WO2008044308A1 - Circuit board and process for producing the same - Google Patents

Circuit board and process for producing the same Download PDF

Info

Publication number
WO2008044308A1
WO2008044308A1 PCT/JP2006/320453 JP2006320453W WO2008044308A1 WO 2008044308 A1 WO2008044308 A1 WO 2008044308A1 JP 2006320453 W JP2006320453 W JP 2006320453W WO 2008044308 A1 WO2008044308 A1 WO 2008044308A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
conductor
resin
mold
board according
Prior art date
Application number
PCT/JP2006/320453
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyasu Inagaki
Noriyuki Kawanishi
Original Assignee
Manac Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Manac Inc. filed Critical Manac Inc.
Priority to PCT/JP2006/320453 priority Critical patent/WO2008044308A1/en
Priority to PCT/JP2007/064485 priority patent/WO2008044382A1/en
Priority to JP2008538587A priority patent/JP4438890B2/en
Publication of WO2008044308A1 publication Critical patent/WO2008044308A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0284Details of three-dimensional rigid printed circuit boards

Definitions

  • the present invention relates to a circuit board and a method for manufacturing the circuit board. Specifically, a conductor formed in advance so as to have a certain pattern and a resin substrate obtained by curing a thermosetting resin.
  • the present invention relates to a circuit board including a circuit board in which a surface of the conductor and a surface of the resin board are flush with each other, and a method for manufacturing the circuit board.
  • the wiring pattern is transferred to the resin on the surface of the substrate to form a grooved wiring pattern, and then the resin including the groove part.
  • a method of forming a circuit by providing a copper plating layer over the entire surface and finally polishing until the grease portion between the grooves is exposed see, for example, JP-A-2001-32015
  • fine mold processing is performed on the mold material to manufacture a mold having a predetermined wiring pattern, and then the wiring pattern on the mold is transferred to have a non-conductive groove pattern.
  • any of these methods is a method in which a groove-like wiring pattern is formed on a substrate, and a conductive material is coated or injected into the groove, and the conductive material adhered to a portion other than the groove.
  • the process is complicated, such as having to be removed.
  • the present invention is in a situation where mounting of electronic components on both sides of a circuit board or in a three-dimensional direction is required!
  • An object of the present invention is to provide a circuit board having a flush surface and a manufacturing method thereof. Since the circuit board of the present invention is obtained by a simple production method that does not use a transfer film and does not have an etching process or a varnish coating process, it solves the above-described problems of the prior art.
  • a conductor formed in advance so as to have a certain pattern and the conductor are transferred to a surface layer of a thermosetting resin, and the thermosetting resin is cured.
  • the circuit board is characterized in that the surface of the conductor and the surface of the resin substrate are flush with each other.
  • thermosetting resin preferably has a powder form.
  • preferred thermosetting resin that can be used is represented by the following general formula (1):
  • n 1 to: the number of LOs
  • Ar 1 is a monocyclic or condensed polycyclic aromatic compound having 6 to 36 carbon atoms, or a polycyclic compound in which two or more of the same or different aromatic groups are connected to each other directly or by a bridging member.
  • Ar 2 is a monocyclic or condensed polycyclic aromatic compound having 6 to 36 carbon atoms, or a polycyclic compound in which two or more of the same or different aromatic groups are connected to each other directly or by a bridging member.
  • the crosslinker is: o CO COO OCO-so S -CH
  • Powerful group force is a divalent group selected, and
  • R ⁇ R 2 are each independently be the same, but also different Yogu hydrogen or phenyl group.
  • the conductor is preferably formed in advance on the surface of the mold. Further, the conductor is formed of a conductive paste containing one or more conductive particles selected from the group consisting of gold, silver, copper, zinc, tin, nickel, palladium, carbon, and the like having a particle size of lOOnm or less. It is preferred to be a conductive circuit.
  • the conductor is polyimide, polymethyl methacrylate, polycarbonate, aromatic polyester, polyarylate, epoxy resin, silicone resin, acrylic resin, and these. It is also preferable that the optical waveguide be formed from a resin composition for optical waveguides containing one or more selected fluorinated and deuterated group forces.
  • thermosetting resin in a second aspect of the present invention, (1) a step of forming a conductor having a certain no-turn on the surface of the mold, (2) a powdery thermosetting resin, and formed on the surface of the mold (3) The mold is pressed and Z or heated together with a thermosetting resin to melt and cure the thermosetting resin, and is formed on the surface of the mold.
  • thermosetting resin suitable for the method of manufacturing a circuit board is an imide oligomer represented by the above general formula (1).
  • the production method of the present invention also includes a conductive paste or a resin composition for an optical waveguide suitable for forming a conductor having a certain pattern, whether it is a conductive circuit or an optical waveguide. is there.
  • examples of a method for forming a conductor having a certain pattern include an inkjet method, a screen printing method, and a spin coating method.
  • the mold may be provided with irregularities, and a groove or hole for incorporating a component may be formed at an arbitrary location on the circuit board.
  • a conductor previously formed to have a certain pattern is transferred to the surface layer of a thermosetting resin, which is then thermosetting.
  • the conductor is transferred as it is and embedded in the surface of the resin substrate, so that the surface of the conductor and the surface of the resin substrate can be flush with each other. There is an effect that the mounting of the electronic component in the dimension direction can be facilitated.
  • the resin substrate is formed by melting and curing the powdered thermosetting resin, it is difficult for voids to be formed on the curved surfaces and corners of the mold and the conductor. Play.
  • thermosetting imide oligomer as shown by the general formula (1), the circuit can be efficiently transferred to the surface of the resin surface without steps with few steps.
  • grooves or holes for component built-in can be easily set in an arbitrary place in advance, so that it is easy to achieve high-density mounting and a circuit board can be obtained.
  • FIG. 1 is a schematic explanatory diagram of a mold and a circuit pattern.
  • FIG. 2 is a structural diagram of a circuit board using a conductive paste.
  • FIG. 3 is a structural diagram of a substrate using a resin composition for an optical waveguide.
  • FIG. 4 is a structural diagram of a circuit board having grooves using conductive paste.
  • FIG. 5 is a schematic explanatory diagram of a mold and a circuit pattern capable of forming a concave groove on a substrate.
  • the conductor previously formed to have a certain pattern used in the present invention is formed, for example, on the inner surface of a substrate manufacturing mold as shown in FIG.
  • a substrate manufacturing mold as shown in FIG.
  • Various types of materials can be used as the mold for manufacturing the substrate.
  • the mold for example, after a circuit pattern diagram formed using a conductive paste is cured, the mold is filled with a powdered thermosetting resin, and this is heated and Z or pressurized.
  • a material having excellent heat resistance is suitable.
  • Metal materials, semiconductor materials, inorganic materials, etc. can be used.
  • the dimensions and shape of the mold are not particularly limited, and can be selected according to the circuit board to be produced.
  • Formation of a conductor, specifically a conductive circuit, on the surface of the mold can be performed, for example, by the following steps.
  • a desired circuit pattern diagram is drawn with a conductive paste on the inner surface of either a convex type or a concave type as shown in FIG.
  • desired circuit pattern diagrams may be drawn on the internal surfaces of both the convex and concave molds, thereby easily producing a circuit board having conductive circuits on both sides of the resin board. be able to.
  • the drawing method can be appropriately selected from the ink jet method, the screen printing method and the like depending on the properties of the conductive paste to be used.
  • a circuit pattern diagram drawn using a conductive paste on the mold is subjected to a curing process together with the mold, whereby a conductive circuit is formed on the mold.
  • the temperature and time conditions for the curing process are appropriately determined depending on the components such as conductive particles, organic resin, and solvent contained in the conductive paste, but usually in the temperature range of 100 ° C to 300 ° C. It takes between 10 and 120 minutes.
  • the conductive particles contained in the conductive paste used in the present invention are preferably composed of conductive particles having an average particle diameter of lOOnm or less and lnm or more in order to form a fine wiring circuit.
  • the average particle size is more preferably 50 nm or less and 2 nm or more.
  • the conductive particles gold, silver, copper, zinc, tin, nickel, noradium, carbon, or the like can be used.
  • a conductive paste can be prepared by mixing and dispersing these conductive particles, an organic resin, and a solvent.
  • the organic resin include epoxy resin, phenol resin, polyamide resin, polyimide resin, polyphenylene sulfide resin, and polycarbonate resin.
  • an imide oligomer represented by the general formula (1) of the present invention can also be used.
  • the weight ratio of the conductive particles to the organic resin is preferably in the range of 70:30 to 99: 1.
  • a viscosity modifier and a reducing agent may be appropriately added to the conductive base.
  • Solvents used for the conductive paste include polyethylene glycol monomethyl ether solvent, polyethylene glycol monomethyl ether acetate solvent, polypropylene glycol monomethyl ether solvent, polypropylene glycol monomethyl ether acetate solvent, alcohol solvent, A hydrocarbon solvent is mentioned.
  • the amount of solvent used is in the range of 30-60% by weight, based on the total weight of the conductive paste, depending on the organic resin used.
  • the optical waveguide can be formed on the mold by, for example, the following steps.
  • a desired pattern diagram is drawn on the inner surface of either a convex or concave mold as shown in FIG. 1 using a resin composition for an optical waveguide.
  • desired turn diagrams may be drawn on the inner surfaces of both the convex and concave molds, whereby a circuit board having optical waveguides on both sides of the resin substrate can be easily produced.
  • the drawing method can be selected from a spin coating method, an ink jet method, a screen printing method and the like depending on the properties of the resin composition for optical waveguide to be used.
  • An optical waveguide is formed on the mold by subjecting the optical waveguide pattern drawing drawn using the resin composition for an optical waveguide on the mold to heat treatment together with the mold.
  • the temperature and time conditions for the heat treatment are appropriately determined depending on components such as a resin and a solvent contained in the resin composition for an optical waveguide.
  • Components of the resin composition for optical waveguides include polyimide, polymethylmethallate, polycarbonate, aromatic polyester, polyarylate, epoxy resin, silicon resin, talyl resin and fluorine thereof. And deuterides.
  • a polymer material excellent in heat resistance is preferred, and polyimide is preferred. Further, among polyimides, fluorinated polyimide having excellent light transmission and moisture resistance is most suitable.
  • thermosetting resin in order to bring the conductor into contact with the thermosetting resin (in order to transfer the conductor to the surface layer of the thermosetting resin), for example, a convex mold for manufacturing a substrate as shown in FIG. Place on a concave mold filled with curable resin.
  • the conductor may be formed on one or both inner surfaces of the mold in advance as described above.
  • these molds are mounted on a press machine capable of controlling the temperature, and are heated from the glass transition temperature (melting temperature) of the thermosetting resin to a temperature at which the thermosetting is completed while applying a desired pressure.
  • the thermosetting resin is preferably used as it is in the form of a varnish dissolved in a solvent or as a power powder that can be used as it is.
  • Heating above the glass transition temperature softens (melts) the powdered thermosetting resin, and a conductor such as a conductive circuit or an optical waveguide hardens the thermosetting resin.
  • a conductor such as a conductive circuit or an optical waveguide hardens the thermosetting resin.
  • the surface is filled and closely contacted with no gap, and transfer is performed well.
