定を行うことにより、樹脂材料2、11だけの流動性の計算を行う。   When the distance between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 becomes smaller than the diameter of the particle 1, the calculation of the contact between the particle 1 and the electrode 4 is not performed in the analysis. That is, in the analysis, when the particles 1 are in contact with each other, and when the particles 1 and the electrode 4 are in contact with each other, the fluidity of only the resin materials 2 and 11 is calculated by setting such that the particles 1 pass through the electrode 4. .

このとき、半導体集積回路(IC)3の上部から加える圧力は設定値の5MPaではなく、図13のフローチャートで示したように、図18に示す粒子の変形量と圧縮荷重の関係および電極間に挟まれる粒子数から求めた荷重を設定圧力と面積との積で求めた荷重から引いた値を用いる。   At this time, the pressure applied from the upper part of the semiconductor integrated circuit (IC) 3 is not the set value of 5 MPa, but as shown in the flowchart of FIG. 13, the relationship between the deformation amount of the particle and the compressive load shown in FIG. A value obtained by subtracting the load obtained from the number of sandwiched particles from the load obtained by the product of the set pressure and the area is used.

この計算の結果、電極の上部から加えられる荷重と、粒子を変形させるために必要な圧縮荷重が等しくなれば、電極の移動速度が0となり、電極移動を伴わない樹脂の温度計算を行う。ここで、樹脂温度が高くなると、図18に示すように粒子を変形させるために必要な圧縮荷重が少なくなるので、再度、電極移動を伴った計算を行う。   As a result of this calculation, if the load applied from the upper part of the electrode is equal to the compressive load required to deform the particles, the electrode moving speed becomes 0, and the resin temperature calculation without electrode movement is performed. Here, as the resin temperature increases, the compressive load required to deform the particles decreases as shown in FIG. 18, so that the calculation involving the electrode movement is performed again.

ここで、図18に示す温度は、解析で求めた任意場所の温度を用いることができる。例えば、1012の流動過程の計算で算出した電極4間の樹脂温度の平均値、粒子1近傍の樹脂温度などの温度を用いることができる。また、ここでは粒子内の熱伝導計算は行っていないが、粒子の比熱、熱伝導率、樹脂材料と粒子の熱伝達率などの入力により、粒子内の熱伝導計算も行うことができ、この伝熱計算で求めた粒子の任意位置の温度を図18に示す温度として用いることもできる。   Here, as the temperature shown in FIG. 18, the temperature at an arbitrary place obtained by analysis can be used. For example, an average value of the resin temperature between the electrodes 4 calculated by calculation of the flow process of 1012, a temperature such as the resin temperature in the vicinity of the particles 1 can be used. In addition, although the heat conduction calculation within the particle is not performed here, the heat conduction calculation within the particle can also be performed by inputting the specific heat of the particle, the heat conductivity, the heat transfer coefficient between the resin material and the particle, etc. The temperature at an arbitrary position of the particle obtained by heat transfer calculation can also be used as the temperature shown in FIG.

その後、設定した解析終了時間において解析が終了する。このとき、電極間の間隔から粒子1の変形量を求めることができる。なお、粒子の変形量△Dは、(式6)で求めることができる。

Figure 2008044571
Thereafter, the analysis ends at the set analysis end time. At this time, the deformation amount of the particle 1 can be obtained from the interval between the electrodes. In addition, the deformation amount ΔD of the particles can be obtained by (Expression 6).
Figure 2008044571

ここで、D:粒子1の直径、Dl:解析終了後の基板4の間隔を表す。なお、以上では電極4の移動が圧力により制御される事例を示したが、本発明はこれだけに限定されるものではなく、図14のフローチャートで示したように、電極の移動を速度から圧力に制御することも可能とする。また、ここでは粒子内の熱伝導計算は行っていないが、粒子の比熱、熱伝導率、樹脂材料と粒子の熱伝達率などの入力により、粒子内の熱伝導計算も行うことができる。   Here, D: the diameter of the particle 1 and Dl: the distance between the substrates 4 after the analysis is completed. In addition, although the example in which the movement of the electrode 4 is controlled by the pressure has been described above, the present invention is not limited to this, and the movement of the electrode is changed from the speed to the pressure as shown in the flowchart of FIG. It is also possible to control. In addition, although the heat conduction calculation within the particle is not performed here, the heat conduction calculation within the particle can also be performed by inputting the specific heat of the particle, the heat conductivity, the heat transfer coefficient between the resin material and the particle, and the like.

なお、以上では二相日の樹脂材料11に粒子1が含まれる解析の事例を示したが、本発明はこれだけに限定されるものではなく、二相日の樹脂材料11には粒子1が含まれない状態での解析も行えるものとする。   In addition, although the example of the analysis in which the particle 1 is included in the resin material 11 of the two-phase day has been described above, the present invention is not limited to this, and the resin material 11 of the two-phase day includes the particle 1. It is also possible to perform analysis in a state where

[導電性の予測、粒子の座標の主力(電極移動の圧力制御)]
図17は、本発明の実施例7の半導体集積回路(IC)3の電極4と基板5の電極4間の導電性を予測するフローチャートである。
[Prediction of conductivity, main force of particle coordinates (pressure control for electrode movement)]
FIG. 17 is a flowchart for predicting the conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 according to the seventh embodiment of the present invention.

ここでは、図13のフローチャートで求めた粒子変形量と導電性の関係の入力により、半導体集積回路(IC)3の電極4と基板5の電極4間の導電性を予測する。まず、モデル形状作成ステップ3001では、オペレータによって入力装置を介して特定された解析対象モデル、つまり、解析対象の電極、初期の粒子を含む樹脂材料の形状、粒子を含む樹脂材料が流動できる空間のデータを記憶装置10から読み出す。   Here, the conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 is predicted based on the input of the relationship between the particle deformation amount and the conductivity obtained in the flowchart of FIG. First, in the model shape creation step 3001, the analysis target model specified by the operator through the input device, that is, the electrode to be analyzed, the shape of the resin material including the initial particles, and the space in which the resin material including the particles can flow is obtained. Data is read from the storage device 10.

次に、3次元ソリッド要素作成のステップ3002では、モデル形状作成ステップ1001で読み込んだデータの形状を複数の特定空間(3次元ソリッドの有限要素)に分解し、各有限要素の形状データを作成する。   Next, in step 3002 for creating a three-dimensional solid element, the shape of the data read in the model shape creating step 1001 is decomposed into a plurality of specific spaces (three-dimensional solid finite elements) to create shape data for each finite element. .

次に、物性値入カステップ3003では、解析を行う材料の物性値である密度、熱伝導率、比熱、発熱式(式7)〜(式11)、粘度式(式12)〜(式15)、粒子1の配置、密度、直径、粒子1の1個当たりに荷重が加わった場合の変形量、粒子1の任意数当たりの変形量と半導体集積回路(IC)3の電極4と基板5の電極4間の導電性を入力するように、オペレータに催促する表示を行い、入力装置からこれらのデータを受け付ける。   Next, in the physical property value input step 3003, density, thermal conductivity, specific heat, exothermic equation (Equation 7) to (Equation 11), viscosity equation (Equation 12) to (Equation 15) which are physical property values of the material to be analyzed. ), The arrangement, density and diameter of the particles 1, the deformation amount when a load is applied to each particle 1, the deformation amount per arbitrary number of particles 1, the electrode 4 and the substrate 5 of the semiconductor integrated circuit (IC) 3 The operator prompts the operator to input the conductivity between the electrodes 4 and receives the data from the input device.

次に、境界条件、成形条件入力ステップ3004において、半導体集積回路(IC)3および電極4の上部に加えられる圧力の入力をするように、オペレータに催促する表示を行い、入力装置からデータを受け付ける。ここで、受け付けた半導体集積回路(IC)3および電極4の上部に加えられる圧力と半導体集積回路(IC)3の上部の面積から半導体集積回路(IC)3および電極4の上部に加えられる荷重Fを算出する。   Next, in the boundary condition / molding condition input step 3004, a display prompting the operator to input pressure applied to the upper portion of the semiconductor integrated circuit (IC) 3 and the electrode 4 is performed, and data is received from the input device. . Here, the load applied to the upper part of the semiconductor integrated circuit (IC) 3 and the electrode 4 from the received pressure applied to the upper part of the semiconductor integrated circuit (IC) 3 and the electrode 4 and the area of the upper part of the semiconductor integrated circuit (IC) 3. F is calculated.

次に、オペレータからの解析開始の指示と初期時間増分および解析終了時間tendを受け付ける。ステップ3005として、この指示に基づいて、記録装置に格納された連続の式(1)およびナピエストークスの式(2)〜(4)、エネルギ保存式(5)を呼び出し、これまで入力を受け付けた、初期時間増分、半導体集積回路(IC)3および電極4の上部に加えられる圧力、樹胎材料の密度、比熱、熱伝導率、発熱式(式7)〜(式11)、粘度式(式12)〜(式15)を代入し、電極の圧縮による樹脂材料2と粒子1の流動に伴う速度、圧力、温度および粘度を計算する。この計算結果を有限要素の位置と対応つけて記憶装置に保存する。   Next, an analysis start instruction, an initial time increment, and an analysis end time tend are received from the operator. In step 3005, based on this instruction, the continuous equation (1), Napier Stokes equations (2) to (4), and the energy conservation equation (5) stored in the recording device are called and the input has been accepted so far. In addition, initial time increment, pressure applied to the top of the semiconductor integrated circuit (IC) 3 and the electrode 4, density of the seed material, specific heat, thermal conductivity, exothermic formula (formula 7) to (formula 11), viscosity formula ( Substituting Equations 12) to 15 to calculate the velocity, pressure, temperature, and viscosity associated with the flow of the resin material 2 and the particles 1 due to compression of the electrodes. The calculation result is stored in the storage device in association with the position of the finite element.

