WO2008042513A2 - Allocation of control channel for radio resource assignment in wireless communication systems - Google Patents
Allocation of control channel for radio resource assignment in wireless communication systems Download PDFInfo
- Publication number
- WO2008042513A2 WO2008042513A2 PCT/US2007/076468 US2007076468W WO2008042513A2 WO 2008042513 A2 WO2008042513 A2 WO 2008042513A2 US 2007076468 W US2007076468 W US 2007076468W WO 2008042513 A2 WO2008042513 A2 WO 2008042513A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- control channel
- frame
- resource assignment
- radio resource
- bit sequence
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 34
- 230000005540 biological transmission Effects 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims description 25
- 108091006146 Channels Proteins 0.000 description 183
- 239000002131 composite material Substances 0.000 description 35
- 239000000969 carrier Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 4
- 230000011664 signaling Effects 0.000 description 4
- 238000012795 verification Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000013468 resource allocation Methods 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0446—Resources in time domain, e.g. slots or frames
Definitions
- the present disclosure relates generally to wireless communications, and more particularly to controlling channel signaling for shared channels in wireless communication systems, for example cellular communication networks, corresponding entities and methods.
- Time division multiplexing (TDM) and frequency division multiplexing (FDM) methods have been proposed in addition to separate and joint coding of control channel signaling for scheduling downlink data transmission in the Long Term Evolution (LTE) of UMTS Terrestrial Radio Access (UTRA) and UTRA Network (UTRAN) specifications.
- LTE Long Term Evolution
- UTRA UMTS Terrestrial Radio Access
- UTRAN UTRA Network
- the control information for downlink and uplink assignments may be transmitted over the first few symbols of the downlink frame or it may be spread out over the length of the frame.
- the frame duration is approximately 0.5 ms, though other durations are also possible.
- FIG. 1 illustrates a wireless communication system
- FIG. 2 illustrates a radio frame comprising a composite control channel having a plurality of control channel elements.
- FIG. 3 illustrates a composite control channel having different of control channel element types.
- FIG. 4 illustrates a process flow diagram
- FIG. 5 illustrates another process flow diagram.
- FIG. 1 illustrates a wireless communication system 100 comprising multiple cell serving base units forming a network distributed over a geographical region.
- a base unit may also be referred to as an access point, access terminal, Node-B, or similar terminologies known in the art.
- the one or more base units 101 and 102 serve a number of remote units 103 and 110 within a serving area or cell or within a sector thereof.
- the remote units may also be referred to as subscriber units, mobile units, users, terminals, subscriber stations, user equipment (UE), user terminals or by other terminology known in the art.
- the network base units communicate with remote units to perform functions such as scheduling the terminals to receive or transmit data using available radio resources.
- the wireless network also comprises management functionality including data routing, admission control, subscriber billing, terminal authentication etc., which may be controlled by other network entities, as is known generally by those having ordinary skill in the art.
- Base units 101 and 102 transmit downlink communication signals 104 and 105 to serving remote units on at least a portion of the same resources (time and/ or frequency).
- Remote units 103 and 110 communicate with one or more base units 101 and 102 via uplink communication signals 106 and 113.
- the one or more base units may comprise one or more transmitters and one or more receivers that serve the remote units.
- the number of transmitters at the base unit may be related, for example, to the number of transmit antennas 109 at the base unit.
- multiple antennas are used to serve each sector to provide various advanced communication modes, for example, adaptive beam-forming, transmit diversity, transmit SDMA, and multiple stream transmission, etc.
- These base units within a sector may be highly integrated and may share various hardware and software components.
- all base units co-located together to serve a cell can constitute what is traditionally known as a base station.
- the remote units may also comprise one or more transmitters and one or more receivers.
- the number of transmitters may be related, for example, to the number of transmit antennas at the remote unit.
- the communication system utilizes
- OFDMA or a next generation single-carrier based FDMA architecture for uplink transmissions such as interleaved FDMA (IFDMA), Localized FDMA (LFDMA), DFT-spread OFDM (DFT-SOFDM) with IFDMA or LFDMA.
- the architecture may also include the use of spreading techniques such as direct-sequence CDMA (DS-CDMA), multi- carrier CDMA (MC-CDMA), multi-carrier direct sequence CDMA (MC-DS- CDMA), Orthogonal Frequency and Code Division Multiplexing (OFCDM) with one or two dimensional spreading, or simpler time and frequency division multiplexing/ multiple access techniques.
- DS-CDMA direct-sequence CDMA
- MC-CDMA multi- carrier CDMA
- MC-DS- CDMA multi-carrier direct sequence CDMA
- OFDM Orthogonal Frequency and Code Division Multiplexing
- a wireless communication network infrastructure scheduling entity located, for example, at each base unit 101 and 102 in FIG. 1, allocates or assigns radio resources to remote units in the network.