  • the circuit board in which the surface of the conductor is flush with the surface of the resin board can be obtained by removing the mold from the resin board.
  • level means that there is substantially no step between the surface of the conductor and the surface of the resin substrate.
  • the thickness is preferably ⁇ 1% or less with respect to the thickness of the substrate, more preferably ⁇ 0.5% or less.
  • a circuit board having a groove or a hole at an arbitrary position using a mold on which irregularities are processed can be produced by the same method as the above-described circuit board production method.
  • thermosetting resin of the present invention an imide oligomer represented by the following general formula (1) is preferable because it has a good heat melting property and a high followability to the uneven portion of the mold.
  • n is a number of 1 to: L0
  • Ar 1 is a monocyclic or condensed polycyclic aromatic compound having 6 to 36 carbon atoms, or two or more of the fragrances that are the same or different
  • Ar 2 is a monocyclic or condensed polycyclic aromatic compound having 6 to 36 carbon atoms, and is a tetravalent group of polycyclic compounds in which group groups are connected to each other directly or by a bridge member.
  • a divalent group selected from the group consisting of S—, — CH —, — C (CH) 1, — C (CF) —
  • Each R 2 is independently hydrogen or a phenyl group, which may be the same or different.
  • the "monocyclic or condensed polycyclic aromatic compound having 6 to 36 carbon atoms" in Ar 2 is preferably a monocyclic or condensed carbon having 6 to 18, more preferably 6 to 12 carbon atoms. It is a condensed polycyclic aromatic compound, and examples thereof include benzene, naphthalene, anthracene, and phenanthrene. Therefore, the “tetravalent group of a monocyclic or condensed polycyclic aromatic compound having 6 to 36 carbon atoms” in Ar 1 is preferably a force-induced tetravalent group such as benzene, naphthalene, anthracene, or phenanthrene.
  • the “divalent group of a monocyclic or condensed polycyclic aromatic compound having 6 to 36 carbon atoms” in Ar 2 is preferably a force-induced divalent group such as benzene, naphthalene, anthracene, or phenanthrene. And most preferably o-, m- or p-phenylene.
  • the “monocyclic or condensed polycyclic aromatic compound having 6 to 36 carbon atoms” in Ar 2 has a substituent such as an alkyl group having 1 to 4 carbon atoms or a trifluoromethyl group on the aromatic ring. You may have one or more, preferably one or two.
  • a polycyclic compound in which two or more of the same or different aromatic compounds are directly or interconnected by a bridging member" in Ar 2 is a simple substance mentioned in the above paragraph.
  • a cyclic or condensed polycyclic aromatic compound is directly or a cross-linking member (where the cross-linking members are one O, one CO, one COO, one OCO, one SO —, one S—, —CH one, one C (CH
  • the tetravalent group of the polycyclic compound in Ar 1 includes two or more monocyclic aromatic compounds mentioned in the preceding paragraph, particularly o-, m or p-ferene.
  • Tetravalent groups of polycyclic compounds linked together or directly by a cross-linking member such as biphenyl, diphenyl ether, benzophenone, benzoic acid phenol, 2,2-diphenylpropane, 2, 2 Diphenyl, 1, 1, 1, 3, 3, 3 Examples include force-induced tetravalent groups such as hexafluoropropane.
  • the divalent group of the polycyclic compound in Ar 2 includes two or more monocyclic aromatic compounds mentioned in the preceding paragraph, in particular o-, m or p phenylene forces, directly or bridged And divalent groups of polycyclic compounds connected to each other by members, such as biphenyl-4, 4, dill, biphenyl-2, 2, diyl and the like.
  • the polycyclic compound in Ar 2 has one or more substituents such as an alkyl group having 1 to 4 carbon atoms or a trifluoromethyl group, preferably 1 or 2 on the aromatic ring. It may be.
  • the production method of the imide oligomer having a crosslinkable group represented by the general formula (1) may be a known method without any particular limitation.
  • an aromatic tetracarboxylic dianhydride and an aromatic carboxylic acid-based molecular sealant having a crosslinkable group are mixed in a primary alcohol having 1 to 3 carbon atoms, preferably methanol or ethanol.
  • the resulting solution is reacted with an aromatic diamine so that n in the general formula (1) is 1 to L0.
  • the concentration of the solution at this time is about 10 to 50% by weight.
  • the mixture may contain an imidization catalyst such as 1,2 dimethylimidazole, benzimidazole, isoquinoline, or substituted pyridine.
  • imidization catalyst such as 1,2 dimethylimidazole, benzimidazole, isoquinoline, or substituted pyridine.
  • known additives such as inorganic fillers, organic fillers, inorganic pigments or organic pigments may be added.
  • the mixture is evaporated to dryness and further heated to imidize.
  • heating it is desirable to heat for 5 to 180 minutes, preferably 60 minutes, within a temperature range below the temperature at which thermosetting starts from around the glass transition temperature of the resulting imide oligomer.
  • the obtained imide oligomer has an average particle size of 100 ⁇ m or less in a mortar or the like. Grind down to powder.
  • the imide oligomer can be used in the form of a varnish by dissolving it in a solvent, but it is desirable to use it as it is from the viewpoint of environmental load.
  • tetracarboxylic dianhydrides used here include pyromellitic dianhydride, 3, 3 ', 4, 4, biphenyl tetracarboxylic dianhydride, 2, 3, 3' , 4, -biphenyltetracarboxylic dianhydride, 2, 2, 3 ', 3, -biphenyltetracarboxylic dianhydride, 4, 4, oxydiphthalic dianhydride, 3,4'-oxydiphthalic dianhydride , 3, 3'-oxydiphthalic dianhydride, 4, 4 '(4,4' isopropylidenediphenoxy) bis (phthalic anhydride), 3, 3 ', 4, 4, monobenzov Enone tetracarboxylic dianhydride, 3, 3 ', 4, 4, 1 diphenyl sulfone tetracarboxylic dianhydride, 2, 2 bis (3,4 dicarboxyphenol) propane dianhydride, 2, 2 Bis (3,
  • aromatic diamine examples include p-phenylenediamine, m-phenylenediamine, diaminonaphthalene, diaminoanthracene, 4,4, -diaminobiphenyl, 3,4, diaminobiphenyl, 3, 3, 1-diaminobiphenyl, o toridine, m-tolidine, 2, 2, 1-bis (trifluoromethyl) 4, 4, 1-diaminobiphenyl, 4, 4, 1-diaminodiphenyl methane, 3, 4 ' -Diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 4,4'-diaminodiphenylsulfone, 3 , 4'-diaminodiphenyl s
  • Examples of the carboxylic acid-based molecular sealing agent having a crosslinkable group to be used include 4-ethynylphthalic anhydride, 4-furethynylphthalic anhydride, or a mixture thereof.
  • thermoplastic resin of the present invention in addition to the imide oligomer having a crosslinkable group represented by the general formula (1), an imide oligomer having another crosslinkable group can also be used.
  • an imide oligomer having another crosslinkable group can also be used.
  • Such an imide oligomer can be produced by the same method as described above.
  • carboxylic acid-based molecular sealant having a crosslinkable group 3-phenol phthalic anhydride, ethyl naphthalene dicarboxylic acid Anhydride, Phenyl naphthalene dicarboxylic acid anhydride, Ethyl anthracene dicarboxylic acid anhydride, Phenyl ether anthracene dicarboxylic acid anhydride, 4 Naphthyl ether phthalic acid anhydride, 3-Naphthyl chlorophthalic acid Anhydride, 4 Anthracyl tert-phthalic anhydride, 3-Anthracyl tert-phthalic anhydride, Anthracyl naphthalene dicarboxylic acid anhydride, N-acetyl-anthracene dicarboxylic anhydride (hydrogen atoms on these aromatic rings are substituted with alkyl groups having 1 to 6 carbon atoms, alkenyl groups,
  • the imide oligomer described above has a glass transition temperature after thermosetting of 200 ° C or higher, preferably 250 ° C, so that processability before curing (thermal meltability) and circuit pattern transferability are improved.
  • thermosetting resin of the present invention preferably has a hot pressing temperature of 150 ° C to 450 ° C, or preferably 160 when considering the heat resistance of the conductive paste and the resin composition for optical waveguides. It can be cured under curing conditions of ° C to 350 ° C.
  • This solution was concentrated with an evaporator, and the temperature was further increased to 160 ° C., followed by reducing pressure and heating for 1 hour to obtain a solid. Further, this solid was pulverized in a mortar and then dried at 150 ° C. for 5 hours to obtain a thermosetting imide oligomer raw material powder.
  • the glass transition temperature of this oligomer was 165 ° C, and the glass transition temperature was 260 ° C when thermally cured at 300 ° C for 10 minutes.
  • This solution was concentrated with an evaporator, and the temperature was raised to 150 ° C, and the mixture was reduced in pressure and heated for 1 hour to obtain a solid.
  • the solid was pulverized in a mortar and then dried at 150 ° C. for 5 hours to obtain a thermosetting imidoligomer raw material powder.
  • the glass transition temperature of this oligomer was 158 ° C, and the glass transition temperature was not detected when it was thermally cured at 300 ° C for 10 minutes.
  • a circuit pattern diagram was printed on the convex mold la shown in FIG. 1 by screen printing using a conductive bed (Muromachi Technos, trade name Muromac Bond A-71S) as shown in FIG. . After printing, a heat treatment was performed at 170 ° C for 30 minutes together with the mold la to form a conductive circuit.
  • a conductive bed Moromachi Technos, trade name Muromac Bond A-71S
  • the concave mold lb was filled with the thermosetting imide oligomer powder of Synthesis Example 1, covered with a convex mold la on which a conductive circuit was formed, and mounted on a heat press machine. Heated and pressurized at ° C, 5 MPa for 10 minutes. After that, the heat press machine was cooled, the molds la and lb were removed, and the conductive circuit formed with the conductive paste was transferred onto the surface of the resin without any step. A substrate was obtained. The resistance value of the transferred conductive circuit is 0.036 ⁇ .
  • a resin composition for optical waveguides (pyromellitic dianhydride and 2, 2'-bis (trifluoromethyl) 4, 4, 1-diaminobiphenyl and potassium
  • a circuit pattern diagram was printed by screen printing with the N, N dimethylacetamide solution of the fluorinated polyamic acid produced (solid concentration 15% by weight). After printing, it was gradually heated with the mold la, heat-treated at 350 ° C for 1 hour, and imidized to form an optical waveguide.
  • the concave mold lb was filled with the thermosetting imide oligomer powder of Synthesis Example 2, covered with a convex mold la on which an optical waveguide was formed, and mounted on a heat press machine. Heated and pressurized at ° C, 5 MPa for 10 minutes. After that, the heat press machine was cooled, the molds la and lb were removed, and the optical waveguide formed of the fluorinated polyimide was transferred onto the surface of the resin without any step.
  • the circuit board of Fig. 3 of ⁇ m was obtained.
  • a circuit pattern diagram was printed on the convex mold 6a of FIG. 5 by screen printing using a conductive bed (Muromachi Technos, trade name Muromac Bond A-71S) as shown in FIG. . After printing, a heat treatment was performed at 170 ° C for 30 minutes together with the mold 5a to form a conductive circuit.
  • a conductive bed Moromachi Technos, trade name Muromac Bond A-71S
  • the concave mold 6b is filled with the thermosetting imide oligomer powder of Synthesis Example 1, covered with the convex mold 6a on which the conductive circuit is formed, and mounted on a heat press machine. Heated and pressurized at ° C, 5 MPa for 10 minutes. After that, the heat press machine was cooled and the molds 6a and 6b were removed, and the conductive circuit formed with the conductive paste was transferred onto the surface of the resin without any step. The figure shows the thickness of 200 ⁇ m and the groove depth of 100 m. The circuit board shown in 4 was obtained. The resistance value of the transferred conductive circuit was 0.036 ⁇ .
  • This solution was concentrated with an evaporator, and the temperature was further increased to 160 ° C., followed by reduced pressure and heating for 1 hour to obtain a solid. Further, the solid was pulverized in a mortar and then dried at 150 ° C. for 5 hours to obtain a thermosetting imide oligomer raw material powder.
  • This oligomer had a glass transition temperature of 160 ° C, and was thermally cured at 300 ° C for 10 minutes, and the glass transition temperature was 220 ° C.
  • a circuit pattern diagram was printed on the convex mold la shown in FIG. 1 by screen printing using a conductive bed (Muromachi Technos, trade name Muromac Bond A-71S) as shown in FIG. . After printing, a heat treatment was performed at 170 ° C for 30 minutes together with the mold la to form a conductive circuit.
  • a conductive bed Moromachi Technos, trade name Muromac Bond A-71S
  • the concave mold lb was filled with the thermosetting imide oligomer of Comparative Synthesis Example 1, covered with a convex mold la on which a conductive circuit was formed, and mounted on a heat press machine. ° C, 5MPa, 10 Heated and pressurized in minutes. Thereafter, the heat press machine was cooled and the molds la and lb were removed, but the circuit board with a brittle resin substrate could not be obtained.
  • FIGS. 1 to 5 indicate the following.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)
  • Structure Of Printed Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