次に、ステップ3006で解析における時間が設定した解析終了時間tendよりも短いかの判定を行い、判定がNOの場合は計算の収束判定などを経て解析を終了させ、判定がYESの場合には、3007の判定に進む。   Next, in step 3006, it is determined whether or not the analysis time is shorter than the set analysis end time tend. If the determination is NO, the analysis is terminated through calculation convergence determination or the like. If the determination is YES, , 3007 is proceeded to.

ステップ3007で、電極4間の間隔が粒子の直径よりも大きいかどうかの判定を行う。電極4間の間隔が粒子の直径よりも大きい場合には、ステップ3005に戻って計算を繰り返し、電極4間の間隔が粒子1の直径(φD)と等しくなった場合には、ステップ3008において、電極4間に挟まれる接続部の粒子1数Nまたは電極4間に挟まれる接続部の粒子1の座標を出力する。次に、図13で示したステップ1008から1016の計算を行う。   In step 3007, it is determined whether the spacing between the electrodes 4 is greater than the particle diameter. If the distance between the electrodes 4 is larger than the diameter of the particles, the process returns to step 3005 to repeat the calculation. If the distance between the electrodes 4 becomes equal to the diameter (φD) of the particles 1, in step 3008, The number of particles 1 in the connection part sandwiched between the electrodes 4 or the coordinates of the particle 1 in the connection part sandwiched between the electrodes 4 is output. Next, calculations in steps 1008 to 1016 shown in FIG. 13 are performed.

次に、ステップ3010で粒子の変形量および流体解析で求めた電極4の移動速度を出力する。ステップ3011にて、ステップ3010で出力した粒子1の変形量と、ステップ3003にて入力した、粒子1の任意数当たりの変形量と半導体集積回路(IC)3の電極4と基板5の電極4間の導電性から粒子1個当たりの導電性を算出し、この粒子1個当たりの導電性とステップ3008で求めた電極4間の粒子数から、半導体集積回路(IC)3の電極4と基板5の電極4間の導電性を算出する。   Next, in step 3010, the deformation amount of the particles and the moving speed of the electrode 4 obtained by fluid analysis are output. In step 3011, the deformation amount of the particles 1 output in step 3010, the deformation amount per arbitrary number of particles 1 input in step 3003, the electrode 4 of the semiconductor integrated circuit (IC) 3, and the electrode 4 of the substrate 5. The conductivity per particle is calculated from the conductivity between the electrodes, and the electrode 4 and the substrate of the semiconductor integrated circuit (IC) 3 are calculated from the conductivity per particle and the number of particles between the electrodes 4 obtained in step 3008. The conductivity between the five electrodes 4 is calculated.

なお、導電性は、電極間に任意の電圧を印加した場合の電流値Iとする。ここで、入力した「粒子1の任意数当たりの変形量と半導体集積回路(IC)3の電極4と基板5の電極4間の導電性」の関係の一例を図9に示す。なお、ここでは粒子1の任意数の代表値として、Nl、N2、N3の場合を示しており、ステップ3008において、電極4間に挟まれる接続部の粒子1数NがNl,N2,N3以外の場合には、内挿、外挿にて値を求めることができる。   The conductivity is a current value I when an arbitrary voltage is applied between the electrodes. Here, FIG. 9 shows an example of the relationship between the inputted “deformation amount per arbitrary number of particles 1 and conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5”. Here, Nl, N2, and N3 are shown as an arbitrary number of representative values of particles 1, and in step 3008, the number of particles 1 in the connection portion sandwiched between the electrodes 4 is other than Nl, N2, and N3. In this case, the value can be obtained by interpolation and extrapolation.

ここで、ステップ3012にて計算の収束判定を行う。収束の判定手法は、圧力とあらかじめ定めておいた圧力範囲とを対比し、範囲内にある場合を収束として判定する。収束しない場合には、ステップ3001〜3004のいずれかに戻る。この際、オペレータに入力を促し、どのステップに戻るかを決める。   Here, in step 3012, calculation convergence is determined. The convergence determination method compares the pressure with a predetermined pressure range, and determines that the pressure is within the range as convergence. If it does not converge, the process returns to one of steps 3001 to 3004. At this time, the operator is prompted to input and a step to be returned is determined.

ステップ3013において粒子変形の適正判定を行う。ここでは、粒子の変形量が規定された値の範囲内であるかを判定し、規定された範囲外である場合には、ステップ3001〜3004のいずれかに戻る。この際、オペレータに入力を促し、どのステップに戻るかを決める。   In step 3013, the appropriateness of particle deformation is determined. Here, it is determined whether or not the deformation amount of the particles is within a specified value range. If the deformation amount is outside the specified range, the process returns to any of steps 3001 to 3004. At this time, the operator is prompted to input and a step to be returned is determined.

ステップ3012で計算が収束したことを判定し、ステップ3013で粒子変形が適正であることを判定した後、ステップ3014において計算を終了する。なお、ステップ3003にて入力した「粒子1の任意数当たりの変形量と半導体集積回路(IC)3の電極4と基板5の電極4間の導電性」は、「粒子1の任意数当たりの変形量と、粒子1と電極4との接触面積」の関係から求めた「粒子1と電極4との接触面積と半導体集積回路(IC)3の電極4と基板5の電極4間の導電性」を入力することもできる.また、導電性は電極間に任意電圧を印加した場合の電流値としたが、本発明はこれだけに限定されるものではなく、電極間の抵抗値などを用いることができる。   After determining that the calculation has converged in step 3012 and determining that the particle deformation is appropriate in step 3013, the calculation is terminated in step 3014. The “deformation amount per arbitrary number of particles 1 and the conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5” input in step 3003 are “per particle number 1 per arbitrary number of particles 1. “The contact area between the particle 1 and the electrode 4 and the conductivity between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 4 of the substrate 5 obtained from the relationship between the deformation amount and the contact area between the particle 1 and the electrode 4”. "Can also be entered. In addition, although the electrical conductivity is a current value when an arbitrary voltage is applied between the electrodes, the present invention is not limited to this, and a resistance value between the electrodes can be used.

ここで、ステップ3008で出力した電極4間に挟まれた粒子1の座標とステップ3010で出力した電極4の移動速度を用いて構造解析の入力条件として用いることができる。なお、出力した粒子1の座標は、粒子1の任意位置を出力できるものとし、ここでは、粒子1の中心の座標を出力するものとする。   Here, the coordinates of the particle 1 sandwiched between the electrodes 4 output in step 3008 and the moving speed of the electrode 4 output in step 3010 can be used as input conditions for structural analysis. It is assumed that the coordinates of the output particle 1 can output an arbitrary position of the particle 1, and here, the coordinates of the center of the particle 1 are output.

この流体の計算で出力した入力条件(電極4間に挟まれた粒子1の座標と、電極4移動速度)および粒子の物性値(弾性率、密度、ポアソン比など)を用いた構造解析により、図20に示すように、電極4の速度を入力値とした基板4に、座標が入力された粒子1が圧縮される場合の変形形態、粒子1と電極との接触面積を解析で求めることができる。   By structural analysis using the input conditions (coordinates of the particle 1 sandwiched between the electrodes 4 and the moving speed of the electrode 4) and the physical properties of the particles (elastic modulus, density, Poisson's ratio, etc.) output in this fluid calculation, As shown in FIG. 20, it is possible to obtain a deformation form when the particle 1 to which coordinates are input is compressed on the substrate 4 having the velocity of the electrode 4 as an input value, and the contact area between the particle 1 and the electrode by analysis. it can.

なお、図21に示す粒子1と電極4の接触面積と導電性の関係を用いて、図20で算出した粒子1と電極との接触面積から導電性を算出することもできる。   Note that the conductivity can also be calculated from the contact area between the particle 1 and the electrode calculated in FIG. 20 using the relationship between the contact area between the particle 1 and the electrode 4 and the conductivity shown in FIG.

Claims (24)

