WO2008041885A1 - Procédé pour placer des puits de forage de recherche, de prospection ou d'exploitation dans des gisements pétroliers ou gaziers sur la base d'un modèle géologique en trois dimensions - Google Patents

Procédé pour placer des puits de forage de recherche, de prospection ou d'exploitation dans des gisements pétroliers ou gaziers sur la base d'un modèle géologique en trois dimensions Download PDF

Info

Publication number
WO2008041885A1
WO2008041885A1 PCT/RU2007/000182 RU2007000182W WO2008041885A1 WO 2008041885 A1 WO2008041885 A1 WO 2008041885A1 RU 2007000182 W RU2007000182 W RU 2007000182W WO 2008041885 A1 WO2008041885 A1 WO 2008041885A1
Authority
WO
WIPO (PCT)
Prior art keywords
wells
geological
model
oil
types
Prior art date
Application number
PCT/RU2007/000182
Other languages
English (en)
Russian (ru)
Inventor
Vladimir Semenovich Slavkin
Alexei Dmitrievich Alexeev
Sergei Sergeevich Gavrilov
Vasily Nikolaevich Koloskov
Dmitry Sergeevich Kucheryanvenko
Original Assignee
Zakrytoe Aktsionernoe Obschestvo 'modelirovanie I Monitoring Geologicheskikh Obiektov Im. V.A. Dvurechenskogo'
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zakrytoe Aktsionernoe Obschestvo 'modelirovanie I Monitoring Geologicheskikh Obiektov Im. V.A. Dvurechenskogo' filed Critical Zakrytoe Aktsionernoe Obschestvo 'modelirovanie I Monitoring Geologicheskikh Obiektov Im. V.A. Dvurechenskogo'
Publication of WO2008041885A1 publication Critical patent/WO2008041885A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging

Definitions

  • a method of locating exploratory, exploratory and production wells in oil and gas fields based on a three-dimensional geological model is based on a three-dimensional geological model.
  • the invention relates to petroleum geology and can be used to optimize the placement of exploration and production wells at the studied object.
  • a known method of placing wells according to the spectral-temporal parameters of oil and gas productive types of a geological section including drilling wells with coring, conducting electrical, radioactive, acoustic and seismic logging, well testing, core testing, seismic exploration of MOGT and judging by the obtained data on oil and gas, other types of geological section of the investigated object.
  • the location of the identified types of sections is determined on maps by contours of equal values of spectrally-temporal parameters.
  • Wells are placed according to the principle of maximum, effective productive volumes on contours of spectral-temporal parameters corresponding to oil and gas productive types of geological section, in a confidence interval equal to 0.5 map sections (RU 2205435, Cl, 05.27.2003).
  • the technical problem to which this invention is directed is to increase the reliability and accuracy of the justification for laying new exploration, exploration and production wells, compiling and justifying feasibility studies for field exploration and exploitation, feasibility studies for the oil recovery coefficient, reducing the cost and terms of exploration works, reduction of negative impact on the environment.
  • the technical result is to increase the efficiency, reduce the cost and terms of exploration in oil and gas fields by reducing the volume of drilling operations and increase their effectiveness; increasing environmental friendliness by reducing the negative impact on the environment, reducing drilling volumes and the volume of auxiliary engineering measures, such as communications, infrastructure.
  • the method of placing exploratory, exploratory and production wells in oil and gas fields on the basis of a three-dimensional geological model is characterized by the fact that they carry out seismic exploration, drilling wells with coring from target reservoirs, geophysical research of wells, testing wells, identifying based on the totality of the obtained seismic and borehole data of the geological types of the section with various oil and gas production properties for the target reservoirs, construction of a progn knowledge of seismic maps of the distribution of identified types of sections in the study area, and the map of the distribution of geological types of section of the layers obtained on the basis of borehole and seismic studies is transformed into a numerical format that takes into account the reliability parameters of the forecasting method, based on the obtained map, a lithological (lithofacial) model of the formation is constructed or deposits, and on the basis of the obtained lithofacial model build models of porosity and oil and gas saturation of rocks, according to the obtained geological tion model, assess the resource base of the deposit, determine the location
  • the proposed invention is implemented as follows.
  • a method of locating exploratory, exploratory and production wells in oil and gas fields based on a three-dimensional geological model characterized in that they carry out seismic exploration, drilling wells with coring from target reservoirs, geophysical studies of wells, testing wells, identifying the totality of the obtained seismic and borehole data of geological types of section with various oil and gas productive properties for target reservoirs, construction of forecast seismic distribution maps identified types of sections on the study area, and the distribution map of geological types of sections of the formations obtained on the basis of borehole and seismic studies is transformed into a numerical format that takes into account the reliability parameters of the forecasting technique, based on the obtained maps, a lithological (lithofacial) model of the formation or field is built, and based on the obtained lithofacial model, models of mountain porosity and oil and gas saturation are built rocks, according to the obtained geological model, assess the resource base of the field, determine the places for possible laying of new (projected) wells, based on all the information in the model, new wells are
  • the operation of transforming the obtained forecast maps of the distribution of geological types of the section into the numerical format, taking into account the reliability parameters of the forecasting technique, is performed depending on the method of seismic forecasting.
  • four zones are distinguished, which differ in the estimated reliability parameters of the seismic forecast, and linear or smooth interpolation is carried out between their boundaries.
  • Borehole zone (a section in the area of a well with dimensions approximately corresponding to the minimum dimensions of the identified or suspected propagation zone of the type of geological section to which this well belongs). The probability of the presence of the corresponding type in this zone is taken to be 1.
  • the zone of confident identification of the type (the area inside the identified distribution area of a particular type of section, located at some distance from the boundaries of the change of types of the geological section; removal is selected based on the detail of the analysis and the limitations of the forecast method).
  • the probability of the presence of the corresponding type decreases from 1 (near-wellbore area) to a number characterizing the proven or expected confirmability of the forecasting method used.
  • the interpolation zone which is located between the zone of reliable identification of the type of section and the outer boundary of the forecast field of propagation of this type of section.
  • the probability of being here of the appropriate type is accepted. decreasing towards the border of the predicted propagation field from the value characterizing the proven or expected verifiability of the used forecasting method to the same value divided by the number of types of geological section bordering this area in a given direction.
  • the operation of constructing a lithological (lithofacial) reservoir or field model based on the obtained map can be performed in various ways depending on the software used and the task, for example, by convolution of the obtained probability map with geological-statistical sections of the distribution of lithological (lithofacial) types in wells of each specific type of cut.
  • Geological and statistical sections determine the probability of the presence of each specific modeled parameter (in this case, the lithological type of rock) for each elementary stratigraphic interval of the modeled object and uniquely characterize the previously identified geological types of the section.
  • convolution The idea of convolution is that the probabilistic map of section types determines the distribution of section types over the area, and the GSR over the section (i.e., vertically), combining these laws, we obtain a volumetric characteristic of the modeled object.
  • Convolution formulas can be different, for example, when used as alternative neighboring cut types, the formula looks as follows: p iuro a (ij ty _ the probability of the presence of a particular lithological type in the cell number i, j, k; f t ⁇ t ⁇ J) - the probability of the presence of the geological type of the section in the cell with numbers g, j (from the forecast map of types);
  • the purpose of the formula is to calculate the probability of the presence of each particular lithological type in a particular cell of the geological volumetric model. It is calculated as the product of the probability of existence of a geological section type area (ftipfij)) nA probability of having a given type on the vertical lithological (stratigraphic) level in accordance with the type of geological GSR considered razreza.Ostalnaya probability lf, ngm (i, j) is equally distributed between adjacent "Types-coms.”
  • cubes i.e., three-dimensional models
  • the number of cubes corresponds to the number of lithological (lithofacial) types used in the model.
  • the obtained probability cubes are used in the form of three-dimensional trends in the construction of a three-dimensional lithological model of an object.
  • the modeling technique is selected depending on the source data and the task from the standard techniques included in the package of three-dimensional modeling.
  • the operation of constructing a porosity model is carried out on the basis of the obtained three-dimensional lithofacial model in a standard way or using the methodology for using distribution maps of section types described above (in the section on building the lithological model).
  • the construction of a model of oil and gas saturation is also carried out by one of the standard methods.
  • the operation of assessing the resource base of a field can be carried out either by standard methods or by dividing the model into zones corresponding to areas of distribution of specific geological types of section or zones of distribution of various oil and gas prospective types of reservoirs.
  • individual sections of the geological model are identified that correspond to the propagation zones of section types or reservoir types and, within them, individually, in a standard way, based on the oil and gas saturation model, the geological reserves of oil and (or) gas are calculated.
  • the operation of calculating the optimal position of new (projected) wells is carried out on the basis of several (stochastic) implementations of the geological model by selecting the minimum number of wells necessary to solve the geological problem among all possible well positions in accordance with all available information, summarized in a three-dimensional geological model.
  • Industrial application of the invention is to create with its help three-dimensional geological models of oil and gas fields.
  • the greatest efficiency is achieved for deposits characterized by insufficient drilling exploration, in particular, for deposits at the stage of completion of the geological exploration stage, as well as for deposits located in reservoirs with high vertical lithological and lateral facies variability.
  • the position and trajectory of new exploratory, exploratory and production wells are selected, additional exploration projects are created, the optimal field development system is selected, and its reserves are estimated.
  • reserves are differentiated by confinement to zones corresponding to the distribution areas of specific geological types of the section, and reservoirs with various filtration-capacitive (mining) properties.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