- the base units each include a scheduler for scheduling and allocating resources to remote units in corresponding serving areas or cells or sectors.
- scheduling may be performed in the time and frequency dimensions using a Frequency Selective (FS) scheduler.
- FS Frequency Selective
- each remote unit may provide a frequency band channel quality indicator (CQI) or other metric to the scheduler to enable scheduling.
- CQI frequency band channel quality indicator
- a resource allocation is a frequency and time allocation that maps information for a particular base unit to sub-carrier resources from a set of available sub-carriers as determined by the scheduler. This allocation may depend, for example, on the frequency-selective channel-quality indication (CQI) or some other metric reported by the UE to the scheduler.
- CQI channel-quality indication
- the channel-coding rate and the modulation scheme which may be different for different portions of the sub-carrier resources, are also determined by the scheduler and may also depend on the reported CQI or other metric.
- the resource allocation is code allocation that maps information for a particular base unit to sub- carrier resources from a set of available sub-carriers as determined by the scheduler.
- FIG. 2 illustrates a frame 200 that constitutes a portion of a radio frame.
- the radio frame generally comprises a plurality of frames, which may form a concatenated continuum of frames.
- each frame includes a composite control channel portion 210 comprising at least two control channel elements.
- FIG. 2 illustrates the composite control channel include a plurality of control channel elements 212, 214, 216 and 218.
- the control channel elements each comprise a codeword that provides a physical mapping of a logical control channel to a sequence of symbols, for example, QAM symbols.
- the control channel elements are generally not the same type. In FIG. 2, for example, control channel elements 212 and 218 have different sizes.
- Control channel elements may also be for uplink or downlink assignments, and have different associated information payload. Control channel elements may also be associated with different releases of the specification.
- the composite control channel includes reference symbols, for example, pilot symbols, that are distinct from the control channel elements. The reference symbols are typically read by all remote units.
- Each frame corresponds to a transmission time interval (TTI).
- TTI transmission time interval
- An exemplary TTI is 1 ms.
- a single TTI has a length 1 ms or 2 ms wherein the TTI is segmented into two sub-frames each having a 0.5 ms length.
- Such a construction implies the need to address multiple resource blocks, i.e., more than the number of resource blocks in a single 0.5 ms sub-frame, unless the resource block (RB) definition is expanded to automatically define the RB as extending over the entire length of the TTI, without regard for the TTI duration. This can lead to inefficiency, however, in the form of excessive per-RB capacity.
- a TTI is defined as the length of time over which a transmission or transport block is transmitted.
- a transmission block or transport block is composed of a block of jointly coded data protected by a single CRC.
- an alternate definition of TTI could be the length of transmission controlled by a single instance of control channel signaling.
- each control channel element contains only radio resource assignment information, for example, a codeword, exclusively addressed to a single wireless communication entity, for example, one of the remote units 102, 103 in FIG. 1.
- the radio resource assignment information includes, among other remote unit specific information and a time-frequency radio resource assignment.
- the radio resource assignment information may additionally comprise modulation, code rate, information block size, antenna mode indicator, and other information.
- the wireless communication network infrastructure entity may address more than one control channel element to the same wireless communication entity, for example, one of the remote units 101 or 103 in FIG. 1.
- the control channel may include a first version of a codeword including a resource assignment on a first control channel element of the composite control channel and a second version of the codeword including a resource assignment on a second control channel element of the composite control channel, wherein both of the first and second versions of the codeword are addressed to the same mobile unit.
- the first and second versions of the codeword are the same, and in another embodiment the first and second versions of the codeword are different.
- the wireless communication network infrastructure entity transmits the composite control channel including at least two control channel elements, wherein each elements includes corresponding first and second codeword versions addressed to the same entity.
- the wireless network infrastructure entity may, typically based on the channel conditions of the entity, transmit the composite control channel including a single control channel element addressed to the entity.
- the remote unit generally determines the number of types of control channel elements constituting the composite control channel upon receiving the composite control channel.
- the composite control channel includes type indicator information for each type of control channel element constituting the composite control channel. The remote unit may thus determine the number of types of control channel elements based on the type indicator information.
- a radio frame 300 includes a composite control channel 310 comprising a first control channel element type 312 and a second control channel element types 316.
- the first control channel element type is identified by a first indicator, for example, a sequence of bits, 314 appended to a last control channel element of the first type.
- the second control channel element type is identified by a second indicator 318 appended to a last control channel element of the second type.
- the indicators 316 and 318 are not present, and the control channel element type is determined after successful decoding of the control element.
- a type bit may indicate an uplink or downlink control element in the decoded payload.
- the control element may be addressed to a single UE by a color coded CRC or by other means.
- the remote unit determines a number of control channel elements constituting at least one or at least two control channel elements of the composite control channel.
