JP2006237179A - Method of forming ohmic joint of diamond - Google Patents
Method of forming ohmic joint of diamond Download PDFInfo
- Publication number
- JP2006237179A JP2006237179A JP2005048140A JP2005048140A JP2006237179A JP 2006237179 A JP2006237179 A JP 2006237179A JP 2005048140 A JP2005048140 A JP 2005048140A JP 2005048140 A JP2005048140 A JP 2005048140A JP 2006237179 A JP2006237179 A JP 2006237179A
- Authority
- JP
- Japan
- Prior art keywords
- diamond
- forming
- ohmic
- conductive layer
- ion beam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Electrodes Of Semiconductors (AREA)
- Lasers (AREA)
Abstract
Description
本発明は、ダイヤモンドの半導体デバイスに関し、特に、ダイヤモンドのオーム性接合部の形成方法に関する。 The present invention relates to a diamond semiconductor device, and more particularly to a method for forming an ohmic junction of diamond.
ダイヤモンドは、物質中で最も硬く、耐熱性に優れ、バンドギャップが5.47eVと大きく、通常は絶縁体であるがドーパントをドープすることにより半導体化されうる。また、絶縁破壊電圧及び飽和ドリフト速度が大きく、誘電率が小さい等電気的特性にも優れている。更に、室温付近においては物質中で最も高い熱伝導性を示し、熱放散性も高い。このような特徴により、ダイヤモンドは、次世代の耐高温・耐放射線等極限環境用素子や高周波及び高出力素子用の半導体として使用されることが期待され、現在開発が進んでいる。 Diamond is the hardest material, has excellent heat resistance, has a large band gap of 5.47 eV, is usually an insulator, but can be made into a semiconductor by doping with a dopant. In addition, the dielectric breakdown voltage and saturation drift speed are high, and the electrical characteristics such as low dielectric constant are also excellent. Furthermore, it has the highest thermal conductivity among substances at around room temperature and has high heat dissipation. Due to such characteristics, diamond is expected to be used as a next-generation element for extreme environments such as high temperature resistance and radiation resistance, and as a semiconductor for high frequency and high output elements, and is currently under development.
ダイヤモンドを半導体デバイスの材料として利用するためには、p型とn型の電気伝導型制御が必要である。具体的には、素子を作成する過程において、ダイヤモンドの適切な部位に外部からドナー型あるいはアクセプタ型の不純物を導入し、その必要部位にp型あるいはn型の導電性を付与する。また、素子として機能させるためには、その導電性部位に電流の入出力用の金属電極を形成して、導電性部位同士を配線することが必要である。その際、導電性部位と金属電極の接合部にはオーム性の電気特性を持たせることが求められる。即ち、導電性部位と金属の接触は、接触部の電流−電圧特性が線形のオーミック接触である必要がある。 In order to use diamond as a semiconductor device material, it is necessary to control p-type and n-type conductivity. Specifically, in the process of manufacturing an element, a donor-type or acceptor-type impurity is introduced from the outside into an appropriate portion of diamond, and p-type or n-type conductivity is imparted to the necessary portion. Further, in order to function as an element, it is necessary to form a metal electrode for current input / output on the conductive portion and to wire the conductive portions to each other. At that time, it is required that the junction between the conductive portion and the metal electrode have ohmic electrical characteristics. That is, the contact between the conductive portion and the metal needs to be an ohmic contact in which the current-voltage characteristic of the contact portion is linear.
従来、ダイヤモンドに不純物導入による導電性を付与し、金属電極をその導電性部位の上に蒸着した後、格子欠陥を回復するための熱処理を行い、良好なオーム性の接合部を得ていた(非特許文献1参照)。
しかしながら、上記の従来の技術では、外部からドナー型、アクセプタ型の不純物をダイヤモンド中に導入して導電性部位を形成し、その導電性部位に金属電極を作成するにあたって、不純物の注入量によってはその接合部にオーム性の電気特性を持たせることが困難な場合があるという問題があった。 However, in the above-described conventional technique, a donor-type or acceptor-type impurity is introduced into diamond from the outside to form a conductive portion, and a metal electrode is formed on the conductive portion, depending on the amount of impurities implanted. There has been a problem that it may be difficult to impart ohmic electrical characteristics to the joint.