L'invention peut s'utiliser en géologie pétrolière, notamment pour placer des puits de forage de façon optimisée sur un site à explorer. Le procédé pour placer des puits de forage de recherche, de prospection ou d'exploitation dans des gisements pétroliers ou gaziers se distingue en ce que l'on effectue des travaux de sondage sismique, des forages de puits et des prélèvements d'échantillons à partir des couches d'intérêt, des examens géophysiques de puits, des tests de puits, des déterminations de types de coupes en se basant sur la totalité des données sismiques et provenant des puits; on établit des cartes sismiques de prévision de la distribution de types de coupe sur la surface explorée, on convertit au format numérique la carte sismique de prévision de la distribution de types de coupe, obtenus par des examens de puits et des examens sismiques, ledit format numérique tenant compte des paramètres de l'exactitude des méthodes de prévision employées; on construit sur la base de la carte un modèle lithologique (lithofacial) de la couche ou du gisement et, sur la base de ce modèle lithofacial, on construit des modèles de porosité et de saturation en gaz et pétrole de la roche. Sur la base du modèle géologique obtenu on effectue l'estimation de la base de ressources du gisement, on détermine les lieux de futurs puits de forage possibles (ou projetés), et l'on dispose les nouveaux puits de forage sur la base de informations que comporte le modèle de façon optimale du point de vue géologique, écologique et économique. L'invention permet d'améliorer l'efficacité, de réduire les coûts et la durée des travaux de prospection géologique dans des gisements de gaz ou de pétrole grâce à un moindre volume de travaux de forage et leur plus grande efficacité en termes de résultats, et ce de façon respectueuse de l'environnement grâce à un moindre impact négatif sur l'environnement, un moindre volume de forage et un moindre volume d'opérations d'ingénierie auxiliaire telles que la pose de communications ou la création d'une infrastructure.
PCT/RU2007/000182 2006-10-06 2007-04-13 Procédé pour placer des puits de forage de recherche, de prospection ou d'exploitation dans des gisements pétroliers ou gaziers sur la base d'un modèle géologique en trois dimensions WO2008041885A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2006135358 2006-10-06
RU2006135358/28A RU2305301C1 (ru) 2006-10-06 2006-10-06 Способ размещения поисковых, разведочных и эксплуатационных скважин на месторождениях нефти и газа на основе трехмерной геологической модели

Publications (1)

Publication Number Publication Date
WO2008041885A1 true WO2008041885A1 (fr) 2008-04-10

Family

ID=38597172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2007/000182 WO2008041885A1 (fr) 2006-10-06 2007-04-13 Procédé pour placer des puits de forage de recherche, de prospection ou d'exploitation dans des gisements pétroliers ou gaziers sur la base d'un modèle géologique en trois dimensions

Country Status (2)

