JP4139894B2 - Crystal production method and pattern formation method - Google Patents

Crystal production method and pattern formation method Download PDF

Info

Publication number
JP4139894B2
JP4139894B2 JP2003328437A JP2003328437A JP4139894B2 JP 4139894 B2 JP4139894 B2 JP 4139894B2 JP 2003328437 A JP2003328437 A JP 2003328437A JP 2003328437 A JP2003328437 A JP 2003328437A JP 4139894 B2 JP4139894 B2 JP 4139894B2
Authority
JP
Japan
Prior art keywords
crystal
pattern
defect
substrate
ray irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003328437A
Other languages
Japanese (ja)
Other versions
JP2005089273A (en
Inventor
久人 小木曽
禅 中野
純 明渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003328437A priority Critical patent/JP4139894B2/en
Publication of JP2005089273A publication Critical patent/JP2005089273A/en
Application granted granted Critical
Publication of JP4139894B2 publication Critical patent/JP4139894B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

この発明は、非金属の結晶体の欠陥を回復する方法、欠陥部分と欠陥が回復された部分とを有する結晶体の作製方法、パターン形成方法、およびX線量の検出体に関する。   The present invention relates to a method for recovering a defect in a non-metallic crystal, a method for manufacturing a crystal having a defective portion and a portion in which a defect has been recovered, a pattern forming method, and an X-ray dose detector.

結晶の欠陥が無機材料の物性(光学特性や電気特性等)に与える影響については、古くから議論されており、結晶欠陥の制御は無機材料の物性を制御するために重要である。特に、人工格子材料やナノ構造材料は、幾何学的構造の僅かな変化によって物性が大きく変化する。例えば、最近、電界放出管等への応用が注目されているカーボンナノチューブ(CNT)の場合も、物性の制御のために結晶欠陥を制御することが求められている。   The influence of crystal defects on the physical properties (optical properties, electrical properties, etc.) of inorganic materials has been discussed for a long time, and control of crystal defects is important for controlling the physical properties of inorganic materials. In particular, the properties of artificial lattice materials and nanostructured materials change greatly due to slight changes in geometric structure. For example, recently, in the case of carbon nanotubes (CNT) that are attracting attention for application to field emission tubes and the like, it is required to control crystal defects in order to control physical properties.

結晶欠陥の制御方法の従来例としては、加熱処理が挙げられる。例えば、下記の特許文献1には、シリコン基板にイオン注入法で不純物をドーピングしたことにより生じた格子欠陥を、熱処理により回復することが記載されている。
また、下記の非特許文献1には、ドーピングされたGaAsのキャリア移動度がレーザー照射により回復された例について記載されている。
さらに、NECのMiyamotoらのグループは、光や電子励起による結晶欠陥の回復をコンピュータシミュレーションによって実証する研究を進めており(非特許文献2参照)、この研究は世界的に注目を集めている。
特開平5−251378号公報([0008]〜[0009]) D. Loridant-Bernard, S.Meziere, M.Constant, N.Dupuy, B.Sombert, and J.Chevaller, "Appl. Phys. Lett." 1998, Vol.73, p.644 Y. Miyamoto, O.Sugino, and Y. Mochizuki, "Appl. Phys. Lett." 8 Nov. 1999, Vol.75, No.19, p.2915-2917
As a conventional example of a method for controlling crystal defects, heat treatment can be mentioned. For example, Patent Document 1 below describes that lattice defects generated by doping impurities into a silicon substrate by an ion implantation method are recovered by heat treatment.
Non-Patent Document 1 below describes an example in which the carrier mobility of doped GaAs is recovered by laser irradiation.
Furthermore, the group of Miyamoto et al. Of NEC is proceeding with research to prove the recovery of crystal defects by light and electronic excitation by computer simulation (see Non-Patent Document 2), and this research has attracted worldwide attention.
JP-A-5-251378 ([0008] to [0009]) D. Loridant-Bernard, S. Meziere, M. Constant, N. Dupuy, B. Sombert, and J. Chevaller, "Appl. Phys. Lett." 1998, Vol.73, p.644 Y. Miyamoto, O. Sugino, and Y. Mochizuki, "Appl. Phys. Lett." 8 Nov. 1999, Vol.75, No.19, p.2915-2917