- FIG. 3 is only one illustrative embodiment of the physical layout of the control channel elements on the radio-sub frame. In an alternate embodiment, the layout may be viewed as a logical layout, where the control channel elements comprise a number of sub-carriers distributed across the frame.
- the determining the number of types of control channel elements constituting the composite control channel includes determining a number of uplink control channel elements and determining a number of downlink control channel elements.
- the number of uplink control channel elements may be determined based on a first sequence of bits and the number of downlink control channel elements based on a second sequence of bits embedded within the frame.
- the numbers of uplink and down link control channel elements are determined based on where the first and second bit sequences are embedded within the frame.
- the use of different bit sequences may be used to indicate the different numbers of control channel elements. For example, a first bit sequence may indicate a first number of uplink elements and a second bit sequence may indicate a second number of uplink elements.
- the composite control channel includes a first composite control channel portion in a first receive bandwidth on first center frequency and a second composite control channel in a second receive bandwidth on a second center frequency.
- a control channel structure may be implemented to accommodate remote users having limited receive bandwidth.
- the composite control channel may be divided into multiple composite control channel portions on corresponding center frequencies.
- terminals may have their receiver bandwidths limited to 10 MHz, while the carrier bandwidth is 20 MHz. In order accommodate such terminals of limited minimum bandwidth capability, it might be necessary to map the composite control channel to both the lower 10 MHz and the upper 10 MHz sub-bands of the 20 MHz carrier. Terminals with 10 MHz capability camp on either one of the upper or lower sib-bands and receive the respective composite control channel.
- a wireless communication entity for example, the remote unit
- the terminals receives a composite control channel including at least two control channel elements.
- each the control channel element only contains radio resource assignment information exclusively addressed to a single wireless communication entity.
- two or more control channel elements are combined before decoding at 430.
- the remote unit may attempt to decode a single control channel element without first combining elements or it may attempt to decode a single control channel element after decoding or attempting to decode combined elements. Whether or not any combining is necessary depends generally on whether the remote unit is successful decoding single control channel elements.
- Combining may be required, for example, in instances where a cyclic redundancy check (CRC) or other information verification check fails after decoding a single control channel element, or where decoding is not successful.
- Information verification typically involves remote unit specific information, which may be included in the decoded control channel element, or masked with the encoded control channel element, or masked or fed into a CRC for CRC color coding.
- each of the plurality of control channel elements has an associated root index, which may be used as a basis for combining the control channel elements.
- the composite control channel comprises 12 control channel elements, 4 of those elements may have the same associated root index and may be used as the basis for decoding and combining and decoding the control channel elements.
- the remote unit only combines control channel elements from the same control channel portion. In other words, control channel elements from different control channel portions are not combined.
- the remote unit combines at least two control channel elements of the composite control channel, wherein each control channel element is of the type that contains only radio resource assignment information exclusively addressed to a single wireless communication entity. Combining may be required, for example, in instances where a cyclic redundancy check (CRC) or other information verification check fails after decoding a single control channel element, or instances where decoding is not successful. Generally, however, the remote unit may attempt to decode a control channel element without first combining.
- CRC cyclic redundancy check
- the remote unit may attempt to decode a control channel element without first combining.
- At least two of the control channel elements are combined by summing soft information derived from first and second codeword information, wherein the first codeword information is within a first control channel element and the second codeword information is within a second control channel element.
- the combine control channel elements are temporally aligned and superimposed (known as Chase combining).
- the superposition may involve max-ratio combining, or adding together log-likelihood-ratios (LLRs), or the like. The assumption here is that the first and second codeword information is addressed to the same remote unit. If not, either the decoding or the information verification check after decoding will be unsuccessful.
- the remote unit may form a different combination of control channel elements, for example, by combining a different set of control channel elements or by combining an additional element.
- at least two of the control channel elements are combined by rearranging and summing soft information derived from different first and second codeword information, wherein the first codeword information is within a first control channel element and the second codeword information is within a second control channel element.
- the first codeword and second codeword may comprise subsets of an information set and parity bits generated from a lower rate channel encoder. The subsets may be non-overlapping or partially overlapping. Soft information corresponding to overlapping codeword bit positions is typically summed in the remote unit, while non-overlapping bit positions are typically rearranged to an appropriate position for decoding.
- the remote unite combines the at least two control channel elements according to predefined combinations of control channel elements.
- at least one of the pre-defined combinations includes a combination of at least two logically contiguous control channel elements.
- the logically contiguous control channel elements may or may not be physically contiguous. For example, if a set of sub-carriers distributed across frequency (a comb) is used for one control channel element, another control channel element may or may not physically occupy the sub-carriers adjacent to the first control channel element.
- logical adjacency implies physical adjacency and vice versa.
