WO2008041862A2 - Échangeur de chaleur économisant l'énergie - Google Patents

Échangeur de chaleur économisant l'énergie Download PDF

Info

Publication number
WO2008041862A2
WO2008041862A2 PCT/NO2007/000352 NO2007000352W WO2008041862A2 WO 2008041862 A2 WO2008041862 A2 WO 2008041862A2 NO 2007000352 W NO2007000352 W NO 2007000352W WO 2008041862 A2 WO2008041862 A2 WO 2008041862A2
Authority
WO
WIPO (PCT)
Prior art keywords
energy
fluid
water
heat
heat exchanger
Prior art date
Application number
PCT/NO2007/000352
Other languages
English (en)
Other versions
WO2008041862A3 (fr
Inventor
Hans-Olav Ottersen
Original Assignee
Hans-Olav Ottersen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hans-Olav Ottersen filed Critical Hans-Olav Ottersen
Publication of WO2008041862A2 publication Critical patent/WO2008041862A2/fr
Publication of WO2008041862A3 publication Critical patent/WO2008041862A3/fr

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H4/00Swimming or splash baths or pools
    • E04H4/12Devices or arrangements for circulating water, i.e. devices for removal of polluted water, cleaning baths or for water treatment
    • E04H4/129Systems for heating the water content of swimming pools
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C1/00Reciprocating-piston liquid engines
    • F03C1/02Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders
    • F03C1/04Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinders in star or fan arrangement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H33/00Bathing devices for special therapeutic or hygienic purposes
    • A61H2033/0045Bathing devices for special therapeutic or hygienic purposes with heat-recovery of waste fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/02Characteristics of apparatus not provided for in the preceding codes heated or cooled
    • A61H2201/0207Characteristics of apparatus not provided for in the preceding codes heated or cooled heated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/02Characteristics of apparatus not provided for in the preceding codes heated or cooled
    • A61H2201/0214Characteristics of apparatus not provided for in the preceding codes heated or cooled cooled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/02Characteristics of apparatus not provided for in the preceding codes heated or cooled
    • A61H2201/0221Mechanism for heating or cooling
    • A61H2201/0242Mechanism for heating or cooling by a fluid circulating in the apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/02Characteristics of apparatus not provided for in the preceding codes heated or cooled
    • A61H2201/0221Mechanism for heating or cooling
    • A61H2201/025Mechanism for heating or cooling by direct air flow on the patient's body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/02Characteristics of apparatus not provided for in the preceding codes heated or cooled
    • A61H2201/0221Mechanism for heating or cooling
    • A61H2201/0264Mechanism for heating or cooling using heat exchanger, e.g. between fresh and used fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0012Recuperative heat exchangers the heat being recuperated from waste water or from condensates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/08Fluid driving means, e.g. pumps, fans
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/50Hydropower in dwellings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • This invention provides high efficiency in the heating or cooling of water or air because it combines the following techniques :
  • the heat exchanger transfers thermal energy from a low pressure chamber to a high pressure chamber when fluid is circulated therein.
  • this fluid moves from the high pressure chamber to the low pressure chamber, it moves through a hydraulic pump, which absorbs the energy from the pressure drop.
  • This energy is transferred mechanically to the compressor, which drives the same fluid.
  • this compressor is driven by an ordinary energy source.
  • the reason for the fluid being cooled more is as follows: Generally when the fluid, the gas or the liquid, drops the pressure through throttling in a nozzle, turbulence is generated, which converts the energy into heat. This is not desirable; rather it is to be cooled as much as possible. This turbulence ceases or is reduced substantially in a cylinder within which the energy is transferred to the piston and the crankshaft. Two important advantages are thus achieved, firstly by saving energy for the driving of the heat exchanger, and secondly by achieving an increased temperature difference between the cold and the hot chamber. 2. Thermal energy from the outgoing water (5-18) or the air is transferred to the incoming water (4-19) or the air.
  • the outgoing water (18-5) will transfer potential energy to the incoming water, i.e. by means of turbines and a pump (6-9), whereby the discharging water again pumps up the fresh water. If the pool is located lower than the ocean, the opposite will happen; i.e. the incoming fresh water will expend some of its energy (from the pressure) for the purpose of pumping out the used water from the pool.
  • a wave converter (3) or a pump (3) , pumps fresh seawater from the sea or the ocean (1), via a filter (2), and in through a pipe (4) .