しかしながら、人工格子材料やナノ構造材料の結晶欠陥を回復するために熱処理法を採用すると、温度上昇に伴って幾何学的構造が大幅に変化して分解する恐れがある。また、光や電子励起による結晶欠陥の回復方法については、未だ研究段階であって、具体的な手法が確立されていない。
本発明の課題は、温度上昇を伴わずに結晶欠陥を回復できる方法と非金属の結晶欠陥を容易に制御できる方法を提供することにある。
However, if a heat treatment method is employed to recover crystal defects in artificial lattice materials and nanostructured materials, the geometric structure may change significantly as the temperature rises, causing decomposition. In addition, the crystal defect recovery method by light or electronic excitation is still in the research stage, and no specific method has been established.
An object of the present invention is to provide a method capable of recovering crystal defects without increasing the temperature and a method capable of easily controlling non-metallic crystal defects.

上記課題を解決するために、本発明の結晶欠陥の回復方法は、格子欠陥を有する非金属の結晶体に対してX線照射を行うことにより、前記欠陥を回復させることを特徴とする。
従来から知られているように、格子欠陥の無い、ほぼ完全な結晶体にX線照射を行うと、この結晶体に欠陥が導入される。本発明者は、このように欠陥を導入する作用が有るX線照射を、過剰な欠陥を有する非金属の結晶体に対して行うと、欠陥が回復することを見出した。
In order to solve the above problems, the crystal defect recovery method of the present invention is characterized in that the defect is recovered by performing X-ray irradiation on a nonmetallic crystal body having a lattice defect.
As conventionally known, when an almost complete crystal body having no lattice defects is irradiated with X-rays, defects are introduced into the crystal body. The present inventor has found that defects are recovered when X-ray irradiation having an effect of introducing defects is performed on a non-metallic crystal body having excessive defects.

本発明はまた、欠陥部分と欠陥が回復された部分とを有する結晶体を作製する方法であって、非金属の結晶体にイオン注入を行うことで欠陥を導入する工程と、前記工程で導入された欠陥をX線照射により回復する工程と、を備えたことを特徴とする結晶体の作製方
法を提供する。
本発明はまた、非金属の結晶体からなる基材の表面の所定領域にイオン注入を行った後に、前記所定領域に部分的にX線を照射して光吸収波長を変化させることにより、前記表面に光吸収波長の違いで識別されるパターンを形成する方法を提供する。
本発明はまた、非金属の結晶体からなる基材の表面にイオン注入による格子欠陥が導入されていることを特徴とするX線量の検出体を提供する。
The present invention is also a method of manufacturing a crystal body having a defective portion and a portion in which the defect has been recovered, the step of introducing a defect by ion implantation into a non-metallic crystal body, And a step of recovering the formed defect by X-ray irradiation.
In the present invention, after ion implantation is performed on a predetermined region of the surface of the base material made of a nonmetallic crystal, the predetermined region is partially irradiated with X-rays to change the light absorption wavelength. A method for forming a pattern identified by a difference in light absorption wavelength on a surface is provided.
The present invention also provides an X-ray dose detector characterized in that lattice defects due to ion implantation are introduced into the surface of a substrate made of a non-metallic crystal.

本発明の「結晶欠陥の回復方法」によれば、格子欠陥を有する非金属の結晶欠陥の回復を温度上昇を伴わずに行うことができる。
本発明の「結晶体の作製方法」によれば、イオン注入工程とX線照射工程とにより、欠陥部分と欠陥が回復された部分とを有する結晶体を容易に作製することができる。すなわち、非金属の結晶欠陥を容易に制御することができる。
本発明の「結晶体の作製方法」によれば、非金属の結晶体からなる基材の表面の所定領域にイオン注入を行った後に、前記所定領域に部分的にX線を照射して光吸収波長を変化させることにより、前記表面に光吸収波長の違いで識別されるパターンを形成することができる。
熱処理法では、微細な部分のみを温度上昇させることが困難であるが、イオン注入およびX線照射は微細な部分のみに行うことができるため、本発明の「パターン形成方法」によれば、微細なパターンを形成することができる。
According to the “crystal defect recovery method” of the present invention, it is possible to recover a nonmetallic crystal defect having a lattice defect without increasing the temperature.
According to the “crystal production method” of the present invention, a crystal having a defective portion and a portion in which a defect has been recovered can be easily produced by an ion implantation step and an X-ray irradiation step. That is, non-metallic crystal defects can be easily controlled.
According to the “crystal production method” of the present invention, after ion implantation is performed on a predetermined region on the surface of a substrate made of a non-metallic crystal, the predetermined region is partially irradiated with X-rays to generate light. By changing the absorption wavelength, a pattern identified by the difference in the light absorption wavelength can be formed on the surface.
In the heat treatment method, it is difficult to raise the temperature of only a fine part, but since ion implantation and X-ray irradiation can be performed only on a fine part, according to the “pattern formation method” of the present invention, Various patterns can be formed.

