WO2008044333A1 - Production method of diamond particles having colored cut faces, and production method of diamond particles having pattern-drawn cut faces - Google Patents

Production method of diamond particles having colored cut faces, and production method of diamond particles having pattern-drawn cut faces Download PDF

Info

Publication number
WO2008044333A1
WO2008044333A1 PCT/JP2007/001085 JP2007001085W WO2008044333A1 WO 2008044333 A1 WO2008044333 A1 WO 2008044333A1 JP 2007001085 W JP2007001085 W JP 2007001085W WO 2008044333 A1 WO2008044333 A1 WO 2008044333A1
Authority
WO
WIPO (PCT)
Prior art keywords
diamond particles
ion
ions
cut surface
colored
Prior art date
Application number
PCT/JP2007/001085
Other languages
French (fr)
Japanese (ja)
Inventor
Shohei Taniguchi
Yukinori Saito
Original Assignee
Tokyo Metropolitan Industrial Technology Research Institute
University Of Yamanashi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Industrial Technology Research Institute, University Of Yamanashi filed Critical Tokyo Metropolitan Industrial Technology Research Institute
Publication of WO2008044333A1 publication Critical patent/WO2008044333A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B31/00Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
    • C30B31/20Doping by irradiation with electromagnetic waves or by particle radiation
    • C30B31/22Doping by irradiation with electromagnetic waves or by particle radiation by ion-implantation