(1)解析対象の凸形状のある基板、初期の粒子を含む樹脂材料の形状、粒子を含む樹脂材料が流動できる空間のデータを記憶装置から計算装置に取り込み、
(2)当該データに基づいて3次元ソリッド要素に分解処理をし、
(3)少なくとも樹脂材料の密度、熱伝導率、比熱、粘度、粒子の外形寸法、密度、粒子1個当たりに加わる荷重一変位の関係、凸形状のある基板に加えられる外部からの荷重Fを入力し、
(4)連続の式、ナビエストークスの式、エネルギ保存式を、前記3次元ソリッド要素に基づいて演算処理することにより、凸形状のある基板と樹脂材料の接触により、樹脂温度の変化を計算し、凸形状のある基板の移動により、樹脂材料が粒子と共に圧縮されながら流動する過程を計算し、
(5)圧縮後の凸形状のある基板間の隙間が粒子の直径と等しくなる時間において、凸形状のある基板間に挟まれる粒子数Nを出力演算し、
(6)上記(5)の圧縮後の凸形状のある基板間の隙間が粒子の直径と等しくなる時間以降においては、電極と粒子の接触を無視し、凸形状のある基板に加わる荷重を、上記(3)で入力した荷重Fから、凸形状のある基板間の隙間から上記(3)で入力した粒子1個当たりに加わる荷重−変位の関係と上記(5)で求めた凸形状のある基板間に挟まれる粒子数Nとの積によって求めた荷重を引いた値を用いて、粒子を含む樹脂材料を2方向から凸形状のある基板で圧縮することにより、樹脂材料および粒子を流動させる工程を計算することを特徴とする粒子を内在させた樹脂材料の流動解析方法。
(1) Import data from a storage device into a computing device, with a convex substrate to be analyzed, the shape of the resin material including the initial particles, and the space in which the resin material including the particles can flow,
(2) Based on the data, decompose into 3D solid elements,
(3) At least the density of resin material, thermal conductivity, specific heat, viscosity, particle external dimensions, density, relationship of load and displacement applied to each particle, external load F applied to a convex substrate Input,
(4) By calculating the continuous equation, Navi-Stokes equation, and energy conservation equation based on the three-dimensional solid element, the change in the resin temperature is calculated by the contact between the convex substrate and the resin material. Calculate the process in which the resin material flows while being compressed along with the particles by moving the convex substrate.
(5) In a time when the gap between the compressed convex substrates is equal to the diameter of the particles, the number of particles N sandwiched between the convex substrates is output and calculated.
(6) After the time when the gap between the convex substrate after compression in (5) is equal to the diameter of the particle, the contact between the electrode and the particle is ignored, and the load applied to the convex substrate is From the load F input in the above (3), the relationship between the load and displacement applied per particle input in the above (3) from the gap between the convex substrates and the convex shape obtained in the above (5) Using a value obtained by subtracting the load obtained by the product of the number N of particles sandwiched between the substrates, the resin material containing the particles is compressed with a convex substrate from two directions, thereby causing the resin material and the particles to flow. A method for analyzing a flow of a resin material containing particles, wherein the process is calculated.
(1)解析対象の凸形状のある基板、初期の粒子を含む樹脂材料の形状、粒子を含む樹脂材料が流動できる空間のデータを記憶装置から計算装置に取り込み、
(2)当該データに基づいて3次元ソリッド要素に分解処理をし、
(3)少なくとも樹脂材料の密度、熱伝導率、比熱、粘度、粒子の密度、外形寸法、粒子1個当たりに加わる荷重−変位の関係を入力し、
(4)凸形状のある基板の移動速度Vd、凸形状のある基板に加えられる外部からの最大荷重Fmaxを入力し、
(5)連続の式、ナビエストークスの式、エネルギ保存式を、前記3次元ソリッド要素に基づいて演算処理することにより、凸形状のある基板と樹胎材料の接触により、樹脂温度の変化を計算し、凸形状のある基板の移動速度Vdにより、樹脂材料が粒子と共に圧縮されながら流動する過程を計算し、
(6)圧縮後の凸形状のある基板間の隙間が粒子の直径と等しくなる時間以降においては、凸形状のある基板間に挟まれる粒子数Nを出力演算し、
(7)上記(6)の圧縮後の凸形状のある基板間の隙間が粒子の直径と等しくなる時間以降においては、凸形状のある基板と粒子の接触を無視し、凸形状のある基板の移動量から粒子の変形量△Hを算出した後に、上記(4)で入力した粒子1個当たりに加わる荷重−変位の関係式から粒子の変形量△Hによって、粒子1個当たりに加わる荷重△Fを算出し、粒子に加わる荷重(FR=NX△F)を算出し、また、移動する凸形状のある基板により樹脂に加わる荷重FJを、移動する凸形状のある基板と樹脂の接触面積と部分の樹脂圧力の積として算出し、
(8)入力した凸形状のある基板に加えられる外部からの最大荷重Fmaxが樹脂に加えられる荷重FJと粒子に加えられる荷重FRの和以上(Fmax≧FJ+FR)であれば、凸形状のある基板を移動速度Vdで制御し、入力した凸形状のある基板に加えられる外部からの最大荷重Fmaxが樹脂に加えられる荷重FJと粒子に加えられる荷重FRよりも小さければ(Fmax<FJ+FR)、凸形状のある基板移動の境界条件が、凸形状のある基板に加えられる外部からの荷重(最大荷重Fmax)に切り替えられ、粒子を含む樹脂材料を2方向から凸形状のある基板で圧縮することにより、樹脂材料および粒子を流動させる工程を計算することを特徴とする粒子を内在させた樹脂材料の流動解析方法。
(1) Import data from a storage device into a computing device, with a convex substrate to be analyzed, the shape of the resin material including the initial particles, and the space in which the resin material including the particles can flow,
(2) Based on the data, decompose into 3D solid elements,
(3) Enter at least the resin material density, thermal conductivity, specific heat, viscosity, particle density, external dimensions, and the load-displacement relationship applied to each particle,
(4) Input the movement speed Vd of the convex substrate, the maximum external load Fmax applied to the convex substrate,
(5) By calculating the continuous equation, Navi-Stokes equation, and energy conservation equation based on the three-dimensional solid element, the change in resin temperature is calculated by the contact between the convex substrate and the seed material. And calculating the process in which the resin material flows while being compressed together with the particles by the moving speed Vd of the convex substrate,
(6) After the time when the gap between the compressed convex substrates is equal to the diameter of the particles, the number N of particles sandwiched between the convex substrates is output and calculated.
(7) After the time when the gap between the convex substrates after compression in (6) is equal to the diameter of the particles, contact between the convex substrate and the particles is ignored, and the convex substrate After calculating the deformation amount ΔH of the particle from the amount of movement, the load Δ applied per particle by the deformation amount ΔH of the particle from the relation of load-displacement applied per particle input in (4) above. F is calculated, the load applied to the particles (FR = NXΔF) is calculated, and the load FJ applied to the resin by the moving convex substrate is defined as the contact area between the moving convex substrate and the resin Calculate as the product of the resin pressure of the part,
(8) If the maximum external load Fmax applied to the input convex substrate is equal to or greater than the sum of the load FJ applied to the resin and the load FR applied to the particles (Fmax ≧ FJ + FR), the convex substrate Is controlled by the moving speed Vd, and the maximum external load Fmax applied to the input convex substrate is smaller than the load FJ applied to the resin and the load FR applied to the particles (Fmax <FJ + FR). The boundary condition of the certain substrate movement is switched to the external load (maximum load Fmax) applied to the convex substrate, and the resin material containing particles is compressed by the convex substrate from two directions, A flow analysis method for a resin material containing particles, wherein the step of flowing the resin material and particles is calculated.
請求項1又は請求項2に記載の粒子を内在させた樹脂材料の流動解析方法において、
粒子に加わる荷重と変位の関係の入力方法として、任意数の粒子当たりに加わる荷重と変位の関係、または任意数の粒子当たりに加わる応力と変形率の関係を入力することを特徴とする粒子を内在させた樹脂材料の流動解析方法。
In the flow analysis method of the resin material in which the particles according to claim 1 or 2 are contained,
As a method of inputting the relationship between the load applied to the particle and the displacement, the particle is characterized by inputting the relationship between the load applied to any number of particles and the displacement, or the relationship between the stress applied to any number of particles and the deformation rate. Flow analysis method for internal resin materials.
請求項1又は請求項2に記載の粒子を内在させた樹脂材料の流動解析方法において、
粒子が導電性を有しており、接続部分の粒子数と変形率と導零性の関係を入力することにより、凸形状のある基板間の導電性を出力演算することを特徴とする粒子を内在させた樹脂材料の流動解析方法。
In the flow analysis method of the resin material in which the particles according to claim 1 or 2 are contained,
Particles having conductivity, and calculating the conductivity between the convex substrates by inputting the relationship between the number of particles at the connecting portion, the deformation rate, and the zero conductivity. Flow analysis method for internal resin materials.
請求項1又は請求項2に記載の粒子を内在させた樹脂材料の流動解析方法において、
粒子が導電性を有しており、接続部分の粒子数と粒子と凸形状のある基板の接触面積と導電性の関係を入力することにより、凸形状のある基板間の導電性を出力演算することを特徴とする粒子を内在させた樹脂材料の流動解析方法。
In the flow analysis method of the resin material in which the particles according to claim 1 or 2 are contained,
The particle has conductivity, and by inputting the relationship between the number of particles in the connecting portion, the contact area between the particle and the convex substrate, and the conductivity, the conductivity between the convex substrates is output and calculated. A flow analysis method of a resin material containing particles characterized by the above.
請求項1又は請求項2に記載の粒子を内在させた樹脂材料の流動解析方法において、
樹脂材料の発熱反応式、樹脂温度を含む関数である粘度式を入力し、樹脂材料および粒子の流動過程を出力することを特徴とする粒子を内在させた樹脂材料の流動解析方法。
In the flow analysis method of the resin material in which the particles according to claim 1 or 2 are contained,
A flow analysis method for a resin material containing particles, wherein an exothermic reaction equation of the resin material and a viscosity equation which is a function including the resin temperature are input and a flow process of the resin material and particles is output.
請求項1又は請求項2に記載の粒子を内在させた樹脂材料の流動解析方法において、
樹脂材料が物性値の異なる二層以上で形成され、粒子が一層以上の樹脂中に配置されており、二層以上の樹脂の発熱反応式、樹脂温度を含む関数である粘度式を入力し、二層以上の樹脂および粒子の流動過程を出力することを特徴とする粒子を内在させた樹脂材料の流動解析方法。
In the flow analysis method of the resin material in which the particles according to claim 1 or 2 are contained,
The resin material is formed of two or more layers having different physical property values, the particles are arranged in one or more resins, and an exothermic reaction formula of the two or more layers of resin, a viscosity formula that is a function including the resin temperature, is input, A flow analysis method for a resin material containing particles, wherein the flow process of two or more layers of resin and particles is output.
請求項1又は請求項2に記載の粒子を内在させた樹脂材料の流動解析方法において、
凸形状のある基板が、電極を備えた半導体集積回路と電極を備えた基板とであることを特徴とする粒子を内在させた樹脂材料の流動解析方法。