以下、本発明の実施形態について説明する。
図1を用いて、本発明の「パターン形成方法」の一実施形態を説明する。
先ず、図1(a)に示すように、酸化マグネシウム単結晶(非金属の結晶体)からなる基板(基材)1を用意する。この基板1は透明である。この基板1の表面の中央部分(所定領域)12に、イオンビーム走査法によりイオン注入を行った。これにより、この部分が着色領域2となった。図1(b)はこの状態を示す。イオン注入は、金(Au)イオンを用い、加速電圧:3.1MeV、注入量:2×1016ion/cm2の条件で行った。
Hereinafter, embodiments of the present invention will be described.
An embodiment of the “pattern formation method” of the present invention will be described with reference to FIG.
First, as shown in FIG. 1A, a substrate (base material) 1 made of a magnesium oxide single crystal (non-metallic crystal) is prepared. This substrate 1 is transparent. Ions were implanted into the central portion (predetermined region) 12 of the surface of the substrate 1 by an ion beam scanning method. Thereby, this portion became the colored region 2. FIG. 1B shows this state. Ion implantation was performed using gold (Au) ions under the conditions of acceleration voltage: 3.1 MeV and implantation amount: 2 × 10 16 ions / cm 2 .

次に、この基板1の着色領域2が形成された面に、中央に円形の孔を開けたマスクを載せた状態で、X線を照射した。X線照射は、30kVで加速した電子ビーム120mAをロジウムターゲットに衝突させることよって発生させたX線を用い、ターゲットから25mm離れた位置に基板1を配置して、15分間行った。その結果、図1(c)に示すように、着色領域2のX線が照射された円形部分の色が薄くなって、円形のパターン3が形成された。   Next, X-rays were irradiated on the surface of the substrate 1 on which the colored region 2 was formed with a mask having a circular hole in the center. X-ray irradiation was performed for 15 minutes using the X-ray generated by colliding an electron beam 120 mA accelerated at 30 kV with a rhodium target, placing the substrate 1 at a position 25 mm away from the target. As a result, as shown in FIG. 1C, the color of the circular portion irradiated with the X-rays of the colored region 2 was lightened, and a circular pattern 3 was formed.

すなわち、この実施形態のパターン形成方法では、基板が透明であり、イオン注入により基板の表面の所定領域が着色領域となっており、この着色領域に部分的にX線を照射することで、その部分の色が着色領域より薄くなっている。
ここで、パターン3の部分と、着色領域2の部分(パターン3から外れる部分)と、基板1の部分(着色領域2から外れる部分)について、光吸収スペクトルを測定した。その結果を図2に示す。図2のチャートから分かるように、波長575nm付近に中心を有するピークがX線照射により小さくなっている。
That is, in the pattern forming method of this embodiment, the substrate is transparent, and a predetermined region on the surface of the substrate is a colored region by ion implantation, and by partially irradiating the colored region with X-rays, The color of the part is lighter than the colored area.
Here, light absorption spectra were measured for the pattern 3 portion, the colored region 2 portion (the portion deviating from the pattern 3), and the substrate 1 portion (the portion deviating from the colored region 2). The result is shown in FIG. As can be seen from the chart of FIG. 2, a peak having a center near the wavelength of 575 nm is reduced by X-ray irradiation.