Country Link
RU (1) RU2305301C1 (fr)
WO (1) WO2008041885A1 (fr)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105488349A (zh) * 2015-12-01 2016-04-13 中国石油大学(北京) 页岩油气储层的微观地质特征确定方法和装置
CN105487106A (zh) * 2014-09-18 2016-04-13 中国石油化工股份有限公司 一种基于高斯射线束目的层能量照明的补炮方法
CN106289229A (zh) * 2015-06-26 2017-01-04 核工业北京地质研究院 一种适用于地质勘查的快速定位方法
US10167703B2 (en) 2016-03-31 2019-01-01 Saudi Arabian Oil Company Optimal well placement under constraints
CN109416769A (zh) * 2016-05-19 2019-03-01 雷普索尔有限公司 生成用于开采油气储藏的油田开发计划(fdp)的计算机实施的方法
CN109858160A (zh) * 2019-02-01 2019-06-07 上海勘察设计研究院(集团)有限公司 一种基于bim技术的轨道交通地质信息模型的建模方法
CN110469318A (zh) * 2019-08-13 2019-11-19 中海石油(中国)有限公司 超深水油田在勘探期经济开发最小可采储量规模的确定方法
CN111596365A (zh) * 2020-06-18 2020-08-28 中国海洋石油集团有限公司 针对盐下湖相碳酸盐岩储层段的火山喷发岩地震解释方法
CN111983714A (zh) * 2019-05-24 2020-11-24 中国石油天然气股份有限公司 一种基于沉积结构剖面的野外地层测量方法及系统
CN112034526A (zh) * 2020-08-13 2020-12-04 中国石油大学(华东) 基于岩相组合的灰质泥岩发育区薄层浊积砂体的地震识别方法
CN112819919A (zh) * 2021-01-29 2021-05-18 北京城建勘测设计研究院有限责任公司 应用于岩土工程勘察行业的剖面图全流程绘制方法
CN112987123A (zh) * 2021-02-07 2021-06-18 中国地质大学(北京) 基于密植山区的油气田勘探方法及装置
CN113240250A (zh) * 2021-04-26 2021-08-10 深圳亚纳海洋科技有限公司 一种新型精准海洋地勘系统
CN113267827A (zh) * 2020-02-14 2021-08-17 中国石油化工股份有限公司 一种利用石油地震及钻孔资料防震减灾的方法与装置
CN113514904A (zh) * 2020-04-09 2021-10-19 中国石油天然气集团有限公司 地层参数模型建立方法及装置
CN113658335A (zh) * 2021-08-03 2021-11-16 中国建筑第八工程局有限公司 岩溶发育区复杂地质模型的创建方法
CN114320274A (zh) * 2021-12-31 2022-04-12 中国海洋石油集团有限公司 一种海上油田浅层气预测及预钻井方案设计方法
CN116152460A (zh) * 2023-04-14 2023-05-23 瞳见科技有限公司 一种基于ue4的岩层模型生成方法、装置、终端及介质
CN117091656A (zh) * 2023-10-18 2023-11-21 武汉昶隽科技有限公司 一种用于地热资源的勘探监测预警系统

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120271609A1 (en) * 2011-04-20 2012-10-25 Westerngeco L.L.C. Methods and computing systems for hydrocarbon exploration
RU2578733C2 (ru) * 2013-12-24 2016-03-27 Общество с ограниченной ответственностью "ЛУКОЙЛ-Инжиниринг" (ООО "ЛУКОЙЛ-Инжиниринг") Способ размещения поисковых, разведочных и эксплуатационных скважин на месторождениях нефти и газа на основе многовариантных трехмерных геологических моделей
CN109446675B (zh) * 2018-11-01 2023-04-07 河北昕佳工程勘查设计有限公司 一种地热资源量计算修正方法及沉降预警系统
CN112052488A (zh) * 2019-05-20 2020-12-08 中国石油天然气集团有限公司 陆地平台井位位置确定方法及装置
CN111311746B (zh) * 2019-12-09 2023-09-08 中交广州航道局有限公司 一种基于钻孔数据的智能三维地质建模方法
CN111161415B (zh) * 2020-01-03 2022-03-18 山东省地质调查院(山东省自然资源厅矿产勘查技术指导中心) 一种岩溶区地下水岩溶发育通道三维空间模拟方法
CN114690245B (zh) * 2022-03-29 2022-10-11 成都理工大学 一种无钻井钻遇地震异常体地质模型正演模拟方法
CN116630565B (zh) * 2023-07-21 2023-10-03 航天宏图信息技术股份有限公司 基于多段线缓冲的地质钻孔三维模型生成方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2113552A5 (fr) * 1970-11-04 1972-06-23 Inst Naftowy
RU2183335C1 (ru) * 2001-08-21 2002-06-10 Копилевич Ефим Абрамович Способ геофизической разведки для определения нефтепродуктивных типов геологического разреза
RU2183843C2 (ru) * 2000-06-15 2002-06-20 Общество с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий - ВНИИГАЗ" Способ заложения поисковых и разведочных скважин
RU2205435C1 (ru) * 2002-05-31 2003-05-27 Закрытое акционерное общество "Моделирование и мониторинг геологических объектов" им. В.А. Двуреченского Способ размещения скважин по спектрально-временным параметрам нефтегазопродуктивных типов геологического разреза