In the flow analysis method of the resin material in which the particles according to claim 1 or 2 are contained,
A method for analyzing a flow of a resin material containing particles, wherein the convex substrate is a semiconductor integrated circuit including an electrode and a substrate including an electrode.
(1)解析対象の凸形状のある基板、初期の粒子を含む樹脂材料の形状、粒子を含む樹脂材料が流動できる空間のデータを記憶装置から計算装置に取り込む入力部、
(2)当該データに基づいて3次元ソリッド要素に分解処理を行う処理部、
(3)少なくとも樹脂材料の密度、熱伝導率、比熱、粘度、粒子の外形寸法、密度、粒子1個当たりに加わる荷重一変位の関係、凸形状のある基板に加えられる外部からの荷重Fを入力する入力部、
(4)連続の式、ナビエストークスの式、エネルギ保存式を、前記3次元ソリッド要素に基づいて演算処理することにより、凸形状のある基板と樹脂材料の接触により、樹脂温度の変化を計算し、凸形状のある基板の移動により、樹脂材料が粒子と共に圧縮されながら流動する過程を計算する演算部、
(5)圧縮後の凸形状のある基板間の隙間が粒子の直径と等しくなる時間において、凸形状のある基板間に挟まれる粒子数Nを出力演算する出力部、
(6)上記(5)の圧縮後の凸形状のある基板間の隙間が粒子の直径と等しくなる時間以降においては、凸形状のある基板と粒子の接触を無視し、凸形状のある基板に加わる荷重を、上記(3)で入力した荷重Fから、凸形状のある基板間の隙間から上記(3)で入力した粒子1個当たりに加わる荷重−変位の関係と上記(5)で求めた凸形状のある基板間に挟まれる粒子数Nとの積によって求めた荷重を引いた値を用いて、粒子を含む樹脂材料を2方向から凸形状のある基板で圧縮することにより、樹脂材料および粒子を流動させる工程を計算する演算部を備えたことを特徴とする粒子を内在させた樹脂材料の流動解析システム。
(1) An input unit for importing data of a convex substrate to be analyzed, a shape of a resin material including initial particles, and a space in which a resin material including particles can flow from a storage device to a calculation device;
(2) A processing unit that performs decomposition processing on a three-dimensional solid element based on the data,
(3) At least the density of resin material, thermal conductivity, specific heat, viscosity, particle external dimensions, density, relationship of load and displacement applied to each particle, external load F applied to a convex substrate Input part to input,
(4) By calculating the continuous equation, Navi-Stokes equation, and energy conservation equation based on the three-dimensional solid element, the change in the resin temperature is calculated by the contact between the convex substrate and the resin material. , A calculation unit that calculates a process in which the resin material flows while being compressed together with the particles by moving the substrate having a convex shape,
(5) an output unit that outputs and calculates the number N of particles sandwiched between the convex-shaped substrates in a time when the gap between the convex-shaped substrates after compression is equal to the diameter of the particles;
(6) After the time in which the gap between the convex substrates after compression in (5) is equal to the diameter of the particles, contact between the convex substrate and the particles is ignored, and the convex substrate is formed. The applied load was determined from the load F input in (3) above, the load-displacement relationship applied per particle input in (3) above from the gap between the convex substrates, and (5) above. Using a value obtained by subtracting the load obtained by the product of the number N of particles sandwiched between the convex substrates, the resin material containing the particles is compressed with the convex substrate from two directions, and the resin material and A flow analysis system for a resin material containing particles, comprising a calculation unit for calculating a flow of particles.
(1)解析対象の凸形状のある基板、初期の粒子を含む樹脂材料の形状、粒子を含む樹脂材料が流動できる空間のデータを記憶装置から計算装置に取り込む入力部、
(2)当該データに基づいて3次元ソリッド要素に分解処理を行う処理部、
(3)少なくとも樹脂材料の密度、熱伝導率、比熱、粘度、粒子の密度、外形寸法、粒子1個当たりに加わる荷重一変位の関係を入力する入力部、
(4)凸形状のある基板の移動速度Vd、凸形状のある基板に加えられる外部からの最大荷重Fmaxを入力する入力部、
(5)連続の式、ナビエストークスの式、エネルギ保存式を、前記3次元ソリッド要素に基づいて演算処理することにより、凸形状のある基板と樹胎材料の接触により、樹脂温度の変化を計算し、凸形状のある基板の移動速度Vdにより、樹脂材料が粒子と共に圧縮されながら流動する過程を計算する演算部、
(6)圧縮後の凸形状のある基板間の隙間が粒子の直径と等しくなる時間以降においては、凸形状のある基板間に挟まれる粒子数Nを出力演算する出力演算部、
(7)上記(6)の圧縮後の凸形状のある基板間の隙間が粒子の直径と等しくなる時間以降においては、凸形状のある基板と粒子の接触を無視し、凸形状のある基板の移動方向における樹脂材料の移動量から粒子の変形量△Hを算出した後に、上記(4)で入力した粒子1個当たりに加わる荷重一変位の関係式から粒子の変形量△Hによって、粒子1個当たりに加わる荷重△Fを算出し、粒子に加わる荷重(FR=NX△F)を算出し、また、移動する凸形状のある基板により樹脂に加わる荷重FJを、移動する凸形状のある基板と樹脂の接触面積と部分の樹脂圧力の積として算出する演算部、
(8)入力した凸形状のある基板に加えられる外部からの最大荷重Fmaxが樹脂に加えられる荷重FJと粒子に加えられる荷重FRの和以上(Fmax≧FJ+FR)であれば、凸形状のある基板を移動速度Vdで制御し、入力した凸形状のある基板に加えられる外部からの最大荷重Fmaxが樹脂に加えられる荷重FJと粒子に加えられる荷重FRよりも小さければ(Fmax<FJ+FR)、凸形状のある基板移動の境界条件が、凸形状のある基板に加えられる外部からの荷重(最大荷重Fmax)に切り替えられ、粒子を含む樹脂材料を2方向から凸形状のある基板で圧縮することにより、樹脂材料および粒子を流動させる工程を計算する演算部を備えたことを特徴とする粒子を内在させた樹脂材料の流動解析システム。
(1) An input unit for importing data of a convex substrate to be analyzed, a shape of a resin material including initial particles, and a space in which a resin material including particles can flow from a storage device to a calculation device;
(2) A processing unit that performs decomposition processing on a three-dimensional solid element based on the data,
(3) An input unit for inputting a relationship of at least the density of the resin material, the thermal conductivity, the specific heat, the viscosity, the particle density, the external dimensions, and the load-displacement applied to each particle,
(4) An input unit for inputting the movement speed Vd of the convex substrate, the maximum external load Fmax applied to the convex substrate,
(5) By calculating the continuous equation, Navi-Stokes equation, and energy conservation equation based on the three-dimensional solid element, the change in resin temperature is calculated by the contact between the convex substrate and the seed material. And a calculation unit for calculating a process in which the resin material flows while being compressed together with the particles by the moving speed Vd of the convex substrate,
(6) After the time when the gap between the convex substrates after compression is equal to the diameter of the particles, an output calculation unit that outputs and calculates the number N of particles sandwiched between the convex substrates;
(7) After the time when the gap between the convex substrates after compression in (6) is equal to the diameter of the particles, contact between the convex substrate and the particles is ignored, and the convex substrate After calculating the deformation amount ΔH of the particle from the movement amount of the resin material in the moving direction, the particle 1 is calculated by the deformation amount ΔH of the particle from the relational expression of one load applied per particle input in the above (4). The load ΔF applied to each piece is calculated, the load applied to the particles (FR = NXΔF) is calculated, and the load FJ applied to the resin by the moving convex substrate is used to move the convex substrate. And a calculation unit that calculates the product of the resin contact area and the resin pressure of the part,
(8) If the maximum external load Fmax applied to the input convex substrate is equal to or greater than the sum of the load FJ applied to the resin and the load FR applied to the particles (Fmax ≧ FJ + FR), the convex substrate Is controlled by the moving speed Vd, and the maximum external load Fmax applied to the input convex substrate is smaller than the load FJ applied to the resin and the load FR applied to the particles (Fmax <FJ + FR). The boundary condition of the certain substrate movement is switched to the external load (maximum load Fmax) applied to the convex substrate, and the resin material containing particles is compressed by the convex substrate from two directions, A flow analysis system for resin material containing particles, comprising a calculation unit for calculating a flow of resin material and particles.
(1)解析対象の凸形状のある基板、初期の粒子を含む樹脂材料の形状、粒子を含む樹脂材料が流動できる空間のデータを記憶装置から計算装置に取り込み、
(2)当該データに基づいて3次元ソリッド要素に分解処理をし、
(3)少なくとも樹脂材料の密度、熱伝導率、比熱、粘度、粒子の外形寸法、密度、粒子1個当たりに加わる荷重一変位の関係、凸形状のある基板に加えられる外部からの荷重Fを入力し、
(4)連続の式、ナビエストークスの式、エネルギ保存式を、前記3次元ソリッド要素に基づいて演算処理することにより、凸形状のある基板と樹脂材料の接触により、樹脂温度の変化を計算し、凸形状のある基板の移動により、樹脂材料が粒子と共に圧縮されながら流動する過程を計算し、
(5)圧縮後の凸形状のある基板間の隙間が粒子の直径と等しくなる時間において、凸形状のある基板間に挟まれる粒子数Nを出力演算し、
(6)上記(5)の圧縮後の凸形状のある基板間の隙間が粒子の直径と等しくなる時間以降においては、電極と粒子の接触を無視し、凸形状のある基板に加わる荷重を、上記(3)で入力した荷重Fから、凸形状のある基板間の隙間から上記(3)で入力した粒子1個当たりに加わる荷重−変位の関係と上記(5)で求めた凸形状のある基板間に挟まれる粒子数Nとの積によって求めた荷重を引いた値を用いて、粒子を含む樹脂材料を2方向から凸形状のある基板で圧縮する過程を計算することを特徴とする粒子を内在させた樹脂材料の流動解析方法。
(1) Import data from a storage device into a computing device, with a convex substrate to be analyzed, the shape of the resin material including the initial particles, and the space in which the resin material including the particles can flow,
(2) Based on the data, decompose into 3D solid elements,
(3) At least the density of resin material, thermal conductivity, specific heat, viscosity, particle external dimensions, density, relationship of load and displacement applied to each particle, external load F applied to a convex substrate Input,
(4) By calculating the continuous equation, Navi-Stokes equation, and energy conservation equation based on the three-dimensional solid element, the change in the resin temperature is calculated by the contact between the convex substrate and the resin material. Calculate the process in which the resin material flows while being compressed along with the particles by moving the convex substrate.
(5) In a time when the gap between the compressed convex substrates is equal to the diameter of the particles, the number of particles N sandwiched between the convex substrates is output and calculated.
(6) After the time when the gap between the convex substrate after compression in (5) is equal to the diameter of the particle, the contact between the electrode and the particle is ignored, and the load applied to the convex substrate is From the load F input in the above (3), the relationship between the load and displacement applied per particle input in the above (3) from the gap between the convex substrates and the convex shape obtained in the above (5) Particles characterized by calculating a process of compressing a resin material containing particles with a substrate having a convex shape from two directions using a value obtained by subtracting the load obtained by the product of the number N of particles sandwiched between the substrates. Of flow analysis of resin material that contains.