また、X線照射前の着色領域2の中央部分(X線照射によりパターン3となる部分)と、X線照射後のパターン3の部分について、断面をTEM(透過型電子顕微鏡)で観察した写真を図3および図4に示す。図3がX線照射前の写真であり、図4がX線照射後の写真である。これらの写真は、基板1の表面(パターン3の形成面)から深さ方向の所定位置(2.5mm程度)までの部分の断面写真であり、上側が基板1の表面側である。   Moreover, the photograph which observed the cross section about the center part (part which becomes the pattern 3 by X-ray irradiation) of the coloring area | region 2 before X-ray irradiation, and the part of the pattern 3 after X-ray irradiation by TEM (transmission electron microscope). Is shown in FIG. 3 and FIG. FIG. 3 is a photograph before X-ray irradiation, and FIG. 4 is a photograph after X-ray irradiation. These photographs are cross-sectional photographs of a portion from the surface of the substrate 1 (formation surface of the pattern 3) to a predetermined position in the depth direction (about 2.5 mm), and the upper side is the surface side of the substrate 1.

図3の写真と図4の写真を比較すると、図3の方は、基板の厚さ方向で複数層に分かれていて、表面側ほど粗い粒子状に写っているのに対して、図4の方は均一であることが分かる。すなわち、X線照射前の着色領域2を示す図3の写真では、格子欠陥が認められ、X線照射後のパターン部3を示す図4の写真では、格子欠陥の回復が認められる。
また、エネルギー分散型蛍光X線分析装置(EDX)により、各断面を深さ方向に元素分析した。その結果を図5および図6に示す。図5が、X線照射前の着色領域2に相当する図3の点A1〜A12での分析結果を示す。図6が、X線照射後のパターン部3に相当する図4の点B1〜B12での分析結果を示す。
Comparing the photograph of FIG. 3 and the photograph of FIG. 4, FIG. 3 is divided into a plurality of layers in the thickness direction of the substrate and appears to be coarser particles on the surface side, whereas FIG. It can be seen that the direction is uniform. That is, in the photograph of FIG. 3 showing the colored region 2 before X-ray irradiation, lattice defects are recognized, and in the photograph of FIG. 4 showing the pattern portion 3 after X-ray irradiation, recovery of the lattice defects is recognized.
Each cross section was subjected to elemental analysis in the depth direction by an energy dispersive X-ray fluorescence analyzer (EDX). The results are shown in FIG. 5 and FIG. FIG. 5 shows the analysis results at points A1 to A12 in FIG. 3 corresponding to the colored region 2 before X-ray irradiation. FIG. 6 shows the analysis results at points B1 to B12 in FIG. 4 corresponding to the pattern portion 3 after X-ray irradiation.

この結果から、MgO単結晶からなる基板1に金をイオン注入することにより、表面側に金の微粒子が集中的に形成され、この金の微粒子がX線照射により基板1全体に拡散されたと考えられる。
以上のことから、MgO単結晶からなる透明な基板に金をイオン注入することにより、格子欠陥が形成されて、その部分が吸収波長575nm付近の色に着色され、その部分にX線を照射することにより、格子欠陥の回復と、これに伴う色の変化、イオン注入された原子の拡散が生じることが分かった。
From this result, it is considered that gold fine particles are formed intensively on the surface side by ion implantation of gold into the substrate 1 made of MgO single crystal, and the gold fine particles are diffused throughout the substrate 1 by X-ray irradiation. It is done.
From the above, by implanting gold ions into a transparent substrate made of MgO single crystal, lattice defects are formed, and the portion is colored in a color near the absorption wavelength of 575 nm, and the portion is irradiated with X-rays. As a result, it was found that recovery of lattice defects, color change accompanying this, and diffusion of ion-implanted atoms occur.

したがって、前述のように、イオン注入された単結晶に対して、形成するパターンに応じた部分にだけX線を照射することにより、光吸収波長の違いで識別される微細なパターンを形成することができる。また、形成されたパターン以外の部分に再度X線を照射すれば、この部分の光吸収波長(色)が形成されたパターンと同じになるため、形成されたパターンを消すことができる。
さらに、非金属の結晶体からなる基材の表面にイオン注入による格子欠陥が導入されていると、この格子欠陥の光吸収波長(基材表面の色)がX線照射によって変化するため、この基材はX線量の検出体として使用することができる。例えば、前記基材の表面にイオン注入を行って着色されたものは色の変化により、前記基材の表面にイオン注入を行っても人間の目で透明に見えるものは色が着くことにより、X線量が検出できる。
Therefore, as described above, a fine pattern identified by the difference in light absorption wavelength can be formed by irradiating the ion-implanted single crystal only with a portion corresponding to the pattern to be formed. Can do. Further, if the portion other than the formed pattern is irradiated again with X-rays, the light absorption wavelength (color) of this portion becomes the same as the formed pattern, so that the formed pattern can be erased.
Furthermore, if lattice defects due to ion implantation are introduced into the surface of a base material made of a non-metallic crystal, the light absorption wavelength (color of the base material surface) of the lattice defects changes due to X-ray irradiation. The substrate can be used as an X-ray dose detector. For example, those colored by ion implantation on the surface of the base material change in color, and those that appear transparent to the human eye even when ion implantation is performed on the surface of the base material are colored. X-ray dose can be detected.