Definitions

  • the present invention relates to a method for producing diamond particles having a cut surface and a method for producing diamond particles having a pattern drawn on a cut surface. More specifically, high-energy ions are implanted into the cut surface of the diamond particles to produce diamond particles with colored cut surfaces, and patterns such as letters or marks are drawn on the diamond particle cut surface.
  • the present invention relates to a method for producing diamond particles.
  • Diamond particles are transparent, colorless, and large in value. However, most diamond particles have low transparency, and small ones are selected for industrial use. Therefore, a method of coloring diamond particles with low transparency and low commercial value for jewelry has been proposed and put into practical use. Conventionally, diamond particles can be colored by (1) high-pressure and high-temperature treatment (HPHT) method, (2) electron beam irradiation method, (3) neutron irradiation method,
  • HPHT high-pressure and high-temperature treatment
  • electron beam irradiation method electron beam irradiation method
  • neutron irradiation method neutron irradiation method
  • the neutron irradiation method of (3) above includes a method of irradiating a child cut surface of a diamond grain with a nuclear reactor or the like (see Patent Document 8), and then several hundreds.
  • a method of heat treatment with C has been proposed. These proposed methods require a large-scale facility such as a nuclear reactor and may activate impurities in the diamond particles, resulting in a risk of residual radioactivity when using jewelry. Since neutrons with high energy have high penetrating power, even if a mask is applied to the cut surface of diamond particles, the mask cannot prevent neutron transmission. It is impossible to draw characters or marks on the surface.
  • the radium treatment method of (4) above is a method of irradiating the diamond particle cut surface with a strand emitted from radium.
  • radioactive material that is the daughter nuclide of the radium adheres to the cut surface of the diamond particles.
  • it is not a beam-like string irradiation it is difficult to draw a pattern such as a letter or mark on only a part of the diamond particle cut surface.
  • Patent Document 11 As a low energy ion implantation method of the above (5), the method described in Patent Document 11 has been proposed. However, there is a step of performing a heat treatment at 500 ° C or higher after low energy ion implantation. Necessary (see Patent Document 1 2). In this method, since the ion energy is as low as 50 to 1 OO keV, the surface modification is only in a shallow region from the cut surface to the order of several tens of nanometers. Ions are diffusing. Also, the ion implantation amount requires 5 X 10 15 to 5 X 10 ' 8 ion cm 2 and a large amount of implantation. In addition, as described in the examples The coloring method describes only one black color, and does not describe coloring with other colors. Furthermore, characters such as letters and marks drawn by heat treatment may diffuse and become blurred.
  • the method described in Patent Document 13 is a method of etching with a focused ion beam.
  • the method described in Patent Document 14 is a method of performing plasma etching after masking.
  • laser processing methods are known, and diamond particle identification, identification, warranty, etc. numbers and symbols are engraved, and each certificate is engraved with the diamond particles. Are used to prove that they are the same, and to prove that they are artificial diamonds.
  • these techniques are processing by cutting the diamond surface, so color drawing is impossible.
  • Patent Document 1 Japanese Translation of Special Publication 2004-505765
  • Patent Document 2 Japanese Translation of Special Publication 2003-528023
  • Patent Document 3 Japanese Patent Application Laid-Open No. 1-131014
  • Patent Document 4 Japanese Patent Laid-Open No. 1-1381 1 2
  • Patent Document 5 Japanese Unexamined Patent Publication No. 1-183409
  • Patent Document 6 JP-A-6-26341-8
  • Patent Document 7 Japanese Patent Publication No. 5_36399
  • Patent Document 8 Japanese Patent Publication No.57-401-20
  • Patent Document 9 Japanese Patent Laid-Open No. 63-1 62600
  • Patent Document 10 JP-A-6_21 9895
  • Patent Document 11 JP-A-2005-247686
  • Patent Document 12 JP-A-2005-247686
  • Patent Document 13 Japanese Patent Laid-Open No. 6_36594
  • Patent Document 14 Japanese Patent Application Laid-Open No. 2002_226290
  • the object of the present invention is as follows.
  • the cut surface of the diamond particles to be colored has a temperature range from room temperature to about 200 ° C. , 1 0 3 to 1 0- 4 vacuum atmosphere of P a, the ion accelerator, range acceleration energy of 1 to 5 m e V, irradiation injection amount of 1 X 1 0 12 ⁇ 1 X 1 0 15 ions of an ion
  • a method for producing diamond particles colored on the cut surface characterized by irradiating high-energy energy ions in the range of / cm 2 .
  • the diamond particle cut surface is processed into a shape such as a character or a mark and a hole or a mask is perforated.
  • a method for producing particles is provided.
  • the manufacturing method according to the present invention is performed at a high temperature of several thousand degrees like the conventional HPHT method. Since it can be carried out in the temperature range from room temperature to about 200 ° C without requiring heat or high pressure, it can be applied even after setting diamond particles on a noble metal ring.
  • the conventional electron beam irradiation method needs to shield secondary X-rays generated during electron beam irradiation, which requires a large facility, but according to the manufacturing method according to the present invention, the ion accelerator to be used is Since secondary X-rays are rarely generated, no shielding facilities are required, so the facility does not become large.
  • the conventional electron beam irradiation method requires a heat treatment step for several hours at a temperature of about 100 ° C. after irradiation, but according to the manufacturing method according to the present invention, after ion irradiation to diamond particles, No heat treatment or annealing is required, and colored diamond particles can be produced in a few minutes to an hour, greatly improving productivity.
  • the conventional neutron irradiation treatment method requires a large-scale facility such as a nuclear reactor and a large accelerator, and impurities in the diamond may be activated after irradiation.
  • impurities in the diamond may be activated after irradiation.
  • the amount of ion energy to irradiate is not enough to activate impurities, so there is no risk of diamond particles being activated.
  • the conventional low energy ion implantation method requires a large amount of ion implantation, but according to the manufacturing method of the present invention, the amount of ion irradiation (implantation) can be achieved by the conventional low energy ion implantation method.
  • the amount can be reduced to less than 1 / 100th of the amount.
  • the production method of the present invention it is possible to produce a variety of colored products because the color type and color density can be adjusted by adjusting the type and irradiation time of the ion source.
  • patterns such as numbers and letters can be easily drawn on the cut surface of diamond particles, so that it is possible to draw an identification number, manufacturer logo, and manufacturer mark on diamond particles. And by these drawing Because it can be easily distinguished from fake brands, customer confidence in diamond particles can be increased.
  • FIG. 1 is a schematic diagram of an ion accelerator.
  • FIG. 2 is a schematic side view showing an example in which diamond particles are fixed to a fixture and irradiated with ions.
  • FIG. 3 is a schematic side view showing an example of producing diamond particles having a pattern colored on the cut surface.
  • FIG. 4 is a schematic side view showing another example when producing diamond particles having a pattern colored on the cut surface.
  • FIG. 5 is a plan view of an example of diamond particles with a picture drawn on the cut surface.
  • FIG. 6 is a schematic side view of an example of diamond particles with characters drawn on the cut surface.
  • FIG. 7 is an enlarged view of characters formed on the girdle part.
  • the diamond particles refer to particles obtained by processing natural diamond ore into particles and cutting out the surfaces of the cut particles.
  • the type of diamond is not particularly limited, and may be any of Ia type, Ib type, IIa type, and IIb type.
  • There are no particular restrictions on the shape of the diamond particle cutlet and conventionally known cutlet shapes such as Muskie's cut, baguette cut, oval cut, French cut, pair sharp cut, briolette cut Table cut, rose cut, force position force, step cut, brilliant full cut, eight cut, scissor cut, emerald cut, etc.
  • the size of the diamond particles is not particularly limited as long as it can be fixed to the fixing base when irradiating with ions. If diamond particles are small, the drawing pattern should be reduced accordingly.
  • the cut surfaces of the diamond particles are colored and / or patterns such as letters and marks.
  • coloring means coloring the cut surface of the diamond particles, and in the present invention, the pattern is an identification number, manufacturer mark (symbol), manufacturer logo (continuous characters), and other small letters. Means patterns, symbols, etc.
  • the cut surface to be colored or patterned may be any surface such as a table, star facet, bezel facet, upper girdle facet, lower girdle facet, pavilion facet set, girdle.
  • the force surface on which coloring or a pattern is applied may be one surface or a plurality of surfaces including two or more surfaces.
  • the diamond particles are held by a holder, and the ion accelerator It is installed at a predetermined position in the ion irradiation chamber, and the cut surface is irradiated with ions accelerated by the ion accelerator.
  • the holder is preferably made of a material that does not deform such as softening, melting, and vaporization under the conditions for irradiating ions to the cut surface of the diamond particles and that has a heat resistance of 200 ° C. or higher. Specific examples include stainless steel, platinum, titanium, titanium alloys, magnesium alloys, aluminum, and aluminum alloys.
  • the diamond particles may be set on a noble metal base such as a ring.
  • a commercial ion irradiation (implantation) device can be used.
  • Commercial ion accelerators include a cesium sputter ion source and a cockcroft ⁇ Walton ion accelerator (see Fig. 1 below) using a tandem accelerator tube. These ion accelerators place a powdery raw material on an ion source to generate target ions. Impurity ions derived from impurities contained in the raw materials are controlled by a mass separation electromagnet. The impurity ions are separated by bending and mass. Select the target ion because the lighter than the target ion bends more than 90 degrees and the heavier ion than the target ion turns less than 90 degrees by the magnetic force set in the mass separation electromagnet. Can be separated.
  • the ion irradiation dose is selected in the range of 1 X 10 12 to 1 X 10 15 ions / cm 2 . If the ion irradiation dose is less than 1 X 10 12 ions / cm 2 , the ion irradiation dose is insufficient, the diamond particle cut surface is insufficiently colored, and the ion irradiation dose is 1 X 1 0 15 Exceeding ioncm 2 is not preferable because the ratio of the diamond crystal becoming graphite or amorphous increases and becomes black only, making it difficult to color various colors.
  • the degree of vacuum 1 0 - shall choose 4 in the range of P a - 3 ⁇ 1 0.
  • the degree of vacuum is 1 0 - is less than 3 P a, the force to fly the ions is weak, not only can not accelerate I O emissions is low vacuum, because there is a risk of discharge because a high voltage is loaded It is.
  • coloration degree of vacuum 1 0 - exceeds 4 P a, etc. is required baking irradiation chamber (operation for increasing the degree of vacuum by heating), it takes time to sample change is undesirable.
  • Examples of the types of ions that can be irradiated include ions such as gold (A u), silicon (S i), carbon (C), and boron (B).
  • the concentration of the color imparted to the cut surface of the diamond particles can be easily changed by changing the intensity of the ion acceleration energy, the amount of ion irradiation, and the like.
  • Au ions are light brown to brown to black
  • Si ions are dark green to light green
  • C ions are green to light green
  • B ions are yellow green to light yellow green (in the examples described later). (See Table 1).
  • the irradiated cut surface is colored by irradiating the cut surface of the diamond particle with ions, but since the cut diamond particle has a plurality of cut surfaces, it is complicated. Reflected and shining, diamond particles have a commercial value as jewelry.
  • the cut surface of the diamond particle is coated with a mask or a photoresist in which holes are perforated in a shape such as letters or marks (FIG. 3, FIG.
  • the diamond particles are held by the holder and held in the ion irradiation chamber of the ion accelerator, and the ions accelerated by the ion accelerator are extracted from the drilled holes. Irradiate the cut surface.
  • the cut surface is patterned according to the pattern of the hole drilled in the mask or photoresist (see Fig. 5 and Fig. 6 below).
  • the material that can be used as a mask is made of a material that does not deform, such as softening, melting, and vaporization, under the conditions when ions are irradiated onto the diamond particle cut surface, and that has a heat resistance of 200 ° C or higher. Is preferred. Specific examples include aluminum, stainless steel, silicon, magnesium, titanium, and platinum. If the mask is too thin, the ion transmission cannot be blocked. Therefore, the mask should be thick enough to block the ion transmission. Although it depends on the material, a thickness of several tens of micrometers or more is preferable.
  • a shape such as letters or marks on the mask, as a method of drilling holes, laser processing method, ion beam processing method, electron beam processing method, cutting processing method, electrolytic processing method, electric discharge processing method, etching Law.
  • the hole drilling method should be selected according to the mask material and the pattern size to be formed. Any photoresist can be used as long as it can withstand the temperature during ion irradiation and can adhere to the diamond particle surface. Photoresist materials having such properties differ depending on the light source used for exposure of the photoresist. When the exposure light source is ultraviolet, an ultraviolet resist containing cyclized rubber and bisazide, an ultraviolet resist containing a diazoquinone compound, and the like can be mentioned.
  • the exposure light source is X-ray, X-ray resist containing PMMA, X-ray resist containing FBM, etc. .
  • the resist is coated on the diamond particles, holes are drilled through the exposure and development processes, and ions are formed from these holes. Irradiate (inject) and draw the desired pattern on the diamond particle surface.
  • the ion generation source (apparatus) that can be used in carrying out the second invention according to the present invention may be the same type as that used in the first invention, and the type of ion, ion irradiation intensity, and ion irradiation
  • the degree of vacuum and the like may also be the same as described in the first invention. Patterns such as letters or marks colored in a desired color on the cut surface can be drawn on the cut surface by means of ions passing through holes formed in the mask or the photoresist.
  • FIG. 1 is a schematic view of an example of an ion accelerator used in the manufacturing method according to the present invention.
  • the ion accelerator 1 includes a cesium sputter ion source 2, an extraction electrode 3, a mass separation electrode 4, a tandem acceleration tube 5, an energy separation electromagnet 6, a scanning electrode 7, a neutral ion separation electrode 8, an irradiation chamber 9 It is composed of diamond particle fixtures 10.
  • the ions generated from the cesium sputter ion source 2 are negative ions, and the ion source is a powder of the above-exemplified substance having an average particle size of several tens to several hundreds. A micrometer one is used.
  • the arrow indicates the direction of ion transport (travel, transport).
  • Negative ions are introduced to the mass separation electrode 4 by the extraction electrode 3 with an acceleration energy of about 20 keV. Impurity ions contained in the introduced negative ions are separated here, and only the target ions are separated and transferred to the tandem accelerator tube 5.
  • the central part of the tandem accelerator tube 5 is a positive electrode, and the negative ion is accelerated to the central part.
  • the voltage that can be applied at the center is in the range of 100 kV to 1.7 MV.
  • the ions converted into positive ions at the center of the tandem accelerator tube 5 are further accelerated and transferred toward the end of the tandem accelerator tube 5.
  • a positive ion may have multiple ions with different valences. Since the acceleration energy is different, it is separated into single acceleration energy by the energy separating electromagnet 6, scanned to form a uniform beam by the scanning electrode 7, and irradiated to the cutting surface of the diamond particles installed in the irradiation chamber 9. Is done.
  • FIG. 2 is a schematic side view showing an example of a state in which diamond particles are fixed to a fixture and irradiated with ions based on the first invention.
  • the brilliant-cut diamond particle 12 is fixed to the opening of the diamond particle fixture 11 with only the table surface exposed to the ion irradiation port.
  • the high-tech energy ions 13 are irradiated to the table surface from the opening of the diamond particle fixture 11 and only the table surface is colored.
  • FIG. 3 is a schematic side view showing an example of manufacturing diamond particles having a pattern colored on the cut surface based on the second invention
  • FIG. 4 is a cut based on the second invention
  • FIG. 5 is a schematic side view showing another example of producing diamond particles having a colored pattern on the surface
  • FIG. 5 is a plan view of an example of diamond particles with a picture drawn on the cut surface
  • Fig. 5 is a schematic side view of an example of diamond particles in which characters are drawn on a cut surface.
  • FIG. 3 14 is diamond particles, 15 is a mask for shielding high energy ions, and 16 is high-engineered energy ions.
  • 17 is diamond particles, 18 is a photoresist layer that shields high-energy ions, and 19 is high-energy ions.
  • 5 is a heart-shaped pattern formed on the table surface 20.
  • FIG. 6 is a character formed on the girdle part 21.
  • FIG. 7 is an enlarged view of the character part of FIG.
  • the present invention will be described in detail based on examples, but the present invention is not limited to the following description examples unless it exceeds the gist.
  • the xy chromaticity of the sample after ion irradiation was measured as follows.
  • X y chromaticity measurement method Diamond particles, “JIS 7 8 16 (1 9 9 1), regular light source fluorescent lamp D 6 5 _ used for comparison of surface color _ format and performance”
  • a D 65 standard light source and a color luminance meter (Koni force Minolta Co., Ltd., model: CS-220) are prepared, and white light from the standard light source is applied to the colored cut surface of the diamond particles created in the following example. The reflected light was measured with a color luminance meter. The same sample was measured 3 times and the average value was calculated.
  • Example 1 the sample put in the ion source is changed to a powder of silicon (S i) (average particle size: about 650 micrometers), and the acceleration energy is constant at 3 MeV.
  • Table 1-1 The results are shown in Table 1-1. In the obtained sample, those with a small amount of ion irradiation exhibited a light green color, and those with a large amount of ion irradiation exhibited a dark green color.
  • Example 1 the sample placed in the ion source is changed to carbon (C) powder (average particle size: 700 micrometers), the acceleration energy is constant at 3 MeV, and the ion irradiation dose is , 1 X 10 13 to 5 X 10 14 ions / cm 2 , ion irradiation with diamond particle temperature of 200 ° C and vacuum of 10- 4 Pa, ion irradiation dose
  • C carbon
  • Table 1 It was described in 1. In the obtained sample, those with a small amount of ion irradiation exhibited a light green color, and those with a large amount of ion irradiation exhibited a dark green color.
  • Example 1 the sample put into the ion source was changed to a powder of boron (B) (average particle size: 1650 micrometers), and the acceleration energy was set to be constant 3 MeV.
  • the amount of irradiation was irradiated in the range of 1 X 1 0 13 ⁇ 5 X 1 0 14 ions / cm 2, the temperature of the diamond particles 2 0 0 ° C, a vacuum degree of 1 0 - set to 4 P a ion irradiation
  • Table 1-1 As for the obtained sample, those with a small amount of ion irradiation exhibited a light yellowish green color, and those with a large amount of ion irradiation exhibited a yellowish green color.
  • colored diamond particles with low commercial value can be colored to produce colored diamond particles with high commercial value as jewelry, and arbitrary patterns can be drawn on the cut surface of diamond particles.
  • patterns such as numbers and letters can be easily drawn on the cut surface of the diamond particle, so that the identification number, the manufacturer's logo, and the manufacturer's mark can be drawn on the diamond particle. It is possible and can be easily distinguished from fake brands by these drawings, which can increase customer confidence in diamond particles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

A production method of diamond particles having colored cut faces, and a production method of diamond particles having pattern-drawn cut faces. The first invention is characterized by irradiating the cut face to be colored of a diamond particle with high energy ions by an ion accelerator within a temperature range of room temperature to 200°C, under a vacuum atmosphere of 10-3 to 10-4 Pa, at an acceleration energy of 1 to 5 MeV, and with an ion irradiation amount of 1x1012 to 1x1015 ions/cm2. The second invention is characterized by covering a cut face with a mask drilled with a hole worked into a character or mark shape or a mask by photoresist, and then irradiating with high energy ions similarly in the first invention.