A circuit board including a conductor prefabricated so as to have a given pattern and a resin base material resulting from transfer of the conductor to a surface layer of thermosetting resin and hardening of the thermosetting resin, characterized in that the surface of the conductor and the surface of the resin base material constitute one plane. Further, there is provided a process for producing the circuit board.

Description

回路基板及びその製造方法  Circuit board and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、回路基板及びその製造方法に関し、具体的には、一定のパターンを有 するように予め形成された導体と、熱硬化性榭脂を硬化させてなる榭脂基板とを含む 回路基板であって、前記導体の表面と前記榭脂基板の表面とが面一である回路基 板及びその製造方法に関する。  TECHNICAL FIELD [0001] The present invention relates to a circuit board and a method for manufacturing the circuit board. Specifically, a conductor formed in advance so as to have a certain pattern and a resin substrate obtained by curing a thermosetting resin. The present invention relates to a circuit board including a circuit board in which a surface of the conductor and a surface of the resin board are flush with each other, and a method for manufacturing the circuit board.
背景技術  Background art
[0002] 近年の電子機器の小型軽量化、高性能化にともない、半導体素子を電子部品に高 密度で実装する要求が高まって 、る。特に携帯電話に代表される携帯機器の普及 に伴って、電子部品の小型化、軽量化がさらに進展することが予測される。このため 、電子部品の回路基板両面への実装技術、又は 3次元方向への実装技術が求めら れている。このためには、絶縁性基板上に回路 (導体)が載置されている方式ではな ぐ基板表面と回路表面とが面一であることが要求される。  [0002] With recent reductions in size and weight of electronic devices and higher performance, there is an increasing demand for mounting semiconductor elements on electronic components at high density. In particular, with the spread of mobile devices such as mobile phones, it is expected that electronic components will be further reduced in size and weight. For this reason, there is a need for technology for mounting electronic components on both sides of a circuit board or in a three-dimensional direction. For this purpose, it is required that the substrate surface and the circuit surface be flush with each other in the method in which the circuit (conductor) is placed on the insulating substrate.
[0003] また、低損失光ファイバの開発による光通信システムの実用化にともない、種々の 光通信用デバイスの開発が望まれている。これらの光デバイスを高密度に実装する 配線技術、特に光導波路技術の確立が求められている。  [0003] With the practical application of optical communication systems through the development of low-loss optical fibers, development of various optical communication devices is desired. Wiring technology for mounting these optical devices at high density, especially the establishment of optical waveguide technology, is required.
[0004] 従来、基板の小型化と素子の実装密度を高める多層配線板として、熱硬化性榭脂 を含む軟質 (Bステージ状態)の絶縁シート表面に、銅箔等で一定のパターンを有す る回路が予め描画されたフィルムを押しつけ、熱圧着で回路を転写し、さらにこれら のシートを立体的に組み合わせることによって部品内蔵用のパターン溝を形成する 方法が提案されている(例えば、特開平 11 45955号公報参照)。この方法は、シ ートに回路あるいは部品内蔵用の溝を形成する手段として極めて多くの工程を必要 としているため問題がある。  [0004] Conventionally, as a multilayer wiring board that increases the miniaturization of boards and the mounting density of elements, the surface of a soft insulating sheet containing a thermosetting resin (B-stage state) has a certain pattern of copper foil or the like. There has been proposed a method of forming a pattern groove for incorporating a component by pressing a film on which a circuit is drawn in advance, transferring the circuit by thermocompression bonding, and three-dimensionally combining these sheets (for example, Japanese Patent Laid-Open 11 45955). This method is problematic because it requires an extremely large number of steps as means for forming a groove for circuit or component incorporation on the sheet.
[0005] さらに上記のフィルム転写法では、一定のパターンを有する回路を予め描画した転 写用フィルムを事前に作製する必要が有る。しかし、転写用フィルムは型の曲面、角 部にはなじまないので、フィルムの賦形性に限界が有り、成形品の形状に制約が有 ることなど多くの課題がある。 [0005] Further, in the above film transfer method, it is necessary to prepare a transfer film in which a circuit having a certain pattern is drawn in advance. However, since the transfer film does not conform to the curved surface and corners of the mold, there is a limit to the formability of the film and the shape of the molded product is limited. There are many issues.
[0006] 一方、従来の埋め込み型の有機光導波路の作製方法は、例えばクラッド層やコア 層を得るのに、随時ワニスのスピンコート、乾燥工程が必要であり、さらにコア層のパ ターンはドライエッチングによって形成される等、多くの工程を抱えた方法となり、コス ト的に問題がある(例えば、特開 2003— 103738号公報参照)。  [0006] On the other hand, in the conventional method for producing a buried organic optical waveguide, for example, a varnish spin coating and a drying process are necessary to obtain a cladding layer and a core layer, and the pattern of the core layer is dry. This is a method having many steps, such as being formed by etching, and is costly (see, for example, Japanese Patent Application Laid-Open No. 2003-103738).
[0007] さらに、配線パターンと凹凸が逆のパターンを備えたスタンパを用いて基板表面の 榭脂にこの配線パターンを転写して溝状配線パターンを形成し、次いで、この溝部 分を含む榭脂表面全面に銅めつき層を設け、最後に、溝と溝の間の榭脂部分が露 出するまで研磨して、回路を形成する方法 (例えば、特開 2001— 32015号公報参 照)、あるいは金型材料に微細金型加工を施して、所定の配線パターンを有する金 型を製造し、次に、この金型上の配線パターンを転写して非導電性の溝状のパター ンを有する基板を製造し、最後にこれらの溝に導電性材料を注入して配線を形成す る方法 (例えば、特開 2004— 356255号公報参照)も提案されている。しかしながら 、これらの方法はいずれも、基板上に溝状の配線パターンを形成し、その溝の中に 導電性材料を被覆するか注入する方法であり、溝以外の部分に付着した導電性材 料を除去しなければならな 、等、工程が煩雑である。  [0007] Furthermore, using a stamper having a pattern opposite to the wiring pattern, the wiring pattern is transferred to the resin on the surface of the substrate to form a grooved wiring pattern, and then the resin including the groove part. A method of forming a circuit by providing a copper plating layer over the entire surface and finally polishing until the grease portion between the grooves is exposed (see, for example, JP-A-2001-32015), Alternatively, fine mold processing is performed on the mold material to manufacture a mold having a predetermined wiring pattern, and then the wiring pattern on the mold is transferred to have a non-conductive groove pattern. There has also been proposed a method of manufacturing a substrate and finally forming a wiring by injecting a conductive material into these grooves (see, for example, JP-A-2004-356255). However, any of these methods is a method in which a groove-like wiring pattern is formed on a substrate, and a conductive material is coated or injected into the groove, and the conductive material adhered to a portion other than the groove. The process is complicated, such as having to be removed.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 本発明は、回路基板両面への又は 3次元方向への電子部品の実装が要求される 状況にお!ヽて好適な、一定のパターンを有するように予め形成された導体と熱硬化 性榭脂を硬化させてなる榭脂基板とを含む回路基板であって、前記導体の表面と前 記榭脂基板の表面とが面一である回路基板及びその製造方法を提供することを目 的とする。本発明の回路基板は、転写フィルムを使用せず、またエッチング工程や、 ワニス塗布工程を有しない簡便な製造方法により得られるため、上記した従来技術 が抱える課題を解決するものである。 [0008] The present invention is in a situation where mounting of electronic components on both sides of a circuit board or in a three-dimensional direction is required! A circuit board including a conductor formed in advance so as to have a predetermined pattern and a resin substrate obtained by curing a thermosetting resin, the surface of the conductor and the resin substrate described above An object of the present invention is to provide a circuit board having a flush surface and a manufacturing method thereof. Since the circuit board of the present invention is obtained by a simple production method that does not use a transfer film and does not have an etching process or a varnish coating process, it solves the above-described problems of the prior art.
課題を解決するための手段  Means for solving the problem
[0009] 本発明の第一の態様は、一定のパターンを有するように予め形成された導体と、前 記導体が熱硬化性榭脂の表層に移され、前記熱硬化性榭脂を硬化させることによつ て形成された榭脂基板とを含み、前記導体の表面と前記榭脂基板の表面とが面一 であることを特徴とする回路基板である。 [0009] In the first aspect of the present invention, a conductor formed in advance so as to have a certain pattern and the conductor are transferred to a surface layer of a thermosetting resin, and the thermosetting resin is cured. Goodbye The circuit board is characterized in that the surface of the conductor and the surface of the resin substrate are flush with each other.
ここで、前記熱硬化性榭脂は、粉末状であるのが好ましい。さらに使用しうる好まし い前記熱硬化性榭脂は、下記一般式 (1):  Here, the thermosetting resin preferably has a powder form. Further, the preferred thermosetting resin that can be used is represented by the following general formula (1):
Figure imgf000004_0001
Figure imgf000004_0001
[0012] (式中、  [0012] (where
nは、 1〜: LOの数であり、  n is 1 to: the number of LOs
Ar1は、炭素数 6〜36の単環式若しくは縮合多環式芳香族化合物、又は同一若しく は異なる 2つ以上の前記芳香族基が直接もしくは架橋員により相互に連結された多 環式化合物の 4価の基であり、 Ar 1 is a monocyclic or condensed polycyclic aromatic compound having 6 to 36 carbon atoms, or a polycyclic compound in which two or more of the same or different aromatic groups are connected to each other directly or by a bridging member. A tetravalent group of compounds,
Ar2は、炭素数 6〜36の単環式若しくは縮合多環式芳香族化合物、又は同一若しく は異なる 2つ以上の前記芳香族基が直接若しくは架橋員により相互に連結された多 環式化合物の 2価の基であり、 Ar 2 is a monocyclic or condensed polycyclic aromatic compound having 6 to 36 carbon atoms, or a polycyclic compound in which two or more of the same or different aromatic groups are connected to each other directly or by a bridging member. A divalent group of compounds,
架橋員は、 o CO COO OCO - so S -CH  The crosslinker is: o CO COO OCO-so S -CH
2 2 C (CH ) C (CF ) —力 なる群力 選択される 2価の基であり、そして 2 2 C (CH) C (CF) — Powerful group force is a divalent group selected, and
3 2 3 2 3 2 3 2
R\ R2は、それぞれ独立して、同一であっても、異なってもよぐ水素又はフエニル基 である。 ) R \ R 2 are each independently be the same, but also different Yogu hydrogen or phenyl group. )
で示されるイミドオリゴマーである。  Is an imide oligomer represented by
[0013] 前記導体は、型の表面上に予め形成されたものであるのが好ましい。さらに前記導 体は、粒径 lOOnm以下の、金、銀、銅、亜鉛、スズ、ニッケル、パラジウム及びカーボ ン等からなる群から選択される導電性粒子を 1種以上含有する導電性ペーストにより 形成された導電回路であることが好まし 、。  [0013] The conductor is preferably formed in advance on the surface of the mold. Further, the conductor is formed of a conductive paste containing one or more conductive particles selected from the group consisting of gold, silver, copper, zinc, tin, nickel, palladium, carbon, and the like having a particle size of lOOnm or less. It is preferred to be a conductive circuit.