- at least two non-adjacent control channel elements are combined, wherein the non-adjacent control elements may be physical or logical.
- the order in which the remote unit attempts to combine the control channel elements according to the predefined combinations is based on one or more hypotheses or assumptions. For example, the control channel elements may be combined based on a determination of the number of control channel elements constituting the composite control channel.
- Such a determination also includes determining the number of control channel elements constituting a particular type of control channel element in embodiments where the composite control channel includes more than one elements type as discussed above.
- the number of control channel elements may be determined, for example, based on the existence of control channel element number information included in the composite control channel. For example, the number of control channel elements may be determined based on a sequence of bits appended to the composite control channel. In one implementation, different bit sequences are indicative of different numbers of control channel elements. In another implementation, the location of the sequence of bits within the frame is indicative of the number of the control channel elements. In this latter implementation, the same bit sequence may be used to indicate different numbers of control channel elements depending on where the bit sequence is located within the frame.
- the number of control channel elements may also be determined based on data or messaging shared between a wireless communication device and a network infrastructure entity. This may occur in a message sent to all remote units via a broadcast channel sent occasionally or a broadcast message sent in each TTI. The number of control channel elements or subset of control channel elements that the remote unit should decode may also be sent via a message dedicated for that remote unit.
- control channels may be one or two control channel elements, with the size of the control element indicating the type of control element.
- Convolutional encoding may be used for the control elements.
- the decoder may decode the first control element, check the CRC, and then stop decoding if the control element is designated for the user. If not, the decoding may commence from the point just prior to tail bit insertion on the first control element, through the end of the trellis comprised of both control elements. The CRC is again checked. In this way, control channel decoding may be achieved with less effort than if combined control elements were decoded from the beginning of the trellis. Note that the code rate for the single and two control elements must be the same in this embodiment.
- a portion of the composite control channel is allocated for assigning radio resources in each frame.
- the unallocated portion of the control channel may be used for data transfer.
- a wireless communication network infrastructure entity for example, a scheduler, may allocate a portion of the control channel for assigning radio resources in each frame by embedding a bit sequence within the corresponding frame.
- the location of the sequence of bits within the frame is indicative of the size of the control channel, for example, how many control channel elements are allocated for assigning radio resources to one or more remote units.
- the control channel elements may be addressed exclusively to a single remote unit or to more than one remote unit.
- the network infrastructure entity may dynamically change the portion of the control channel for assigning radio resources in each frame by changing the bit sequence or the location bit sequence embedded in each frame before transmitting the frames.
- the network infrastructure entity may also dynamically allocated different types of control channel elements and the number thereof within a frame.
- the bit sequence embedded within the sub-frame is used to identify that the control channel element is for a remote unit.
- the bit sequence embedded within the sub-frame may be a data dependent bit sequence, such as a CRC processed with wireless communication device identification information, the codeword masked with wireless communication device identification information or the like.
- a first sub-frame which may be the last sub-frame of a TTI, contains control information including modulation type, resources, or antenna mode indicator.
- Each control channel may be one or more control channel elements, and the size of the control channel may be different in the first and second sub-frames.
- the second sub-frame may occur on the same or different portions of the control channel as the control information from the first sub-frame.
- the wireless communication network infrastructure entity allocates a portion of the control channel for assigning radio resources in each frame by embedding a bit sequence within the corresponding frame. Allocating a portion of the control channel includes allocating all available portions of the control channel or less than all available portions thereof, wherein the unallocated portion may be used for other purposes, for example, data transfer.
- the wireless communication network infrastructure entity dynamically changes the portion of the control channel for assigning radio resources in each frame, wherein multiple frames constitutes a radio frame.
- each control channel in each frame may be allocated to assigning radio resources.
- the portion of the control channel for assigning radio resources in each frame may be changed dynamically by changing the location of the bit sequence embedded in each frame or by using different bit sequences, as discussed above.
- the wireless communication network infrastructure entity transmits at least two frames, for example, constitute a radio frame, wherein each frame includes a control channel having a portion thereof allocated for radio resource assignment.
- a portion of the control channel used for radio resource assignment is indicated based on where a bit sequence 220, referred to as a terminating marker or signature, is embedded within the corresponding frame.
- the portion of the control channel e.g., the number of elements, used for radio resource assignment may be less than the entire control channel of the frame.
- different frames constituting a radio frame may allocate different portions of the corresponding control channels for radio resource assignment.
- a wireless communication device comprises a receiver capable of receiving a frame corresponding to a transmission time interval, wherein the frame includes a control channel and a bit sequence embedded within the frame.
- a controller communicably coupled to the receiver is configured for determining a portion of the control channel used for radio resource assignment based on where the corresponding bit sequence is embedded within the received frame, wherein the portion of the control channel used for radio resource assignment may be less than the entire control channel.