Description

明 細 書  Specification
カツト面を着色したダイヤモンド粒子の製造方法、 およびカツト面 に文様を描画したダイヤモンド粒子の製造方法  Method for producing diamond particles colored on the cut surface, and method for producing diamond particles having a pattern drawn on the cut surface
技術分野  Technical field
[0001 ] 本発明は、 カット面を着色したダイヤモンド粒子の製造方法、 およびカツ ト面に文様を描画したダイヤモンド粒子の製造方法に関する。 さらに詳しく は、 ダイヤモンド粒子のカツト面に高エネルギーイオンを注入することによ り、 カット面を着色したダイヤモンド粒子の製造方法、 および、 ダイヤモン ド粒子カツト面に、 文字またはマークなどの文様を描画したダイヤモンド粒 子の製造方法に関する。  TECHNICAL FIELD [0001] The present invention relates to a method for producing diamond particles having a cut surface and a method for producing diamond particles having a pattern drawn on a cut surface. More specifically, high-energy ions are implanted into the cut surface of the diamond particles to produce diamond particles with colored cut surfaces, and patterns such as letters or marks are drawn on the diamond particle cut surface. The present invention relates to a method for producing diamond particles.
背景技術  Background art
[0002] ダイヤモンド粒子は、 透明無色で大きいものが高価値である。 しかしほと んどのダイヤモンド粒子は透明度が低く、 小さいものは選別され工業用に供 される。 そこで、 透明度が低くジュエリー用としては商品価値が低いダイヤ モンド粒子を着色し、 付加価値の高いジュエリーにする処理法が提案され、 —部実用化されている。 従来、 ダイヤモンド粒子の着色法としては、 ( 1 ) 高圧高温処理 ( H P H T ) 法、 ( 2 ) 電子線照射法、 ( 3 ) 中性子照射法、 [0002] Diamond particles are transparent, colorless, and large in value. However, most diamond particles have low transparency, and small ones are selected for industrial use. Therefore, a method of coloring diamond particles with low transparency and low commercial value for jewelry has been proposed and put into practical use. Conventionally, diamond particles can be colored by (1) high-pressure and high-temperature treatment (HPHT) method, (2) electron beam irradiation method, (3) neutron irradiation method,
( 4 ) ラジウム処理法、 (5 ) 低エネルギーイオン注入法、 などが知られて いる。 上記の (1 ) H P H T法は、 数千度への高温加熱と数百キロバールの 圧力を必要とし、 さらに処理時間が数十時間という長時間を必要とする方法 である (特許文献 1〜特許文献 2参照) 。 これら提案の方法では、 ダイヤモ ンド粒子表面全体を着色する方法であるので、 一部のカツト面のみへのカラ —着色、 一部のカツト面のみへの文様描画はできない。 (4) Radium treatment method, (5) Low energy ion implantation method, etc. are known. The above (1) HPHT method is a method that requires high-temperature heating to several thousand degrees and pressure of several hundred kilobars, and further requires a long time of several tens of hours (Patent Document 1 to Patent Document) 2) In these proposed methods, the entire diamond particle surface is colored, so it is not possible to color-color on only some of the cut surfaces or draw patterns on only some of the cut surfaces.
[0003] 上記 (2 ) の電子線照射法では、 ダイヤモンド粒子のカット面に数 M e V の電子線を照射し、 その後、 約 1 0 0 0 °Cの温度で数時間〜数十時間ァニー リングする方法である (特許文献 3〜特許文献 7参照) 。 これら提案の方法 によれば、 ダイヤモンド粒子カツト面に電子線を照射する際に生じる二次 X 線の遮蔽が必要であり、 施設が大掛かりになる。 また、 数 M e Vの電子線は 透過力が高く、 散乱線が発生し易いので、 ダイヤモンド粒の子カット面にマ スクを施しても散乱線を遮蔽し難く、 従って、 電子線照射法で文字またはマ ークなどの文様を描画することは困難である。 [0003] In the electron beam irradiation method (2) above, an electron beam of several MeV is irradiated on the cut surface of the diamond particle, and then annealed at a temperature of about 100 ° C for several hours to several tens of hours. This is a ringing method (see Patent Documents 3 to 7). According to these proposed methods, the secondary X generated when the diamond particle cut surface is irradiated with an electron beam. It is necessary to shield the line, and the facility becomes large. Also, the electron beam of several MeV has high penetrating power and easily generates scattered radiation. Therefore, it is difficult to shield the scattered radiation even if a mask is applied to the child cut surface of the diamond grain. It is difficult to draw patterns such as letters or marks.
[0004] 上記 (3 ) の中性子照射法は、 ダイヤモンド粒の子カット面に原子炉など により中性子を照射する方法 (特許文献 8参照) と、 その後、 数百。 Cで熱処 理する方法 (特許文献 9、 特許文献 1 0参照) などが提案されている。 これ ら提案の方法は、 原子炉などの大規模な施設が必要であり、 またダイヤモン ド粒子内部にある不純物を放射化する恐れがあり、 ジュエリー使用時におけ る残留放射能の危険性がある。 エネルギーの高い中性子は、 透過力が高いた めに、 ダイヤモンド粒子のカット面にマスクを施しても、 マスクによって中 性子の透過を妨げることができず、 従って中性子照射法で、 ダイヤモンド粒 子の力ット面に文字またはマークなどの文様を描画することは不可能である [0004] The neutron irradiation method of (3) above includes a method of irradiating a child cut surface of a diamond grain with a nuclear reactor or the like (see Patent Document 8), and then several hundreds. A method of heat treatment with C (see Patent Document 9 and Patent Document 10) has been proposed. These proposed methods require a large-scale facility such as a nuclear reactor and may activate impurities in the diamond particles, resulting in a risk of residual radioactivity when using jewelry. Since neutrons with high energy have high penetrating power, even if a mask is applied to the cut surface of diamond particles, the mask cannot prevent neutron transmission. It is impossible to draw characters or marks on the surface.
[0005] 上記 (4 ) のラジウム処理法は、 ダイヤモンド粒子のカット面にラジウム から放出されるひ線を照射する方法であり、 1 9 0 4年に W i I I i a m C r o o k sによって提案された処理法である。 この方法では、 ダイヤモン ド粒子をラジウム塩中に入れるために、 ダイヤモンド粒子のカツト面にラジ ゥムの娘核種である放射性物質が付着する。 また、 ビーム状のひ線照射では ないので、 ダイヤモンド粒子カット面の一部のみに、 文字またはマークなど の文様を描画することは困難である。 [0005] The radium treatment method of (4) above is a method of irradiating the diamond particle cut surface with a strand emitted from radium. The treatment proposed by Wi II iam Crooks in 1904 Is the law. In this method, in order to put the diamond particles in the radium salt, radioactive material that is the daughter nuclide of the radium adheres to the cut surface of the diamond particles. In addition, since it is not a beam-like string irradiation, it is difficult to draw a pattern such as a letter or mark on only a part of the diamond particle cut surface.
[0006] 上記 (5 ) の低エネルギーイオン注入法として、 特許文献 1 1に記載の方 法が提案されているが、 低エネルギーイオンを注入した後、 5 0 0 °C以上の 熱処理する工程が必要である (特許文献 1 2参照) 。 この方法は、 イオンェ ネルギ一が 5 0〜 1 O O k e Vと低いので、 表面改質がカット面から数 1 0 n mオーダーまでの浅い領域のみであるので、 イオン注入後に熱処理を施し て、 注入したイオンを拡散させている。 また、 イオン注入量も 5 X 1 0 15〜5 X 1 0 '8 i o n c m2と多量の注入量を必要とする。 また、 実施例に記載の 着色法は黒色一色のみが記載されているに過ぎず、 他の色による着色ついて は記載されていない。 さらに、 熱処理により描画した文字やマークなどの文 様が拡散し、 ぼやける恐れがある。 [0006] As a low energy ion implantation method of the above (5), the method described in Patent Document 11 has been proposed. However, there is a step of performing a heat treatment at 500 ° C or higher after low energy ion implantation. Necessary (see Patent Document 1 2). In this method, since the ion energy is as low as 50 to 1 OO keV, the surface modification is only in a shallow region from the cut surface to the order of several tens of nanometers. Ions are diffusing. Also, the ion implantation amount requires 5 X 10 15 to 5 X 10 ' 8 ion cm 2 and a large amount of implantation. In addition, as described in the examples The coloring method describes only one black color, and does not describe coloring with other colors. Furthermore, characters such as letters and marks drawn by heat treatment may diffuse and become blurred.
[0007] ダイヤモンド粒子のカツト面に、 印字やマークなどの文様を描画する方法 としては、 ダイヤモンド表面を微細加工する方法がある。 例えば、 特許文献 1 3に記載の方法は、 収束イオンビームにより、 エッチングする方法である 。 また、 特許文献 1 4に記載の方法は、 マスク後にプラズマエッチングする 方法である。 その他に、 レーザ一による加工法などが知られており、 ダイヤ モンド粒子の鑑定書、 鑑別書、 保証書などの番号、 記号などを刻印し、 それ ぞれの証明書とこれらが刻印されたダイャモンド粒子とが同一であることを 証明する手段や、 人工ダイヤモンドであることなどの証明などに使われてい る。 しかしながらこれらの技術は、 ダイヤモンド表面を削ることによる加工 であるために、 カラー描画は不可能である。  [0007] As a method of drawing a pattern such as a print or a mark on the cut surface of diamond particles, there is a method of finely processing the diamond surface. For example, the method described in Patent Document 13 is a method of etching with a focused ion beam. Further, the method described in Patent Document 14 is a method of performing plasma etching after masking. In addition, laser processing methods are known, and diamond particle identification, identification, warranty, etc. numbers and symbols are engraved, and each certificate is engraved with the diamond particles. Are used to prove that they are the same, and to prove that they are artificial diamonds. However, these techniques are processing by cutting the diamond surface, so color drawing is impossible.
[0008] 特許文献 1 :特表 2004— 505765号公報  [0008] Patent Document 1: Japanese Translation of Special Publication 2004-505765
特許文献 2:特表 2003— 528023号公報  Patent Document 2: Japanese Translation of Special Publication 2003-528023
特許文献 3:特開平 1— 1 31 01 4号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 1-131014
特許文献 4:特開平 1— 1 381 1 2号公報  Patent Document 4: Japanese Patent Laid-Open No. 1-1381 1 2
特許文献 5:特開平 1— 1 83409号公報  Patent Document 5: Japanese Unexamined Patent Publication No. 1-183409
特許文献 6:特開平 6— 26341 8号公報  Patent Document 6: JP-A-6-26341-8
特許文献 7:特公平 5 _ 36399号公報  Patent Document 7: Japanese Patent Publication No. 5_36399
特許文献 8:特公昭 57— 401 20号公報  Patent Document 8: Japanese Patent Publication No.57-401-20
特許文献 9:特開昭 63— 1 62600号公報  Patent Document 9: Japanese Patent Laid-Open No. 63-1 62600
特許文献 10:特開平 6 _ 21 9895号公報  Patent Document 10: JP-A-6_21 9895
特許文献 11 :特開 2005-247686号公報  Patent Document 11: JP-A-2005-247686