本発明は、上記のような従来の問題点を解決するためになされたもので、ダイヤモンドの導電性部位と他の材料、特に金属電極の接合部にオーム性の電気特性を容易に持たせることができるダイヤモンドのオーム性接合部の形成方法を提供することを目的とする。 The present invention has been made in order to solve the above-described conventional problems, and can easily provide ohmic electrical characteristics to a joint portion of a diamond conductive portion and another material, particularly a metal electrode. It is an object of the present invention to provide a method for forming a diamond ohmic joint.
上記の課題を解決するために、本発明に係るダイヤモンドのオーム性接合部の形成方法は、ダイヤモンド表面の所定領域にレーザー光を照射しながら該所定領域に不純物をイオン注入して導電層を形成するステップを含むことを特徴とする。これにより、導電層にてオーム性の接合部を得ることが可能となる。 In order to solve the above-mentioned problems, the diamond ohmic junction forming method according to the present invention forms a conductive layer by ion-implanting impurities into a predetermined region while irradiating the predetermined region of the diamond surface with laser light. Including the step of: This makes it possible to obtain an ohmic junction in the conductive layer.
また、本発明に係るダイヤモンドのオーム性接合部の形成方法は、さらに、前記導電層上に、金属電極を形成するステップをさらに含む。これにより、ダイヤモンドの導電層上
にオーム性の電極が得られる。
The diamond ohmic bonding portion forming method according to the present invention further includes a step of forming a metal electrode on the conductive layer. This provides an ohmic electrode on the diamond conductive layer.
前記不純物には、ボロン、又はリンを使用することができるが、ダイヤモンド中でn型
、又はp型の導電層を形成しうる元素、即ち炭素に対するn型又はp型の元素であれば特
に種類は問わない。
Boron or phosphorus can be used as the impurity, but it is an element that can form an n-type or p-type conductive layer in diamond, that is, an n-type or p-type element for carbon. Does not matter.
前記不純物イオンビームのエネルギーは、約10 keV〜数MeVであり、電流量は、約0.1
μA/cm2〜10 mA/cm2であることができる。
The energy of the impurity ion beam is about 10 keV to several MeV, and the amount of current is about 0.1.
It can be from μA / cm 2 to 10 mA / cm 2 .
前記レーザー光の波長が約400 nm〜100 nm、エネルギー密度が約100 mJ/cm2以上であることが望ましい。 It is desirable that the laser beam has a wavelength of about 400 nm to 100 nm and an energy density of about 100 mJ / cm 2 or more.
前記導電層の形成が、好ましくは真空の環境にて行われ、その真空度が、約10-2 Pa以
下である。
The conductive layer is preferably formed in a vacuum environment, and the degree of vacuum is about 10 −2 Pa or less.
本発明に係るダイヤモンドのオーム性接合部の形成方法によれば、ダイヤモンドの導電性部位にオーミック接合を形成することが可能となり、特に、従来ではオーム性を持たせることができず、整流性が生じていた導電性部位と金属電極の接合部にオーム性を付与することが可能となる。これにより、ダイヤモンドを半導体素子の材料として一層幅広く利用することができる。 According to the method for forming an ohmic junction of diamond according to the present invention, it becomes possible to form an ohmic junction at a conductive portion of diamond. It is possible to impart ohmic properties to the joint between the conductive portion and the metal electrode that have been generated. Thereby, diamond can be used more widely as a material for semiconductor elements.