- the device receives a plurality of at least two frames, wherein each frame includes a control channel having at least two control channel elements and each frame includes a bit sequence embedded within the frame.
- the wireless communication device determines a portion of the control channel used for radio resource assignment in each frame based on where the corresponding bit sequence is embedded within the frame.
- the portion of the control channel used for radio resource assignment may be less than the entire control channel and each frame may use different portions of the control channel for radio resource assignment based upon where the corresponding bit sequences is embedded within the frame.
- all control channel elements of the composite control channel communicate control channel information.
- control channel element number information e.g., a bit sequence embedded within the frame
- the remote unit may assume a default number of control channel elements are used for assigning radio resources.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
- Time-Division Multiplex Systems (AREA)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020097006926A KR101093276B1 (ko) | 2006-10-04 | 2007-08-22 | 무선 통신 시스템들에서의 무선 자원 지정을 위한 제어 채널의 할당 |
BRPI0717499-3A2A BRPI0717499A2 (pt) | 2006-10-04 | 2007-08-22 | Alocação de canal de controle para atribuição de recursos de rádio em sistemas de comunicação sem fio |
EP07841179.0A EP2067369B1 (en) | 2006-10-04 | 2007-08-22 | Allocation of control channel for radio resource assignment in wireless communication systems |
CN2007800375195A CN101523969B (zh) | 2006-10-04 | 2007-08-22 | 无线通信系统中用于无线电资源指配的控制信道分配 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/538,771 US7778307B2 (en) | 2006-10-04 | 2006-10-04 | Allocation of control channel for radio resource assignment in wireless communication systems |
US11/538,771 | 2006-10-04 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2008042513A2 true WO2008042513A2 (en) | 2008-04-10 |
WO2008042513A3 WO2008042513A3 (en) | 2008-07-31 |
Family
ID=39096295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2007/076468 WO2008042513A2 (en) | 2006-10-04 | 2007-08-22 | Allocation of control channel for radio resource assignment in wireless communication systems |
Country Status (6)
Country | Link |
---|---|
US (2) | US7778307B2 (zh) |
EP (1) | EP2067369B1 (zh) |
KR (1) | KR101093276B1 (zh) |
CN (1) | CN101523969B (zh) |
BR (1) | BRPI0717499A2 (zh) |
WO (1) | WO2008042513A2 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102177758A (zh) * | 2008-08-08 | 2011-09-07 | 诺基亚西门子通信公司 | 细粒度和向后兼容资源分配 |
US10893521B2 (en) | 2006-10-04 | 2021-01-12 | Google Technology Holdings LLC | Radio resource assignment in control channel in wireless communication systems |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8811917B2 (en) | 2002-05-01 | 2014-08-19 | Dali Systems Co. Ltd. | Digital hybrid mode power amplifier system |
US8380143B2 (en) | 2002-05-01 | 2013-02-19 | Dali Systems Co. Ltd | Power amplifier time-delay invariant predistortion methods and apparatus |
JP4960248B2 (ja) * | 2005-09-30 | 2012-06-27 | シャープ株式会社 | 無線送信装置、無線受信装置、無線通信システム、無線送信方法および無線受信方法 |
US7616610B2 (en) * | 2005-10-04 | 2009-11-10 | Motorola, Inc. | Scheduling in wireless communication systems |
US8611300B2 (en) * | 2006-01-18 | 2013-12-17 | Motorola Mobility Llc | Method and apparatus for conveying control channel information in OFDMA system |
US8249607B2 (en) * | 2006-03-29 | 2012-08-21 | Motorola Mobility, Inc. | Scheduling in wireless communication systems |
JP5242025B2 (ja) * | 2006-06-19 | 2013-07-24 | 株式会社エヌ・ティ・ティ・ドコモ | 基地局および送信方法 |
US7778307B2 (en) | 2006-10-04 | 2010-08-17 | Motorola, Inc. | Allocation of control channel for radio resource assignment in wireless communication systems |
US8144731B2 (en) * | 2006-10-24 | 2012-03-27 | Qualcomm Incorporated | Control channel signaling in wireless communications |
BRPI0717860B1 (pt) * | 2006-11-03 | 2020-01-21 | Google Technology Holdings LLC | método em um dispositivo de comunicação sem fio e método em uma entidade de infra-estrutura de rede de comunicação sem fio |