特許文献 12:特開 2005-247686号公報  Patent Document 12: JP-A-2005-247686
特許文献 13:特開平 6_36594号公報  Patent Document 13: Japanese Patent Laid-Open No. 6_36594
特許文献 14:特開 2002 _ 226290号公報  Patent Document 14: Japanese Patent Application Laid-Open No. 2002_226290
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0009] 本発明の目的は、 次のとおりである。  [0009] The object of the present invention is as follows.
1. 商品価値の低いダイヤモンド粒子のカツト面を着色し、 ジュエリーとし ての価値の高い着色されたダイヤモンド粒子の製造方法を提供すること。 1. To provide a method for producing colored diamond particles having high value as jewelry by coloring the cut surface of diamond particles having low commercial value.
2. 短時間に処理でき、 照射後の熱処理を必要としない着色されたダイヤモ ンド粒子の製造方法を提供すること。 2. To provide a method for producing colored diamond particles that can be processed in a short time and does not require heat treatment after irradiation.
3. —部のカット面のみに文字またはマークなどの文様を描画した、 ダイヤ モンド粒子の製造方法を提供すること。  3. To provide a method for producing diamond particles, in which patterns such as letters or marks are drawn only on the cut surface of the — part.
課題を解決するための手段  Means for solving the problem
[0010] 上記課題を解決するため、 第 1発明では、 カット面を着色したダイヤモン ド粒子を製造する方法において、 着色しょうとするダイヤモンド粒子のカツ ト面に、 常温〜約 200°Cの温度範囲、 1 0-3〜1 0-4P aの真空雰囲気下、 イオン加速器によって、 加速エネルギーを 1〜5M e Vの範囲、 イオンの照 射量を 1 X 1 012〜 1 X 1 015 i o n s / c m2の範囲の高工ネルギ一イオンを 照射することを特徴とする、 カツト面を着色したダイヤモンド粒子の製造方 法を提供する。 [0010] In order to solve the above-mentioned problems, according to the first invention, in the method for producing diamond particles colored on the cut surface, the cut surface of the diamond particles to be colored has a temperature range from room temperature to about 200 ° C. , 1 0 3 to 1 0- 4 vacuum atmosphere of P a, the ion accelerator, range acceleration energy of 1 to 5 m e V, irradiation injection amount of 1 X 1 0 12 ~ 1 X 1 0 15 ions of an ion Provided is a method for producing diamond particles colored on the cut surface, characterized by irradiating high-energy energy ions in the range of / cm 2 .
[0011] また、 第 2発明では、 カット面に文様を描画したダイヤモンド粒子を製造 する方法において、 ダイヤモンド粒子のカット面を、 文字またはマークなど の形に加工し穴を穿孔したマスクまたはフォトレジストによるマスクによつ て被覆した後に、 常温〜約 200°Cの温度範囲、 1 0-3〜1 0 -4 P aの真空雰 囲気下、 穿孔穴から、 イオン加速器によって加速エネルギーを 1〜5M e Vの 範囲、 イオンの照射量を 1 X 1 012〜 1 X 1 015 i o n s/c m2の範囲の高工 ネルギ一イオンを照射することを特徴とする、 カツト面に文様を描画したダ ィャモンド粒子の製造方法を提供する。 [0011] Further, in the second invention, in the method of manufacturing diamond particles having a pattern drawn on the cut surface, the diamond particle cut surface is processed into a shape such as a character or a mark and a hole or a mask is perforated. after coating Te cowpea a mask, a temperature range of room temperature to about 200 ° C, 1 0- 3 ~1 0 - 4 P vacuum atmosphere under a, from drilling holes, 1 to 5 m e acceleration energy by an ion accelerator A diamond with a pattern drawn on the cut surface, which is characterized by irradiating high-energy ions in the range of V and ion irradiation in the range of 1 X 10 12 to 1 X 10 15 ions / cm 2 A method for producing particles is provided.
発明の効果  The invention's effect
[0012] 本発明は、 以下詳細に説明するとおりであり、 次のような特別に有利な効 果を奏し、 その産業上の利用価値は極めて大である。  [0012] The present invention is described in detail below, and has the following particularly advantageous effects, and its industrial utility value is extremely large.
1. 本発明に係る製造方法は、 従来の H P H T法のような数千度への高温加 熱や高圧力を必要とせず、 常温〜約 2 0 0 °Cの温度範囲で実施できるので、 ダイヤモンド粒子を貴金属指輪などにセッティングした後でも適用できる。1. The manufacturing method according to the present invention is performed at a high temperature of several thousand degrees like the conventional HPHT method. Since it can be carried out in the temperature range from room temperature to about 200 ° C without requiring heat or high pressure, it can be applied even after setting diamond particles on a noble metal ring.
2 . 従来の電子線照射法は、 電子線照射時に発生する二次 X線の遮蔽が必要 であり、 施設が大掛かりになるが、 本発明に係る製造方法によれば、 使用す るイオン加速器は二次 X線がほとんど発生しないので、 遮蔽設備を必要とし ないので施設が大掛かりになることがない。 2. The conventional electron beam irradiation method needs to shield secondary X-rays generated during electron beam irradiation, which requires a large facility, but according to the manufacturing method according to the present invention, the ion accelerator to be used is Since secondary X-rays are rarely generated, no shielding facilities are required, so the facility does not become large.
3 . 従来の電子線照射法は、 照射後に約 1 0 0 0 °Cの温度で数時間の熱処理 工程を必要とするが、 本発明に係る製造方法によれば、 ダイヤモンド粒子へ のイオン照射後の熱処理やアニーリングなどが不要で、 数分から 1時間程度 で着色したダイヤモンド粒子を製造できるので、 生産性が大幅に向上する。 3. The conventional electron beam irradiation method requires a heat treatment step for several hours at a temperature of about 100 ° C. after irradiation, but according to the manufacturing method according to the present invention, after ion irradiation to diamond particles, No heat treatment or annealing is required, and colored diamond particles can be produced in a few minutes to an hour, greatly improving productivity.
4 . 従来の中性子照射処理法は、 原子炉や大型加速器などの大規模施設を必 要とし、 さらに照射後にダイヤモンド内の不純物が放射化する恐れがあった が、 本発明に係る製造方法によれば、 照射するイオンエネルギー量は不純物 が放射化するほどではないので、 ダイヤモンド粒子が放射化する恐れはない 4. The conventional neutron irradiation treatment method requires a large-scale facility such as a nuclear reactor and a large accelerator, and impurities in the diamond may be activated after irradiation. For example, the amount of ion energy to irradiate is not enough to activate impurities, so there is no risk of diamond particles being activated.
5 . 従来の低エネルギーイオン注入法は、 多量にイオン注入する必要がある が、 本発明に係る製造方法によれば、 イオン照射 (注入) 量は、 従来の低ェ ネルギ一イオン注入法による注入量の 1 0 0 0分の 1以下の量に少なくでき る。 5. The conventional low energy ion implantation method requires a large amount of ion implantation, but according to the manufacturing method of the present invention, the amount of ion irradiation (implantation) can be achieved by the conventional low energy ion implantation method. The amount can be reduced to less than 1 / 100th of the amount.
6 . 本発明に係る製造方法によれば、 イオン源の種類や照射時間を調整する ことにより、 着色の種類と着色濃度を調整できるために、 多種の着色製品の 製造が可能である。  6. According to the production method of the present invention, it is possible to produce a variety of colored products because the color type and color density can be adjusted by adjusting the type and irradiation time of the ion source.
7 . 本発明に係る製造方法によれば、 ダイヤモンド粒子のカット面に任意の 文様描画が可能となり、 従来にないォリジナルデザィンを付した付加価値の 高いジュエリーの製造が可能である。  7. According to the manufacturing method of the present invention, it is possible to draw an arbitrary pattern on the cut surface of diamond particles, and it is possible to manufacture a high-value-added jewelry with an original design that is not present.
8 . 本発明に係る製造方法によれば、 ダイヤモンド粒子のカット面に数字や 文字がなどの文様が容易に描画できるので、 ダイヤモンド粒子に鑑定書番号 、 メーカ一ロゴ、 メーカ一マークの描画が可能であり、 これら描画によって 容易に偽ブランドと峻別できるので、 ダイヤモンド粒子に対する顧客の信頼 を高めることができる。 8. According to the manufacturing method of the present invention, patterns such as numbers and letters can be easily drawn on the cut surface of diamond particles, so that it is possible to draw an identification number, manufacturer logo, and manufacturer mark on diamond particles. And by these drawing Because it can be easily distinguished from fake brands, customer confidence in diamond particles can be increased.
図面の簡単な説明 Brief Description of Drawings
[図 1]イオン加速器の概略図である。 FIG. 1 is a schematic diagram of an ion accelerator.
[図 2]ダイヤモンド粒子を固定具に固定し、 イオンを照射する状態を示す一例 の側面略図である。  FIG. 2 is a schematic side view showing an example in which diamond particles are fixed to a fixture and irradiated with ions.
[図 3]カツト面に着色された文様を有するダイヤモンド粒子を製造する際の一 例を示す、 側面略図である。  FIG. 3 is a schematic side view showing an example of producing diamond particles having a pattern colored on the cut surface.
[図 4]カツト面に着色された文様を有するダイヤモンド粒子を製造する際の他 の例を示す、 側面略図である。  FIG. 4 is a schematic side view showing another example when producing diamond particles having a pattern colored on the cut surface.
[図 5]カツト面に絵が描画されたダイヤモンド粒子の一例の平面図である。  FIG. 5 is a plan view of an example of diamond particles with a picture drawn on the cut surface.
[図 6]カツト面に文字が描画されたダイヤモンド粒子の一例の側面略図である FIG. 6 is a schematic side view of an example of diamond particles with characters drawn on the cut surface.
[図 7]ガードル部分に形成された文字の拡大図である。 FIG. 7 is an enlarged view of characters formed on the girdle part.
符号の説明 Explanation of symbols
1 イオン加速器  1 Ion accelerator
2 セシウムスパッタ型イオン源  2 Cesium sputter ion source
3 引き出し電極  3 Lead electrode
4 質量分離用電磁石  4 Electromagnet for mass separation
5 タンデム型加速器  5 Tandem accelerator
6 エネルギー分離用電磁石  6 Electromagnet for energy separation
7 走査電極  7 Scan electrode
8 中性■イオン分離用電極  8 Neutral ■ Ion separation electrode
9 照射室  9 Irradiation room
1 0, 1 1 ダイヤモンド粒子固定具  1 0, 1 1 Diamond particle fixture
1 2, 1 4, 1 7 ダイヤモンド粒子  1 2, 1 4, 1 7 Diamond particles
1 3, 1 6, 1 9 高工ネルギ一イオン  1 3, 1 6, 1 9
1 5 マスク 1 8 フォトレジスト層 1 5 Mask 1 8 Photoresist layer
2 0 ハート型文様  2 0 Heart-shaped pattern
2 1 数字文様  2 1 Number pattern
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 以下、 本発明を詳細に説明する。  [0015] Hereinafter, the present invention will be described in detail.