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2113552A5 (fr) * 1970-11-04 1972-06-23 Inst Naftowy
RU2183843C2 (ru) * 2000-06-15 2002-06-20 Общество с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий - ВНИИГАЗ" Способ заложения поисковых и разведочных скважин
RU2183335C1 (ru) * 2001-08-21 2002-06-10 Копилевич Ефим Абрамович Способ геофизической разведки для определения нефтепродуктивных типов геологического разреза
RU2205435C1 (ru) * 2002-05-31 2003-05-27 Закрытое акционерное общество "Моделирование и мониторинг геологических объектов" им. В.А. Двуреченского Способ размещения скважин по спектрально-временным параметрам нефтегазопродуктивных типов геологического разреза

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BAKIROVA E.A.: "Osnovy metodiki geologorazvedochnykh rabot na neft i gas", POD RED., MOSCOW, NEDRA, 1991, pages 81 - 84 *

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105487106A (zh) * 2014-09-18 2016-04-13 中国石油化工股份有限公司 一种基于高斯射线束目的层能量照明的补炮方法
CN106289229A (zh) * 2015-06-26 2017-01-04 核工业北京地质研究院 一种适用于地质勘查的快速定位方法
CN105488349A (zh) * 2015-12-01 2016-04-13 中国石油大学(北京) 页岩油气储层的微观地质特征确定方法和装置
CN105488349B (zh) * 2015-12-01 2018-06-08 中国石油大学(北京) 页岩油气储层的微观地质特征确定方法和装置
US10167703B2 (en) 2016-03-31 2019-01-01 Saudi Arabian Oil Company Optimal well placement under constraints
CN109416769A (zh) * 2016-05-19 2019-03-01 雷普索尔有限公司 生成用于开采油气储藏的油田开发计划(fdp)的计算机实施的方法
CN109416769B (zh) * 2016-05-19 2024-02-13 雷普索尔有限公司 生成用于开采油气储藏的油田开发计划(fdp)的计算机实施的方法
CN109858160A (zh) * 2019-02-01 2019-06-07 上海勘察设计研究院(集团)有限公司 一种基于bim技术的轨道交通地质信息模型的建模方法
CN109858160B (zh) * 2019-02-01 2023-05-26 上海勘察设计研究院(集团)有限公司 一种基于bim技术的轨道交通地质信息模型的建模方法
CN111983714A (zh) * 2019-05-24 2020-11-24 中国石油天然气股份有限公司 一种基于沉积结构剖面的野外地层测量方法及系统
CN110469318A (zh) * 2019-08-13 2019-11-19 中海石油(中国)有限公司 超深水油田在勘探期经济开发最小可采储量规模的确定方法
CN110469318B (zh) * 2019-08-13 2023-01-24 中海石油(中国)有限公司 超深水油田在勘探期经济开发最小可采储量规模的确定方法
CN113267827A (zh) * 2020-02-14 2021-08-17 中国石油化工股份有限公司 一种利用石油地震及钻孔资料防震减灾的方法与装置
CN113267827B (zh) * 2020-02-14 2024-02-20 中国石油化工股份有限公司 一种利用石油地震及钻孔资料的地震预测方法与装置
CN113514904B (zh) * 2020-04-09 2023-02-28 中国石油天然气集团有限公司 地层参数模型建立方法及装置
CN113514904A (zh) * 2020-04-09 2021-10-19 中国石油天然气集团有限公司 地层参数模型建立方法及装置
CN111596365A (zh) * 2020-06-18 2020-08-28 中国海洋石油集团有限公司 针对盐下湖相碳酸盐岩储层段的火山喷发岩地震解释方法
CN111596365B (zh) * 2020-06-18 2023-11-21 中国海洋石油集团有限公司 针对盐下湖相碳酸盐岩储层段的火山喷发岩地震解释方法
CN112034526A (zh) * 2020-08-13 2020-12-04 中国石油大学(华东) 基于岩相组合的灰质泥岩发育区薄层浊积砂体的地震识别方法
CN112819919A (zh) * 2021-01-29 2021-05-18 北京城建勘测设计研究院有限责任公司 应用于岩土工程勘察行业的剖面图全流程绘制方法
CN112987123B (zh) * 2021-02-07 2022-05-20 中国地质大学(北京) 基于密植山区的油气田勘探方法及装置
CN112987123A (zh) * 2021-02-07 2021-06-18 中国地质大学(北京) 基于密植山区的油气田勘探方法及装置
CN113240250B (zh) * 2021-04-26 2024-04-05 深圳亚纳海洋科技有限公司 一种精准海洋地勘系统
CN113240250A (zh) * 2021-04-26 2021-08-10 深圳亚纳海洋科技有限公司 一种新型精准海洋地勘系统
CN113658335B (zh) * 2021-08-03 2024-04-30 中国建筑第八工程局有限公司 岩溶发育区复杂地质模型的创建方法
CN113658335A (zh) * 2021-08-03 2021-11-16 中国建筑第八工程局有限公司 岩溶发育区复杂地质模型的创建方法
CN114320274B (zh) * 2021-12-31 2023-08-11 中国海洋石油集团有限公司 一种海上油田浅层气预测及预钻井方案设计方法
CN114320274A (zh) * 2021-12-31 2022-04-12 中国海洋石油集团有限公司 一种海上油田浅层气预测及预钻井方案设计方法
CN116152460A (zh) * 2023-04-14 2023-05-23 瞳见科技有限公司 一种基于ue4的岩层模型生成方法、装置、终端及介质
CN116152460B (zh) * 2023-04-14 2024-03-29 瞳见科技有限公司 一种基于ue4的岩层模型生成方法、装置、终端及介质
CN117091656A (zh) * 2023-10-18 2023-11-21 武汉昶隽科技有限公司 一种用于地热资源的勘探监测预警系统