[0014] また、前記導体が、ポリイミド、ポリメチルメタタリレート、ポリカーボネート、芳香族ポ リエステル、ポリアリレート、エポキシ榭脂、シリコーン榭脂、アクリル榭脂並びにこれら のフッ素化物及び重水素化物力 なる群力 選択される 1種以上を含有する光導波 路用榭脂組成物により形成された光導波路であることも好ましい。 [0014] Further, the conductor is polyimide, polymethyl methacrylate, polycarbonate, aromatic polyester, polyarylate, epoxy resin, silicone resin, acrylic resin, and these. It is also preferable that the optical waveguide be formed from a resin composition for optical waveguides containing one or more selected fluorinated and deuterated group forces.
[0015] 本発明の第二の態様は、(1)型の表面に一定のノターンを有する導体を形成する 工程、(2)粉末状の熱硬化性榭脂と、前記型の表面に形成された導体とを接触させ る工程、及び (3)前記型を熱硬化性榭脂とともに加圧及び Z又は加熱して、前記熱 硬化性榭脂を溶融、硬化させ、前記型の表面に形成された導体を硬化により得られ る榭脂基板の表面に転写する工程を含む、導体の表面と榭脂基板の表面とが面一 である回路基板の製造方法である。  [0015] In a second aspect of the present invention, (1) a step of forming a conductor having a certain no-turn on the surface of the mold, (2) a powdery thermosetting resin, and formed on the surface of the mold (3) The mold is pressed and Z or heated together with a thermosetting resin to melt and cure the thermosetting resin, and is formed on the surface of the mold. A method for producing a circuit board, wherein the surface of the conductor and the surface of the resin substrate are flush with each other, including a step of transferring the conductor to the surface of the resin substrate obtained by curing.
[0016] 前記回路基板の製造方法に適した熱硬化性榭脂は、上述した一般式(1)で示され るイミドオリゴマーである。本発明の製造方法はまた、一定のパターンを有する導体 が導電回路又は光導波路であってもよぐそれらの形成に適した導電性ペースト又 は光導波路用榭脂組成物もまた上述のとおりである。  [0016] A thermosetting resin suitable for the method of manufacturing a circuit board is an imide oligomer represented by the above general formula (1). The production method of the present invention also includes a conductive paste or a resin composition for an optical waveguide suitable for forming a conductor having a certain pattern, whether it is a conductive circuit or an optical waveguide. is there.
[0017] 前記回路基板の製造方法において、一定のパターンを有する導体の形成方法とし ては、インクジェット法、スクリーン印刷法又はスピンコート法が挙げられる。また所望 により、型に凹凸を設けて、回路基板の任意の場所に部品内蔵用の溝又は孔を形成 してちよい。  In the method for manufacturing a circuit board, examples of a method for forming a conductor having a certain pattern include an inkjet method, a screen printing method, and a spin coating method. Further, if desired, the mold may be provided with irregularities, and a groove or hole for incorporating a component may be formed at an arbitrary location on the circuit board.
発明の効果  The invention's effect
[0018] 本発明によれば、予め(好適には、型の表面上などに)一定のパターンを有するよう に形成された導体を、熱硬化性榭脂の表層に移し、これを熱硬化性榭脂とともに硬 化させると、導体がそのまま転写して榭脂基板の表面に埋め込まれるため、導体の 表面と榭脂基板の表面とを面一にすることができるので、回路基板の両面あるいは 3 次元方向への電子部品の実装を容易化できるという効果を奏する。加えて本発明で は、粉末状の熱硬化性榭脂を溶融、硬化させることにより榭脂基板を形成するので、 型や導体の曲面や角部に空隙が生じにく 、と 、う効果も奏する。さらに加工性のょ 、 一般式(1)で示されるような熱硬化性のイミドオリゴマーを使用することによって、少な い工程で効率的に回路を榭脂表面に段差無く面一に転写することができ、所望によ り予め任意の場所に部品内蔵用などの溝又は孔を容易に設定することができるので 、高密度実装しやす 、回路基板を得ることができると 、う効果を奏する。 図面の簡単な説明 [0018] According to the present invention, a conductor previously formed to have a certain pattern (preferably on the surface of a mold, etc.) is transferred to the surface layer of a thermosetting resin, which is then thermosetting. When it is hardened together with the resin, the conductor is transferred as it is and embedded in the surface of the resin substrate, so that the surface of the conductor and the surface of the resin substrate can be flush with each other. There is an effect that the mounting of the electronic component in the dimension direction can be facilitated. In addition, in the present invention, since the resin substrate is formed by melting and curing the powdered thermosetting resin, it is difficult for voids to be formed on the curved surfaces and corners of the mold and the conductor. Play. In addition, by using a thermosetting imide oligomer as shown by the general formula (1), the circuit can be efficiently transferred to the surface of the resin surface without steps with few steps. In addition, if desired, grooves or holes for component built-in can be easily set in an arbitrary place in advance, so that it is easy to achieve high-density mounting and a circuit board can be obtained. Brief Description of Drawings
[0019] [図 1]型と回路パターンの概略説明図である。  FIG. 1 is a schematic explanatory diagram of a mold and a circuit pattern.
[図 2]導電性ペーストを使用した回路基板の構造図である。  FIG. 2 is a structural diagram of a circuit board using a conductive paste.
[図 3]光導波路用榭脂組成物を使用した基板の構造図である。  FIG. 3 is a structural diagram of a substrate using a resin composition for an optical waveguide.
[図 4]導電性ペーストを使用した溝を持つ回路基板の構造図である。  FIG. 4 is a structural diagram of a circuit board having grooves using conductive paste.
[図 5]基板に凹型の溝を作ることができる型と回路パターンの概略説明図である。 発明を実施するための最良の形態  FIG. 5 is a schematic explanatory diagram of a mold and a circuit pattern capable of forming a concave groove on a substrate. BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 本発明の実施の形態を以下に示す。  [0020] Embodiments of the present invention will be described below.
本発明にお 、て使用される一定のパターンを有するように予め形成された導体は、 例えば、図 1に示すような基板製造用の型の内部表面上に形成される。基板製造用 の型としては、種々の材質のものが使用できる。本発明においては、例えば導電性 ペーストを使用して形成された回路パターン図を硬化した後、型内に粉末状の熱硬 化性榭脂を充填し、これを加熱及び Z又は加圧して榭脂基板を製造するため、型の 材質は耐熱性に優れたものが好適である。金属材料、半導体材料、無機材料などを 使用することができる。型の寸法及び形状については特に限定はなぐ作製する回 路基板にあわせて選定することができる。  In the present invention, the conductor previously formed to have a certain pattern used in the present invention is formed, for example, on the inner surface of a substrate manufacturing mold as shown in FIG. Various types of materials can be used as the mold for manufacturing the substrate. In the present invention, for example, after a circuit pattern diagram formed using a conductive paste is cured, the mold is filled with a powdered thermosetting resin, and this is heated and Z or pressurized. In order to manufacture a fat substrate, a material having excellent heat resistance is suitable. Metal materials, semiconductor materials, inorganic materials, etc. can be used. The dimensions and shape of the mold are not particularly limited, and can be selected according to the circuit board to be produced.
[0021] 型の表面への導体、具体的には導電回路の形成は、例えば次のような工程により 行うことができる。まず、図 1に示すような凸型又は凹型いずれかの型の内部表面上 に導電性ペーストによって所望の回路パターン図を描画する。このとき、凸型及び凹 型の両方の型の内部表面上に、それぞれ所望の回路パターン図を描画してもよぐ それにより榭脂基板の両面に導電回路を有する回路基板を容易に作製することがで きる。描画する方法は、インクジ ット法、スクリーン印刷法などの中から、使用する導 電性ペーストの性状に依存して適宜選択することができる。  [0021] Formation of a conductor, specifically a conductive circuit, on the surface of the mold can be performed, for example, by the following steps. First, a desired circuit pattern diagram is drawn with a conductive paste on the inner surface of either a convex type or a concave type as shown in FIG. At this time, desired circuit pattern diagrams may be drawn on the internal surfaces of both the convex and concave molds, thereby easily producing a circuit board having conductive circuits on both sides of the resin board. be able to. The drawing method can be appropriately selected from the ink jet method, the screen printing method and the like depending on the properties of the conductive paste to be used.
[0022] この型上に導電性ペーストを用いて描画した回路パターン図を、型とともに硬化処 理に付すことにより、型上に導電回路が形成される。硬化処理の温度及び時間の条 件は、導電性ペーストに含まれる導電性粒子、有機榭脂、溶剤等の成分によって適 宜決定されるが、通常、 100°C〜300°Cの温度範囲で 10分から 120分の間の時間 で行われる。 [0023] 本発明において使用される導電性ペーストに含まれる導電性粒子としては、微細な 配線回路を形成するために、平均粒径が lOOnm以下、 lnm以上の導電性粒子から なることが好ましい。配線回路の導通抵抗の低下のために、平均粒径が 50nm以下 2 nm以上であることがより好ましい。導電性粒子としては、金、銀、銅、亜鉛、スズ、 -ッ ケル、ノラジウム、カーボン等を使用することができる。これらの導電性粒子と有機榭 脂及び溶剤とを混合し、分散させることにより導電性ペーストを調製することができる 。有機榭脂としては、エポキシ榭脂、フエノール榭脂、ポリアミド榭脂、ポリイミド榭脂、 ポリフエ-レンサルファイド榭脂、ポリシァネート榭脂などが挙げられる。また有機榭脂 として、本発明の一般式(1)で示されるイミドオリゴマーを使用することもできる。導電 性粒子と有機樹脂との重量比は、 70 : 30〜99 : 1の範囲が好ましい。また、導電性べ 一ストには、粘性調整剤、還元剤を適宜加えてもよい。 [0022] A circuit pattern diagram drawn using a conductive paste on the mold is subjected to a curing process together with the mold, whereby a conductive circuit is formed on the mold. The temperature and time conditions for the curing process are appropriately determined depending on the components such as conductive particles, organic resin, and solvent contained in the conductive paste, but usually in the temperature range of 100 ° C to 300 ° C. It takes between 10 and 120 minutes. [0023] The conductive particles contained in the conductive paste used in the present invention are preferably composed of conductive particles having an average particle diameter of lOOnm or less and lnm or more in order to form a fine wiring circuit. In order to reduce the conduction resistance of the wiring circuit, the average particle size is more preferably 50 nm or less and 2 nm or more. As the conductive particles, gold, silver, copper, zinc, tin, nickel, noradium, carbon, or the like can be used. A conductive paste can be prepared by mixing and dispersing these conductive particles, an organic resin, and a solvent. Examples of the organic resin include epoxy resin, phenol resin, polyamide resin, polyimide resin, polyphenylene sulfide resin, and polycarbonate resin. As the organic resin, an imide oligomer represented by the general formula (1) of the present invention can also be used. The weight ratio of the conductive particles to the organic resin is preferably in the range of 70:30 to 99: 1. In addition, a viscosity modifier and a reducing agent may be appropriately added to the conductive base.
[0024] 導電性ペーストに使用する溶剤としては、ポリエチレングリコールモノメチルエーテ ル系溶剤、ポリエチレングリコールモノメチルエーテルアセテート系溶剤、ポリプロピ レングリコールモノメチルエーテル系溶剤、ポリプロピレングリコールモノメチルエーテ ルアセテート系溶剤、アルコール系溶剤、炭化水素系溶剤が挙げられる。溶剤の使 用量は、使用される有機榭脂により異なる力 導電性ペーストの全重量に対して、 30 〜60重量%の範囲である。  [0024] Solvents used for the conductive paste include polyethylene glycol monomethyl ether solvent, polyethylene glycol monomethyl ether acetate solvent, polypropylene glycol monomethyl ether solvent, polypropylene glycol monomethyl ether acetate solvent, alcohol solvent, A hydrocarbon solvent is mentioned. The amount of solvent used is in the range of 30-60% by weight, based on the total weight of the conductive paste, depending on the organic resin used.
[0025] 一方、型上への光導波路の形成は、例えば次のような工程により行うことができる。  On the other hand, the optical waveguide can be formed on the mold by, for example, the following steps.