本発明においてダイヤモンド粒子とは、 天然のダイヤモンド原石を、 粒子 状に加工して切り出し、 切り出した粒子表面に種々のカツトを施した粒子を いう。 ダイヤモンドの種類は特に制限がなく、 I a型、 I b型、 I I a型、 I I b型のいずれであってもよい。 ダイヤモンド粒子のカツ卜の形態には特に制 限がなく、 従来から知られているカツ卜の形態、 例えば、 マスキーズカツト 、 バゲットカツト、 ォ一バルカツト、 フレンチカツト、 ペアシャープトカツ ト、 ブリオレットカット、 テーブルカット、 ローズカット、 力ポッシヨン力 ット、 ステップカット、 ブリリアントフルカット、 エイ トカット、 シザ一ズ カット、 エメラルドカットなどが挙げられる。 ダイヤモンド粒子の大きさは 、 イオンを照射する際の固定台に固定できる程度の大きさであればよく、 特 に制限がない。 ダイヤモンド粒子が小さい場合は、 それに応じて描画する文 様を小さくすればよい。  In the present invention, the diamond particles refer to particles obtained by processing natural diamond ore into particles and cutting out the surfaces of the cut particles. The type of diamond is not particularly limited, and may be any of Ia type, Ib type, IIa type, and IIb type. There are no particular restrictions on the shape of the diamond particle cutlet, and conventionally known cutlet shapes such as Muskie's cut, baguette cut, oval cut, French cut, pair sharp cut, briolette cut Table cut, rose cut, force position force, step cut, brilliant full cut, eight cut, scissor cut, emerald cut, etc. The size of the diamond particles is not particularly limited as long as it can be fixed to the fixing base when irradiating with ions. If diamond particles are small, the drawing pattern should be reduced accordingly.
[0016] 本発明に係る製造方法によるときは、 ダイヤモンド粒子のカツト面に着色 、 および/または、 文字、 マークなどの文様が施される。 本発明において着 色とは、 ダイヤモンド粒子のカット面を着色することを意味し、 本発明にお いて文様とは、 鑑定書番号、 メーカーマーク (記号) 、 メーカーロゴ (連字 ) 、 その他の小さな模様、 記号などを意味する。 着色または文様が施される カット面は、 テーブル、 スターファセット、 ビーゼルファセット、 アッパー ガードルファセット、 ロワ一ガードルファセット、 パビリオンフアツセット 、 ガードルなどのいずれの面であってもよい。 着色または文様が施される力 ット面は、 一面でも二面以上の複数面であってもよい。  [0016] When the production method according to the present invention is used, the cut surfaces of the diamond particles are colored and / or patterns such as letters and marks. In the present invention, coloring means coloring the cut surface of the diamond particles, and in the present invention, the pattern is an identification number, manufacturer mark (symbol), manufacturer logo (continuous characters), and other small letters. Means patterns, symbols, etc. The cut surface to be colored or patterned may be any surface such as a table, star facet, bezel facet, upper girdle facet, lower girdle facet, pavilion facet set, girdle. The force surface on which coloring or a pattern is applied may be one surface or a plurality of surfaces including two or more surfaces.
[001 7] 本発明の第 1発明に係る製造方法によってダイヤモンド粒子のカツト面に 着色するには、 ダイヤモンド粒子を保持具によつて保持し、 イオン加速器の ィォン照射室の所定位置に設置し、 ィォン加速器によって加速したイオンを カット面に照射する。 保持具は、 ダイヤモンド粒子のカット面にイオンを照 射する際の条件で、 軟化、 融解、 気化など変形せず、 2 0 0 °C以上の耐熱性 を有する素材によって構成するのが好ましい。 具体的には、 ステンレススチ —ル、 白金、 チタン、 チタン合金、 マグネシユウム合金、 アルミニウム、 ァ ルミニゥム合金などが挙げられる。 また、 ダイヤモンド粒子を、 指輪などの 貴金属製台座にセッティングした状態のものでもよい。 [001 7] In order to color the cut surface of the diamond particles by the manufacturing method according to the first aspect of the present invention, the diamond particles are held by a holder, and the ion accelerator It is installed at a predetermined position in the ion irradiation chamber, and the cut surface is irradiated with ions accelerated by the ion accelerator. The holder is preferably made of a material that does not deform such as softening, melting, and vaporization under the conditions for irradiating ions to the cut surface of the diamond particles and that has a heat resistance of 200 ° C. or higher. Specific examples include stainless steel, platinum, titanium, titanium alloys, magnesium alloys, aluminum, and aluminum alloys. Alternatively, the diamond particles may be set on a noble metal base such as a ring.
[0018] 本発明で使用されるイオン加速器としては、 商業的イオン照射 (注入) 器 が使用できる。 商業的イオン加速器としては、 セシウムスパッタ型イオン源 、 タンデム型加速管を用いるコッククロフト ■ ワルトン型イオン加速器 (後 記する図 1参照) が挙げられる。 これらイオン加速器は、 粉末状原料をィォ ン源に載置して目的イオンを発生させ、 原料に含まれる不純物に由来する不 純物イオンは、 質量分離用電磁石によりイオンの進行方向を 9 0度曲げ、 質 量により不純物イオンを分離する。 質量分離用電磁石に設定する磁力により 、 目的イオンよりも軽いイオンは 9 0度を超えて曲がり、 目的イオンよりも 重いイオンは曲がる角度が 9 0度に満たない性質を示すので、 目的イオンを 選択的に分離することができる。  [0018] As the ion accelerator used in the present invention, a commercial ion irradiation (implantation) device can be used. Commercial ion accelerators include a cesium sputter ion source and a cockcroft ■ Walton ion accelerator (see Fig. 1 below) using a tandem accelerator tube. These ion accelerators place a powdery raw material on an ion source to generate target ions. Impurity ions derived from impurities contained in the raw materials are controlled by a mass separation electromagnet. The impurity ions are separated by bending and mass. Select the target ion because the lighter than the target ion bends more than 90 degrees and the heavier ion than the target ion turns less than 90 degrees by the magnetic force set in the mass separation electromagnet. Can be separated.
[001 9] ダイヤモンド粒子の力ット面にイオンを照射する際のイオン加速エネルギ —は、 カット面の表面から数マイクロメータ一の内部に浸透し、 このイオン が浸透した面が、 イオンの種類、 イオンの照射エネルギー、 イオン照射量な どに応じて着色する。 照射する際の加速エネルギーは、 1〜5 M e Vの範囲 で選ぶものとする。 イオン加速エネルギーが 1 M e V未満であると、 カット 面からのイオン侵入 (到達) 深さが浅く、 ダイヤモンドカット面の着色が不 十分となり、 イオン加速エネルギーが 5 M e Vを超えると、 照射時にダイヤ モンド粒子が高温になるおそれがあり、 いずれも好ましくない。 例えば、 ダ ィャモンド粒子の温度が 5 0 0 °Cを超えると、 照射室に残留している少量の 酸素と反応し、 ダイヤモンド粒子表面が酸化される恐れが大である。 また、 ダイヤモンド粒子が貴金属製台座にセッティングされている場合には、 ダイ ャモンド粒子の温度が 1 o o o°c近くなると台座金属の融点に近くなり、 装 置も大掛かりになりコスト高となるので、 好ましくない。 [001 9] The ion acceleration energy when irradiating ions on the force surface of diamond particles penetrates into the inside of a few micrometers from the surface of the cut surface, and the surface into which this ion penetrates is the type of ion. Colored according to ion irradiation energy, ion dose, etc. The acceleration energy for irradiation should be selected in the range of 1 to 5 MeV. If the ion acceleration energy is less than 1 MeV, the ion penetration (arrival) depth from the cut surface is shallow, and the diamond cut surface is insufficiently colored, and if the ion acceleration energy exceeds 5 MeV, irradiation occurs. Occasionally diamond particles may become hot, both of which are undesirable. For example, when the temperature of diamond particles exceeds 500 ° C., there is a great risk that the diamond particle surface will be oxidized by reacting with a small amount of oxygen remaining in the irradiation chamber. If diamond particles are set on a precious metal pedestal, If the temperature of the diamond particles is close to 1 ooo ° c, it will be close to the melting point of the pedestal metal, and the equipment will become large and expensive, which is not preferable.
[0020] イオンの照射量は、 1 X 1 0 12〜 1 X 1 0 15 i o n s / c m2の範囲で選ぶも のとする。 イオンの照射量が 1 X 1 0 12 i o n s / c m2未満であると、 イオン 照射量が不足し、 ダイヤモンド粒子のカット面の着色が不十分となり、 ィォ ンの照射量が 1 X 1 0 15 i o n c m2を超えると、 ダイヤモンド結晶がグラ フアイ ト化またはアモルファス化する割合が増え、 黒色のみとなり種々の色 に着色することが困難となり、 好ましくない。 [0020] The ion irradiation dose is selected in the range of 1 X 10 12 to 1 X 10 15 ions / cm 2 . If the ion irradiation dose is less than 1 X 10 12 ions / cm 2 , the ion irradiation dose is insufficient, the diamond particle cut surface is insufficiently colored, and the ion irradiation dose is 1 X 1 0 15 Exceeding ioncm 2 is not preferable because the ratio of the diamond crystal becoming graphite or amorphous increases and becomes black only, making it difficult to color various colors.
[0021 ] イオン加速器によって加速したイオンをダイヤモンド粒子のカツト面に照 射する際には、 真空度を 1 0 -3〜 1 0 -4 P aの範囲で選ぶものとする。 真空度 が 1 0 -3 P a未満であると、 イオンの飛ぶ力が弱いので、 真空度が低いとィォ ンを加速できないばかりでなく、 高電圧が負荷されるので放電の危険がある からである。 また、 イオン照射室内に残留気体が多く存在すると、 加速され た目的イオンとともにダイヤモンド粒子のカツト面に入り込むので、 目的ィ オン以外の残存ガスイオンの色に着色されるからである。 着色真空度が 1 0 -4 P aを超えると、 照射室のベーキング (加熱により真空度を高めるための操 作) などが必要となり、 試料交換に時間がかかり、 好ましくない。 [0021] When morphism irradiation in Katsuhito surface of diamond particles was accelerated ions by ion accelerator, the degree of vacuum 1 0 - shall choose 4 in the range of P a - 3 ~ 1 0. The degree of vacuum is 1 0 - is less than 3 P a, the force to fly the ions is weak, not only can not accelerate I O emissions is low vacuum, because there is a risk of discharge because a high voltage is loaded It is. In addition, if there is a large amount of residual gas in the ion irradiation chamber, it will enter the cut surface of the diamond particles together with the accelerated target ions, so that it will be colored in the color of the residual gas ions other than the target ions. Coloration degree of vacuum 1 0 - exceeds 4 P a, etc. is required baking irradiation chamber (operation for increasing the degree of vacuum by heating), it takes time to sample change is undesirable.