CN102017553B (zh) | 2006-12-26 | 2014-10-15 | 大力系统有限公司 | 用于多信道宽带通信系统中的基带预失真线性化的方法和系统 |
US8027295B2 (en) * | 2007-01-09 | 2011-09-27 | Nokia Corporation | Apparatus, method and computer program product providing dynamic sharing of resources between uplink and downlink allocations for separately coded users |
KR101384078B1 (ko) | 2007-01-10 | 2014-04-09 | 삼성전자주식회사 | 무선통신 시스템에서 애크/내크 채널 자원을 할당하고시그널링하는 방법 및 장치 |
US9520981B2 (en) * | 2007-01-12 | 2016-12-13 | Nokia Technologies Oy | Method and apparatus for providing automatic control channel mapping |
WO2008100093A1 (en) * | 2007-02-14 | 2008-08-21 | Samsung Electronics Co., Ltd. | Apparatus and method for transmitting and receiving forward shared control channel in a mobile communication system |
US8908632B2 (en) * | 2007-06-08 | 2014-12-09 | Samsung Electronics Co., Ltd. | Methods and apparatus for channel interleaving in OFDM systems |
KR101416994B1 (ko) * | 2007-06-26 | 2014-07-08 | 삼성전자주식회사 | 무선 통신 시스템에서 주파수 자원 할당 장치 및 방법 |
KR101808671B1 (ko) * | 2007-12-20 | 2017-12-13 | 옵티스 와이어리스 테크놀로지, 엘엘씨 | 전기통신 시스템에서의 방법 및 장치 |
WO2009087742A1 (ja) * | 2008-01-04 | 2009-07-16 | Panasonic Corporation | 無線通信基地局装置、無線通信移動局装置および制御チャネル割当方法 |
TWI387262B (zh) * | 2008-01-16 | 2013-02-21 | Inst Information Industry | 用於一多躍式無線網路之中央控制裝置、訊號傳輸裝置、訊號轉發裝置及其傳輸方法 |
CN102106129B (zh) * | 2008-07-31 | 2013-09-25 | 三星电子株式会社 | 在正交频分多址系统中分配多个载波的资源的方法和装置 |
AU2008363367B2 (en) * | 2008-10-30 | 2013-11-28 | Fujitsu Limited | Base station, terminal device, control channel assignment method, and region size determination method |
US8160600B2 (en) * | 2008-11-04 | 2012-04-17 | Motorola Solutions, Inc. | Method and apparatus for resource allocation |
EP2353327B1 (en) | 2008-11-04 | 2019-03-27 | Apple Inc. | Providing a downlink control structure in a first carrier to indicate control information in a second, different carrier |
KR101479011B1 (ko) * | 2008-12-17 | 2015-01-13 | 삼성전자주식회사 | 다중 대역 스케쥴링 방법 및 이를 이용한 방송 서비스 시스템 |
US10375689B2 (en) * | 2010-06-18 | 2019-08-06 | Kyocera Corporation | Control channel architecture with control information distributed over multiple subframes on different carriers |
WO2011160280A1 (en) * | 2010-06-21 | 2011-12-29 | Huawei Technologies Co., Ltd. | Aggregation level determination |
KR101835254B1 (ko) | 2010-08-17 | 2018-03-06 | 달리 시스템즈 씨오. 엘티디. | 분산 안테나 시스템을 위한 뉴트럴 호스트 아키텍처 |
CN103597807B (zh) | 2010-09-14 | 2015-09-30 | 大理系统有限公司 | 远程可重新配置的分布式天线系统和方法 |
CN107104869B (zh) * | 2011-02-07 | 2020-12-25 | 大力系统有限公司 | 无线通信传输 |
GB2489956B (en) * | 2011-04-12 | 2013-03-20 | Renesas Mobile Corp | Sensing configuration in carrier aggregation scenarios |
US20130114571A1 (en) | 2011-11-07 | 2013-05-09 | Qualcomm Incorporated | Coordinated forward link blanking and power boosting for flexible bandwidth systems |
WO2014019106A1 (en) * | 2012-08-02 | 2014-02-06 | Telefonaktiebolaget L M Ericsson (Publ) | Resource allocation and joint transmission |
US9635644B2 (en) | 2012-08-10 | 2017-04-25 | Qualcomm Incorporated | Downlink coverage enhancements |
CN109565383B (zh) * | 2016-08-03 | 2022-03-01 | 联想创新有限公司(香港) | 装置到装置传输 |
CN109769301A (zh) * | 2019-02-13 | 2019-05-17 | 北京中兴高达通信技术有限公司 | 信道的处理方法及装置、电子装置 |
Family Cites Families (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4491947A (en) * | 1983-05-31 | 1985-01-01 | At&T Bell Laboratories | Technique for dynamic scheduling of integrated circuit- and packet-switching in a multi-beam SS/TDMA system |
US4675863A (en) * | 1985-03-20 | 1987-06-23 | International Mobile Machines Corp. | Subscriber RF telephone system for providing multiple speech and/or data signals simultaneously over either a single or a plurality of RF channels |
JPH0666832B2 (ja) * | 1988-12-12 | 1994-08-24 | 富士通株式会社 | サブアドレスダイヤルイン制御方式 |
US6070071A (en) * | 1995-11-13 | 2000-05-30 | Interwave Communications International Ltd. | Multiple antenna cellular network |