Also Published As

Publication number Publication date
RU2305301C1 (ru) 2007-08-27

Similar Documents

Publication Publication Date Title
RU2305301C1 (ru) Способ размещения поисковых, разведочных и эксплуатационных скважин на месторождениях нефти и газа на основе трехмерной геологической модели
RU2486336C2 (ru) Способы имитации разрыва пласта-коллектора и его оценки и считываемый компьютером носитель
US10767448B2 (en) Multistage oilfield design optimization under uncertainty
AU2009260453B2 (en) Heterogeneous earth models for a reservoir field
US8793110B2 (en) Method for predicting fluid flow
Arnold et al. Hierarchical benchmark case study for history matching, uncertainty quantification and reservoir characterisation
US20130046524A1 (en) Method for modeling a reservoir basin
US20140214387A1 (en) Constrained optimization for well placement planning
US10895131B2 (en) Probabilistic area of interest identification for well placement planning under uncertainty
EP2948884B1 (fr) Analyse d'évitement de danger
AlRassas et al. CO2 storage capacity estimation under geological uncertainty using 3-D geological modeling of unconventional reservoir rocks in Shahejie Formation, block Nv32, China
US8718992B2 (en) Method for history matching of a geological model comprising a sub-seismic fault network
RU2578733C2 (ru) Способ размещения поисковых, разведочных и эксплуатационных скважин на месторождениях нефти и газа на основе многовариантных трехмерных геологических моделей
RU2019111190A (ru) Усовершенствованное структурное моделирование
Almasoodi et al. Stochastic-based Coupling of Static and Dynamic Models: An Example From the Meremac Formation in the STACK Play
Amanipoor Static modeling of the reservoir for estimate oil in place using the geostatistical method
CN110443890A (zh) 原地浸出矿床地层建模方法
Gürel Uncertainty quantification by using stochastic approach in pore volume calculation for geothermal reservoir
Chapin et al. Integrated static and dynamic modeling of the Pinedale tight gas field, Wyoming
CN112459766B (zh) 划分复式油气藏的方法及装置
Aminzadeh et al. Reservoir characterization
Worthington Optimization of equity redeterminations through fit-for-purpose evaluation Procedures
Anyanwu et al. Integrated Reservoir Modeling and Uncertainty Assessment of a Reservoir Complex in the Niger Delta
Kuila et al. Integrated Workflow for Identifying Exploration Targets and Quantifying Prospective Resources of the Lower Barmer Hill Resource Play, Barmer Basin, India
Turkarslan Optimizing Development Strategies to Increase Reserves in Unconventional Gas Reservoirs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07747894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07747894

Country of ref document: EP

Kind code of ref document: A1