[0022] 照射できるイオンの種類としては、 例えば、 金 (A u ) 、 珪素 (S i ) 、 炭素 (C ) 、 ホウ素 (B ) などのイオンが挙げられる。 ダイヤモンド粒子の カット面に付与する色の濃度は、 上記イオン加速エネルギーの強度、 イオン の照射量などを変更することによって、 容易に変えることができる。 例えば 、 A uイオンは薄茶色〜茶色〜黒色、 S iイオンは濃緑色〜薄緑色、 Cィォ ンは緑色〜薄緑色、 Bイオンは黄緑色〜薄黄緑色を呈する (後記する実施例 の表— 1参照) 。 本発明に係る製造方法によれば、 ダイヤモンド粒子のカツ ト面にイオンを照射することにより、 照射されたカツト面のみが着色するが 、 カットされたダイヤモンド粒子はカット面が複数あるので、 複雑に反射し て輝くように視認され、 ダイヤモンド粒子はジュエリーとしての商品価値が 大中昌 0。 [0023] 本発明に係る第 2発明によるときは、 ダイヤモンド粒子のカット面を、 文 字またはマークなどの形に加工し穴を穿孔したマスクまたはフォトレジスト によって被覆した後に (後記する図 3、 図 4参照) 、 上記した第 1発明にお けると同様、 ダイヤモンド粒子を保持具によつて保持しイオン加速器のィォ ン照射室に保持し、 イオン加速器によって加速したイオンを、 穿孔した穴か らカット面に照射する。 カット面には、 マスクまたはフォトレジストに穿孔 された穴の文様に倣って文様が施される (後記する図 5、 図 6参照) 。 [0022] Examples of the types of ions that can be irradiated include ions such as gold (A u), silicon (S i), carbon (C), and boron (B). The concentration of the color imparted to the cut surface of the diamond particles can be easily changed by changing the intensity of the ion acceleration energy, the amount of ion irradiation, and the like. For example, Au ions are light brown to brown to black, Si ions are dark green to light green, C ions are green to light green, and B ions are yellow green to light yellow green (in the examples described later). (See Table 1). According to the manufacturing method of the present invention, only the irradiated cut surface is colored by irradiating the cut surface of the diamond particle with ions, but since the cut diamond particle has a plurality of cut surfaces, it is complicated. Reflected and shining, diamond particles have a commercial value as jewelry. [0023] According to the second aspect of the present invention, after the cut surface of the diamond particle is coated with a mask or a photoresist in which holes are perforated in a shape such as letters or marks (FIG. 3, FIG. As in the first invention described above, the diamond particles are held by the holder and held in the ion irradiation chamber of the ion accelerator, and the ions accelerated by the ion accelerator are extracted from the drilled holes. Irradiate the cut surface. The cut surface is patterned according to the pattern of the hole drilled in the mask or photoresist (see Fig. 5 and Fig. 6 below).
[0024] マスクとして使用できる素材は、 ダイヤモンド粒子カット面にイオンを照 射する際の条件で、 軟化、 融解、 気化など変形せず、 2 0 0 °C以上の耐熱性 を有する素材によって構成するのが好ましい。 具体的には、 アルミニウム、 ステンレススチール、 珪素、 マグネシウム、 チタン、 白金などが挙げられる 。 マスクの厚さは、 薄過ぎるとイオン透過を遮蔽することができないので、 イオン透過を遮蔽できる十分な厚さとする。 素材にもよるが、 数十マイクロ メーター以上の厚さが好ましい。  [0024] The material that can be used as a mask is made of a material that does not deform, such as softening, melting, and vaporization, under the conditions when ions are irradiated onto the diamond particle cut surface, and that has a heat resistance of 200 ° C or higher. Is preferred. Specific examples include aluminum, stainless steel, silicon, magnesium, titanium, and platinum. If the mask is too thin, the ion transmission cannot be blocked. Therefore, the mask should be thick enough to block the ion transmission. Although it depends on the material, a thickness of several tens of micrometers or more is preferable.
[0025] マスクに文字またはマークなどの形に加工し、 穴を穿孔する方法としては 、 レーザー加工法、 イオンビーム加工法、 電子ビーム加工法、 切削加工法、 電解加工法、 放電加工法、 エッチング法などが挙げられる。 穴の穿孔方法は 、 マスクの素材、 形成する文様の大小などにより、 加工法を選べばよい。 フ オトレジストも、 イオン照射時の温度に耐えられ、 ダイヤモンド粒子表面に 付着できる性質を有するものであればよい。 このような性質を有するフォト レジスト用の材料は、 フォトレジス卜の露光に採用する光源により異なる。 露光光源が紫外線の場合は、 環化ゴムとビスアジドとを含む紫外線用レジス ト、 ジァゾキノン系化合物を含む紫外線用レジストなどが挙げられる。 露光 光源が電子線の場合は、 ポリメチルメタクリレート (P M M A ) を含む電子 線用レジスト、 ポリへキサフルォロブチルメタクリレート (F B M) を含む 電子線用レジスト、 ポリへキサフルォロプロピルメタクリレート (F P M) を含む電子線用レジストなどが挙げられる。 露光光源が X線の場合は、 P M M Aを含む X線用レジスト、 F B Mを含むX線用レジストなどが挙げられる 。 フォトレジス卜に文字またはマークなどの形に加工し穴を穿孔する方法と しては、 ダイヤモンド粒子にレジストを塗装し、 露光、 現像の工程を経由し て穴を穿孔し、 この穿孔穴からイオン照射 (注入) し、 ダイヤモンド粒子力 ット面に所望の文様を描画する。 [0025] Processed into a shape such as letters or marks on the mask, as a method of drilling holes, laser processing method, ion beam processing method, electron beam processing method, cutting processing method, electrolytic processing method, electric discharge processing method, etching Law. The hole drilling method should be selected according to the mask material and the pattern size to be formed. Any photoresist can be used as long as it can withstand the temperature during ion irradiation and can adhere to the diamond particle surface. Photoresist materials having such properties differ depending on the light source used for exposure of the photoresist. When the exposure light source is ultraviolet, an ultraviolet resist containing cyclized rubber and bisazide, an ultraviolet resist containing a diazoquinone compound, and the like can be mentioned. When the exposure light source is an electron beam, an electron beam resist containing polymethyl methacrylate (PMMA), an electron beam resist containing polyhexafluorobutyl methacrylate (FBM), polyhexafluoropropyl methacrylate (FPM) ) And the like. When the exposure light source is X-ray, X-ray resist containing PMMA, X-ray resist containing FBM, etc. . As a method of punching holes by processing the photoresist 卜 into letters or marks, the resist is coated on the diamond particles, holes are drilled through the exposure and development processes, and ions are formed from these holes. Irradiate (inject) and draw the desired pattern on the diamond particle surface.
[0026] 本発明に係る第 2発明を実施する際に使用できるイオン発生源 (装置) は 、 第 1発明において使用できるものと同種でよく、 イオンの種類、 イオン照 射強度、 イオン照射時の真空度などもまた、 第 1発明において説明したのと 同じであってよい。 マスクまたはフォトレジス卜に穿設した穴を通ったィォ ンによって、 カツト面に形に所望の色に着色された文字またはマークなどの 文様を描画できる。  [0026] The ion generation source (apparatus) that can be used in carrying out the second invention according to the present invention may be the same type as that used in the first invention, and the type of ion, ion irradiation intensity, and ion irradiation The degree of vacuum and the like may also be the same as described in the first invention. Patterns such as letters or marks colored in a desired color on the cut surface can be drawn on the cut surface by means of ions passing through holes formed in the mask or the photoresist.
[0027] 次に、 本発明に係る方法で、 着色されたダイヤモンド粒子の製造方法の概 略を説明する。 図 1は、 本発明に係る製造方法で使用されるイオン加速器の —例の概略図である。 イオン加速器 1は、 セシウムスパッタ型イオン源 2、 引き出し電極 3、 質量分離用電極 4、 タンデム型加速管 5、 エネルギー分離 用電磁石 6、 走査電極 7、 中性■イオン分離用電極 8、 照射室 9、 ダイヤモ ンド粒子固定具 1 0から構成される。  Next, an outline of a method for producing colored diamond particles by the method according to the present invention will be described. FIG. 1 is a schematic view of an example of an ion accelerator used in the manufacturing method according to the present invention. The ion accelerator 1 includes a cesium sputter ion source 2, an extraction electrode 3, a mass separation electrode 4, a tandem acceleration tube 5, an energy separation electromagnet 6, a scanning electrode 7, a neutral ion separation electrode 8, an irradiation chamber 9 It is composed of diamond particle fixtures 10.
[0028] 図 1において、 セシウムスパッタ型イオン源 2から発生されるイオンは、 マイナスイオンであり、 イオン源としては、 上に例示した物質の粉末であつ て、 平均粒径が数十〜数百マイクロメーターのものが使用される。 図 1にお いて、 矢印はイオンの移送 (進行、 輸送) 方向である。 マイナスイオンは、 引き出し電極 3により、 約 2 0 k e Vの加速エネルギーで、 質量分離用電極 4に導かれる。 導かれたマイナスイオンの中に含まれる不純物イオンはここ で分離され、 目的のイオンのみを分離し、 タンデム型加速管 5へ移送される 。 タンデム型加速管 5の中央部がプラスの電極とされており、 マイナスィォ ンは中央部へ加速される。 中央部で印加できる電圧は、 1 0 0 k V〜1 . 7 M Vの範囲である。 タンデム型加速管 5の中央部でプラスイオンに変換され たイオンは、 さらに加速されタンデム型加速管 5の末端方向に移送される。 プラスイオンには価数の異なる複数のイオンが存在することがあり、 それぞ れ加速エネルギーが異なるので、 エネルギー分離用電磁石 6により単一加速 エネルギーに分離され、 走査電極 7により均一なビームになるように走査さ れ、 照射室 9に設置されたダイヤモンド粒子のカツト面に照射される。 In FIG. 1, the ions generated from the cesium sputter ion source 2 are negative ions, and the ion source is a powder of the above-exemplified substance having an average particle size of several tens to several hundreds. A micrometer one is used. In Fig. 1, the arrow indicates the direction of ion transport (travel, transport). Negative ions are introduced to the mass separation electrode 4 by the extraction electrode 3 with an acceleration energy of about 20 keV. Impurity ions contained in the introduced negative ions are separated here, and only the target ions are separated and transferred to the tandem accelerator tube 5. The central part of the tandem accelerator tube 5 is a positive electrode, and the negative ion is accelerated to the central part. The voltage that can be applied at the center is in the range of 100 kV to 1.7 MV. The ions converted into positive ions at the center of the tandem accelerator tube 5 are further accelerated and transferred toward the end of the tandem accelerator tube 5. A positive ion may have multiple ions with different valences. Since the acceleration energy is different, it is separated into single acceleration energy by the energy separating electromagnet 6, scanned to form a uniform beam by the scanning electrode 7, and irradiated to the cutting surface of the diamond particles installed in the irradiation chamber 9. Is done.
[0029] 図 2は、 第 1発明に基づき、 ダイヤモンド粒子を固定具に固定し、 イオン を照射する状態を示す一例の側面略図である。 図 2において、 ブリリアント カットされたダイャモンド粒子 1 2は、 ダイャモンド粒子固定具 1 1の開口 部にテーブル面のみをイオン照射口に露出させて固定されている。 高工ネル ギ一イオン 1 3は、 ダイヤモンド粒子固定具 1 1の開口部からテーブル面に 照射され、 このテーブル面のみを着色する。  FIG. 2 is a schematic side view showing an example of a state in which diamond particles are fixed to a fixture and irradiated with ions based on the first invention. In FIG. 2, the brilliant-cut diamond particle 12 is fixed to the opening of the diamond particle fixture 11 with only the table surface exposed to the ion irradiation port. The high-tech energy ions 13 are irradiated to the table surface from the opening of the diamond particle fixture 11 and only the table surface is colored.