(1)解析対象の凸形状のある基板、初期の粒子を含む樹脂材料の形状、粒子を含む樹脂材料が流動できる空間のデータを記憶装置から計算装置に取り込み、
(2)当該データに基づいて3次元ソリッド要素に分解処理をし、
(3)少なくとも樹脂材料の密度、熱伝導率、比熱、粘度、粒子の外形寸法、密度、粒子1個当たりに加わる温度変化を考慮した荷重一変位の関係、凸形状のある基板に加えられる外部からの荷重Fを入力し、
(4)連続の式、ナビエストークスの式、エネルギ保存式を、前記3次元ソリッド要素に基づいて演算処理することにより、凸形状のある基板と樹脂材料の接触により、樹脂温度の変化を計算し、凸形状のある基板の移動により、樹脂材料が粒子と共に圧縮されながら流動する過程を計算し、
(5)圧縮後の凸形状のある基板間の隙間が粒子の直径と等しくなる時間において、凸形状のある基板間に挟まれる粒子数Nを出力演算し、
(6)上記(5)の圧縮後の凸形状のある基板間の隙間が粒子の直径と等しくなる時間以降においては、電極と粒子の接触を無視し、凸形状のある基板に加わる荷重を、上記(3)で入力した荷重Fから、凸形状のある基板間の隙間から上記(3)で入力した粒子1個当たりに加わる温度変化を考慮した荷重−変位の関係と上記(5)で求めた凸形状のある基板間に挟まれる粒子数Nとの積によって求めた荷重を引いた値を用いて、粒子を含む樹脂材料を2方向から凸形状のある基板で圧縮する過程を計算し、
(7)上記(3)で入力した荷重Fが、
上記(3)で入力した粒子1個当たりに加わる荷重−変位の関係と上記(5)で求めた凸形状のある基板間に挟まれる粒子数Nとの積によって求めた荷重よりも大きければ、上記(6)の粒子を含む樹脂材料を2方向から凸形状のある基板で圧縮する過程を繰り返し計算し、
上記(3)で入力した荷重Fが、
上記(3)で入力した粒子1個当たりに加わる荷重−変位の関係と上記(5)で求めた凸形状のある基板間に挟まれる粒子数Nとの積によって求めた荷重と等しくなれば、
電極の移動速度は0とし、エネルギ方程式を用いた樹脂材料の温度計算を行い、温度上昇により、上記(3)で入力した粒子1個当たりに加わる荷重一変位の関係が変化することにより、
上記(3)で入力した荷重Fが、上記(3)で入力した粒子1個当たりに加わる荷重−変位の関係と上記(5)で求めた凸形状のある基板間に挟まれる粒子数Nとの積によって求めた荷重よりも大きくなれば、
上記(6)の粒子を含む樹脂材料を2方向から凸形状のある基板で圧縮する過程を繰り返し計算することにより、樹脂材料および粒子を流動させる工程を計算することを特徴とする粒子を内在させた樹脂材料の流動解析方法。
(1) Import data from a storage device into a computing device, with a convex substrate to be analyzed, the shape of the resin material including the initial particles, and the space in which the resin material including the particles can flow,
(2) Based on the data, decompose into 3D solid elements,
(3) At least density of resin material, thermal conductivity, specific heat, viscosity, particle external dimensions, density, relationship of load-displacement considering temperature change applied per particle, external applied to convex substrate Enter the load F from
(4) By calculating the continuous equation, Navi-Stokes equation, and energy conservation equation based on the three-dimensional solid element, the change in the resin temperature is calculated by the contact between the convex substrate and the resin material. Calculate the process in which the resin material flows while being compressed along with the particles by moving the convex substrate.
(5) In a time when the gap between the compressed convex substrates is equal to the diameter of the particles, the number of particles N sandwiched between the convex substrates is output and calculated.
(6) After the time when the gap between the convex substrate after compression in (5) is equal to the diameter of the particle, the contact between the electrode and the particle is ignored, and the load applied to the convex substrate is From the load F input in the above (3), the load-displacement relationship considering the temperature change applied per particle input in the above (3) from the gap between the convex substrates, and the above (5) Using the value obtained by subtracting the load obtained by the product of the number N of particles sandwiched between the convex substrates, the process of compressing the resin material containing the particles with the convex substrate from two directions is calculated,
(7) The load F input in (3) above is
If it is larger than the load obtained by the product of the relationship between the load-displacement applied per particle input in (3) above and the number N of particles sandwiched between the convex substrates obtained in (5) above, Repeatedly calculate the process of compressing the resin material containing the particles of (6) with a convex substrate from two directions,
The load F input in (3) above is
If the load-displacement relationship applied per particle input in (3) above is equal to the load determined by the product of the number of particles N sandwiched between the convex substrates determined in (5) above,
The movement speed of the electrode is set to 0, the temperature of the resin material is calculated using the energy equation, and the relationship between the load and the displacement applied to each particle input in (3) changes as the temperature rises.
The load F input in (3) above is the load-displacement relationship applied per particle input in (3) above and the number N of particles sandwiched between the convex substrates determined in (5) above. If it becomes larger than the load obtained by the product of
By repeatedly calculating the process of compressing the resin material containing particles of the above (6) with a convex substrate from two directions, the step of causing the resin material and the particles to flow is calculated. Of flow analysis of plastic materials.
(1)解析対象の凸形状のある基板、初期の粒子を含む樹脂材料の形状、粒子を含む樹脂材料が流動できる空間のデータを記憶装置から計算装置に取り込み、
(2)当該データに基づいて3次元ソリッド要素に分解処理をし、
(3)少なくとも樹脂材料の密度、熱伝導率、比熱、粘度、粒子の密度、外形寸法、粒子1個当たりに加わる温度変化を考慮した荷重一変位の関係を入力し、
(4)凸形状のある基板の移動速度Vd、凸形状のある基板に加えられる外部からの荷重Fを入力し、
(5)連続の式、ナビエストークスの式、エネルギ保存式を、前記3次元ソリッド要素に基づいて演算処理することにより、凸形状のある基板と樹胎材料の接触により、樹脂温度の変化を計算し、凸形状のある基板の移動速度Vdにより、樹脂材料が粒子と共に圧縮されながら流動する過程を計算し、
(6)移動する凸形状のある基板により樹脂に加わる荷重FJを、移動する凸形状のある基板と樹脂の接触面積と樹脂圧力の積として算出し、上記(4)で入力した荷重FとFJの関係が、
F≧FJであれば、電極は上記(4)で入力した凸形状のある基板の移動速度Vdで移動する過程を計算し、
F<FJであれば、電極は上記(4)で入力した荷重Fによって圧縮され、移動する過程を計算し、
(7)圧縮後の凸形状のある基板間の隙間が粒子の直径と等しくなる時間以降においては、凸形状のある基板間に挟まれる粒子数Nを出力演算し、
(8)上記(7)の圧縮後の凸形状のある基板間の隙間が粒子の直径と等しくなる時間以降においては、電極と粒子の接触を無視し、凸形状のある基板に加わる荷重を、上記(4)で入力した荷重Fから、凸形状のある基板間の隙間から上記(3)で入力した粒子1個当たりに加わる温度変化を考慮した荷重−変位の関係と上記(7)で求めた凸形状のある基板間に挟まれる粒子数Nとの積によって求めた荷重を引いた値を用いて、粒子を含む樹脂材料を2方向から凸形状のある基板で圧縮する過程を計算し、
(9)上記(4)で入力した荷重Fが、
上記(3)で入力した粒子1個当たりに加わる荷重−変位の関係と上記(7)で求めた凸形状のある基板間に挟まれる粒子数Nとの積によって求めた荷重よりも大きければ、
上記(8)の粒子を含む樹脂材料を2方向から凸形状のある基板で圧縮する過程を繰り返し計算し、
上記(4)で入力した荷重Fが、
上記(3)で入力した粒子1個当たりに加わる荷重−変位の関係と上記(7)で求めた凸形状のある基板間に挟まれる粒子数Nとの積によって求めた荷重と等しくなれば、
電極の移動速度は0とし、エネルギ方程式を用いた樹脂材料の温度計算を行い、温度上昇により、上記(3)で入力した粒子1個当たりに加わる荷重一変位の関係が変化することにより、
上記(4)で入力した荷重Fが、上記(3)で入力した粒子1個当たりに加わる荷重−変位の関係と上記(7)で求めた凸形状のある基板間に挟まれる粒子数Nとの積によって求めた荷重よりも大きくなれば、
上記(8)の粒子を含む樹脂材料を2方向から凸形状のある基板で圧縮する過程を繰り返し計算することにより、樹脂材料および粒子を流動させる工程を計算することを特徴とする粒子を内在させた樹脂材料の流動解析方法。
(1) Import data from a storage device into a computing device, with a convex substrate to be analyzed, the shape of the resin material including the initial particles, and the space in which the resin material including the particles can flow,
(2) Based on the data, decompose into 3D solid elements,
(3) Enter at least the relationship of load-displacement considering the density, thermal conductivity, specific heat, viscosity, particle density, external dimensions, and temperature change per particle,
(4) Enter the movement velocity Vd of the convex substrate and the external load F applied to the convex substrate,
(5) By calculating the continuous equation, Navi-Stokes equation, and energy conservation equation based on the three-dimensional solid element, the change in resin temperature is calculated by the contact between the convex substrate and the seed material. And calculating the process in which the resin material flows while being compressed together with the particles by the moving speed Vd of the convex substrate,
(6) The load FJ applied to the resin by the moving convex substrate is calculated as a product of the contact area between the moving convex substrate and the resin and the resin pressure, and the loads F and FJ input in (4) above. Relationship
If F ≧ FJ, the process of moving the electrode at the moving speed Vd of the convex substrate input in (4) above is calculated,
If F <FJ, the electrode is compressed by the load F input in (4) above, and the process of movement is calculated.
(7) After the time when the gap between the compressed convex substrates is equal to the particle diameter, the number N of particles sandwiched between the convex substrates is output and calculated.
(8) After the time when the gap between the convex substrate after compression in (7) is equal to the diameter of the particle, the contact between the electrode and the particle is ignored, and the load applied to the convex substrate is From the load F input in the above (4), the load-displacement relationship considering the temperature change applied per particle input in the above (3) from the gap between the convex substrates, and the above (7) Using the value obtained by subtracting the load obtained by the product of the number N of particles sandwiched between the convex substrates, the process of compressing the resin material containing the particles with the convex substrate from two directions is calculated,
(9) The load F input in (4) above is
If it is larger than the load obtained by the product of the relationship between the load-displacement applied per particle input in (3) above and the number N of particles sandwiched between the convex substrates obtained in (7) above,
Repeatedly calculate the process of compressing the resin material containing the particles of (8) with a convex substrate from two directions,
The load F input in (4) above is
If the load-displacement relationship applied per particle input in (3) above is equal to the load determined by the product of the number N of particles sandwiched between convex substrates determined in (7) above,
The movement speed of the electrode is set to 0, the temperature of the resin material is calculated using the energy equation, and the relationship between the load and the displacement applied to each particle input in (3) changes as the temperature rises.
The load F input in (4) above is the relationship between the load and displacement applied per particle input in (3) above and the number N of particles sandwiched between the convex substrates determined in (7) above. If it becomes larger than the load obtained by the product of