以下、本発明の好ましい実施の形態に係るダイヤモンドのオーム性接合部の形成方法を、添付した図面を参照しながら詳細に説明する。 Hereinafter, a method for forming an ohmic joint of diamond according to a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
図1は、本発明の実施の形態に係るダイヤモンドのオーム性接合部の形成方法を説明する図である。 FIG. 1 is a diagram for explaining a method for forming an ohmic junction of diamond according to an embodiment of the present invention.
まず、ダイヤモンド基板1を照射真空槽2に設置し、伝導性制御のための不純物元素(ボロンやリンなど)のイオンビームをこの照射真空槽2に導入し、ダイヤモンド基板1の表面に照射する。不純物イオンビームのエネルギーは、伝導性付与に必要な深さや分布に応じて選択する。通常は10 keV〜数MeVの範囲である。イオンビームの電流量は特に制限
されないが、通常は0.1μA/cm2〜10 mA/cm2程度、好ましくは1μA/cm2〜1 mA/cm2程度で
ある。
First, the
イオンビームをダイヤモンド基板1の表面に照射する際、同時にレーザー光をダイヤモンド基板1の表面上のイオンビームが照射される領域に照射する。レーザー光の波長やエネルギー密度は特に制限されないが、波長は400 nm〜100 nm程度、エネルギー密度は100 mJ/cm2程度以上であることが望ましい。即ち、レーザー光の波長は、ダイヤモンドによる光吸収が顕著である領域の波長であることが望ましい。具体的には、ダイヤモンドの禁制帯間のエネルギーを超える波長、不純物や欠陥による吸収が起こりうる波長等が望ましい。
When irradiating the surface of the
イオン照射時におけるダイヤモンド基板1を設置した照射真空槽2の真空は、特に制限されないが高真空程望ましい。照射真空槽2内の真空度は、約10-2 Pa以下、好ましくは
約10-4 Pa以下である。
The vacuum in the irradiation vacuum chamber 2 in which the
イオンビーム、レーザー光を照射する時のダイヤモンドの温度には、特に制限はない。 There is no particular limitation on the temperature of diamond when the ion beam or laser beam is irradiated.
次に、実施例を挙げ、本発明をより具体的に説明する。もちろん、以下の実施例は、あくまでも本発明を理解するための1具体例であり、これにより、本発明が限定されるものではない。 Next, an Example is given and this invention is demonstrated more concretely. Of course, the following examples are merely specific examples for understanding the present invention, and the present invention is not limited thereby.
図1と同様に、高温高圧で合成されたダイヤモンド基板100を照射真空槽に設置し、真空槽内を7 x 10-6 Paに真空引きした。 As in FIG. 1, the diamond substrate 100 synthesized at high temperature and high pressure was placed in an irradiation vacuum chamber, and the inside of the vacuum chamber was evacuated to 7 × 10 −6 Pa.
その後、ダイヤモンド基板100にp型導電性を付与するために、ボロン元素の導入をイオン注入の方式で行った。具体的には、ボロン元素をイオン化し、ボロンイオンビームを発生させ、それをダイヤモンド基板100の表面に照射することによりボロン元素の導入を行った。これにより、ダイヤモンド基板100の表面に、導電層110(図2参照)を形成した。このとき、イオンビームのエネルギー及び照射量を、ダイヤモンド基板100の表面から450 nmまでの深さにおいて、ボロン濃度が5×1019 cm-3で均一となるように調整した。イオン注入時のダイヤモンド基板100の温度は400 °Cに設定した。 Thereafter, in order to impart p-type conductivity to the diamond substrate 100, boron was introduced by ion implantation. Specifically, the boron element was introduced by ionizing the boron element to generate a boron ion beam and irradiating the surface of the diamond substrate 100 with it. Thereby, the conductive layer 110 (see FIG. 2) was formed on the surface of the diamond substrate 100. At this time, the energy and irradiation amount of the ion beam were adjusted so that the boron concentration was uniform at 5 × 10 19 cm −3 at a depth from the surface of the diamond substrate 100 to 450 nm. The temperature of the diamond substrate 100 during ion implantation was set to 400 ° C.