  • This wave converter or pump (3) represents the energy source in this system.
  • the water moves through a hydraulic motor/turbine (9) , through a heat exchanger (13-16) within which this water is heated, and further out through nozzles (20) in order to be heated for the second time by admixing it, by means of its turbulence, with the pool water (23) .
  • the energy from the pressure in the liquid (or in the gas) transfers into heat energy whilst the turbulence dissipates in the pool.
  • Some of the energy from the pressure in the water in the pipe (4) may be absorbed by a hydraulic motor (9) or a turbine (9), which further drives the heat exchanger.
  • a hydraulic motor (9) By allowing the water to discharge from the nozzles (20) and form turbulence in the pool (23) , the remainder of said energy is converted into thermal energy. This is the manner in which the water is heated.
  • Said hydraulic motor (9) may possibly have energy supplied to the incoming water in the event that the energy from the hydraulic motor (6) for the outgoing water is sufficiently strong, i.e. by virtue of a sufficient head of water from the pool down to the ocean (1) .
  • Said hydraulic motors (6) and (9) are mechanically connected to an axis (8) .
  • a gear transmission (7) is connected to this axis (8), the gear transmission (7) being connected to the axes (10) and (12), which are connected to a compressor/pump (17) and a hydraulic motor (11) .
  • the axis (10) is supplied energy either from the turbine or pump (6) for the outgoing water (5) , or from the pump or the turbine (9) for the incoming water, or both.
  • the hydraulic motor (11) receives energy from the pressure in the fluid (16) and transfers this energy mechanically through the axis (12) onto said compressor or pump (17) .
  • This hydraulic motor (11), which receives energy from the pressure in the fluid (16), consists of pistons (28) in cylinders (27) . When this fluid drives the pistons, minimal or no turbulence with an accompanying energy loss is thus experienced. The energy is absorbed and is transferred mechanically through the axis (12) onto the compressor or the pump (17) .
  • the compressor/pump (17) receives energy both from the hydraulic motor (11) and the axis (10) , which receives the energy from water circulation through both hydraulic motors or pumps (9) and (11) .
  • the water (14) and the gas (15) move in opposite direction in order to exchange heat efficiently.
  • the heated fluid is compressed in compressor or pump (17) by virtue of being pumped from low pressure chamber (15) to high pressure chamber (16) .
  • Figure 2 shows a detailed drawing of the pumps/compressor/ hydraulic motor shown in figure 1 at positions (6-9-11-17) within the complete heating element.
  • This drawing shows only the upper part of this housing (24) within which this pump is incorporated. Only the two bushings/bearings (30-33) connect the cylinder to the housing (24) .
  • the two bores (25) at the top of the housing are connected in a manner allowing the cylinder chamber to be connected to the one bore when the piston is moving upwards, and to the other one when moving downwards.
  • Both the cylinder (28) and the piston (29) rotate about the cylinder axis (30) and operate as a valve control by alternately opening and closing one of these two bores (25) . When one of these is closed, the other one is open.
  • the pressure valve (26) When it is to pump ga's, the pressure valve (26) operates in a manner allowing it to open upon experiencing sufficient pressure from the cylinder.
  • valve (26) When it is to absorb the energy from the gas, i.e. when the gas is to drive the axle, the valve (26) admits a limited volume of gas. This is controlled from the crankshaft, whereby it is open at a desired angle from the apex and down some distance. During the remaining movement from this point of rotation and downwards, the gas expands. In this manner, turbulence and energy loss is reduced.
  • crankshaft (32) Several cylinders may be mounted on the same crankshaft (32) .
  • the pump/hydraulic motor (6 and 9) in figure 1 does not employ a valve (16) .
  • the two bores (25) for incoming and outgoing water are identical, but without a valve.
  • the energy may move in both directions between the fluid flow and the crankshaft, either by means of the crankshaft pumping fluid, or by means of the fluid flow driving the crankshaft. Yet further, the direction of these movements may also be in both directions, whereby the fluid flow will change into the opposite direction when the crankshaft changes the rotation. The same applies when the controlling fluid direction changes .
  • the crankshaft may also brake or stop the fluid flow and, correspondingly, the fluid flow may brake or stop the rotation of the crankshaft.
  • the heat exchanger's compressor or pump (17) receives energy from the wave converter or the pump (3) ; through the axes (10-12) and hydraulic motor (9),
  • the heat exchanger's compressor/pump (17) receives, in return, some of the energy from hydraulic motor (11) ,
  • the nozzles (21) receive their energy from the wave motor or the pump (3) and convert this energy to heat in the pool (23),
  • Bushing/bearing which is connected to the housing (24) and encloses axis (30) .