By repeatedly calculating the process of compressing the resin material containing the particles of the above (8) with a substrate having a convex shape from two directions, the step of causing the resin material and the particles to flow is calculated. Of flow analysis of plastic materials.
請求項11又は請求項12又は請求項13に記載の粒子を内在させた樹脂材料の流動解析方法において、粒子に加わる荷重と変位の関係の入力方法として、任意数の粒子当たりに加わる荷重と変位の温度変化を考慮した関係、または任意数の粒子当たりに加わる応力と変形率の温度変化を考慮した関係を入力することを特徴とする粒子を内在させた樹脂材料の流動解析方法。   The flow analysis method for a resin material containing particles according to claim 11, claim 12, or claim 13, wherein the load and displacement applied to any number of particles as an input method of a relationship between the load applied to the particles and the displacement A flow analysis method for a resin material containing particles, characterized by inputting a relationship that takes into account the temperature change of the particle, or a relationship that takes into account the temperature applied to any number of particles and the stress and deformation rate. 請求項14に記載の粒子に加わる荷重と変位の温度変化を考慮した関係において、
温度は、解析で求めた基板間の樹脂温度の平均値、または基板間の任意場所の樹脂温度を用いることを特徴とする粒子を内在させた樹脂材料の流動解析方法。
In the relationship considering the temperature change of the load applied to the particles according to claim 14 and displacement,
A method for analyzing a flow of a resin material containing particles, wherein the temperature is an average value of resin temperatures between substrates obtained by analysis or a resin temperature at an arbitrary location between substrates.
請求項11又は請求項12又は請求項13に記載の粒子を内在させた樹脂材料の流動解析方法において、
請求項14記載の温度変化を考慮した変形量の関係を入力した粒子が導電性を有しており、接続部分の粒子数と変形率と導零性の関係を入力することにより、凸形状のある基板間の導電性を出力演算することを特徴とする粒子を内在させた樹脂材料の流動解析方法。
In the flow analysis method of the resin material in which the particles according to claim 11 or claim 12 or claim 13 are contained,
The particle having the relationship of the deformation amount considering the temperature change according to claim 14 has conductivity, and by inputting the relationship between the number of particles of the connecting portion, the deformation rate, and the conductivity, the convex shape A flow analysis method for a resin material containing particles, wherein the conductivity between a certain substrate is output.
請求項11又は請求項12又は請求項13に記載の粒子を内在させた樹脂材料の流動解析方法において、
請求項14記載の温度変化を考慮した変形量の関係を入力した粒子が導電性を有しており、接続部分の粒子数と粒子と凸形状のある基板の接触面積と導電性の関係を入力することにより、凸形状のある基板間の導電性を出力演算することを特徴とする粒子を内在させた樹脂材料の流動解析方法。
In the flow analysis method of the resin material in which the particles according to claim 11 or claim 12 or claim 13 are contained,
The particle having the relationship of the deformation amount considering the temperature change according to claim 14 has conductivity, and the relationship between the number of particles in the connecting portion, the contact area between the particle and the convex substrate, and the conductivity is input. A method for analyzing the flow of a resin material containing particles, characterized in that the conductivity between convex substrates is output.
請求項11又は請求項12又は請求項13に記載の粒子を内在させた樹脂材料の流動解析方法において、
樹脂材料が物性値の異なる二層以上で形成され、請求項4記載の温度変化を考慮した変形量の関係を入力した粒子が一層以上の樹脂中に配置されており、二層以上の樹脂の発熱反応式、樹脂温度を含む関数である粘度式を入力し、二層以上の樹脂および粒子の流動過程を出力することを特徴とする粒子を内在させた樹脂材料の流動解析方法。
In the flow analysis method of the resin material in which the particles according to claim 11 or claim 12 or claim 13 are contained,
The resin material is formed of two or more layers having different physical property values, and the particles having the relationship of the deformation amount considering the temperature change according to claim 4 are arranged in one or more resins, A flow analysis method for a resin material containing particles, wherein an exothermic reaction equation and a viscosity equation that is a function including a resin temperature are input and a flow process of two or more layers of resin and particles is output.
請求項11又は請求項12又は請求項13に記載の粒子を内在させた樹脂材料の流動解析方法において、
算出された電極間に挟まれる粒子の位置を出力することを特徴とする粒子を内在させた樹脂材料の流動解析方法。
In the flow analysis method of the resin material in which the particles according to claim 11 or claim 12 or claim 13 are contained,
A flow analysis method for a resin material containing particles, wherein the calculated positions of the particles sandwiched between the electrodes are output.
請求項11又は請求項12又は請求項13に記載の粒子を内在させた樹脂材料の流動解析方法で算出した電極の移動速度、請求項18記載の計算方法で出力した基板間に挟まれる粒子の位置を入力条件として構造解析を行い、粒子の変形量、または粒子の変形形態、または粒子と電極の接触面積を算出することを特徴とする計算方法。   The moving speed of the electrode calculated by the flow analysis method of the resin material containing the particles according to claim 11, claim 12, or claim 13, the particles sandwiched between the substrates output by the calculation method according to claim 18. A calculation method characterized by performing structural analysis using a position as an input condition and calculating a deformation amount of a particle, a deformation form of the particle, or a contact area between the particle and the electrode. 請求項20に記載の計算方法で算出した粒子の変形量、または粒子と電極の接触面積と、
接続部分の粒子数と変形率と導零性の関係、または接続部分の粒子数と粒子と凸形状のある基板の接触面積と導電性の関係をもちいて、凸形状のある基板間の導電性を出力演算することを特徴とする粒子を内在させた樹脂材料の計算方法。
The deformation amount of the particle calculated by the calculation method according to claim 20, or the contact area between the particle and the electrode,
Conductivity between convex-shaped substrates using the relationship between the number of particles in the connecting portion, deformation rate, and conductivity, or the relationship between the number of particles in the connecting portion and the contact area between the particles and the convex substrate. The calculation method of the resin material which included the particle | grains characterized by carrying out output calculation of this.
(1)解析対象の凸形状のある基板、初期の粒子を含む樹脂材料の形状、粒子を含む樹脂材料が流動できる空間のデータを記憶装置から計算装置に取り込む入力部、
(2)当該データに基づいて3次元ソリッド要素に分解処理を行う処理部、
(3)少なくとも樹脂材料の密度、熱伝導率、比熱、粘度、粒子の外形寸法、密度、粒子1個当たりに加わる荷重一変位の関係、凸形状のある基板に加えられる外部からの荷重Fを入力する入力部、
(4)連続の式、ナビエストークスの式、エネルギ保存式を、前記3次元ソリッド要素に基づいて演算処理することにより、凸形状のある基板と樹脂材料の接触により、樹脂温度の変化を計算し、凸形状のある基板の移動により、樹脂材料が粒子と共に圧縮されながら流動する過程を計算する演算部、
(5)圧縮後の凸形状のある基板間の隙間が粒子の直径と等しくなる時間において、凸形状のある基板間に挟まれる粒子数Nを出力演算する出力部、
(6)上記(5)の圧縮後の凸形状のある基板間の隙間が粒子の直径と等しくなる時間以降においては、電極と粒子の接触を無視し、凸形状のある基板に加わる荷重を、上記(3)で入力した荷重Fから、凸形状のある基板間の隙間から上記(3)で入力した粒子1個当たりに加わる荷重−変位の関係と上記(5)で求めた凸形状のある基板間に挟まれる粒子数Nとの積によって求めた荷重を引いた値を用いて、粒子を含む樹脂材料を2方向から凸形状のある基板で圧縮する過程を計算する演算部を備えたことを特徴とする粒子を内在させた樹脂材料の流動解析システム。
(1) An input unit for importing data of a convex substrate to be analyzed, a shape of a resin material including initial particles, and a space in which a resin material including particles can flow from a storage device to a calculation device;
(2) A processing unit that performs decomposition processing on a three-dimensional solid element based on the data,
(3) At least the density of resin material, thermal conductivity, specific heat, viscosity, particle external dimensions, density, relationship of load and displacement applied to each particle, external load F applied to a convex substrate Input part to input,
(4) By calculating the continuous equation, Navi-Stokes equation, and energy conservation equation based on the three-dimensional solid element, the change in the resin temperature is calculated by the contact between the convex substrate and the resin material. , A calculation unit that calculates a process in which the resin material flows while being compressed together with the particles by moving the substrate having a convex shape,
(5) an output unit that outputs and calculates the number N of particles sandwiched between the convex-shaped substrates in a time when the gap between the convex-shaped substrates after compression is equal to the diameter of the particles;
(6) After the time when the gap between the convex substrate after compression in (5) is equal to the diameter of the particle, the contact between the electrode and the particle is ignored, and the load applied to the convex substrate is From the load F input in the above (3), the relationship between the load and displacement applied per particle input in the above (3) from the gap between the convex substrates and the convex shape obtained in the above (5) An arithmetic unit is provided that calculates a process of compressing a resin material containing particles from two directions with a convex substrate using a value obtained by subtracting the load obtained by the product of the number N of particles sandwiched between the substrates. A flow analysis system for resin materials containing particles.
(1)解析対象の凸形状のある基板、初期の粒子を含む樹脂材料の形状、粒子を含む樹脂材料が流動できる空間のデータを記憶装置から計算装置に取り込む入力部、
(2)当該データに基づいて3次元ソリッド要素に分解処理を行う処理部、
(3)少なくとも樹脂材料の密度、熱伝導率、比熱、粘度、粒子の外形寸法、密度、粒子1個当たりに加わる温度変化を考慮した荷重一変位の関係、凸形状のある基板に加えられる外部からの荷重Fを入力する入力部、
(4)連続の式、ナビエストークスの式、エネルギ保存式を、前記3次元ソリッド要素に基づいて演算処理することにより、凸形状のある基板と樹脂材料の接触により、樹脂温度の変化を計算し、凸形状のある基板の移動により、樹脂材料が粒子と共に圧縮されながら流動する過程を計算する演算部、
(5)圧縮後の凸形状のある基板間の隙間が粒子の直径と等しくなる時間において、凸形状のある基板間に挟まれる粒子数Nを出力演算する出力部、
(6)上記(5)の圧縮後の凸形状のある基板間の隙間が粒子の直径と等しくなる時間以降においては、電極と粒子の接触を無視し、凸形状のある基板に加わる荷重を、上記(3)で入力した荷重Fから、凸形状のある基板間の隙間から上記(3)で入力した粒子1個当たりに加わる温度変化を考慮した荷重−変位の関係と上記(5)で求めた凸形状のある基板間に挟まれる粒子数Nとの積によって求めた荷重を引いた値を用いて、粒子を含む樹脂材料を2方向から凸形状のある基板で圧縮する過程を計算する演算部、
(7)上記(3)で入力した荷重Fが、
上記(3)で入力した粒子1個当たりに加わる荷重−変位の関係と上記(5)で求めた凸形状のある基板間に挟まれる粒子数Nとの積によって求めた荷重よりも大きければ、
上記(6)の粒子を含む樹脂材料を2方向から凸形状のある基板で圧縮する過程を繰り返し計算し、
上記(3)で入力した荷重Fが、
上記(3)で入力した粒子1個当たりに加わる荷重−変位の関係と上記(5)で求めた凸形状のある基板間に挟まれる粒子数Nとの積によって求めた荷重と等しくなれば、
電極の移動速度は0とし、エネルギ方程式を用いた樹脂材料の温度計算を行い、温度上昇により、上記(3)で入力した粒子1個当たりに加わる荷重一変位の関係が変化することにより、
上記(3)で入力した荷重Fが、上記(3)で入力した粒子1個当たりに加わる荷重−変位の関係と上記(5)で求めた凸形状のある基板間に挟まれる粒子数Nとの積によって求めた荷重よりも大きくなれば、
上記(6)の粒子を含む樹脂材料を2方向から凸形状のある基板で圧縮する過程を繰り返し計算することにより、樹脂材料および粒子を流動させる工程を計算する演算部を備えたことを特徴とする粒子を内在させた樹脂材料の流動解析方法。