イオンビームの照射と同時にレーザー光をもダイヤモンド基板100の表面に照射した。レーザー光には、波長308 nmのXeClエキシマレーザーを用いた。レーザー光のパルス幅を20 ns、繰り返しレートを100 Hz、ダイヤモンド基板100の表面位置でのレーザー光
のエネルギー密度を約0.2 J/cm2に設定した。
Simultaneously with the irradiation of the ion beam, the surface of the diamond substrate 100 was also irradiated with a laser beam. As the laser light, a XeCl excimer laser with a wavelength of 308 nm was used. The pulse width of the laser beam was set to 20 ns, the repetition rate was set to 100 Hz, and the energy density of the laser beam at the surface position of the diamond substrate 100 was set to about 0.2 J / cm 2 .
イオン注入を行った後、ボロン導入の際に同時に形成された格子欠陥を除去するために1400 °Cでの熱処理を行った。 After ion implantation, heat treatment was performed at 1400 ° C. to remove lattice defects formed simultaneously with boron introduction.
熱処理を行った後、ボロンを導入した導電層110上に金属電極を蒸着した。具体的には、チタンTi(厚さ30 nm)、白金Pt(厚さ30 nm)、金Au(厚さ100 nm)の順にそれぞれの金属を蒸着することにより、2つの金属電極を形成した(図2参照)。 After heat treatment, a metal electrode was deposited on the conductive layer 110 into which boron was introduced. Specifically, two metal electrodes were formed by vapor-depositing each metal in the order of titanium Ti (thickness 30 nm), platinum Pt (thickness 30 nm), and gold Au (thickness 100 nm) ( (See FIG. 2).
金属電極を形成した後、再び400 °Cの熱処理を行った。 After forming the metal electrode, heat treatment was again performed at 400 ° C.
なお、比較のため、レーザー照射を行わず、ダイヤモンド基板にイオンビームのみを照射した後に、同様に金属電極を形成した。 For comparison, a metal electrode was similarly formed after irradiating only the ion beam to the diamond substrate without performing laser irradiation.
図3の(a)、(b)は、レーザー照射を行った場合と行わなかった場合、それぞれについての、2つの金属電極間の電流−電圧特性を両対数表示した図である。 FIGS. 3A and 3B are diagrams showing the logarithm of the current-voltage characteristics between the two metal electrodes when laser irradiation is performed and when laser irradiation is not performed.
図3の(b)に示すレーザー照射を行わなかった場合、電流及び電圧の測定値のプロット
が両対数表示にて傾きnが1の直線(n=1)に乗っておらず、電流と電圧が比例関係にない、すなわちオーム性でないことがわかる。他方、図3の(a)に示すレーザー照射を行
った場合には、電流及び電圧の測定値のプロットがn=1の直線に乗っており、電流と電圧が比例関係にある、すなわちオーム性となっていることがわかる。
When the laser irradiation shown in FIG. 3B is not performed, the current and voltage measured values are not plotted on a straight line (n = 1) with a logarithmic display and a slope n of 1; Is not proportional, i.e., not ohmic. On the other hand, when the laser irradiation shown in FIG. 3 (a) is performed, the plot of the measured values of current and voltage is on a straight line of n = 1, and the current and voltage are in a proportional relationship, that is, ohmic. It turns out that it is.
なお、本実施例では、上記ダイヤモンド基板上に形成された2つの金属電極間の電流−電圧特性が符号反転の場合も含めて比例関係にあった。即ち、印可する電圧の正負極性を逆にしても、電流と電圧が依然として比例関係にあった。 In this example, the current-voltage characteristics between the two metal electrodes formed on the diamond substrate were in a proportional relationship including the case of sign inversion. That is, even if the polarity of the applied voltage is reversed, the current and the voltage are still in a proportional relationship.