Abstract

L'invention consiste en un échangeur de chaleur présentant un rendement élevé et décrit une technologie chauffant ou refroidissant de l'eau ou du gaz d'une manière économisant l'énergie. En plus d'une pompe à chaleur transférant l'énergie thermique par compression/pompage d'un fluide vers une chambre échangeant encore la chaleur avant le retour à la position dans laquelle il avait commencé à circuler, il présente une structure importante. Au lieu de perdre l'énergie en générant de la turbulence qui pénètre dans l'énergie thermique, l'énergie étant généralement perdue lorsque le fluide dans l'échangeur de chaleur va d'une haute pression à une basse pression, cette énergie est absorbée dans une pompe à cylindres (11) transférant cette énergie au compresseur ou à la pompe (17), comprimant le même fluide (16). En raison de cette pompe à cylindres absorbant cette énergie, le fluide se dilatant (15) est refroidi à une température inférieure à celle qui aurait été obtenue si la pompe à cylindres n'avait pas été là, ce par quoi le refroidissement supplémentaire fournit une plus grande différence de température à la partie chaude et à la partie froide de l'échangeur de chaleur. Le milieu sortant, de l'eau ou de l'air (18-5), libère par conséquent une quantité d'énergie, plus grande que la normale, à l'eau ou à l'air (4-19) admis dans la piscine (23), ou dans l'air dans la maison. Son application consiste à tous les types de chauffage ou de refroidissement de liquides ou de gaz (eau ou air). Lors du chauffage de piscines, cet échange efficace rend plus facile de purifier cette eau, à savoir l'eau de mer. Un débit élevé et une fourniture de plus grandes quantités d'eau fraîche et tempérée génèrent une manière complètement nouvelle et de nouvelles possibilités de construire des ensembles de bain et de piscine attrayants à l'extérieur pendant de grandes parties de l'année. De la même manière, l'air dans les maisons devient plus propre et tempéré de façon plus efficace.
PCT/NO2007/000352 2006-10-05 2007-10-05 Échangeur de chaleur économisant l'énergie WO2008041862A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NO20064533 2006-10-05
NO20064533A NO324134B1 (no) 2006-10-05 2006-10-05 Energisparende varmeelement.

Publications (2)

Publication Number Publication Date
WO2008041862A2 true WO2008041862A2 (fr) 2008-04-10
WO2008041862A3 WO2008041862A3 (fr) 2008-06-19

Family

ID=38515342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/NO2007/000352 WO2008041862A2 (fr) 2006-10-05 2007-10-05 Échangeur de chaleur économisant l'énergie

Country Status (2)

Country Link
NO (1) NO324134B1 (fr)
WO (1) WO2008041862A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2476274A (en) * 2009-12-17 2011-06-22 Aquamarine Power Ltd Using wave power in a heating and cooling system
WO2017143068A1 (fr) * 2016-02-16 2017-08-24 Hyperloop Technologies, Inc. Membrane fluide résistante à la corrosion

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH201559A (de) * 1936-11-05 1938-12-15 Bbc Brown Boveri & Cie Verfahren und Einrichtung zur Regelung von Gas- oder Luftwärmepumpen-Anlagen, die nach dem Prinzip Kompression-Wärmeabgabe-Expansion-Wärmeaufnahme arbeiten.
CH232847A (de) * 1942-12-18 1944-06-30 Bbc Brown Boveri & Cie Wärmepumpenanlage.
FR2420103A1 (fr) * 1978-03-16 1979-10-12 Commissariat Energie Atomique Installation de production de calories et/ou de frigories a partir de l'ensemble de l'energie mecanique et eventuellement de l'energie thermique d'eau
GB2153440A (en) * 1983-04-25 1985-08-21 Roger Stuart Brierley Heat regeneration in turbo generator condensation
DE102004033061A1 (de) * 2004-07-08 2006-02-09 Eilers, Helmut Kompressions-Kälteanlage mit Nutzung der Kompressionsenergie
WO2006078215A1 (fr) * 2005-01-21 2006-07-27 Mecmaster Ab Installation pour la production d'eau chaude