[0030] 図 3は、 第 2発明に基づき、 カット面に着色された文様を有するダイヤモ ンド粒子を製造する際の一例を示す側面略図であり、 図 4は、 第 2発明に基 づき、 カツト面に着色された文様を有するダイヤモンド粒子を製造する際の 他の例を示す側面略図であり、 図 5は、 カット面に絵が描画されたダイヤモ ンド粒子の一例の平面図であり、 図 6は、 カット面に文字が描画されたダイ ャモンド粒子の一例の側面略図である。  FIG. 3 is a schematic side view showing an example of manufacturing diamond particles having a pattern colored on the cut surface based on the second invention, and FIG. 4 is a cut based on the second invention. FIG. 5 is a schematic side view showing another example of producing diamond particles having a colored pattern on the surface, and FIG. 5 is a plan view of an example of diamond particles with a picture drawn on the cut surface. Fig. 5 is a schematic side view of an example of diamond particles in which characters are drawn on a cut surface.
[0031 ] 図 3において、 1 4はダイヤモンド粒子であり、 1 5は高エネルギーィォ ンを遮蔽するマスク、 1 6は高工ネルギ一イオンである。 図 4において 1 7 はダイヤモンド粒子であり、 1 8は高エネルギーイオンを遮蔽するフオトレ ジスト層、 1 9は高エネルギーイオンである。 図 5は、 テーブル面 2 0に形 成されたハート型文様であり、 図 6は、 ガードル部分 2 1に形成された文字 であり、 図 7は図 6の文字部分の拡大図である。  In FIG. 3, 14 is diamond particles, 15 is a mask for shielding high energy ions, and 16 is high-engineered energy ions. In Fig. 4, 17 is diamond particles, 18 is a photoresist layer that shields high-energy ions, and 19 is high-energy ions. 5 is a heart-shaped pattern formed on the table surface 20. FIG. 6 is a character formed on the girdle part 21. FIG. 7 is an enlarged view of the character part of FIG.
実施例  Example
[0032] 以下、 本発明を実施例に基づいて詳細に説明するが、 本発明はその趣旨を 超えない限り、 以下の記載例に限定されるものではない。 なお、 以下に記載 の例において、 イオン照射後の試料の X y色度は、 次のようにして測定した  Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited to the following description examples unless it exceeds the gist. In the example described below, the xy chromaticity of the sample after ion irradiation was measured as follows.
1 . X y色度の測定方法: ダイヤモンド粒子を、 「 J I S 7 8 1 6 ( 1 9 9 1 ) 、 表面色の比較に用いる常用光源蛍光ランプ D 6 5 _形式及び性能」 に準拠した D 65標準光源と色彩輝度計 (コニ力ミノルタ社製、 型式: CS -220) を準備し、 下記実施例によって作成したダイヤモンド粒子の着色 したカット面に、 標準光源からの白色光を当て、 反射光を色彩輝度計によつ て測定した。 同一試料につき 3回測定し、 平均値を算出した。 1. X y chromaticity measurement method: Diamond particles, “JIS 7 8 16 (1 9 9 1), regular light source fluorescent lamp D 6 5 _ used for comparison of surface color _ format and performance” A D 65 standard light source and a color luminance meter (Koni force Minolta Co., Ltd., model: CS-220) are prepared, and white light from the standard light source is applied to the colored cut surface of the diamond particles created in the following example. The reflected light was measured with a color luminance meter. The same sample was measured 3 times and the average value was calculated.
[0033] [実施例 1 ]  [0033] [Example 1]
最大径が約 1 m mサイズのブリリアントカットしたメレ一ダイャモンド粒子 を、 図 2に示したような構造のアルミニウム製の固定具に固定した。 これを 、 図 1に示したイオン加速機の照射室 9に配置した。 図 1のセシウムスパッ タ型イオン源 2に金 (A u) の粉末 (平均粒径:約 600マイクロメータ一 ) を入れ、 加速エネルギーを 3 M e Vの一定として、 イオン照射量を、 1 X 1 012〜 1 X 1 015 i o n s/c m2の範囲とし、 ダイヤモンド粒子の温度を 2 00°C、 真空度を 1 0-4P aとしてイオンを照射し、 イオン照射量と着色の関 係を調べた。 その結果を、 表— 1に記載した。 得られた試料は、 イオン照射 量が少なかったものは薄茶色を呈し、 多かったものは黒色を呈した。 Brilliant-cut melee diamond particles with a maximum diameter of about 1 mm were fixed to an aluminum fixture with the structure shown in Fig. 2. This was placed in the irradiation chamber 9 of the ion accelerator shown in FIG. Put gold (A u) powder (average particle size: approx. 600 micrometers) into the cesium sputter ion source 2 in Fig. 1 and keep the acceleration energy constant at 3 MeV, and the ion irradiation dose is 1 X 1 0 12 and ~ 1 X 1 0 15 ions / cm 2 range, the temperature of the diamond particles 2 00 ° C, irradiated with ions of vacuum degree as 1 0- 4 P a, relationship coloration ion irradiation amount I investigated. The results are shown in Table 1. As for the obtained sample, those with a small amount of ion irradiation exhibited a light brown color, and those with a large amount of ion irradiation exhibited a black color.
[0034] [実施例 2 ]  [0034] [Example 2]
実施例 1に記載の例において、 イオン源に入れる試料を珪素 (S i ) の粉 末 (平均粒径:約 650マイクロメータ一) に変更し、 加速エネルギーを 3 M e Vの一定として、 イオン照射量を、 1 X 1 013〜5 X 1 014 i o n s / c m2の範囲とし、 ダイヤモンド粒子の温度を 200°C、 真空度を 1 0- 4P aとし てイオンを照射し、 イオン照射量と着色の関係を調べた。 その結果を、 表一 1に記載した。 得られた試料は、 イオン照射量が少なかったものは薄緑色を 呈し、 多かったものは濃緑色を呈した。 In the example described in Example 1, the sample put in the ion source is changed to a powder of silicon (S i) (average particle size: about 650 micrometers), and the acceleration energy is constant at 3 MeV. the amount of irradiation, and 1 X 1 0 13 ~5 X 1 0 14 ions / cm 2 range, temperature 200 ° C of the diamond particles, the degree of vacuum in the 1 0- 4 P a is irradiated with ions, ion irradiation The relationship between quantity and color was investigated. The results are shown in Table 1-1. In the obtained sample, those with a small amount of ion irradiation exhibited a light green color, and those with a large amount of ion irradiation exhibited a dark green color.
[0035] [実施例 3 ]  [0035] [Example 3]
実施例 1に記載の例において、 イオン源に入れる試料を炭素 (C) の粉末 (平均粒径: 700マイクロメータ一) に変更し、 加速エネルギーを 3 M e Vの一定として、 イオン照射量を、 1 X 1 013〜5 X 1 014 i o n s / c m2の 範囲で照射し、 ダイヤモンド粒子の温度を 200°C、 真空度を 1 0- 4P aとし てイオンを照射し、 イオン照射量と着色の関係を調べた。 その結果を、 表一 1に記載した。 得られた試料は、 イオン照射量が少なかったものは薄緑色を 呈し、 多かったものは濃緑色を呈した。 In the example described in Example 1, the sample placed in the ion source is changed to carbon (C) powder (average particle size: 700 micrometers), the acceleration energy is constant at 3 MeV, and the ion irradiation dose is , 1 X 10 13 to 5 X 10 14 ions / cm 2 , ion irradiation with diamond particle temperature of 200 ° C and vacuum of 10- 4 Pa, ion irradiation dose The relationship between coloration and color was investigated. The results are shown in Table 1. It was described in 1. In the obtained sample, those with a small amount of ion irradiation exhibited a light green color, and those with a large amount of ion irradiation exhibited a dark green color.
[0036] [実施例 4 ]  [Example 4]
実施例 1に記載の例において、 イオン源に入れる試料をホウ素 (B ) の粉 末 (平均粒径: 6 5 0マイクロメータ一) に変更し、 加速エネルギーを 3 M e Vの一定として、 イオン照射量を、 1 X 1 0 13〜5 X 1 0 14 i o n s / c m2の 範囲で照射し、 ダイヤモンド粒子の温度を 2 0 0 °C、 真空度を 1 0 - 4 P aとし てイオンを照射し、 イオン照射量と着色の関係を調べた。 その結果を、 表一 1に記載した。 得られた試料は、 イオン照射量が少なかったものは薄黄緑色 を呈し、 多かったものは黄緑色を呈した。 In the example described in Example 1, the sample put into the ion source was changed to a powder of boron (B) (average particle size: 1650 micrometers), and the acceleration energy was set to be constant 3 MeV. the amount of irradiation was irradiated in the range of 1 X 1 0 13 ~5 X 1 0 14 ions / cm 2, the temperature of the diamond particles 2 0 0 ° C, a vacuum degree of 1 0 - set to 4 P a ion irradiation Then, the relationship between the ion irradiation amount and coloring was investigated. The results are shown in Table 1-1. As for the obtained sample, those with a small amount of ion irradiation exhibited a light yellowish green color, and those with a large amount of ion irradiation exhibited a yellowish green color.
[0037] [表 1 ]  [0037] [Table 1]
表一 1  Table 1
Figure imgf000016_0001
Figure imgf000016_0001
[0038] 表一 1より、 次のことが明らかとなる。 1 . イオン発生源が同じであっても、 イオン照射量を選ぶ (変える) ことに より、 得られる製品の色を変更することができる。 [0038] From Table 1, the following becomes clear. 1. Even if the ion source is the same, the color of the resulting product can be changed by selecting (changing) the ion dose.
2 . イオン発生源が同じであっても、 イオン照射量を多くすると、 濃色にな る。  2. Even if the ion source is the same, it becomes darker when the ion dose is increased.
産業上の利用可能性 Industrial applicability
本発明に係る製造方法によれば、 商品価値の低いダイヤモンド粒子の力ッ ト面を着色し、 ジュエリーとしての商品価値の高い着色ダイヤモンド粒子が 製造でき、 ダイヤモンド粒子のカツト面に任意の文様の描画が可能となり、 従来にないォリジナルデザィンを付した商品価値の高いジュエリーを製造で きる。 また、 本発明に係る製造方法によれば、 ダイヤモンド粒子のカット面 に数字や文字がなどの文様が容易に描画できるので、 ダイヤモンド粒子に鑑 定書番号、 メーカ一ロゴ、 メーカ一マークの描画が可能であり、 これら描画 によって容易に偽ブランドと峻別できるので、 ダイヤモンド粒子に対する顧 客の信頼を高めることができる。  According to the production method of the present invention, colored diamond particles with low commercial value can be colored to produce colored diamond particles with high commercial value as jewelry, and arbitrary patterns can be drawn on the cut surface of diamond particles. This makes it possible to manufacture jewelry with a high commercial value with an original design. In addition, according to the manufacturing method of the present invention, patterns such as numbers and letters can be easily drawn on the cut surface of the diamond particle, so that the identification number, the manufacturer's logo, and the manufacturer's mark can be drawn on the diamond particle. It is possible and can be easily distinguished from fake brands by these drawings, which can increase customer confidence in diamond particles.