このように、本発明に係るダイヤモンドのオーム性接合部の形成方法では、ダイヤモンドの導電層を形成するに当たって、レーザー光を照射しながら不純物のイオンビームを照射するようにしたので、該導電層上にオーミック接合を形成することが可能となり、特に、該導電層上に金属電極を形成したとき、該導電層と該金属電極の接合部に、確実にオー
ム性を持たせることができる。これにより、ダイヤモンド上にオーム性の電極を容易に形成することができる。
As described above, in the method for forming an ohmic junction of diamond according to the present invention, an ion beam of impurities is irradiated while irradiating a laser beam when forming a conductive layer of diamond. In particular, when a metal electrode is formed on the conductive layer, the junction between the conductive layer and the metal electrode can surely have ohmic properties. Thereby, an ohmic electrode can be easily formed on the diamond.
本発明に係るダイヤモンドのオーム性接合部の形成方法は、容易にダイヤモンドにオーム性の接合部、並びにオーム性の電極を形成することができるという効果を有するものであって、ダイヤモンドを用いた半導体素子を製造するに当たって有用である。 The method for forming an ohmic junction of diamond according to the present invention has an effect that an ohmic junction and an ohmic electrode can be easily formed on diamond, and a semiconductor using diamond. This is useful in manufacturing the device.
1、100 ダイヤモンド基板
2 照射真空槽
110 ボロンを導入された導電層
1, 100 Diamond substrate 2 Irradiation vacuum chamber 110 Conductive layer introduced with boron
Claims (6)
前記不純物のイオンビームの電流量が、約0.1 μA/cm2〜10 mA/cm2であることを特徴とする請求項1〜3の何れかの項に記載のダイヤモンドのオーム性接合部の形成方法。 The energy of the ion beam of the impurity is about 10 keV to several MeV,
4. The diamond ohmic junction according to claim 1, wherein an ion beam current amount of the impurity is about 0.1 μA / cm 2 to 10 mA / cm 2. Method.
前記レーザー光のエネルギー密度が、約100 mJ/cm2以上であることを特徴とする請求項1〜4の何れかの項に記載のダイヤモンドのオーム性接合部の形成方法。 The wavelength of the laser light is about 400 nm to 100 nm,
The method for forming an ohmic bonding portion of diamond according to any one of claims 1 to 4, wherein the energy density of the laser beam is about 100 mJ / cm 2 or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005048140A JP2006237179A (en) | 2005-02-24 | 2005-02-24 | Method of forming ohmic joint of diamond |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005048140A JP2006237179A (en) | 2005-02-24 | 2005-02-24 | Method of forming ohmic joint of diamond |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006237179A true JP2006237179A (en) | 2006-09-07 |
Family
ID=37044520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005048140A Pending JP2006237179A (en) | 2005-02-24 | 2005-02-24 | Method of forming ohmic joint of diamond |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006237179A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008108925A (en) * | 2006-10-26 | 2008-05-08 | National Institute Of Advanced Industrial & Technology | Electrical activation method of impurity ion implantation layer |
JP2009252775A (en) * | 2008-04-01 | 2009-10-29 | National Institute Of Advanced Industrial & Technology | Structure for protecting junction between diamond surface and metal piece |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0648715A (en) * | 1992-07-24 | 1994-02-22 | Matsushita Electric Ind Co Ltd | Production of semiconductor diamond |
JPH06275552A (en) * | 1993-03-19 | 1994-09-30 | Kobe Steel Ltd | Heat resistant ohmic electrode for semiconductor diamond layer and its formation |
JP2002289550A (en) * | 2001-03-27 | 2002-10-04 | National Institute Of Advanced Industrial & Technology | Activating method for impurity ion implanted layer |
JP2004247564A (en) * | 2003-02-14 | 2004-09-02 | National Institute Of Advanced Industrial & Technology | Method for ion injection to diamond |
-
2005
- 2005-02-24 JP JP2005048140A patent/JP2006237179A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0648715A (en) * | 1992-07-24 | 1994-02-22 | Matsushita Electric Ind Co Ltd | Production of semiconductor diamond |
JPH06275552A (en) * | 1993-03-19 | 1994-09-30 | Kobe Steel Ltd | Heat resistant ohmic electrode for semiconductor diamond layer and its formation |