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60246974A (ja) * 1984-05-18 1985-12-06 日産車体株式会社 バツクドアステ−
JPS61107063A (ja) * 1984-10-29 1986-05-24 株式会社島津製作所 波力熱変換装置
AU3944095A (en) * 1994-11-18 1996-06-17 Vera Gamini Samarasinghe Wave energy machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH201559A (de) * 1936-11-05 1938-12-15 Bbc Brown Boveri & Cie Verfahren und Einrichtung zur Regelung von Gas- oder Luftwärmepumpen-Anlagen, die nach dem Prinzip Kompression-Wärmeabgabe-Expansion-Wärmeaufnahme arbeiten.
CH232847A (de) * 1942-12-18 1944-06-30 Bbc Brown Boveri & Cie Wärmepumpenanlage.
FR2420103A1 (fr) * 1978-03-16 1979-10-12 Commissariat Energie Atomique Installation de production de calories et/ou de frigories a partir de l'ensemble de l'energie mecanique et eventuellement de l'energie thermique d'eau
GB2153440A (en) * 1983-04-25 1985-08-21 Roger Stuart Brierley Heat regeneration in turbo generator condensation
DE102004033061A1 (de) * 2004-07-08 2006-02-09 Eilers, Helmut Kompressions-Kälteanlage mit Nutzung der Kompressionsenergie
WO2006078215A1 (fr) * 2005-01-21 2006-07-27 Mecmaster Ab Installation pour la production d'eau chaude

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2476274A (en) * 2009-12-17 2011-06-22 Aquamarine Power Ltd Using wave power in a heating and cooling system
GB2476274B (en) * 2009-12-17 2012-08-01 Aquamarine Power Ltd A heating or cooling system and method
WO2017143068A1 (fr) * 2016-02-16 2017-08-24 Hyperloop Technologies, Inc. Membrane fluide résistante à la corrosion
US10077540B2 (en) 2016-02-16 2018-09-18 Hyperloop Technologies, Inc. Corrosion-resistant fluid membrane

Also Published As

Publication number Publication date
NO20064533A (no) 2007-09-03
NO324134B1 (no) 2007-09-03
WO2008041862A3 (fr) 2008-06-19

Similar Documents

Publication Publication Date Title
AU753000B2 (en) Method and device for entropy transfer with a thermodynamic cyclic process
CN106032919A (zh) 一种冷冻水冷却系统
CN101634475A (zh) 借自来水温能作均温的装置
KR101464351B1 (ko) 온도차 엔진 장치
US8800280B2 (en) Generator
RU2731140C2 (ru) Термодинамический бойлер с тепловым компрессором
CN201513994U (zh) 借自来水温能作均温的装置
JP7311426B2 (ja) 熱力学的co2ボイラおよび熱圧縮機
JP5599729B2 (ja) 液体ディスプレーサエンジン
CN101280957A (zh) 并列双循环热泵热水器
JP2010038507A (ja) 地下蓄熱利用のヒートポンプ
WO2008041862A2 (fr) Échangeur de chaleur économisant l'énergie
JP2008501885A (ja) ヒート・エンジン
US20060055173A1 (en) Cooled electrical generator
WO2019151289A1 (fr) Procédé de commande de dispositif d'échange de chaleur, dispositif d'échange de chaleur, dispositif de chauffage et de refroidissement de pompe à chaleur refroidie par l'eau, dispositif de pompe à chaleur refroidie par l'eau
JP2011133122A (ja) 地中熱利用ヒートポンプシステム及び水熱利用ヒートポンプシステム
JP5751599B2 (ja) 給湯冷暖房システム
US4439987A (en) Prime mover operated by the expansion and contraction of a tubular metal member of substantial length
JP3593480B2 (ja) 海水冷却システム
JP5817655B2 (ja) 磁気ヒートポンプシステム
AU2007332189B2 (en) Heat pump assembly
WO2013049661A1 (fr) Moteur hydraulique à deux étages
CN205593245U (zh) 一种流态冰潜艇降温系统
KR102327523B1 (ko) 시수 및 지열을 이용한 그린 에너지 공급 시스템
CN1142593A (zh) 设置循环流体分支路径的热泵式空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07834765

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07834765

Country of ref document: EP

Kind code of ref document: A2