US6058307A (en) * | 1995-11-30 | 2000-05-02 | Amsc Subsidiary Corporation | Priority and preemption service system for satellite related communication using central controller |
US6031826A (en) * | 1996-08-27 | 2000-02-29 | Ericsson Inc. | Fast associated control channel technique for satellite communications |
US5956642A (en) * | 1996-11-25 | 1999-09-21 | Telefonaktiebolaget L M Ericsson | Adaptive channel allocation method and apparatus for multi-slot, multi-carrier communication system |
JP3437411B2 (ja) * | 1997-05-20 | 2003-08-18 | 松下電器産業株式会社 | 受信装置及び送信装置並びにこれらを用いた基地局装置及び移動局装置 |
US6574211B2 (en) * | 1997-11-03 | 2003-06-03 | Qualcomm Incorporated | Method and apparatus for high rate packet data transmission |
US6097772A (en) * | 1997-11-24 | 2000-08-01 | Ericsson Inc. | System and method for detecting speech transmissions in the presence of control signaling |
US6252910B1 (en) * | 1998-11-11 | 2001-06-26 | Comspace Corporation | Bandwidth efficient QAM on a TDM-FDM system for wireless communications |
US6393012B1 (en) * | 1999-01-13 | 2002-05-21 | Qualcomm Inc. | System for allocating resources in a communication system |
US6317435B1 (en) * | 1999-03-08 | 2001-11-13 | Qualcomm Incorporated | Method and apparatus for maximizing the use of available capacity in a communication system |
US6697422B1 (en) * | 2000-03-17 | 2004-02-24 | Lucent Technologies Inc. | Variable encoding levels for encoding in-band control messages in wireless telecommunication systems |
US20060072520A1 (en) * | 2000-03-23 | 2006-04-06 | Chitrapu Prabhakar R | Time synchronized standby state to the GPRS medium access control protocol with applications to mobile satellite systems |
US6934275B1 (en) * | 2000-04-17 | 2005-08-23 | Motorola, Inc. | Apparatus and method for providing separate forward dedicated and shared control channels in a communications system |
US20020029229A1 (en) * | 2000-06-30 | 2002-03-07 | Jakopac David E. | Systems and methods for data compression |
US20020032030A1 (en) * | 2000-08-28 | 2002-03-14 | Berglund Arne Kristian | Communication system |
KR100724921B1 (ko) * | 2001-02-16 | 2007-06-04 | 삼성전자주식회사 | 통신시스템에서 부호 생성 및 복호 장치 및 방법 |
US7041449B2 (en) * | 2001-03-19 | 2006-05-09 | Wisconsin Alumni Research Foundation | Methods of screening for compounds that inhibit expression of biomarker sequences differentially expressed with age in mice |
US6807426B2 (en) * | 2001-04-12 | 2004-10-19 | Qualcomm Incorporated | Method and apparatus for scheduling transmissions in a communication system |
US6751187B2 (en) * | 2001-05-17 | 2004-06-15 | Qualcomm Incorporated | Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel transmission |
US6975867B2 (en) * | 2001-08-31 | 2005-12-13 | Sanyo Electric Co., Ltd. | Radio base apparatus, communication channel allocation method, and allocation program |
US6856604B2 (en) * | 2001-12-19 | 2005-02-15 | Qualcomm Incorporated | Efficient multi-cast broadcasting for packet data systems |
JP3597516B2 (ja) * | 2002-05-30 | 2004-12-08 | 松下電器産業株式会社 | スケジューリング装置及び通信方法 |
US8107885B2 (en) * | 2002-10-30 | 2012-01-31 | Motorola Mobility, Inc. | Method and apparatus for providing a distributed architecture digital wireless communication system |
US7016319B2 (en) * | 2003-03-24 | 2006-03-21 | Motorola, Inc. | Method and apparatus for reducing co-channel interference in a communication system |
US7200405B2 (en) * | 2003-11-18 | 2007-04-03 | Interdigital Technology Corporation | Method and system for providing channel assignment information used to support uplink and downlink channels |
US8190098B2 (en) * | 2004-01-23 | 2012-05-29 | Koninklijke Philips Electronics N.V. | Packet data multicast communication system, a station, and a method of operating the system |
JP4960223B2 (ja) * | 2004-05-13 | 2012-06-27 | クゥアルコム・インコーポレイテッド | 検出およびメディア・アクセス制御を行う非周波数変換型リピータ |
KR100640474B1 (ko) * | 2004-07-10 | 2006-10-30 | 삼성전자주식회사 | 다중 반송파 기반의 코드분할다중접속 시스템을 위한 하향링크 자원 할당 방법 |
AU2005274003B2 (en) * | 2004-08-12 | 2009-03-05 | Interdigital Technology Corporation | Method and system for controlling access to a wireless communication medium |