まず、図 1に示すような凸型又は凹型いずれかの型の内部表面上に光導波路用榭 脂組成物によって所望のパターン図を描画する。このとき凸型及び凹型の両方の型 の内部表面上に、それぞれ所望のノターン図を描画してもよぐそれにより榭脂基板 の両面に光導波路を有する回路基板を容易に作製することができる。描画する方法 はスピンコート法、インクジェット法、スクリーン印刷法などの中から、使用する光導波 路用榭脂組成物の性状に依存して選択することができる。  First, a desired pattern diagram is drawn on the inner surface of either a convex or concave mold as shown in FIG. 1 using a resin composition for an optical waveguide. At this time, desired turn diagrams may be drawn on the inner surfaces of both the convex and concave molds, whereby a circuit board having optical waveguides on both sides of the resin substrate can be easily produced. . The drawing method can be selected from a spin coating method, an ink jet method, a screen printing method and the like depending on the properties of the resin composition for optical waveguide to be used.
[0026] この型上に光導波路用榭脂組成物を用いて描画した光導波路パターン図を、型と ともに熱処理に付すことにより、型上に光導波路が形成される。熱処理の温度及び時 間の条件は、光導波路用榭脂組成物に含まれる榭脂、溶剤等の成分によって適宜 決定される。 [0027] 光導波路用榭脂組成物の成分としては、ポリイミド、ポリメチルメタタリレート、ポリ力 ーボネート、芳香族ポリエステル、ポリアリレート、エポキシ榭脂、シリコン榭脂、アタリ ル榭脂及びこれらのフッ素化物、重水素化物などが挙げられる。好ましくは耐熱性に 優れた高分子材料であり、好適なのはポリイミドである。さらにポリイミドの中でも、光 透過性、耐湿性に優れるフッ素化ポリイミドが最も好適である。 An optical waveguide is formed on the mold by subjecting the optical waveguide pattern drawing drawn using the resin composition for an optical waveguide on the mold to heat treatment together with the mold. The temperature and time conditions for the heat treatment are appropriately determined depending on components such as a resin and a solvent contained in the resin composition for an optical waveguide. [0027] Components of the resin composition for optical waveguides include polyimide, polymethylmethallate, polycarbonate, aromatic polyester, polyarylate, epoxy resin, silicon resin, talyl resin and fluorine thereof. And deuterides. A polymer material excellent in heat resistance is preferred, and polyimide is preferred. Further, among polyimides, fluorinated polyimide having excellent light transmission and moisture resistance is most suitable.
[0028] 次に、導体と熱硬化性榭脂を接触させるため(導体を熱硬化性榭脂の表層に移す ため)、例えば図 1に示すような基板製造用の凸型の型を、熱硬化性榭脂が充填され た凹型の型に被せる。但し、導体は、上記で述べたように予め型の一方又は両方の 内部表面上に形成されていればよい。次に、これらの型を温度制御ができるプレス機 に装着し、所望の圧力をかけながら熱硬化性榭脂のガラス転移温度 (溶融温度)以 上から熱硬化が終了する温度まで加熱する。熱硬化性榭脂は、溶媒に溶解させたヮ ニスの形態で、あるいはそのままで用いることもできる力 粉末状のものをそのまま用 いることが好ましい。ガラス転移温度以上に加熱することによって粉末状の熱硬化性 榭脂が軟化 (溶融)し、導電回路あるいは光導波路等の導体が、熱硬化性榭脂を硬 ィ匕させてなる榭脂基板の表面に隙間なく充填、密着され転写が良好に行われる。  Next, in order to bring the conductor into contact with the thermosetting resin (in order to transfer the conductor to the surface layer of the thermosetting resin), for example, a convex mold for manufacturing a substrate as shown in FIG. Place on a concave mold filled with curable resin. However, the conductor may be formed on one or both inner surfaces of the mold in advance as described above. Next, these molds are mounted on a press machine capable of controlling the temperature, and are heated from the glass transition temperature (melting temperature) of the thermosetting resin to a temperature at which the thermosetting is completed while applying a desired pressure. The thermosetting resin is preferably used as it is in the form of a varnish dissolved in a solvent or as a power powder that can be used as it is. Heating above the glass transition temperature softens (melts) the powdered thermosetting resin, and a conductor such as a conductive circuit or an optical waveguide hardens the thermosetting resin. The surface is filled and closely contacted with no gap, and transfer is performed well.
[0029] 次にプレス機を冷却した後、型を榭脂基板から取り外すことにより、導体の表面と榭 脂基板の表面とが面一である回路基板を得ることができる。なお、本発明において「 面一」とは、導体の表面と榭脂基板の表面とが実質的に段差がない状態であることを 意味し、具体的には、そのような段差が、榭脂基板の厚さに対して ± 1%以下である ことが好ましぐ ±0. 5%以下であることがより好ましい。  [0029] Next, after the press machine is cooled, the circuit board in which the surface of the conductor is flush with the surface of the resin board can be obtained by removing the mold from the resin board. In the present invention, “level” means that there is substantially no step between the surface of the conductor and the surface of the resin substrate. The thickness is preferably ± 1% or less with respect to the thickness of the substrate, more preferably ± 0.5% or less.
[0030] また、凹凸の加工が施された型を使用した、任意の位置に溝又は孔を有する回路 基板の作製については、上記の回路基板の作製方法と同様の方法で行うことができ る。  [0030] In addition, a circuit board having a groove or a hole at an arbitrary position using a mold on which irregularities are processed can be produced by the same method as the above-described circuit board production method. .
[0031] 本発明の熱硬化性榭脂としては、熱溶融性がよく型凹凸部への追従性が高いこと から、下記一般式(1)で示されるイミドオリゴマーが好適である。
Figure imgf000009_0001
[0031] As the thermosetting resin of the present invention, an imide oligomer represented by the following general formula (1) is preferable because it has a good heat melting property and a high followability to the uneven portion of the mold.
Figure imgf000009_0001
[0033] 式中、 nは、 1〜: L0の数であり、 Ar1は、炭素数 6〜36の単環式若しくは縮合多環式 芳香族化合物、又は同一若しくは異なる 2つ以上の前記芳香族基が直接若しくは架 橋員により相互に連結された多環式ィ匕合物の 4価の基であり、 Ar2は、炭素数 6〜36 の単環式若しくは縮合多環式芳香族化合物、又は同一若しくは異なる 2つ以上の前 記芳香族基が直接若しくは架橋員により相互に連結された多環式化合物の 2価の基 であり、ここで架橋員とは、— O—、— CO—、 — coo—、— oco—、 -so 一、 -[0033] In the formula, n is a number of 1 to: L0, and Ar 1 is a monocyclic or condensed polycyclic aromatic compound having 6 to 36 carbon atoms, or two or more of the fragrances that are the same or different Ar 2 is a monocyclic or condensed polycyclic aromatic compound having 6 to 36 carbon atoms, and is a tetravalent group of polycyclic compounds in which group groups are connected to each other directly or by a bridge member. Or a divalent group of a polycyclic compound in which two or more of the same or different aromatic groups are connected to each other directly or by a cross-linking member, where the cross-linking members are —O—, —CO —, — Coo—, — oco—, -so one,-
22
S—、 — CH —、— C (CH ) 一、 — C (CF ) —からなる群から選択される 2価の基で A divalent group selected from the group consisting of S—, — CH —, — C (CH) 1, — C (CF) —
2 3 2 3 2  2 3 2 3 2
あり、 R2は、それぞれ独立して、同一であっても、異なってもよぐ水素又はフエ- ル基である。 Each R 2 is independently hydrogen or a phenyl group, which may be the same or different.
[0034] Ar2〖こおける「炭素数 6〜36の単環式若しくは縮合多環式芳香族化合物」は 、好ましくは炭素数 6〜18、より好ましくは炭素数 6〜 12の単環式又は縮合多環式芳 香族化合物であり、例えば、ベンゼン、ナフタレン、アントラセン、フエナントレンなど が挙げられる。したがって、 Ar1における「炭素数 6〜36の単環式若しくは縮合多環 式芳香族化合物の 4価の基」は、好ましくはベンゼン、ナフタレン、アントラセン、フエ ナントレンなど力 誘導される 4価の基であり、 Ar2における「炭素数 6〜36の単環式 若しくは縮合多環式芳香族化合物の 2価の基」は、好ましくはベンゼン、ナフタレン、 アントラセン、フエナントレンなど力 誘導される 2価の基であり、最も好ましくは o—、 m—若しくは p—フエ-レンが挙げられる。また Ar2における「炭素数 6〜36の単環式 若しくは縮合多環式芳香族化合物」は、その芳香環上に、炭素数 1〜4のアルキル基 、トリフルォロメチル基などの置換基を 1つ以上、好ましくは 1又は 2つ有していてもよ い。 [0034] The "monocyclic or condensed polycyclic aromatic compound having 6 to 36 carbon atoms" in Ar 2 is preferably a monocyclic or condensed carbon having 6 to 18, more preferably 6 to 12 carbon atoms. It is a condensed polycyclic aromatic compound, and examples thereof include benzene, naphthalene, anthracene, and phenanthrene. Therefore, the “tetravalent group of a monocyclic or condensed polycyclic aromatic compound having 6 to 36 carbon atoms” in Ar 1 is preferably a force-induced tetravalent group such as benzene, naphthalene, anthracene, or phenanthrene. The “divalent group of a monocyclic or condensed polycyclic aromatic compound having 6 to 36 carbon atoms” in Ar 2 is preferably a force-induced divalent group such as benzene, naphthalene, anthracene, or phenanthrene. And most preferably o-, m- or p-phenylene. In addition, the “monocyclic or condensed polycyclic aromatic compound having 6 to 36 carbon atoms” in Ar 2 has a substituent such as an alkyl group having 1 to 4 carbon atoms or a trifluoromethyl group on the aromatic ring. You may have one or more, preferably one or two.
[0035] Ar2における「同一若しくは異なる 2つ以上の前記芳香族化合物が直接若しく は架橋員により相互に連結された多環式ィ匕合物」とは、前記段落に挙げられた、単 環式若しくは縮合多環式芳香族化合物が、直接若しくは架橋員 (ここで架橋員とは、 一 O 、 一 CO 、 一 COO 、 一 OCO 、 一 SO —、 一 S—、 -CH 一、 一 C (CH [0035] "A polycyclic compound in which two or more of the same or different aromatic compounds are directly or interconnected by a bridging member" in Ar 2 is a simple substance mentioned in the above paragraph. A cyclic or condensed polycyclic aromatic compound is directly or a cross-linking member (where the cross-linking members are one O, one CO, one COO, one OCO, one SO —, one S—, —CH one, one C (CH
2 2 3 2 2 3
) 一又は C (CF ) —からなる群から選択される)により相互に連結された多環式ィ匕) One or C (CF) — selected from the group consisting of)
2 3 2 2 3 2
合物を意味する。したがって、 Ar1における多環式ィ匕合物の 4価の基としては、前記 段落に挙げられた 2つ以上の単環式芳香族化合物、特には o—、 m 若しくは p フ ェ-レンが、直接若しくは架橋員により相互に連結された多環式ィ匕合物の 4価の基、 例えば、ビフエ-ル、ジフエ-ルエーテル、ベンゾフエノン、安息香酸フエ-ル、 2, 2 ージフエニルプロパン、 2, 2 ジフエ二ルー 1, 1, 1, 3, 3, 3 へキサフルォロプロ パンなど力 誘導される 4価の基が挙げられる。 Ar2における多環式ィ匕合物の 2価の 基としては、前記段落に挙げられた 2つ以上の単環式芳香族化合物、特には o—、 m 若しくは p フエ-レン力 直接若しくは架橋員により相互に連結された多環式ィ匕 合物の 2価の基、例えば、ビフエ-ル— 4, 4,—ジィル、ビフエ-ル— 2, 2,—ジィル などが挙げられる。また Ar2における多環式ィ匕合物は、その芳香環上に、炭素数 1〜 4のアルキル基、トリフルォロメチル基などの置換基を 1つ以上、好ましくは 1又は 2つ 有していてもよい。 It means compound. Therefore, the tetravalent group of the polycyclic compound in Ar 1 includes two or more monocyclic aromatic compounds mentioned in the preceding paragraph, particularly o-, m or p-ferene. Tetravalent groups of polycyclic compounds linked together or directly by a cross-linking member, such as biphenyl, diphenyl ether, benzophenone, benzoic acid phenol, 2,2-diphenylpropane, 2, 2 Diphenyl, 1, 1, 1, 3, 3, 3 Examples include force-induced tetravalent groups such as hexafluoropropane. The divalent group of the polycyclic compound in Ar 2 includes two or more monocyclic aromatic compounds mentioned in the preceding paragraph, in particular o-, m or p phenylene forces, directly or bridged And divalent groups of polycyclic compounds connected to each other by members, such as biphenyl-4, 4, dill, biphenyl-2, 2, diyl and the like. In addition, the polycyclic compound in Ar 2 has one or more substituents such as an alkyl group having 1 to 4 carbon atoms or a trifluoromethyl group, preferably 1 or 2 on the aromatic ring. It may be.