なお、この実施形態では、図1(c)に示す状態の基板1が、「欠陥部分と欠陥が回復された部分とを有する結晶体」に相当する。パターン3が「欠陥が回復された部分」に相当し、着色領域2のパターン3以外の部分が「欠陥部分」に相当する。
また、この実施形態ではMgO単結晶からなる基板を「基材」として用いているが、他の非金属の結晶体(多結晶を含む)からなるものであってもよいし、形状も板状に限定されない。
In this embodiment, the substrate 1 in the state shown in FIG. 1C corresponds to “a crystal body having a defective portion and a portion in which the defect has been recovered”. The pattern 3 corresponds to the “part where the defect has been recovered”, and the part other than the pattern 3 in the colored region 2 corresponds to the “defect part”.
In this embodiment, the substrate made of MgO single crystal is used as the “base material”, but it may be made of other non-metallic crystal (including polycrystal), and the shape is also plate-like. It is not limited to.

結晶材料の格子欠陥は、電気的特性および光学的特性に大きな影響を及ぼすので、本発明の結晶欠陥の回復方法は、カーボンナノチューブなどを利用したディスプレー装置、高速スイッチィング素子等の電子デバイスの性能向上に役立つ。また、本発明のパターン形成方法は、高密度光メモリー、光ディスク、光学素子への応用等、情報、通信産業での利用が考えられる。   Since lattice defects of crystal materials have a great influence on electrical and optical characteristics, the crystal defect recovery method of the present invention is based on the performance of electronic devices such as display devices using carbon nanotubes, high-speed switching elements, etc. Helps improve. The pattern forming method of the present invention can be used in the information and communication industries, such as application to high-density optical memories, optical disks, and optical elements.

本発明の「パターン形成方法」の一実施形態を説明する平面図である。It is a top view explaining one Embodiment of the "pattern formation method" of this invention. パターン3の部分と、着色領域2の部分(パターン3から外れる部分)と、基板1の部分(着色領域2から外れる部分)について測定した、光吸収スペクトルを示すチャートである。It is a chart which shows the light absorption spectrum measured about the part of the pattern 3, the part of the coloring area | region 2 (part which remove | deviates from the pattern 3), and the part of the board | substrate 1 (part which remove | deviates from the coloring area | region 2). X線照射前の着色領域2の中央部分(X線照射によりパターン3となる部分)の断面を示す透過型電子顕微鏡写真である。It is a transmission electron micrograph which shows the cross section of the center part (part which becomes the pattern 3 by X-ray irradiation) of the coloring area | region 2 before X-ray irradiation. X線照射後の着色領域2の中央部分(パターン3)の断面を示す透過型電子顕微鏡写真である。It is a transmission electron micrograph which shows the cross section of the center part (pattern 3) of the coloring area | region 2 after X-ray irradiation. エネルギー分散型蛍光X線分析装置(EDX)により、各断面を深さ方向に元素分析した(図3の点A1〜A12での)結果を示すグラフである。It is a graph which shows the result (element A1-A12 of FIG. 3) of the elemental analysis of each cross section in the depth direction by the energy dispersive X-ray fluorescence analyzer (EDX). エネルギー分散型蛍光X線分析装置(EDX)により、各断面を深さ方向に元素分析した(図4の点B1〜B12での)結果を示すグラフである。It is a graph which shows the result (element B1-B12 of FIG. 4) of the elemental analysis of each cross section in the depth direction by the energy dispersive X-ray fluorescence spectrometer (EDX).