(1) An input unit for importing data of a convex substrate to be analyzed, a shape of a resin material including initial particles, and a space in which a resin material including particles can flow from a storage device to a calculation device;
(2) A processing unit that performs decomposition processing on a three-dimensional solid element based on the data,
(3) At least density of resin material, thermal conductivity, specific heat, viscosity, particle external dimensions, density, relationship of load-displacement considering temperature change applied per particle, external applied to convex substrate An input unit for inputting the load F from
(4) By calculating the continuous equation, Navi-Stokes equation, and energy conservation equation based on the three-dimensional solid element, the change in the resin temperature is calculated by the contact between the convex substrate and the resin material. , A calculation unit that calculates a process in which the resin material flows while being compressed together with the particles by moving the substrate having a convex shape,
(5) an output unit that outputs and calculates the number N of particles sandwiched between the convex-shaped substrates in a time when the gap between the convex-shaped substrates after compression is equal to the diameter of the particles;
(6) After the time when the gap between the convex substrate after compression in (5) is equal to the diameter of the particle, the contact between the electrode and the particle is ignored, and the load applied to the convex substrate is From the load F input in the above (3), the load-displacement relationship considering the temperature change applied per particle input in the above (3) from the gap between the convex substrates, and the above (5) Of calculating the process of compressing a resin material containing particles from two directions with a convex substrate using a value obtained by subtracting the load obtained by the product of the number N of particles sandwiched between the convex substrates. Part,
(7) The load F input in (3) above is
If it is larger than the load obtained by the product of the relationship between the load-displacement applied per particle input in (3) above and the number N of particles sandwiched between the convex substrates obtained in (5) above,
Repeatedly calculate the process of compressing the resin material containing the particles of (6) with a convex substrate from two directions,
The load F input in (3) above is
If the load-displacement relationship applied per particle input in (3) above is equal to the load determined by the product of the number of particles N sandwiched between the convex substrates determined in (5) above,
The movement speed of the electrode is set to 0, the temperature of the resin material is calculated using the energy equation, and the relationship between the load and the displacement applied to each particle input in (3) changes as the temperature rises.
The load F input in (3) above is the load-displacement relationship applied per particle input in (3) above and the number N of particles sandwiched between the convex substrates determined in (5) above. If it becomes larger than the load obtained by the product of
It is characterized by comprising an arithmetic unit for calculating the step of flowing the resin material and the particles by repeatedly calculating the process of compressing the resin material containing the particles of (6) from two directions with a convex substrate. Flow analysis method of resin material with particles to be contained.
(1)解析対象の凸形状のある基板、初期の粒子を含む樹脂材料の形状、粒子を含む樹脂材料が流動できる空間のデータを記憶装置から計算装置に取り込む入力部、
(2)当該データに基づいて3次元ソリッド要素に分解処理をし、
(3)少なくとも樹脂材料の密度、熱伝導率、比熱、粘度、粒子の密度、外形寸法、粒子1個当たりに加わる温度変化を考慮した荷重一変位の関係を入力する入力部、
(4)凸形状のある基板の移動速度Vd、凸形状のある基板に加えられる外部からの最大荷重Fmaxを入力する入力部、
(5)連続の式、ナビエストークスの式、エネルギ保存式を、前記3次元ソリッド要素に基づいて演算処理することにより、凸形状のある基板と樹胎材料の接触により、樹脂温度の変化を計算し、凸形状のある基板の移動速度Vdにより、樹脂材料が粒子と共に圧縮されながら流動する過程を計算する演算部、
(6)移動する凸形状のある基板により樹脂に加わる荷重FJを、移動する凸形状のある基板と樹脂の接触面積と樹脂圧力の積として算出し、上記(4)で入力した最大荷重FmaxとFJの関係が、
Fmax≧FJであれば、電極は上記(4)で入力した凸形状のある基板の移動速度Vdで移動する過程を計算し、
Fmax<FJであれば、電極は上記(4)で入力した荷重Fmaxによって圧縮され、移動する過程を計算する演算部、
(7)圧縮後の凸形状のある基板間の隙間が粒子の直径と等しくなる時間以降においては、凸形状のある基板間に挟まれる粒子数Nを出力演算する出力部、
(8)上記(7)の圧縮後の凸形状のある基板間の隙間が粒子の直径と等しくなる時間以降においては、電極と粒子の接触を無視し、凸形状のある基板に加わる荷重を、上記(4)で入力した荷重Fmaxから、凸形状のある基板間の隙間から上記(3)で入力した粒子1個当たりに加わる温度変化を考慮した荷重−変位の関係と上記(7)で求めた凸形状のある基板間に挟まれる粒子数Nとの積によって求めた荷重を引いた値を用いて、粒子を含む樹脂材料を2方向から凸形状のある基板で圧縮する過程を計算する演算部、
(9)上記(4)で入力した荷重Fmaxが、
上記(3)で入力した粒子1個当たりに加わる荷重−変位の関係と上記(7)で求めた凸形状のある基板間に挟まれる粒子数Nとの積によって求めた荷重よりも大きければ、
上記(8)の粒子を含む樹脂材料を2方向から凸形状のある基板で圧縮する過程を繰り返し計算し、
上記(4)で入力した荷重Fmaxが、
上記(3)で入力した粒子1個当たりに加わる荷重−変位の関係と上記(7)で求めた凸形状のある基板間に挟まれる粒子数Nとの積によって求めた荷重と等しくなれば、
電極の移動速度は0とし、エネルギ方程式を用いた樹脂材料の温度計算を行い、温度上昇により、上記(3)で入力した粒子1個当たりに加わる荷重一変位の関係が変化することにより、
上記(4)で入力した荷重Fmaxが、上記(3)で入力した粒子1個当たりに加わる荷重−変位の関係と上記(7)で求めた凸形状のある基板間に挟まれる粒子数Nとの積によって求めた荷重よりも大きくなれば、
上記(8)の粒子を含む樹脂材料を2方向から凸形状のある基板で圧縮する過程を繰り返し計算することにより、樹脂材料および粒子を流動させる工程を計算する演算部を備えたことを特徴とする粒子を内在させた樹脂材料の流動解析システム。
(1) An input unit for importing data of a convex substrate to be analyzed, a shape of a resin material including initial particles, and a space in which a resin material including particles can flow from a storage device to a calculation device;
(2) Based on the data, decompose into 3D solid elements,
(3) An input unit for inputting a relationship of load and displacement in consideration of at least density of resin material, thermal conductivity, specific heat, viscosity, particle density, external dimensions, temperature change applied per particle,
(4) An input unit for inputting the movement speed Vd of the convex substrate, the maximum external load Fmax applied to the convex substrate,
(5) By calculating the continuous equation, Navi-Stokes equation, and energy conservation equation based on the three-dimensional solid element, the change in resin temperature is calculated by the contact between the convex substrate and the seed material. And a calculation unit for calculating a process in which the resin material flows while being compressed together with the particles by the moving speed Vd of the convex substrate,
(6) The load FJ applied to the resin by the moving convex substrate is calculated as the product of the contact area between the moving convex substrate and the resin and the resin pressure, and the maximum load Fmax input in (4) above is calculated. FJ relationship
If Fmax ≧ FJ, calculate the process of the electrode moving at the moving speed Vd of the convex substrate input in (4) above,
If Fmax <FJ, the electrode is compressed by the load Fmax input in (4) above, and a calculation unit that calculates the process of moving,
(7) After the time when the gap between the convex substrates after compression becomes equal to the diameter of the particles, an output unit that outputs and calculates the number N of particles sandwiched between the convex substrates;
(8) After the time when the gap between the convex substrate after compression in (7) is equal to the diameter of the particle, the contact between the electrode and the particle is ignored, and the load applied to the convex substrate is From the load Fmax input in the above (4), the load-displacement relationship considering the temperature change applied per particle input in the above (3) from the gap between the convex substrates, and the above (7) Of calculating the process of compressing a resin material containing particles from two directions with a convex substrate using a value obtained by subtracting the load obtained by the product of the number N of particles sandwiched between the convex substrates. Part,
(9) The load Fmax input in (4) above is
If it is larger than the load obtained by the product of the relationship between the load-displacement applied per particle input in (3) above and the number N of particles sandwiched between the convex substrates obtained in (7) above,
Repeatedly calculate the process of compressing the resin material containing the particles of (8) with a convex substrate from two directions,
The load Fmax input in (4) above is
If the load-displacement relationship applied per particle input in (3) above is equal to the load determined by the product of the number N of particles sandwiched between convex substrates determined in (7) above,
The movement speed of the electrode is set to 0, the temperature of the resin material is calculated using the energy equation, and the relationship between the load and the displacement applied to each particle input in (3) changes as the temperature rises.
The load Fmax input in the above (4) is the load-displacement relationship applied per particle input in the above (3) and the number N of particles sandwiched between the convex substrates determined in the above (7). If it becomes larger than the load obtained by the product of
It is characterized by comprising an arithmetic unit for calculating a step of causing the resin material and the particles to flow by repeatedly calculating the process of compressing the resin material containing the particles of (8) with a convex substrate from two directions. Flow analysis system of resin material with particles to be contained.
JP2008538677A 2006-10-06 2007-10-03 Flow analysis method and flow analysis system for resin material containing particles Pending JPWO2008044571A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006275575 2006-10-06
JP2006275575 2006-10-06
PCT/JP2007/069361 WO2008044571A1 (en) 2006-10-06 2007-10-03 Method for analyzing fluidity of resin material including particles and fluidity analysis system