[0036] 一般式(1)で示される、架橋性の基を有するイミドオリゴマーの製造方法としては、 特に制限はなぐ公知の方法で良い。例えば、先ず、芳香族テトラカルボン酸二無水 物と、架橋性の基を有する芳香族カルボン酸系分子封止剤とを、炭素数 1〜3の一 級アルコール、好適にはメタノール又はエタノール中でハーフエステル化する。この 得られた溶液に、一般式(1)中の nが 1〜: L0となるように芳香族ジァミンを加えて反応 させる。この際の溶液の濃度は 10〜50重量%程度までである。  [0036] The production method of the imide oligomer having a crosslinkable group represented by the general formula (1) may be a known method without any particular limitation. For example, first, an aromatic tetracarboxylic dianhydride and an aromatic carboxylic acid-based molecular sealant having a crosslinkable group are mixed in a primary alcohol having 1 to 3 carbon atoms, preferably methanol or ethanol. Half esterify. The resulting solution is reacted with an aromatic diamine so that n in the general formula (1) is 1 to L0. The concentration of the solution at this time is about 10 to 50% by weight.
[0037] この混合物には、 1, 2 ジメチルイミダゾール、ベンズイミダゾール、イソキノリン、 置換ピリジンなどのイミド化触媒をカ卩えてもよい。また公知の添加剤、例えば、無機フ イラ一、有機フィラー、無機顔料あるいは有機顔料などを加えても良い。  [0037] The mixture may contain an imidization catalyst such as 1,2 dimethylimidazole, benzimidazole, isoquinoline, or substituted pyridine. In addition, known additives such as inorganic fillers, organic fillers, inorganic pigments or organic pigments may be added.
[0038] 次いで、上記混合物を蒸発乾固し、さらに加熱してイミド化させる。加熱については 、得られるイミドオリゴマーのガラス転移温度付近から熱硬化が始まる温度より下の温 度の範囲内で 5〜 180分間、好適には 60分間加熱することが望ましい。  [0038] Next, the mixture is evaporated to dryness and further heated to imidize. Regarding heating, it is desirable to heat for 5 to 180 minutes, preferably 60 minutes, within a temperature range below the temperature at which thermosetting starts from around the glass transition temperature of the resulting imide oligomer.
[0039] 得られたイミドオリゴマーは、実験室レベルでは、乳鉢などで平均粒径 100 μ m以 下に粉砕して粉末状にする。イミドオリゴマーは、溶剤に溶力してワニス状にして使用 することもできるが、環境負荷の観点からそのまま粉末状で使用することが望ましい。 [0039] At the laboratory level, the obtained imide oligomer has an average particle size of 100 μm or less in a mortar or the like. Grind down to powder. The imide oligomer can be used in the form of a varnish by dissolving it in a solvent, but it is desirable to use it as it is from the viewpoint of environmental load.
[0040] ここで使用するテトラカルボン酸二無水物の例としては、ピロメリット酸二無水物、 3, 3 ' , 4, 4,ービフエ-ルテトラカルボン酸二無水物、 2, 3, 3 ' , 4,ービフエ-ルテトラ カルボン酸二無水物、 2, 2, 3 ' , 3,ービフエ-ルテトラカルボン酸二無水物、 4, 4, ーォキシジフタル酸二無水物、 3, 4'—ォキシジフタル酸二無水物、 3, 3 '—ォキシ ジフタル酸二無水物、 4, 4 ' (4, 4' イソプロピリデンジフエノキシ)ビス(フタル酸 無水物)、 3, 3 ' , 4, 4,一べンゾフエノンテトラカルボン酸二無水物、 3, 3 ' , 4, 4,一 ジフエ-ルスルホンテトラカルボン酸二無水物、 2, 2 ビス(3, 4 ジカルボキシフエ -ル)プロパン二無水物、 2, 2 ビス(3, 4 ジカルボキシフエ-ル)へキサフルォロ プロパン二無水物、 1, 2, 7, 8 ナフタレンテトラカルボン酸二無水物などが挙げら れる。これらは単独でも 2種類以上組み合わせても使用することができる。  [0040] Examples of tetracarboxylic dianhydrides used here include pyromellitic dianhydride, 3, 3 ', 4, 4, biphenyl tetracarboxylic dianhydride, 2, 3, 3' , 4, -biphenyltetracarboxylic dianhydride, 2, 2, 3 ', 3, -biphenyltetracarboxylic dianhydride, 4, 4, oxydiphthalic dianhydride, 3,4'-oxydiphthalic dianhydride , 3, 3'-oxydiphthalic dianhydride, 4, 4 '(4,4' isopropylidenediphenoxy) bis (phthalic anhydride), 3, 3 ', 4, 4, monobenzov Enone tetracarboxylic dianhydride, 3, 3 ', 4, 4, 1 diphenyl sulfone tetracarboxylic dianhydride, 2, 2 bis (3,4 dicarboxyphenol) propane dianhydride, 2, 2 Bis (3,4 dicarboxyphenyl) hexafluoropropane dianhydride, 1, 2, 7, 8 naphthalenetetracarboxylic dianhydride Is mentioned. These can be used alone or in combination of two or more.
[0041] 使用する芳香族ジァミンとしては、 p フエ-レンジァミン、 m—フエ-レンジァミン、 ジァミノナフタレン類、ジァミノアントラセン類、 4, 4,ージアミノビフエ-ル、 3, 4,ージ アミノビフエニル、 3, 3,一ジアミノビフエニル、 o トリジン、 m—トリジン、 2, 2,一ビス (トリフルォロメチル) 4, 4,一ジアミノビフエ-ル、 4, 4,一ジアミノジフエ-ルメタン、 3, 4'ージアミノジフエ二ノレメタン、 3, 3 'ージアミノジフエ二ノレメタン、 4, 4 'ージァミノ ジフエニルエーテル、 3, 4'ージアミノジフエニルエーテル、 3, 3 'ージアミノジフエ二 ルエーテル、 4, 4'ージアミノジフエニルスルホン、 3, 4'ージアミノジフエニルスルホ ン、 3, 3,一ジアミノジフエニルスルホン、 4, 4'—ジアミノジフエ二ルケトン、 3, 4,一ジ アミノジフエ-ルケトン、 3, 3,一ジァミノジフエ-ルケトン、 2, 2 ビス(4 アミノフエノ キシ)プロパン、 2, 2 ビス(3 アミノフエノキシ)プロパン、 2— (3 ァミノフエ-ル) —2— (4 ァミノフエ-ル)プロパン、 2, 2 ビス(4 ァミノフエ-ル)へキサフルォロ プロパン、 1, 4, —ビス(4 アミノフエノキシ)ベンゼン、 1, 3 ビス(4 ァミノフエノキ シ)ベンゼン、 1, 3 ビス(3 アミノフエノキシ)ベンゼン、 1, 4 ビス(4 ァミノベン ゾィル)ベンゼン、 1, 4 ビス(3 ァミノべンゾィル)ベンゼン、 1, 3— (4 ァミノベン ゾィルベンゼン、 1 , 3 ビス(3 ァミノべンゾィル)ベンゼン、 9, 9 ビス(4 -アミノフ ェ -ル)フルオレン、 2, 2 ビス [4— (4 アミノフエノキシ)フエ-ル]プロパン、 4, 4, —ビス(4—アミノフエノキシ)ビフエ-ル、 4, 4,一ビス(3—アミノフエノキシ)ビフエ- ル、ビス [4— (4—アミノフエノキシ)フエ-ル]スルホン、ビス [4— (3—ァミノフエノキシ )フエ-ル]スルホン、ビス [4一 (4一アミノフエノキシ)フエ-ル]エーテル、ビス [4一 (3 —アミノフエノキシ)フエ-ル]エーテル、 4, 4'—ビス(4—アミノフエノキシ)ベンゾフエ ノン、 4, 4, 一ビス(3 アミノフエノキシ)ベンゾフエノン、 1, 4 ビス [4— (2— , 3—, もしくは 4 アミノフエノキシ)ベンゾィル]ベンゼン、 1, 3 ビス [4— (2— , 3—,もしく は 4 アミノフエノキシ)ベンゾィル]ベンゼン、 1, 4 ビス [3— (2— , 3—,もしくは 4 —アミノフエノキシ)ベンゾィル]ベンゼン、 1, 3 ビス [3— (2— , 3—,もしくは 4 ァ ミノフエノキシ)ベンゾィル]ベンゼン、 4, 4, 一ビス [4— (2— , 3—,もしくは 4 ァミノ フエノキシ)ベンゾィル]ジフエ-ルエーテル、 4, 4, ビス [3— (2— , 3—,もしくは 4 —アミノフエノキシ)ベンゾィル]ジフエ-ルエーテル、 4, 4, 一ビス [4— (2— , 3—,も しくは 4 アミノフエノキシ)ベンゾィル]ビフエ-ル、 4, 4, 一ビス [3— (2— , 3—,もし くは 4 アミノフエノキシ)ベンゾィル]ビフエ-ル、 4, 4, 一ビス [4— (2— , 3—,もしく は 4—アミノフエノキシ)ベンゾィル]ジフエ-ルスルホン、 4, 4, 一ビス [3— (2 , 3— ,もしくは 4—アミノフエノキシ)ベンゾィル]ジフエ-ルスルホンなどが挙げられる。これ らは単独でも 2種類以上組み合わせても使用することができる。 [0041] Examples of the aromatic diamine used include p-phenylenediamine, m-phenylenediamine, diaminonaphthalene, diaminoanthracene, 4,4, -diaminobiphenyl, 3,4, diaminobiphenyl, 3, 3, 1-diaminobiphenyl, o toridine, m-tolidine, 2, 2, 1-bis (trifluoromethyl) 4, 4, 1-diaminobiphenyl, 4, 4, 1-diaminodiphenyl methane, 3, 4 ' -Diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 4,4'-diaminodiphenylsulfone, 3 , 4'-diaminodiphenyl sulfone, 3, 3, 1-diaminodiphenyl sulfone, 4, 4'-diaminodiphenyl ketone, 3, 4, 1-diaminodiphenyl ketone, 3 , 3, 1-diaminodiphenyl ketone, 2, 2 bis (4 aminophenoxy) propane, 2, 2 bis (3 aminophenoxy) propane, 2— (3 aminophenol) —2— (4 aminophenol) propane, 2, 2 Bis (4aminophenol) hexafluoropropane, 1, 4, —bis (4 aminophenoxy) benzene, 1, 3 bis (4 aminophenoxy) benzene, 1, 3 bis (3 aminophenoxy) benzene, 1, 4 bis ( 4-aminobenzoyl) benzene, 1,4-bis (3-aminobenzoyl) benzene, 1,3-- (4-aminobenzoylbenzene, 1,3-bis (3-aminobenzoyl) benzene, 9,9-bis (4-aminophenol) ) Fluorene, 2, 2 Bis [4— (4 Aminophenoxy) phenol] propane, 4, 4, —Bis (4-aminophenoxy) biphenyl, 4,4, monobis (3-aminophenoxy) biphenyl, bis [4- (4-aminophenoxy) phenol] sulfone, bis [4- (3-aminophenoxy) [Phenol] sulfone, bis [4- (4-aminophenoxy) phenol] ether, bis [4- (3-aminophenoxy) phenol] ether, 4,4'-bis (4-aminophenoxy) benzophenone, 4, 4, 1 bis (3 aminophenoxy) benzophenone, 1, 4 bis [4— (2—, 3—, or 4 aminophenoxy) benzoyl] benzene, 1, 3 bis [4— (2—, 3—, or Is 4 aminophenoxy) benzoyl] benzene, 1,4 bis [3— (2—, 3—, or 4 —aminophenoxy) benzoyl] benzene, 1,3 bis [3— (2—, 3—, or 4 aminophenoxy) Benzyl] benzene, 4, 4, 1 [4— (2—, 3—, or 4 aminophenoxy) benzoyl] diphenyl ether, 4, 4, bis [3— (2—, 3—, or 4 —aminophenoxy) benzoyl] diphenyl ether, 4, 4, 1bis [4- (2—, 3—, or 4 aminophenoxy) benzoyl], 4, 4, 1bis [3— (2—, 3—, or 4 aminophenoxy) benzoyl] Biphenyl, 4, 4, bis [4— (2—, 3—, or 4-aminophenoxy) benzoyl disulfone, 4, 4, bis [3— (2, 3—, or 4 —Aminophenoxy) benzoyl] diphenyl sulfone. These can be used alone or in combination of two or more.
[0042] 使用する架橋性の基を有するカルボン酸系分子封止剤としては、 4ーェチニルフタ ル酸無水物、 4 フ 二ルェチニルフタル酸無水物又はそれらの混合物が挙げられ る。 [0042] Examples of the carboxylic acid-based molecular sealing agent having a crosslinkable group to be used include 4-ethynylphthalic anhydride, 4-furethynylphthalic anhydride, or a mixture thereof.
[0043] 本発明の熱可塑性榭脂として、一般式(1)で示される、架橋性の基を有するイミド オリゴマーの他に、別の架橋性の基を有するイミドオリゴマーを使用することもできる。 そのようなイミドオリゴマーは前述と同様の方法により製造することができるが、架橋性 の基を有するカルボン酸系分子封止剤として、 3—フエ-ルェチュルフタル酸無水物 、ェチ-ルナフタレンジカルボン酸無水物、フエ-ルェチュルナフタレンジカルボン 酸無水物、ェチ-ルアントラセンジカルボン酸無水物、フエ-ルェチ-ルアントラセン ジカルボン酸無水物、 4 ナフチルェチュルフタル酸無水物、 3—ナフチルェチュル フタル酸無水物、 4 アントラセ-ルェチュルフタル酸無水物、 3—アントラセ-ルェ チュルフタル酸無水物、アントラセ-ルェチ-ルナフタレンジカルボン酸無水物、ァ ントラセ-ルェチュルアントラセンジカルボン酸無水物(これらの芳香族環上の水素 原子は、炭素数 1〜6のアルキル基、ァルケ-ル基、アルキ-ル基、アルコキシル基、 ノ、ロゲン原子で置換されていてもよい)などを使用することができる。これらは単独又 は 2種類以上組み合わせても使用してもよ 、。 [0043] As the thermoplastic resin of the present invention, in addition to the imide oligomer having a crosslinkable group represented by the general formula (1), an imide oligomer having another crosslinkable group can also be used. Such an imide oligomer can be produced by the same method as described above. However, as a carboxylic acid-based molecular sealant having a crosslinkable group, 3-phenol phthalic anhydride, ethyl naphthalene dicarboxylic acid Anhydride, Phenyl naphthalene dicarboxylic acid anhydride, Ethyl anthracene dicarboxylic acid anhydride, Phenyl ether anthracene dicarboxylic acid anhydride, 4 Naphthyl ether phthalic acid anhydride, 3-Naphthyl chlorophthalic acid Anhydride, 4 Anthracyl tert-phthalic anhydride, 3-Anthracyl tert-phthalic anhydride, Anthracyl naphthalene dicarboxylic acid anhydride, N-acetyl-anthracene dicarboxylic anhydride (hydrogen atoms on these aromatic rings are substituted with alkyl groups having 1 to 6 carbon atoms, alkenyl groups, alkyl groups, alkoxyl groups, radicals, and rogen atoms. Can be used). These may be used alone or in combination of two or more.
[0044] 前記のイミドオリゴマーは、硬化前の加工性 (熱溶融性)や回路パターンの転写性 が良好となるように、さらに熱硬化後のガラス転移温度が 200°C以上、好ましくは 250 °C以上となるように、繰り返し数 n= l〜: LOの範囲内でテトラカルボン酸二無水物、架 橋性の基を有するカルボン酸無水物、芳香族ジァミンの組成が任意に選択される。  [0044] The imide oligomer described above has a glass transition temperature after thermosetting of 200 ° C or higher, preferably 250 ° C, so that processability before curing (thermal meltability) and circuit pattern transferability are improved. The composition of the tetracarboxylic dianhydride, the carboxylic acid anhydride having a bridging group, and the aromatic diamine is arbitrarily selected within the range of the number of repetitions n = l to LO, so as to be C or more.
[0045] 本発明の熱硬化性榭脂は、所望により、熱プレス温度 150°C〜450°C、あるいは導 電性ペーストや光導波路用榭脂組成物の耐熱性を考慮すると、好ましくは 160°C〜 350°Cの硬化条件で硬化することができる。  [0045] The thermosetting resin of the present invention preferably has a hot pressing temperature of 150 ° C to 450 ° C, or preferably 160 when considering the heat resistance of the conductive paste and the resin composition for optical waveguides. It can be cured under curing conditions of ° C to 350 ° C.
実施例  Example
[0046] 以下に、本発明に基づく回路基板の作製方法の一例について、図面を参照しなが ら説明する。なお、本発明の要旨はこれらの実施例に制限されるものでない。  Hereinafter, an example of a method for manufacturing a circuit board according to the present invention will be described with reference to the drawings. The gist of the present invention is not limited to these examples.