CN100438685C (zh) | 2004-09-20 | 2008-11-26 | 上海贝尔阿尔卡特股份有限公司 | 处理多用户/多业务的方法及设备 |
US20060146756A1 (en) * | 2004-12-30 | 2006-07-06 | Fan Wang | Downlink resource allocation for time offset downlink packets |
US7177804B2 (en) * | 2005-05-31 | 2007-02-13 | Microsoft Corporation | Sub-band voice codec with multi-stage codebooks and redundant coding |
US20070025345A1 (en) * | 2005-07-27 | 2007-02-01 | Bachl Rainer W | Method of increasing the capacity of enhanced data channel on uplink in a wireless communications systems |
US20070025468A1 (en) * | 2005-07-28 | 2007-02-01 | Weidong Li | GMSK/8-PSK mix-mode support for GSM/GPRS/EDGE compliant handsets |
GB2429605B (en) * | 2005-08-24 | 2008-06-04 | Ipwireless Inc | Apparatus and method for communicating signalling information |
US8077690B2 (en) * | 2005-08-24 | 2011-12-13 | Motorola Mobility, Inc. | Resource allocation in cellular communication systems |
US7664091B2 (en) * | 2005-10-03 | 2010-02-16 | Motorola, Inc. | Method and apparatus for control channel transmission and reception |
US8611300B2 (en) * | 2006-01-18 | 2013-12-17 | Motorola Mobility Llc | Method and apparatus for conveying control channel information in OFDMA system |
US7778307B2 (en) | 2006-10-04 | 2010-08-17 | Motorola, Inc. | Allocation of control channel for radio resource assignment in wireless communication systems |
US20080084853A1 (en) * | 2006-10-04 | 2008-04-10 | Motorola, Inc. | Radio resource assignment in control channel in wireless communication systems |
-
2006
- 2006-10-04 US US11/538,771 patent/US7778307B2/en active Active
-
2007
- 2007-08-22 BR BRPI0717499-3A2A patent/BRPI0717499A2/pt active Search and Examination
- 2007-08-22 WO PCT/US2007/076468 patent/WO2008042513A2/en active Application Filing
- 2007-08-22 CN CN2007800375195A patent/CN101523969B/zh active Active
- 2007-08-22 EP EP07841179.0A patent/EP2067369B1/en active Active
- 2007-08-22 KR KR1020097006926A patent/KR101093276B1/ko active IP Right Grant
-
2010
- 2010-08-17 US US12/858,155 patent/US7903721B2/en active Active
Non-Patent Citations (2)
Title |
---|
MOTOROLA: "E-UTRA DOWNLINK CONTROL CHANNEL STRUCTURE AND TP", 3RD GENERATION PARTNERSHIP PROJECT (3GPP, 13 February 2006 (2006-02-13) |
NTT DOCOMO: "Physical Channels and Multiplexing in Evolved UTRA Downlink", 3GPP TSG RAN WG1, 21 June 2005 (2005-06-21) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10893521B2 (en) | 2006-10-04 | 2021-01-12 | Google Technology Holdings LLC | Radio resource assignment in control channel in wireless communication systems |
CN102177758A (zh) * | 2008-08-08 | 2011-09-07 | 诺基亚西门子通信公司 | 细粒度和向后兼容资源分配 |
US8965429B2 (en) | 2008-08-08 | 2015-02-24 | Nokia Siemens Networks Oy | Fine-grain and backward-compliant resource allocation |
US9648592B2 (en) | 2008-08-08 | 2017-05-09 | Nokia Solutions And Networks Oy | Fine-grain and backward-compliant resource allocation |
Also Published As
Publication number | Publication date |
---|---|
US7778307B2 (en) | 2010-08-17 |
US20080085718A1 (en) | 2008-04-10 |
EP2067369A2 (en) | 2009-06-10 |
EP2067369B1 (en) | 2015-07-22 |
CN101523969B (zh) | 2012-01-11 |
US7903721B2 (en) | 2011-03-08 |
US20100309891A1 (en) | 2010-12-09 |
WO2008042513A3 (en) | 2008-07-31 |
KR20090053942A (ko) | 2009-05-28 |
CN101523969A (zh) | 2009-09-02 |
BRPI0717499A2 (pt) | 2014-04-15 |
KR101093276B1 (ko) | 2011-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10893521B2 (en) | Radio resource assignment in control channel in wireless communication systems | |
US7778307B2 (en) | Allocation of control channel for radio resource assignment in wireless communication systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200780037519.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07841179 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007841179 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020097006926 Country of ref document: KR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: PI0717499 Country of ref document: BR Kind code of ref document: A2 Effective date: 20090403 |