JP2002289550A (en) * | 2001-03-27 | 2002-10-04 | National Institute Of Advanced Industrial & Technology | Activating method for impurity ion implanted layer |
JP2004247564A (en) * | 2003-02-14 | 2004-09-02 | National Institute Of Advanced Industrial & Technology | Method for ion injection to diamond |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008108925A (en) * | 2006-10-26 | 2008-05-08 | National Institute Of Advanced Industrial & Technology | Electrical activation method of impurity ion implantation layer |
JP2009252775A (en) * | 2008-04-01 | 2009-10-29 | National Institute Of Advanced Industrial & Technology | Structure for protecting junction between diamond surface and metal piece |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6539959B2 (en) | Epitaxial silicon wafer, method of manufacturing the same, and method of manufacturing solid-state imaging device | |
KR101132706B1 (en) | Method for growing graphene layer | |
DE102006051494B4 (en) | A method of forming a semiconductor structure comprising a strained channel field field effect transistor | |
KR20140009565A (en) | Method for manufacturing semiconductor epitaxial wafer, semiconductor epitaxial wafer, and method for manufacturing solid-state image pickup element | |
JP5116910B2 (en) | Method for manufacturing insulated gate type semiconductor device | |
US10396120B2 (en) | Method for producing semiconductor epitaxial wafer and method of producing solid-state imaging device | |
JP2012089873A (en) | Insulation gate type semiconductor element manufacturing method | |
Picollo et al. | Realization of a diamond based high density multi electrode array by means of Deep Ion Beam Lithography | |
Tchernij et al. | Electrical characterization of a graphite-diamond-graphite junction fabricated by MeV carbon implantation | |
JP2006237179A (en) | Method of forming ohmic joint of diamond | |
Oliviero et al. | Helium implantation defects in SiC studied by thermal helium desorption spectrometry | |
Sahoo et al. | Swift heavy ion beam induced recrystallization of amorphous Si layers | |
JP6221928B2 (en) | Manufacturing method of semiconductor epitaxial wafer and manufacturing method of solid-state imaging device | |
JP7416270B2 (en) | Epitaxial silicon wafer and its manufacturing method, and semiconductor device manufacturing method | |
KR20200003153A (en) | Semiconductor epitaxial wafer, its manufacturing method and manufacturing method of solid-state image sensor | |
Berencén et al. | Formation of n-and p-type regions in individual Si/SiO2 core/shell nanowires by ion beam doping | |
JP6248458B2 (en) | Bonded wafer manufacturing method and bonded wafer | |
JP2005132648A (en) | n-TYPE SEMICONDUCTOR DIAMOND AND ITS MANUFACTURING METHOD | |
TWI316565B (en) | ||
Werner et al. | Crystallographic changes in electron pulse annealing of Ti-implanted GaP | |
DE112020000890T5 (en) | Semiconductor epitaxial wafer and method of producing the same | |
JP5142257B2 (en) | Electrical activation method of impurity ion implantation layer | |
JPH05117088A (en) | Method for forming n-type and p-type diamond | |
Vantomme et al. | Suppression of rare-earth implantation-induced damage in GaN | |
Wiecek et al. | Ion implantation of CdTe single crystals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070807 |
|
A977 | Report on retrieval |
Effective date: 20081225 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110531 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110729 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110809 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110906 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111122 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Effective date: 20111130 Free format text: JAPANESE INTERMEDIATE CODE: A911 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Effective date: 20120120 Free format text: JAPANESE INTERMEDIATE CODE: A912 |