[0047] 合成例 1 [0047] Synthesis Example 1
500mlのナス形フラスコに、 4, 4,一 (4, 4,一イソプロピリデンジフエノキシ)ビス(フ タル酸無水物)、 15. 6146g (30mmol)、 4ーェチュルフタル酸無水物 3. 4428g (2 Ommol)、メタノール 100mlを仕込み、 80°Cのオイルバス中で還流させながら 3時間 加熱撹拌を行い均一溶液とした。次に、この溶液を 50°Cまで冷却した後、 4, 4'—ジ アミノジフエ-ルエーテル 8. 0094g、 (40mmol)、メタノール 40mlをカ卩えて均一溶 液とした。この溶液をエバポレーターで濃縮し、さらに、 160°Cまで温度を上げ、 1時 間減圧、加熱を行い、固形物を得た。さらに、この固形物を乳鉢で粉砕した後、 150 °Cで 5時間乾燥し、熱硬化性のイミドオリゴマー原料粉末とした。このオリゴマーのガ ラス転移温度は 165°Cであり、 300°C、 10分の条件で熱硬化させたもののガラス転 移温度は 260°Cであつた。  In a 500 ml eggplant-shaped flask, 4, 4, 1 (4, 4, 1-isopropylidenediphenoxy) bis (phthalic anhydride), 15. 6146 g (30 mmol), 4-etulphthalic anhydride 3.4 4 g (2 Ommol) and 100 ml of methanol were added, and the mixture was heated and stirred for 3 hours while refluxing in an oil bath at 80 ° C. to obtain a homogeneous solution. Next, the solution was cooled to 50 ° C., and then 4,0094 ′ (40 mmol) of 4,4′-diaminodiphenyl ether and 40 ml of methanol were added to obtain a homogeneous solution. This solution was concentrated with an evaporator, and the temperature was further increased to 160 ° C., followed by reducing pressure and heating for 1 hour to obtain a solid. Further, this solid was pulverized in a mortar and then dried at 150 ° C. for 5 hours to obtain a thermosetting imide oligomer raw material powder. The glass transition temperature of this oligomer was 165 ° C, and the glass transition temperature was 260 ° C when thermally cured at 300 ° C for 10 minutes.
[0048] 合成例 2 [0048] Synthesis Example 2
500mlのナス形フラスコに、 2, 2—ビス(3, 4—ジカルボキシフエ-ル)へキサフル ォロプロパン二無水物 12. 4386g (28mmol)、 4ーェチュルフタル酸無水物 4. 819 8g (28mmol)、メタノール 100mlを仕込み、 80°Cのオイルバス中で還流させながら 3時間加熱撹拌を行い均一溶液とした。次に、この溶液を 50°Cまで冷却した後、 2, 2 ,一ビス(トリフルォロメチル) 4, 4,一ジアミノビフエ-ル 8. 0094g (42mmol)、メタ ノール 40mlをカ卩えて均一溶液とした。この溶液をエバポレーターで濃縮し、さら〖こ、 1 50°Cまで温度を上げ、 1時間減圧、加熱を行い、固形物を得た。さらに、この固形物 を乳鉢で粉砕した後、 150°Cで 5時間乾燥し、熱硬化性のイミドォリゴマー原料粉末 とした。このオリゴマーのガラス転移温度は 158°Cであり、 300°C、 10分の条件で熱 硬化させたもののガラス転移温度は検出されなカゝつた。 In a 500 ml eggplant-shaped flask, 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride 12. 4386 g (28 mmol), 4-etulphthalic anhydride 4. 819 8 g (28 mmol) and 100 ml of methanol were charged, and the mixture was heated and stirred for 3 hours while refluxing in an oil bath at 80 ° C. to obtain a homogeneous solution. Next, the solution was cooled to 50 ° C, and then 2, 2, monobis (trifluoromethyl) 4, 4, monodiaminobiphenyl 8.0094g (42mmol) and methanol 40ml were added to obtain a homogeneous solution. It was. This solution was concentrated with an evaporator, and the temperature was raised to 150 ° C, and the mixture was reduced in pressure and heated for 1 hour to obtain a solid. The solid was pulverized in a mortar and then dried at 150 ° C. for 5 hours to obtain a thermosetting imidoligomer raw material powder. The glass transition temperature of this oligomer was 158 ° C, and the glass transition temperature was not detected when it was thermally cured at 300 ° C for 10 minutes.
[0049] 実施例 1 [0049] Example 1
図 1の凸型の金型 la上に、スクリーン印刷法によって図 1に示すように導電性べ一 スト(ムロマチテクノス社製、商品名ムロマックボンド A—71S)で回路パターン図を印 刷した。印刷後、金型 laとともに 170°Cで 30分加熱処理し、導電回路を形成した。  A circuit pattern diagram was printed on the convex mold la shown in FIG. 1 by screen printing using a conductive bed (Muromachi Technos, trade name Muromac Bond A-71S) as shown in FIG. . After printing, a heat treatment was performed at 170 ° C for 30 minutes together with the mold la to form a conductive circuit.
[0050] 次に、凹型の金型 lbに合成例 1の熱硬化性のイミドオリゴマー粉末を充填し、導電 回路が形成された凸型の金型 laを被せ、熱プレス機に装着して 300°C、 5MPa、 10 分間で、加熱、加圧した。その後、熱プレス機を冷却して金型 la、 lbを取り去り、導 電性ペーストにより形成された導電回路が榭脂表面に段差無く面一に転写された厚 み 200 /z mの図 2の回路基板を得た。転写された導電回路の抵抗値は 0. 036 Ωで めつに。  [0050] Next, the concave mold lb was filled with the thermosetting imide oligomer powder of Synthesis Example 1, covered with a convex mold la on which a conductive circuit was formed, and mounted on a heat press machine. Heated and pressurized at ° C, 5 MPa for 10 minutes. After that, the heat press machine was cooled, the molds la and lb were removed, and the conductive circuit formed with the conductive paste was transferred onto the surface of the resin without any step. A substrate was obtained. The resistance value of the transferred conductive circuit is 0.036 Ω.
[0051] 実飾 12  [0051] Jewelery 12
図 1の凸型の金型 la上に、光導波路用榭脂組成物(ピロメリット酸二無水物と 2, 2' —ビス(トリフルォロメチル) 4, 4,一ジアミノビフエ-ルとカも製造されるフッ素化ポ リアミド酸の N, N ジメチルァセトアミド溶液(固形分濃度 15重量%) )で回路パター ン図をスクリーン印刷によって印刷した。印刷後、金型 laとともに徐々に加熱し 350 °Cで 1時間熱処理、イミドィ匕して、光導波路を形成した。  On the convex mold la shown in Fig. 1, a resin composition for optical waveguides (pyromellitic dianhydride and 2, 2'-bis (trifluoromethyl) 4, 4, 1-diaminobiphenyl and potassium A circuit pattern diagram was printed by screen printing with the N, N dimethylacetamide solution of the fluorinated polyamic acid produced (solid concentration 15% by weight). After printing, it was gradually heated with the mold la, heat-treated at 350 ° C for 1 hour, and imidized to form an optical waveguide.
[0052] 次に、凹型の金型 lbに合成例 2の熱硬化性のイミドオリゴマー粉末を充填し、光導 波路が形成された凸型の金型 laを被せ、熱プレス機に装着して 300°C、 5MPa、 10 分間で、加熱、加圧した。その後、熱プレス機を冷却して金型 la、 lbを取り去り、フッ 素化ポリイミドにより形成された光導波路が榭脂表面に段差無く転写された厚み 200 μ mの図 3の回路基板を得た。 [0052] Next, the concave mold lb was filled with the thermosetting imide oligomer powder of Synthesis Example 2, covered with a convex mold la on which an optical waveguide was formed, and mounted on a heat press machine. Heated and pressurized at ° C, 5 MPa for 10 minutes. After that, the heat press machine was cooled, the molds la and lb were removed, and the optical waveguide formed of the fluorinated polyimide was transferred onto the surface of the resin without any step. The circuit board of Fig. 3 of μm was obtained.
[0053] 実施例 3 [0053] Example 3
図 5の凸型の金型 6a上に、スクリーン印刷法によって図 5に示すように導電性べ一 スト(ムロマチテクノス社製、商品名ムロマックボンド A—71S)で回路パターン図を印 刷した。印刷後、金型 5aとともに 170°Cで 30分加熱処理し、導電回路を形成した。  A circuit pattern diagram was printed on the convex mold 6a of FIG. 5 by screen printing using a conductive bed (Muromachi Technos, trade name Muromac Bond A-71S) as shown in FIG. . After printing, a heat treatment was performed at 170 ° C for 30 minutes together with the mold 5a to form a conductive circuit.
[0054] 次に、凹型の金型 6bに合成例 1の熱硬化性のイミドオリゴマー粉末を充填し、導電 回路が形成された凸型の金型 6aを被せ、熱プレス機に装着して 300°C、 5MPa、 10 分間で、加熱、加圧した。その後、熱プレス機を冷却して金型 6a、 6bを取り去り、導 電性ペーストにより形成された導電回路が榭脂表面に段差無く転写された厚み 200 μ m、溝の深さ 100 mの図 4にしめす回路基板を得た。転写された導電回路の抵 抗値は 0. 036 Ωであった。  [0054] Next, the concave mold 6b is filled with the thermosetting imide oligomer powder of Synthesis Example 1, covered with the convex mold 6a on which the conductive circuit is formed, and mounted on a heat press machine. Heated and pressurized at ° C, 5 MPa for 10 minutes. After that, the heat press machine was cooled and the molds 6a and 6b were removed, and the conductive circuit formed with the conductive paste was transferred onto the surface of the resin without any step. The figure shows the thickness of 200 μm and the groove depth of 100 m. The circuit board shown in 4 was obtained. The resistance value of the transferred conductive circuit was 0.036 Ω.
[0055] 比 合成例 1  [0055] Ratio Synthesis Example 1
500mlのナス形フラスコに、 4, 4,一 (4, 4,一イソプロピリデンジフエノキシ)ビス(フ タル酸無水物) 15. 6146g (30mmol)、無水マレイン酸 1. 9612g (20mmol)、メタ ノール 100mlを仕込み、 80°Cのオイルバス中で還流させながら 3時間加熱撹拌を行 い均一溶液とした。次に、この溶液を 50°Cまで冷却した後、 4, 4'—ジアミノジフエ- ルエーテル 8. 0094g (40mmol)、メタノール 40mlをカ卩えて均一溶液とした。この溶 液をエバポレーターで濃縮し、さらに、 160°Cまで温度を上げ、 1時間減圧、加熱を 行い、固形物を得た。さらに、この固形物を乳鉢で粉砕した後、 150°Cで 5時間乾燥 し、熱硬化性のイミドオリゴマー原料粉末とした。このオリゴマーのガラス転移温度は 160°Cであり、 300°C、 10分の条件で熱硬化させたもののガラス転移温度は 220°C であった。  In a 500 ml eggplant-shaped flask, 4, 4, 1 (4, 4, 1-isopropylidenediphenoxy) bis (phthalic anhydride) 15. 6146 g (30 mmol), maleic anhydride 1. 9612 g (20 mmol), After adding 100 ml of diol, the mixture was heated and stirred for 3 hours while refluxing in an oil bath at 80 ° C to obtain a homogeneous solution. Next, this solution was cooled to 50 ° C., and then 4,0094 ′ (40 mmol) of 4,4′-diaminodiphenyl ether and 40 ml of methanol were added to obtain a homogeneous solution. This solution was concentrated with an evaporator, and the temperature was further increased to 160 ° C., followed by reduced pressure and heating for 1 hour to obtain a solid. Further, the solid was pulverized in a mortar and then dried at 150 ° C. for 5 hours to obtain a thermosetting imide oligomer raw material powder. This oligomer had a glass transition temperature of 160 ° C, and was thermally cured at 300 ° C for 10 minutes, and the glass transition temperature was 220 ° C.
[0056] 比較例 1  [0056] Comparative Example 1
図 1の凸型の金型 la上に、スクリーン印刷法によって図 1に示すように導電性べ一 スト(ムロマチテクノス社製、商品名ムロマックボンド A—71S)で回路パターン図を印 刷した。印刷後、金型 laとともに 170°Cで 30分加熱処理し、導電回路を形成した。  A circuit pattern diagram was printed on the convex mold la shown in FIG. 1 by screen printing using a conductive bed (Muromachi Technos, trade name Muromac Bond A-71S) as shown in FIG. . After printing, a heat treatment was performed at 170 ° C for 30 minutes together with the mold la to form a conductive circuit.
[0057] 次に、凹型の金型 lbに比較合成例 1の熱硬化性のイミドオリゴマーを充填し、導電 回路が形成された凸型の金型 laを被せ、熱プレス機に装着して 300°C、 5MPa、 10 分間で、加熱、加圧した。その後、熱プレス機を冷却して金型 la、 lbを取り去つたが 、榭脂基体が脆ぐ回路基板を得ることができな力つた。 [0057] Next, the concave mold lb was filled with the thermosetting imide oligomer of Comparative Synthesis Example 1, covered with a convex mold la on which a conductive circuit was formed, and mounted on a heat press machine. ° C, 5MPa, 10 Heated and pressurized in minutes. Thereafter, the heat press machine was cooled and the molds la and lb were removed, but the circuit board with a brittle resin substrate could not be obtained.
添付の図 1〜5における符号は、以下のものを示す。  Reference numerals in attached FIGS. 1 to 5 indicate the following.
la:凸型 la: convex
lb:凹型 lb: concave
2:導電性ペーストある ヽは光導波路用榭脂組成物  2: There is a conductive paste.
3:樹脂基体  3: Resin base
4:導電回路  4: Conductive circuit
5:光導波路  5: Optical waveguide
6a:凸部を持つ凸型  6a: Convex type with convex part
6b:凹型  6b: concave