Claims

請求の範囲 The scope of the claims
[1 ] カット面を着色したダイヤモンド粒子を製造する方法において、 着色しよ うとするダイヤモンド粒子のカット面に、 常温〜約 2 0 0 °Cの温度範囲、 1 0 -3〜 1 0 -4 P aの真空雰囲気下、 イオン加速器によって、 加速エネルギーを "!〜 5 M e Vの範囲、 イオンの照射量を 1 X 1 0 12〜 1 X 1 0 15 i o n s / c m2 の範囲の高エネルギーイオンを照射することを特徴とする、 カツト面を着色 したダイヤモンド粒子の製造方法。 [1] A method for producing a colored diamond particles cut surface, the cut surface of the colored to Utosuru diamond particles, from room temperature to about 2 0 0 ° temperature range of C, 1 0 - 3 ~ 1 0 - 4 P In the vacuum atmosphere of a, by using an ion accelerator, high energy ions with acceleration energy in the range of "! ~ 5 MeV and ion irradiation in the range of 1 X 10 12 ~ 1 X 10 15 ions / cm 2 Irradiating, a method for producing diamond particles colored on a cut surface.
[2] 照射するイオンの種類を変え、 イオンの照射量を変えることにより、 着色 する際の色の種類、 着色した後の色の濃淡を変える、 請求項 1に記載のカツ ト面を着色したダイヤモンド粒子の製造方法。  [2] The cut surface according to claim 1 is colored by changing the type of ion to be irradiated and changing the type of color at the time of coloring and the shade of the color after coloring by changing the ion irradiation amount. A method for producing diamond particles.
[3] カット面に文様を描画したダイヤモンド粒子を製造する方法において、 ダ ィャモンド粒子のカツト面を、 文字またはマークなどの形に加工し穴を穿孔 したマスクまたはフォトレジストによるマスクによって被覆した後に、 常温 〜約 2 0 0 °Cの温度範囲、 1 0 -3〜 1 0 -4 P aの真空雰囲気下、 穿孔穴から、 イオン加速器によって加速エネルギーを 1〜5 M e Vの範囲、 イオンの照射量 を 1 X 1 0 12〜 1 X 1 0 15 i o n s / c m2の範囲の高工ネルギ一イオンを照射 することを特徴とする、 カツト面に文様を描画したダイヤモンド粒子の製造 方法。 [3] In the method of manufacturing diamond particles with a pattern drawn on the cut surface, after the diamond particle cut surface is covered with a mask or photoresist mask that has holes or holes formed into letters or marks, temperature range of room temperature to about 2 0 0 ° C, 1 0 - 3 ~ 1 0 - 4 vacuum atmosphere of P a, the drilling hole, the range of 1 to 5 M e V acceleration energy by ion accelerator, ion irradiation A method for producing diamond particles having a pattern drawn on a cut surface, characterized by irradiating high-energy energy ions in a range of 1 X 10 12 to 1 X 10 15 ions / cm 2 .
[4] 照射するイオンの種類を変え、 イオンの照射量を変えることにより、 描画 する文様の色の種類、 描画した後の文様の濃淡を変える、 請求項 3に記載の カツト面に文様を描画したダイヤモンド粒子の製造方法。  [4] By changing the type of ions to be irradiated and changing the amount of ion irradiation, the type of pattern color to be drawn and the density of the pattern after drawing are changed. The pattern is drawn on the cut surface according to claim 3. Process for producing diamond particles.
PCT/JP2007/001085 2006-10-05 2007-10-04 Production method of diamond particles having colored cut faces, and production method of diamond particles having pattern-drawn cut faces WO2008044333A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-274408 2006-10-05
JP2006274408A JP5177472B2 (en) 2006-10-05 2006-10-05 Method for producing diamond particles having a colored cut surface, and method for producing diamond particles having a pattern drawn on the cut surface

Publications (1)

Publication Number Publication Date
WO2008044333A1 true WO2008044333A1 (en) 2008-04-17

Family

ID=39282545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/001085 WO2008044333A1 (en) 2006-10-05 2007-10-04 Production method of diamond particles having colored cut faces, and production method of diamond particles having pattern-drawn cut faces

Country Status (2)

Country Link
JP (1) JP5177472B2 (en)
WO (1) WO2008044333A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2789004A1 (en) * 2013-02-12 2014-10-15 Apple Inc. Multi-step ion implantation
US10280504B2 (en) 2015-09-25 2019-05-07 Apple Inc. Ion-implanted, anti-reflective layer formed within sapphire material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0848597A (en) * 1994-08-09 1996-02-20 Sumitomo Electric Ind Ltd Marked diamond and its formation
JP2005247686A (en) * 2004-03-04 2005-09-15 Korea Atom Energ Res Inst Method for manufacturing colored diamond by ion injection and heat treatment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0848597A (en) * 1994-08-09 1996-02-20 Sumitomo Electric Ind Ltd Marked diamond and its formation
JP2005247686A (en) * 2004-03-04 2005-09-15 Korea Atom Energ Res Inst Method for manufacturing colored diamond by ion injection and heat treatment

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HICKEY D.P. ET AL.: "Cross-sectional transmission electron microscopy method and studies of implant damage in single crystal diamond", JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY A, vol. 24, no. 4, July 2006 (2006-07-01), pages 1302 - 1307, XP012091074 *
VOGEL T. ET AL.: "Highly effective p-type doping of diamond by MeV-ion implantation of boron", DIAMOND & RELATED MATERIALS, vol. 13, 2004, pages 1822 - 1825, XP004544814 *

Also Published As

Publication number Publication date
JP2008094634A (en) 2008-04-24
JP5177472B2 (en) 2013-04-03

Similar Documents

Publication Publication Date Title
JP5463352B2 (en) Method for producing color-adjusted sapphire
JP4413157B2 (en) Method for producing colored diamond by ion implantation and heat treatment
JP5999668B2 (en) Multi-step ion implantation and ion implantation system
JP2016511214A (en) Sapphire property change through ion implantation
Kanasaki et al. The precise energy spectra measurement of laser-accelerated MeV/n-class high-Z ions and protons using CR-39 detectors
WO2008044333A1 (en) Production method of diamond particles having colored cut faces, and production method of diamond particles having pattern-drawn cut faces
Alimov et al. Deuterium release from deuterium plasma-exposed neutron-irradiated and non-neutron-irradiated tungsten samples during annealing
JP2020188015A (en) Injecting method of ions on surface of object to be processed and facility for implementing the same
US20220325404A1 (en) Method for colouring a metal and coloured metal
KR100940357B1 (en) Device producing colored gemstone including the device for producing ions and method for coloring gemstone
US10514361B2 (en) Tattletale ion-implanted nanoparticles
SU597417A1 (en) Method of separating minerals according to optical properties
KR101010929B1 (en) Preparation method of yellowish sapphire by electron beam
RU2293148C2 (en) Diamond working method
Ruberto Elemental maps with X-Ray Fluorescence (XRF)
Boonruang et al. Synchrotron radiation study on Thai reddish glass
JP4139894B2 (en) Crystal production method and pattern formation method
RU2434977C1 (en) Procedure for production of diamonds of fantasy yellow and black colour
JP5004097B2 (en) Crystal defect recovery method, crystal body preparation method, pattern formation method, X-ray dose detector
Hashimoto et al. Annealing behavior of krypton-implanted aluminum: II. SEM study on surface structure during emission of krypton atoms
KR101116178B1 (en) A method of forming grids on sheet metal using ion beam irradiation
SU638163A1 (en) Method of making moessbauer sources
RU2211760C2 (en) Device for processing of diamonds
Pászti Surface deformations caused by high-dose high-energy Helium, Neon and Argon Ions
JP2005219944A (en) Method for producing optical fiber having a plurality of cores and method for producing columnar glass body usable in producing the optical fiber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07827864

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07827864

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)