符号の説明Explanation of symbols

1 基板(基材)
12 基板の表面の中央部分(所定領域)
2 着色領域
3 パターン
1 Substrate (base material)
12 Central part of substrate surface (predetermined area)
2 Coloring area 3 Pattern

Claims (2)

欠陥部分と欠陥が回復された部分とを有する結晶体を作製する方法であって、非金属の結晶体にイオン注入を行うことで欠陥を導入する工程と、前記工程で導入された欠陥をX線照射により回復する工程と、を備えたことを特徴とする結晶体の作製方法。   A method of manufacturing a crystal body having a defect portion and a portion in which the defect has been recovered, the step of introducing a defect by ion implantation into a non-metallic crystal body, and the step of introducing the defect introduced in the step And a step of recovering by irradiation with a beam. 非金属の結晶体からなる基材の表面の所定領域にイオン注入を行った後に、前記所定領域に部分的にX線を照射して光吸収波長を変化させることにより、前記表面に光吸収波長の違いで識別されるパターンを形成する方法。   After ion implantation is performed on a predetermined region of the surface of the substrate made of a non-metallic crystal, the light absorption wavelength is changed on the surface by changing the light absorption wavelength by partially irradiating the predetermined region with X-rays. A method of forming a pattern that is identified by the difference.
JP2003328437A 2003-09-19 2003-09-19 Crystal production method and pattern formation method Expired - Lifetime JP4139894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003328437A JP4139894B2 (en) 2003-09-19 2003-09-19 Crystal production method and pattern formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003328437A JP4139894B2 (en) 2003-09-19 2003-09-19 Crystal production method and pattern formation method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008071133A Division JP5004097B2 (en) 2008-03-19 2008-03-19 Crystal defect recovery method, crystal body preparation method, pattern formation method, X-ray dose detector

Publications (2)

Publication Number Publication Date
JP2005089273A JP2005089273A (en) 2005-04-07
JP4139894B2 true JP4139894B2 (en) 2008-08-27

Family

ID=34458011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003328437A Expired - Lifetime JP4139894B2 (en) 2003-09-19 2003-09-19 Crystal production method and pattern formation method

Country Status (1)

Country Link
JP (1) JP4139894B2 (en)

Also Published As

Publication number Publication date
JP2005089273A (en) 2005-04-07

Similar Documents

Publication Publication Date Title
Avasthi et al. Swift heavy ions for materials engineering and nanostructuring
US7122837B2 (en) Structures formed in diamond
Breese et al. Hole transport through proton-irradiated p-type silicon wafers during electrochemical anodization
CN113035676A (en) Energy filter element for an ion implantation system for producing wafers
GB2288062A (en) Forming luminescent silicon material and devices
Borschel et al. Alignment of semiconductor nanowires using ion beams
JP4755643B2 (en) Mask forming method and three-dimensional fine processing method
Wang et al. Ordered coalescence of Si nanocrystals in SiO 2
JP4139894B2 (en) Crystal production method and pattern formation method
EP2808118B1 (en) Method of marking material and material marked according to same method
JP5004097B2 (en) Crystal defect recovery method, crystal body preparation method, pattern formation method, X-ray dose detector
US6344082B1 (en) Fabrication method of Si nanocrystals
Kalish The role of ion-implantation in the realization of spintronic devices in diamond
JP2007165678A (en) Method for manufacturing semiconductor device, and device
US20050181624A1 (en) Method of forming quantum dots at predetermined positions on a substrate
Gaevski et al. Two-dimensional photonic crystal fabrication using fullerene films
KR102680664B1 (en) Manufacturing method of graphene quantum dot pattern using photolithography and ion beam irradiation technology
JP2013038193A (en) Method for introducing isoelectronic center into silicon thin flim by ion implantation, and silicon light-emitting device
JP6757953B2 (en) Surface processing method, structure manufacturing method
Ross § et al. In-situ observations of self-assembled island nucleation on patterned substrates
Bhowmick et al. Green to deep-red emissive carbon dot formation by C+ ion implantation on nitrogen beam created self-masked nano-template
Herzig et al. Color center formation by deterministic single ion implantation
JP2006237179A (en) Method of forming ohmic joint of diamond
KR20050104770A (en) Semiconductor nano structure and method of forming the same
KR20230089712A (en) Manufacturing Method for Nano-Hole Shadow Mask and Manufacturing Method for Manufacturing Single Color Center Array Using the Same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4139894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term