Publications (1)

Publication Number Publication Date
JPWO2008044571A1 true JPWO2008044571A1 (en) 2010-02-12

Family

ID=39282780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008538677A Pending JPWO2008044571A1 (en) 2006-10-06 2007-10-03 Flow analysis method and flow analysis system for resin material containing particles

Country Status (5)

Country Link
JP (1) JPWO2008044571A1 (en)
KR (1) KR20090064428A (en)
CN (1) CN101523394A (en)
TW (1) TW200834364A (en)
WO (1) WO2008044571A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010186395A (en) * 2009-02-13 2010-08-26 Hitachi Chem Co Ltd Method and system for analyzing particle deformation for resin material containing particle
JP5190045B2 (en) 2009-11-11 2013-04-24 株式会社日立製作所 Prediction method of void volume change generated in resin filled in porous material
JP5498523B2 (en) * 2012-03-07 2014-05-21 住友ゴム工業株式会社 Method and apparatus for simulation of extrusion of plastic material
CN102707291B (en) * 2012-05-24 2014-03-19 中国工程物理研究院流体物理研究所 Real-time measurement method of high-speed particle flow distribution and measuring device
US9990455B1 (en) * 2017-12-13 2018-06-05 Tactotek Oy Arrangement and method for facilitating electronics design in connection with 3D structures
CN111801567B (en) * 2018-03-06 2023-08-11 株式会社力森诺科 Method for evaluating fluidity of resin composition, method for sorting resin composition, and method for manufacturing semiconductor device
CN112632813B (en) * 2020-12-03 2022-05-31 浙江大学 Optimization method of curing system of large-thickness resin-based composite material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05314091A (en) * 1992-05-01 1993-11-26 Toyota Central Res & Dev Lab Inc Method for analyzing motion of grain in fluidized substrate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05314091A (en) * 1992-05-01 1993-11-26 Toyota Central Res & Dev Lab Inc Method for analyzing motion of grain in fluidized substrate

Also Published As

Publication number Publication date
CN101523394A (en) 2009-09-02
KR20090064428A (en) 2009-06-18
TW200834364A (en) 2008-08-16
TWI343992B (en) 2011-06-21
WO2008044571A1 (en) 2008-04-17

Similar Documents

Publication Publication Date Title
JPWO2008044571A1 (en) Flow analysis method and flow analysis system for resin material containing particles
Lezgy-Nazargah Fully coupled thermo-mechanical analysis of bi-directional FGM beams using NURBS isogeometric finite element approach
JP5355988B2 (en) Electronic component thermal stress analysis method, resin flow analysis method, and thermal stress analysis device
Kim et al. Developments of three-dimensional computer-aided engineering simulation for injection moulding
Webb III et al. Reconsideration of continuum thermomechanical quantities in atomic scale simulations
Angadi et al. A multiphysics finite element model of a 35A automotive connector including multiscale rough surface contact
Lu et al. Multi-parametric space-time computational vademecum for parametric studies: Application to real time welding simulations
Khoei et al. Application of an enriched FEM technique in thermo-mechanical contact problems
Dittmann et al. Variational modeling of thermomechanical fracture and anisotropic frictional mortar contact problems with adhesion
Li et al. Optimum design and thermal modeling for 2D and 3D natural convection problems incorporating level set‐based topology optimization with body‐fitted mesh
Zare et al. Adapting a contact-mechanics algorithm to predict damping in bolted joints using quasi-static modal analysis
Leoni et al. Bayesian surrogates for integrating numerical, analytical, and experimental data: application to inverse heat transfer in wearable computers
Ghoreishy et al. Finite element analysis of a thermoplastic elastomer melt flow in the metering region of a single screw extruder
Niaki et al. A two-phase integrated flow-stress process model for composites with application to highly compressible phases
Johannes et al. Modeling and convergence analysis of directed energy deposition simulations with hybrid implicit/explicit and implicit solutions
Yang et al. Parametric study of particle sedimentation by dissipative particle dynamics simulation
Sultan et al. A fast leakage-aware green’s-function-based thermal simulator for 3-D chips
JP5190045B2 (en) Prediction method of void volume change generated in resin filled in porous material
Cho et al. An advanced method to correlate scale models with distorted configurations
Jahangiry et al. Isogeometric level set topology optimization for elastoplastic plane stress problems
Kempers et al. Modeling and experimental characterization of metal microtextured thermal interface materials
JP2011022660A (en) Numerical calculation device for fluid
Skinner et al. Reduced-basis multifidelity approach for efficient parametric study of naca airfoils
Jia et al. Topology optimization of tribological composites for multifunctional performance at sliding interfaces
Jarosch Icetools: A full Stokes finite element model for glaciers

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100316

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120821