Claims

請求の範囲 The scope of the claims
[1] 一定のパターンを有するように予め形成された導体と、前記導体が熱硬化性榭脂 の表層に移され、前記熱硬化性榭脂を硬化させることによって形成された榭脂基板 とを含み、前記導体の表面と前記榭脂基板の表面とが面一であることを特徴とする、 回路基板。  [1] A conductor formed in advance so as to have a certain pattern, and a resin substrate formed by transferring the conductor to a surface layer of a thermosetting resin and curing the thermosetting resin. A circuit board, wherein the surface of the conductor and the surface of the resin substrate are flush with each other.
[2] 前記熱硬化性榭脂が粉末状である、請求項 1記載の回路基板。  [2] The circuit board according to claim 1, wherein the thermosetting resin is in a powder form.
[3] 前記熱硬化性榭脂が、下記一般式 (1): [3] The thermosetting resin has the following general formula (1):
Figure imgf000017_0001
Figure imgf000017_0001
( 1 )  (1)
式中、  Where
nは、 1〜: L0の数であり、  n is 1 to: the number of L0
Ar1は、炭素数 6〜36の単環式若しくは縮合多環式芳香族化合物、又は同一若しく は異なる 2つ以上の前記芳香族基が直接若しくは架橋員により相互に連結された多 環式化合物の 4価の基であり、 Ar 1 is a monocyclic or condensed polycyclic aromatic compound having 6 to 36 carbon atoms, or a polycyclic compound in which two or more of the same or different aromatic groups are connected to each other directly or by a bridging member. A tetravalent group of compounds,
Ar2は、炭素数 6〜36の単環式若しくは縮合多環式芳香族化合物、又は同一若しく は異なる 2つ以上の前記芳香族基が直接若しくは架橋員により相互に連結された多 環式化合物の 2価の基であり、 Ar 2 is a monocyclic or condensed polycyclic aromatic compound having 6 to 36 carbon atoms, or a polycyclic compound in which two or more of the same or different aromatic groups are connected to each other directly or by a bridging member. A divalent group of compounds,
架橋員は、 o CO COO OCO -so S -CH  The bridge member is: o CO COO OCO -so S -CH
2 2 C (CH ) C (CF ) —力 なる群力 選択される 2価の基であり、そして 2 2 C (CH) C (CF) — Powerful group force is a divalent group selected, and
3 2 3 2 3 2 3 2
R2は、それぞれ独立して、同一であっても、異なってもよぐ水素又はフエニル基 である R 2 s are each independently the same or different hydrogen or phenyl groups
で示されるイミドオリゴマーである、請求項 1又は 2記載の回路基板。  The circuit board according to claim 1, which is an imide oligomer represented by:
[4] 前記導体が、型の表面上に予め形成されたものである、請求項 1〜3のいずれか 1 項記載の回路基板。 [4] The circuit board according to any one of claims 1 to 3, wherein the conductor is formed in advance on a surface of a mold.
[5] 前記導体が、粒径 lOOnm以下の、金、銀、銅、亜鉛、スズ、ニッケル、パラジウム及 びカーボン力 なる群力 選択される導電性粒子を 1種以上含有する導電性ペース トにより形成された導電回路である、請求項 1〜4の ヽずれか 1項記載の回路基板。 [5] The conductor has a particle diameter of lOOnm or less, gold, silver, copper, zinc, tin, nickel, palladium and The circuit board according to any one of claims 1 to 4, wherein the circuit board is a conductive circuit formed by a conductive paste containing at least one selected conductive particle.
[6] 前記導体が、ポリイミド、ポリメチルメタタリレート、ポリカーボネート、芳香族ポリエス テル、ポリアリレート、エポキシ榭脂、シリコーン榭脂、アクリル榭脂並びにこれらのフ ッ素化物及び重水素化物力 なる群力 選択される 1種以上を含有する光導波路用 榭脂組成物により形成された光導波路である、請求項 1〜4のいずれか 1項記載の回 路基板。 [6] The conductor is a group consisting of polyimide, polymethyl methacrylate, polycarbonate, aromatic polyester, polyarylate, epoxy resin, silicone resin, acrylic resin, and fluorinated and deuterated compounds thereof. The circuit board according to any one of claims 1 to 4, which is an optical waveguide formed of a resin composition for an optical waveguide containing at least one selected from force.
[7] (1)型の表面に一定のパターンを有する導体を形成する工程、  [7] (1) A step of forming a conductor having a certain pattern on the surface of the mold,
(2)粉末状の熱硬化性榭脂と、前記型の表面に形成された導体とを接触させる工程 、及び  (2) contacting a powdery thermosetting resin with a conductor formed on the surface of the mold; and
(3)前記型を熱硬化性榭脂とともに加圧及び Z又は加熱して、前記熱硬化性榭脂を 溶融、硬化させ、前記型の表面に形成された導体を硬化により得られる榭脂基板表 面に転写する工程  (3) A resin substrate obtained by pressing and Z or heating the mold together with a thermosetting resin to melt and cure the thermosetting resin, and curing the conductor formed on the surface of the mold Process to transfer to the surface
を含む、導体の表面と榭脂基板の表面とが面一である回路基板の製造方法。  A method for manufacturing a circuit board, comprising: a conductor surface and a resin substrate surface flush with each other.
[8] 前記熱硬化性榭脂が、下記一般式 (1): [8] The thermosetting resin has the following general formula (1):
Figure imgf000018_0001
Figure imgf000018_0001
式中、  Where
nは、 1〜: LOの数であり、  n is 1 to: the number of LOs
Ar1は、炭素数 6〜36の単環式若しくは縮合多環式芳香族化合物、又は同一若しく は異なる 2つ以上の前記芳香族基が直接若しくは架橋員により相互に連結された多 環式化合物の 4価の基であり、 Ar 1 is a monocyclic or condensed polycyclic aromatic compound having 6 to 36 carbon atoms, or a polycyclic compound in which two or more of the same or different aromatic groups are connected to each other directly or by a bridging member. A tetravalent group of compounds,
Ar2は、炭素数 6〜36の単環式若しくは縮合多環式芳香族化合物、又は同一若しく は異なる 2つ以上の前記芳香族基が直接もしくは架橋員により相互に連結された多 環式化合物の 2価の基であり、 R\ R2は、それぞれ独立して、同一であっても、異なってもよぐ水素又はフエニル基 である Ar 2 is a monocyclic or condensed polycyclic aromatic compound having 6 to 36 carbon atoms, or a polycyclic compound in which two or more of the same or different aromatic groups are connected to each other directly or by a bridging member. A divalent group of compounds, R \ R 2 are each independently be the same, are Yogu hydrogen or phenyl group which may differ
で示されるイミドオリゴマーである、請求項 7記載の回路基板の製造方法。  The method for producing a circuit board according to claim 7, which is an imide oligomer represented by:
[9] 前記導体が、粒径 lOOnm以下の、金、銀、銅、亜鉛、スズ、ニッケル、ノ ラジウム及 びカーボン力 なる群力 選択される導電性粒子を 1種以上含有する導電性ペース トにより形成された導電回路である、請求項 7又は 8記載の回路基板の製造方法。 [9] A conductive paste containing one or more selected conductive particles, wherein the conductor has a particle size of lOOnm or less, gold, silver, copper, zinc, tin, nickel, noradium, and carbon power. 9. The method for manufacturing a circuit board according to claim 7, wherein the circuit board is a conductive circuit formed by the method.
[10] 前記導体が、ポリイミド、ポリメチルメタタリレート、ポリカーボネート、芳香族ポリエス テル、ポリアリレート、エポキシ榭脂、シリコーン榭脂、アクリル榭脂並びにこれらのフ ッ素化物及び重水素化物力 なる群力 選択される 1種以上を含有する光導波路用 榭脂組成物により形成された光導波路である、請求項 7又は 8記載の回路基板の製 造方法。 [10] The conductor is composed of polyimide, polymethyl methacrylate, polycarbonate, aromatic polyester, polyarylate, epoxy resin, silicone resin, acrylic resin, and their fluorinated and deuterated forces. The method for producing a circuit board according to claim 7 or 8, wherein the circuit board is an optical waveguide formed of a resin composition for an optical waveguide containing one or more selected.
[11] 前記導体の形成方法が、インクジェット法、スクリーン印刷法、又はスピンコート法で ある、請求項 7〜10のいずれか 1項記載の回路基板の製造方法。  [11] The method for producing a circuit board according to any one of [7] to [10], wherein the conductor is formed by an inkjet method, a screen printing method, or a spin coating method.
[12] 型に凹凸を設けて、回路基板の任意の場所に部品内蔵用の溝又は孔を形成する 、請求項 7〜11のいずれか 1項記載の回路基板の製造方法。  [12] The method for manufacturing a circuit board according to any one of [7] to [11], wherein the mold is provided with irregularities to form a groove or hole for incorporating a component at an arbitrary location on the circuit board.
PCT/JP2006/320453 2006-10-13 2006-10-13 Circuit board and process for producing the same WO2008044308A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2006/320453 WO2008044308A1 (en) 2006-10-13 2006-10-13 Circuit board and process for producing the same
PCT/JP2007/064485 WO2008044382A1 (en) 2006-10-13 2007-07-24 Circuit board and process for producing the same
JP2008538587A JP4438890B2 (en) 2006-10-13 2007-07-24 Circuit board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/320453 WO2008044308A1 (en) 2006-10-13 2006-10-13 Circuit board and process for producing the same

Publications (1)

Publication Number Publication Date
WO2008044308A1 true WO2008044308A1 (en) 2008-04-17

Family

ID=39282519

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2006/320453 WO2008044308A1 (en) 2006-10-13 2006-10-13 Circuit board and process for producing the same
PCT/JP2007/064485 WO2008044382A1 (en) 2006-10-13 2007-07-24 Circuit board and process for producing the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064485 WO2008044382A1 (en) 2006-10-13 2007-07-24 Circuit board and process for producing the same

Country Status (2)

Country Link
JP (1) JP4438890B2 (en)
WO (2) WO2008044308A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109618487A (en) * 2019-01-22 2019-04-12 张雯蕾 With the interior three-dimensional substrate and preparation method thereof for burying circuit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5331004B2 (en) * 2007-09-27 2013-10-30 マナック株式会社 Ink composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0228992A (en) * 1988-07-19 1990-01-31 Matsushita Electric Ind Co Ltd Manufacture of circuit board
JPH10101795A (en) * 1996-07-18 1998-04-21 Reitetsuku Kk Production of polyimide, composition, and product thereof
JP2003103738A (en) * 2001-09-28 2003-04-09 Du Pont Toray Co Ltd Multi-layer polyimide film, polyimide laminate and polymer light guide path
JP2006114577A (en) * 2004-10-13 2006-04-27 Mitsui Chemicals Inc Circuit board and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02139216A (en) * 1988-11-21 1990-05-29 Yazaki Corp Molding method of three-dimensional molding circuit
JP3022917B2 (en) * 1990-07-25 2000-03-21 鐘淵化学工業株式会社 Thermosetting compound and method for producing the same
JP2001144390A (en) * 1999-11-12 2001-05-25 Hitachi Cable Ltd Solid circuit board and manufacturing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0228992A (en) * 1988-07-19 1990-01-31 Matsushita Electric Ind Co Ltd Manufacture of circuit board
JPH10101795A (en) * 1996-07-18 1998-04-21 Reitetsuku Kk Production of polyimide, composition, and product thereof
JP2003103738A (en) * 2001-09-28 2003-04-09 Du Pont Toray Co Ltd Multi-layer polyimide film, polyimide laminate and polymer light guide path
JP2006114577A (en) * 2004-10-13 2006-04-27 Mitsui Chemicals Inc Circuit board and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109618487A (en) * 2019-01-22 2019-04-12 张雯蕾 With the interior three-dimensional substrate and preparation method thereof for burying circuit
CN109618487B (en) * 2019-01-22 2022-07-29 张雯蕾 Three-dimensional base piece with embedded circuit and preparation method thereof

Also Published As

Publication number Publication date
JPWO2008044382A1 (en) 2010-02-04
JP4438890B2 (en) 2010-03-24
WO2008044382A1 (en) 2008-04-17

Similar Documents

Publication Publication Date Title
TW588089B (en) Resin composition
TWI398548B (en) Solution, plating material, insulating sheet, laminate, and printed wiring board
EP0972805B1 (en) Polyimide-based composite, electronic parts using the composite, and polyimide-based aqueous dispersion
JP6345207B2 (en) Metal-clad laminate, method for producing the same, and method for producing a flexible circuit board using the same
CN109942815B (en) Polyimide composite resin with low dielectric constant, preparation method and application
WO2008096967A1 (en) Method for preparing polyimide and polyimide prepared using the same
JPH04262593A (en) Multilayer interconnection structure and multilayers laminating method therefor
CN113563585B (en) Polyimide and application thereof in metal laminated plate
CN108727942A (en) Resin combination
TW202104365A (en) High molecular weight flexible curable polyimides
JP2002316386A (en) Copper-clad laminate and its production method
JP4999318B2 (en) Bisimide or bisisoimide compound and resin composition containing the same
JP2012233198A (en) Polyamic acid and non-thermoplastic polyimide resin
WO2013179943A1 (en) Adhesive sheet for production of semiconductor device having bump electrodes and production method for semiconductor device
JP4428491B2 (en) Electrodeposition polyimide resin composition, method for producing the same, electrodeposition molded article, and method for producing the same
WO2008044308A1 (en) Circuit board and process for producing the same
US5686191A (en) Thin film wiring board
CN100446971C (en) Double-sided metallic laminate and method for manufacturing the same
JP2010053322A (en) Polyamic acid and non-thermoplastic polyimide resin
JPH0245998A (en) Thin film multilayer wiring substrate
JP2004276411A (en) Laminate, printed wiring board and method for manufacturing the printed wiring board
JP4483044B2 (en) Wiring board manufacturing method
JP2004167874A (en) Flexible metal laminate
JPH04206595A (en) Manufacture of thin film multilayer wiring board
JP2006190717A (en) Substrate for semiconductor integrated circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06821856

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06821856

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP