WO2008038801A1 - Procédé de production de composé diol, polydiol, alcool secondaire ou dicétone - Google Patents
Procédé de production de composé diol, polydiol, alcool secondaire ou dicétone Download PDFInfo
- Publication number
- WO2008038801A1 WO2008038801A1 PCT/JP2007/069100 JP2007069100W WO2008038801A1 WO 2008038801 A1 WO2008038801 A1 WO 2008038801A1 JP 2007069100 W JP2007069100 W JP 2007069100W WO 2008038801 A1 WO2008038801 A1 WO 2008038801A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compound
- group
- producing
- water
- secondary alcohol
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/61—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
- C07C45/67—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
- C07C45/68—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
- C07C45/72—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction of compounds containing >C = O groups with the same or other compounds containing >C = O groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B41/00—Formation or introduction of functional groups containing oxygen
- C07B41/02—Formation or introduction of functional groups containing oxygen of hydroxy or O-metal groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C253/00—Preparation of carboxylic acid nitriles
- C07C253/30—Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/132—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
- C07C29/136—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
- C07C29/143—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/36—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy, e.g. O-metal
- C07C29/38—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions with formation of hydroxy groups, which may occur via intermediates being derivatives of hydroxy, e.g. O-metal by reaction with aldehydes or ketones
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C41/00—Preparation of ethers; Preparation of compounds having groups, groups or groups
- C07C41/01—Preparation of ethers
- C07C41/18—Preparation of ethers by reactions not forming ether-oxygen bonds
- C07C41/26—Preparation of ethers by reactions not forming ether-oxygen bonds by introduction of hydroxy or O-metal groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C41/00—Preparation of ethers; Preparation of compounds having groups, groups or groups
- C07C41/01—Preparation of ethers
- C07C41/18—Preparation of ethers by reactions not forming ether-oxygen bonds
- C07C41/30—Preparation of ethers by reactions not forming ether-oxygen bonds by increasing the number of carbon atoms, e.g. by oligomerisation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/61—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
- C07C45/67—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
- C07C45/68—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
- C07C45/72—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction of compounds containing >C = O groups with the same or other compounds containing >C = O groups
- C07C45/73—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction of compounds containing >C = O groups with the same or other compounds containing >C = O groups combined with hydrogenation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C46/00—Preparation of quinones
Definitions
- the present invention relates to a diol or a polyol using 12CaO-7AlO electride as a reducing agent.
- the present invention relates to a process for producing rediol, or secondary alcohol or diketone compound.
- Non-Patent Document 1 Regarding the synthesis of diols by the reductive coupling reaction of carbonyl compounds, it is known that metal compounds or metal salts such as magnesium amalgam, aluminum amalgam, samarium iodide, vanadium chloride, etc. function as reducing agents. (Non-Patent Document 1).
- Secondary alcohols and diketones containing aryl groups and / or alkyl groups are widely used as intermediate compounds for pharmaceuticals, pigments, etc., and it is necessary to synthesize these compounds in a safe and environmentally friendly manner. It is.
- Metal hydrides containing boron or aluminum such as H or Zn (BH) are used as reducing agents.
- the electride compound is a concept that was first proposed by J. L. Dye (Non-patent Document 3), and was realized for the first time by using a compound in which crown ether was used as a cation and electrons were used as an anion. It is known that electride exhibits electrical conductivity by hopping of electrons contained as cations. Later, several organic electrides were discovered, but these compounds are all stable only at low temperatures of about minus 100 ° C or less, and are extremely unstable compounds that react with air and water. .
- Patent Document 3 The inventors have filed a patent application for an invention relating to electrically conductive C12A7 and the same type compound and a method for producing the same. Also, annealing C12A7 single crystal in alkali metal or alkaline earth metal vapor at high temperature, ion-implanting inert ions such as Ar into C12A7 single crystal, or directly from the melt in a reducing atmosphere C12A7 It was found that a C12A7 compound having an electric conductivity of 10 / cm or less can be obtained by solidifying a single crystal, and an invention relating to this was filed (Patent Document 4).
- C12A7 single crystal was annealed in titanium metal (Ti) vapor to obtain C12A7 exhibiting metal electrical conductivity, and a patent application was filed for an invention relating to its production method and its use as an electron emission material (Patent Literature) Five).
- C12A7 compounds exhibiting good electrical conductivity are those in which almost all free oxygen ions in the compounds are replaced by electrons, and are substantially described as [Ca Al O] 4+ (4e_).
- Non-patent Document 4 an inorganic electride compound
- Non-Patent Document 1 GM Robertson Comprehensive Organic Synthesis 3, 5 63 (1991)
- Non-Patent Document 2 H. B. Bartl, T, Scheller and N. Jarhrb Mineral Monatsh 1970, 35, 547-552
- Non-Patent Document 3 F. J. Tehan, B. L. Barrett, J. L. Dye J. Am. Chem. Socity 96, 7203-7208 (1974)
- Non-Patent Document 4 S. Matsuishi, Y. Toda, M. Miyakawa, K. Hayashi, T. Kamiy a, M. Hirano, I. Tanaka and H. Hosono, Science, 301, 626—629 (2003)
- Patent Document 1 JP 2002-265391 A
- Patent Document 2 JP-A-10-87530
- Patent Document 3 WO2005 / 000741A1
- Patent Document 4 Japanese Patent Laid-Open No. 2004-26608
- Patent Document 5 WO2007 / 060890A1
- An object of the present invention is to use an expensive and harmful metal hydride or metal salt for a synthesis reaction, and the reaction atmosphere is not limited to an inert gas atmosphere as in the conventional method.
- An object of the present invention is to provide a novel reduction reaction for synthesizing a secondary alcohol or diketone compound using a compound as a raw material, a diol or polydiol, and a ketone compound as a raw material.
- the present invention provides (1) 12CaO′7AlO electride containing electrons of 10 19 cm ⁇ 3 or more and 2.3 ⁇ 10 21 cm ⁇ 3 or less in a cage as a reducing agent.
- Compound water A process for producing a diol or polydiol, characterized in that reductive coupling is carried out in an organic solvent or a water-organic mixed solvent.
- the present invention provides the diol or polydiol of (1) above, wherein (2) the carbonyl compound is an aryl group out of two substituents bonded to the carbonyl group. It is a manufacturing method.
- the present invention is the process for producing a diol or polydiol according to the above (1), wherein (3) the carbonyl compound is represented by the following general formula.
- R 1 is a hydrogen atom, a functional group selected from an alkyl group and an aryl group
- R 2 , R 3 , R 4 , R 5 and R 6 are a hydrogen atom, a black mouth group, a bromo group, an odo group, respectively.
- the present invention relates to (4) use of 12CaO'7AlO electride for a carbonyl compound.
- Dose (12CaO'7AlO / carbonyl compound) is 2 by weight
- the present invention is also (5) the process for producing a diol or polydiol according to the above (1), characterized in that the reaction atmosphere for reductive coupling is in air. [Definition of carbonyl compounds]
- a carbonyl compound is a compound in which two substituents are bonded to a carbonyl group, and the two substituents are each selected from an alkyl group, an aryl group, and hydrogen. Defined as one of the above. However, it does not include compounds in which the two substituents are simultaneously hydrogen.
- diol is defined as a compound in which a hydroxy group is bonded to each of two adjacent carbon atoms.
- Polydiol is defined as a compound containing two or more diol structures.
- the present invention uses (6) into the cage, 10 19 cm- 3 or more, 2. 12CaO '7Al O electride containing 3 X 10 21 cm- 3 or less of the electrons as the reducing agent, the following Of compound 1 of reaction formula 1
- a ketone compound represented by the formula is reduced in water, an organic solvent, or a mixed solvent of water and an organic solvent to synthesize a secondary alcohol represented by the formula 2 of the following reaction formula 1 2 Grade alcohol production method.
- R and R 1 are functional groups selected from aryl groups and alkyl groups, and at least one of R and R 1 includes aryl groups.
- the present invention is, (7) in the cage, using 10 19 cm- 3 or more, 2. 3 X 10 21 cm- 3 or less of the electrons including 12CaO '7Al O electride as a reducing agent, Compound 3 of the following reaction formula 2
- a dianthrone represented by the following formula 4 is synthesized by dimerization of an aryl ketone compound (anthrone anthron) represented by formula (2) in a mixed solvent of water and an organic solvent: is there.
- the present invention provides (8) 12CaO'7AlO electride containing electrons of 10 cm- d or more and 2.3 X 10 cm- d or less in the cage as a reducing agent, 3 of 5
- the dichalcone represented by the formulas 6 and 7 of the following reaction formula 3 is synthesized by dimerizing a ketone compound (chalcone chalcone) containing a carbon double bond represented by the formula in a mixed solvent of water and an organic solvent.
- a method for producing a dichalcone mixture characterized in that.
- C12A7 there are 12 cages ( ⁇ ) per unit cell composed of 2 molecules, and oxygen ions (O 2 —) are included in 2 cages.
- the oxygen ion can be partially or fully substituted with electrons.
- the electron concentration when fully substituted is 2.3 X 10 21 cm- 3 .
- an inclusion oxygen ions partially in electronic (1 X 10 19 atoms electronic cm- 3 or more 2. 3 X 10 21 atoms electronic cm- 3 or less) or complete (2. 3 X 10 21 the compounds obtained by substituting into individual electronic CM_ 3) C12A7 electride (C12A7: e_) and define.
- C12A7 electride is obtained by adding C12A7 of chemical equivalent composition to Ca metal vapor at 700 ° C. Annealing nearby, or annealing in the vicinity of 1100 ° C in Ti metal vapor, can be achieved. The electron concentration in C12A7 increases with the annealing time.
- a C12A7 electride having a theoretical maximum electron concentration (2.3 X 10 21 cm_ 3 ) can be obtained even with a single crystal C12A 7 of 3 mm thickness. Can do.
- a C12A7 melt having a chemical equivalent composition may be solidified in a reducing atmosphere.
- the concentration of C12A7 electride obtained by solidification in a reducing atmosphere is 10 21 cm 3 or less.
- C12 A7 electride can be produced by implanting Ar + ions into C12A7 at a high concentration.
- the electron concentration in the obtained C12A7 electride can be obtained from the intensity of the light absorption band having a peak at 2.8 eV. When the electron concentration is low //, the electron concentration can also be obtained from the intensity of the electron spin resonance absorption band.
- an expensive and harmful metal hydride or metal salt is not used for the synthesis reaction, and the reaction atmosphere is not limited to an inert gas atmosphere as in the conventional method, and the reaction time is short.
- the reaction atmosphere is not limited to an inert gas atmosphere as in the conventional method, and the reaction time is short.
- the C12A7 electride used as the reducing agent may have any shape such as powder, solid sintered body, solid crystal and the like.
- chemical equivalent C12A7 powder may be annealed in Ca metal vapor or Ti metal vapor.
- the C12A7 electride which is a solid sintered body, may be obtained by solidifying a C12A7 melt having a chemical equivalent composition in a reducing atmosphere.
- the solid single crystal C12A7 electride may be annealed in a Ca metal vapor or Ti metal vapor.
- pulverization in a mortar, powder mash by jet minole, etc. can be used.
- the bonyl compound is reductively coupled in a solvent.
- 1,2-diphenyl-1,2-ethanediol can be produced by the reduction coupling reaction shown in the following formula.
- the present invention can be applied to a carbonyl compound.
- Examples of the carbonyl compound represented by the above general formula include 1 naphthaldehyde, 2-naphthaldehyde, 1-bromo-2-naphthoaldehyde, 2-hydroxy monohydrate.
- Solvents include water, alcohols such as methanol, ethanol and propanol, ethers such as tetrahydrofuran, dioxane and jetyl ether, chloroform, methylene chloride, benzene, toluene, N, N dimethylformamide, dimethyl Organic solvents such as sulfoxide, these mixed organic solvents or water-organic mixed solvents are used. Water alone or an organic mixed solvent containing water is most preferable. When the volume ratio of organic solvent (organic solvent / water + organic solvent) increases, the reaction rate decreases, and the ratio is preferably 0 or more and less than 80.
- the amount of C 12A7 electride used relative to the carbonyl compound (C 12A7 / carbonyl compound) is preferably 2 to 20 times by weight. If it is less than 2 times, the reaction rate becomes low, and if it is 20 times or more, the viscosity of the solution increases and smooth stirring is achieved.
- the reaction atmosphere is preferably an air atmosphere of 1 atm, but may be an inert atmosphere.
- the reaction rate increases with increasing reaction temperature. In practice, room temperature is the most desirable, but is preferably in the range of 0 ° C to 100 ° C. Below 0 ° C, the water will freeze, and at 100 ° C it will vaporize and the reaction will not proceed.
- the reaction time depends on the type of carbonyl compound and the reaction temperature, but the reaction is completed in 15 to 96 hours.
- the carbonyl compound and C12A7 are stirred and mixed in a solvent.
- the extraction method may be a known method employed as an extraction method from the reaction solution. That is, for example, hydrochloric acid is added to the reaction solution, and then the product is extracted by adding, for example, ethyl acetate. The extraction process is repeated about 3 times, and the product is washed with aqueous sodium bicarbonate and brine, and magnesium sulfate is added to dryness. The magnesium sulfate is then filtered off, the solvent is distilled off, and column chromatography is performed. Purify by chromatography (silica gel). The final product can be separated by chemical pretreatment and column chromatography. The identification of the compound and the conversion rate from the raw material are determined by the nuclear magnetic resonance spectrum power of H 1 , and the required force S.
- the method for reducing a ketone compound of the present invention uses a 12CaO ′ 7Al O electride containing electrons of 10 19 cm ⁇ 3 or more and 2.3 ⁇ 10 21 cm ⁇ 3 or less as a reducing agent in a cage, and a ketone compound.
- R and R 1 are functional groups selected from aryl groups and alkyl groups, and at least one of R and R 1 is an aryl group.
- R and R 1 are one selected from a methyl group, a phenyl group, a phenylcyano group, or a phenylmethoxy group.
- a ketone compound in which R and R 1 are simultaneously methyl groups is excluded. Specific examples include p-ciano 'methinole' ketone, di-p-methoxy'ketone, diphenyl'ketone and the like.
- p-cyanphenyl 'methyl' ketone is used as the ketone compound, p-cyanphenyl methyl alcohol can be produced by a reduction reaction.
- the present invention uses a 1 2CaO-7AlO electride containing electrons of 10 19 cm- 3 or more and 2.3 X 10 21 cm- 3 or less as a reducing agent in the cage, except for a ketone group.
- Other active groups carbon
- This method synthesizes diketones by dimerizing ketone compounds containing double bonds, etc.) in a solvent.
- Examples of the ketone compound containing another active group in addition to the ketone group include aryl ketone compound 3 (anthrone; 9, 10-dihydroanthracen-9-one) represented by the following formula or a ketone containing a carbon double bond: Compound 5 (chalcone; benzylideneacetophenone) is used.
- aryl ketone compound 3 anthrone; 9, 10-dihydroanthracen-9-one
- Compound 5 chalcone; benzylideneacetophenone
- dianthrone or dichalcone can be generated.
- ketone compounds that can be easily reduced, about 50% of the electrons in C12A7 are used in the reduction reaction, so a C12A7 electride with a higher electron concentration is desirable. However, even if electride with a low electron concentration is used, the reduction reaction of the ketone can be carried out if the input amount is increased.
- the electron concentration is 10 19 cm— 3 to 2.3 X 10 21 cm— 3 , more preferably 10 2 ° cm 3 to 2.3 X 10 21 cm— 3 .
- the C12A7 electride obtained directly by solidifying the melt in a reducing atmosphere has an electron concentration of 10 19 cm 3 or more, and the low electron concentration electride is also effective as a reducing agent for ketones.
- Tetrahydrofuran is suitable for chalcone dimerization because of its high yield.
- the amount of C12A 7 electride used for the ketone compound is about 2 to 20 times by weight. It is preferable. If it is less than 2 times, the reduction reaction rate becomes small, and if it is more than 20 times, the viscosity of the solution increases and smooth stirring is achieved. More preferably, it is about 5 to 15 times.
- a catalyst is not particularly required because electrons contained in the C12A7 electride are released in the reduction reaction and the electrons react with the ketone compound.
- the pressure of the reduction reaction may be any of atmospheric pressure, pressurized atmosphere, and reduced pressure, either in air or in an inert atmosphere, but from the viewpoint of productivity, it is preferably in an air atmosphere of 1 atm. .
- the reaction temperature the reduction reaction rate increases as the reaction temperature increases, so a high temperature is desirable in terms of productivity, but if it exceeds 100 ° C, the yield decreases due to side reactions, etc. Is preferred.
- room temperature is desirable in terms of simple reaction operation. Below o ° c, the water will freeze. Preferably, it is 25 ° C or higher and 100 ° C or lower, more preferably 50 ° C or higher and 100 ° C or lower.
- the reduction reaction time depends on the type of ketone compound and the reaction temperature, but the reduction reaction is completed in about 15 to 96 hours.
- diketones can be produced even in the atmosphere containing oxygen gas.
- an inert gas atmosphere is more preferable for selectively synthesizing a diketone compound because a by-product in which the active group is oxidized is generated in the atmosphere.
- a nitrogen gas atmosphere is suitable from an economical viewpoint.
- single crystal C12A7 electride or polycrystalline electride is pulverized in a mortar to obtain a powder having an average particle size of about 10 inches to be a reducing agent.
- the powder is added to the ketone compound and stirred and mixed in a solvent under the conditions described above.
- the product is then extracted from the reaction solution as a post-treatment.
- the extraction method may be a known method adopted as an extraction method from the reaction solution.
- the conversion rate of the dimerization reaction of the ketone depends on the type of solvent and the type of gas in the reaction atmosphere, but is in the range of about 40 to 60%.
- the presence or absence of by-products and the chemical structure also depend on the type of solvent and the type of gas in the reaction atmosphere.
- anthrone is dimerized to produce dianthrone
- by reaction in a dry nitrogen atmosphere using cyanomethane as a solvent no by-product is produced, and only dianthrone is produced.
- anthrone is oxidized and anthraquinone S shown in the following formula [Chemical 9] is produced with a conversion rate of about 30%.
- dioxane is used as a solvent
- a by-product represented by the following formula [Formula 10] in which anthrone and dioxane are bonded is produced at a conversion rate of about 20%.
- Electron concentration was prepared C12A7 electride of about 2 X 10 21 cm_ 3.
- This C12A7 electride was produced by the following method.
- a C12A7 single crystal ingot force made by the Choral Ski method a 1 Omm XI Omm X 3 mm plate was cut out and enclosed in a quartz tube together with Ti metal in a quartz tube.
- the quartz tube was put in an electric furnace, kept at 1100 ° C. for 24 hours, and then air-cooled.
- the electron concentration of the obtained C12A7 electride was obtained from the intensity of the absorption band of 2.8 eV by converting the light reflection spectrum of the electride into a light absorption spectrum.
- the single crystal C1 2A7 electride was pulverized in a mortar to obtain a powder having an average particle size of about 10 m. ⁇ Production of diol or polydiol>
- a C12A7 electride having an electron concentration of 1 X 10 19 was prepared by the following method. That is, C12 A7 powder was placed in a carbon crucible with a lid, heated to 1600 ° C in the atmosphere to melt, and cooled at a rate of about 400 ° C / hour to obtain polycrystalline C12A7. The electron concentration was determined from the electron spin resonance spectrum. The polycrystalline C12A7 electride was pulverized in a mortar to obtain a powder having an average particle size of about 10 Hm.
- Example 1 The reaction was carried out under the same conditions as in Example 1 shown in Table 1 except that C12A7 powder having a chemical equivalent composition containing no electrons was used instead of C12A7 electride. Even after the reaction, only benzaldehyde was detected, and no reductive coupling reaction occurred.
- ketone compound 1 having R and R 1 groups of No. 1 Omg, 196 mg of C 12A7 electride and 5 mL of solvent (water: dioxane 1: 4) are placed in a 10 mL eggplant flask and stirred and mixed at the reaction time and reaction temperature shown in Table 3 in the open state in the atmosphere. To form a reaction solution.
- Example 16 The same as Example 16 except that the ketone compound having the R and R1 groups of No. 2 in Table 3 was used as the raw material (Compound 1), and the amount of electride and the reaction time were as shown in Table 3. The reaction was carried out under the conditions, and a secondary alcohol represented by the formula RI ⁇ HC—OH in Table 4 was obtained. The yield was 3%.
- Example 16 is the same as Example 16 except that the ketone compound having the R and R 1 groups of No. 3 in Table 3 was used as the raw material (Compound 1), and the amount of electride and the reaction time were as shown in Table 3. The reaction was carried out under the same conditions, and a secondary alcohol represented by the formula RI ⁇ HC—OH in Table 4 was obtained. The yield was 57%.
- the reaction solution was transferred to an eggplant flask having a volume of 50 milliliters (mU, and hydrochloric acid (1N, 7mU was added, and then ethyl acetate (20mL) was added to extract the product.
- the extraction process was performed 3).
- the mixture was washed with aqueous sodium bicarbonate and brine, magnesium sulfate was added to adsorb water to remove water, magnesium sulfate was filtered off, the solvent was distilled off, and column chromatography was performed.
- the product was purified by (silica gel) to obtain a compound having a purity of more than 98% .
- the compound was identified by a nuclear magnetic resonance spectrum of H 1.
- the compound was dianthrone.The yield determined from the weight of the product was 45%.
- reaction solution was transferred to a 50 mL eggplant flask, hydrochloric acid (1N, 7mU was added, and then ethyl acetate (20mU was added to extract the product. After repeating the extraction process three times) After washing with sodium bicarbonate water and brine, magnesium sulfate was added to adsorb the water to remove the water, then the magnesium sulfate was filtered off, the solvent was distilled off, and the residue was purified by column chromatography (silica gel). The compound was identified with a nuclear magnetic resonance spectrum of H 1. The compound was a dichalcone mixture represented by the formulas of compound 6 and compound 7. The compound was determined from the weight of the product. The yields of Compound 6 and Compound 7 were 5% and 23%, respectively.
- the present invention provides a method for synthesizing a secondary alcohol or diketone, or a diol or polydiol used as an intermediate compound of a drug, etc. in a high efficiency and in a short time.
- it is a reaction in an aqueous solvent that does not require a catalyst such as heavy metals, or in a mixed solvent of water and an organic solvent, and provides an environmentally safe and safe synthesis method that does not require harmful substances.
- a catalyst such as heavy metals
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
明 細 書
ジオール若しくはポリジオール、又は 2級アルコール若しくはジケトン化合 物の製法
技術分野
[0001] 本発明は、 12CaO- 7Al Oエレクトライドを還元剤として用いたジオール若しくはポ
2 3
リジオール、又は 2級アルコール若しくはジケトン化合物の製法に関する。
背景技術
[0002] カルボニル化合物の還元的カップリング反応によるジオールの合成については、マ グネシゥムアマルガム、アルミニウムアマルガムや、ヨウ化サマリウム、塩化バナジウム 等の金属化合物又は金属塩が還元剤として機能することが知られている(非特許文 献 1)。
[0003] しかし、該金属化合物又は金属塩は、高価かつ有害であり、さらに、不活性ガス雰囲 気下での無水有機溶媒中で反応を行う必要がある。このため、該金属化合物又は金 属塩を用いた反応は、簡便かつ環境に優しい還元方法としては極めて不満足なもの であった。また、還元剤として金属カルシウムを用い有機溶媒中で反応を行う方法も 知られている(特許文献 1)。
[0004] ァリール基及び/又はアルキル基を含む 2級アルコール及びジケトンは、医薬品、色 素等の中間化合物として広く使われており、それら化合物を、環境にやさしい安全な 方法で合成することが必要である。
[0005] ケトン化合物の還元反応による 2級アルコールの合成には、 NaBH , LiBH , LiAl
4 4
H、又は Zn (BH ) 等のホウ素、アルミニウムを含む金属水素化物が還元剤として機
4 4 2
能することが知られている。しかし、該金属水素化物は、高価かつ有害であり、さらに 、これらの金属水素化物は、水分の存在を極度に嫌い、乾燥雰囲気及び水分を含ま ない乾燥溶媒中でしか使用できないという欠点がある。他に、ポリメチルヒドロシロキ サンを触媒量のフッ化テトラブチルアンモニゥムの存在下で反応させてケトンのカル ボニル基を還元してアルコール化合物を得る方法が知られて!/、る(特許文献 2)。
[0006] 1970年に H. B. Bartlらは、 12CaO - 7Al O (以下、「C12A7」と記す)結晶が 2分
子を含む単位胞 (cell)にある 66個の酸素イオンの内の 2個力 S、結晶中に存在するケ ージ (籠)内空間に「フリー酸素」として包接されているという、特異な結晶構造を持つ ことを示した (非特許文献 2)。以降、このフリー酸素イオンが種々の陰イオンで置換 できることが明らかにされた。特に、強い還元雰囲気に C12A7を保持すると、すべて のフリー酸素を電子で置き換えることができる。フリー酸素を電子で置き換えた C12A 7 : e—は、エレクトライドとみなすことができる。
[0007] エレクトライド化合物は、 J. L. Dyeがはじめて提案した概念であり(非特許文献 3)、 クラウンエーテルを陽イオンとして、電子を陰イオンとした化合物等ではじめて実現し た。エレクトライドは、陽イオンとして含まれる電子のホッピングにより電気伝導性を示 すことが知られている。その後、いくつかの有機エレクトライドが見出されたが、これら の化合物は、いずれも、マイナス 100°C程度以下の低温でのみ安定であり、空気や 水と反応する著しく不安定な化合物である。
[0008] 本発明者らは、電気伝導性 C12A7及び同型化合物とその製造法に関する発明を 特許出願した(特許文献 3)。また、 C12A7単結晶をアルカリ金属又はアルカリ土類 金属蒸気中で、高温でァニールすること、 C12A7単結晶に Ar等の不活性イオンを イオン打ち込みすること、又は、還元雰囲気で、融液から直接 C12A7単結晶を固化 することで、 10 /cm以下の電気伝導度を有する C12A7化合物が得られることを 見出し、これらに関する発明を特許出願した(特許文献 4)。さらに、 C12A7単結晶を チタン金属 (Ti)蒸気中でァニールし、金属電気伝導性を示す C12A7を得ることに 成功し、その製法及び電子放出材料としてのその用途に関する発明を特許出願した (特許文献 5)。
[0009] これらの良電気伝導性を示す C12A7化合物は、該化合物中のフリー酸素イオンが ほとんど全て電子で置換されたものであり、実質的に [Ca Al O ]4+ (4e_)と記述さ
24 28 64
れ、無機エレクトライド化合物とみなすことができる(非特許文献 4)。
[0010] C12A7エレクトライドに包接される電子は、陽イオンと緩く結合しているために、電場 印加又は化学的な手段により、外部に取り出すことができる。外部に取り出された電 子は、還元反応に用いることができると考えられる力 C12A7エレクトライドに包接さ れる電子を直接、還元反応に応用した例は知られていない。
[0011] 非特許文献 1 : G. M. Robertson Comprehensive Organic Synthesis 3, 5 63 (1991)
非特許文献 2 : H. B. Bartl, T, Scheller and N. Jarhrb Mineral Monatsh 1970, 35, 547 - 552
非特許文献 3 : F. J. Tehan, B. L. Barrett, J. L. Dye J. Am. Chem. Socity 96、 7203-7208 (1974)
非特許文献 4 : S . Matsuishi, Y. Toda, M. Miyakawa, K. Hayashi, T. Kamiy a, M. Hirano, I. Tanaka and H. Hosono, Science, 301 , 626— 629 (2003 )
特許文献 1 :特開 2002— 265391号公報
特許文献 2 :特開平 10— 87530号公報
特許文献 3: WO2005/000741A1
特許文献 4:特開 2004— 26608号公報
特許文献 5: WO2007/060890A1
発明の開示
発明が解決しょうとする課題
[0012] 本発明の課題は、合成反応に高価かつ有害な金属水素化物又は金属塩を用いるこ となぐかつ、従来法のように反応雰囲気が不活性ガス雰囲気下に制限されずに、力 ルポニル化合物を原料として、ジオール又はポリジオールを、また、ケトン化合物を原 料として、 2級アルコール又はジケトン化合物を合成する新規な還元反応を提供する ことにある。
課題を解決するための手段
[0013] 本発明者は、上記の目的を達成すべく鋭意検討を重ねた結果、電気伝導性を示す
C12A7エレクトライドを還元剤として用いると、空気下においても、水、有機溶媒、又 は水 有機混合溶媒中でカルボニル化合物の還元的力ップリング反応、又はケトン 化合物の還元反応が進行することを見出した。
[0014] すなわち、本発明は、(1)ケージ内に、 1019cm— 3以上、 2· 3 X 1021cm— 3以下の電子 を含む 12CaO ' 7Al Oエレクトライドを還元剤として用い、カルボニル化合物を水、
有機溶媒、又は水一有機混合溶媒中において還元的カップリングさせることを特徴と するジオール又はポリジオールの製法である。
[0015] また、本発明は、(2)カルボニル化合物が、カルボニル基に結合した二つの置換基 のうち、少なくとも一つはァリール基であることを特徴とする上記(1)のジオール又は ポリジオールの製法である。
[0016] また、本発明は、(3)カルボニル化合物が、下記の一般式で示されることを特徴とす る上記(1)のジオール又はポリジオールの製法である。
[化 1]
(ただし、 R1は、水素原子、アルキル基及びァリール基から選ばれる官能基、 R2、 R3 、 R4、 R5及び R6は、それぞれ水素原子、クロ口基、ブロモ基、ョード基、アルキル基、 ァリール基、カルボニル基、ァリル基、ビュル基、アミノ基、ヒドロキシ基、アルコキシ基 、ニトロ基、シァノ基及びイミノ基から選ばれるァリール基に結合した官能基。また、 R1 とァリ一ル基は互いに結合して環構造を形成してレ、てもよ!/、。 )
[0017] また、本発明は、(4)カルボニル化合物に対する 12CaO ' 7Al Oエレクトライドの使
2 3
用量(12CaO ' 7Al O /カルボニル化合物)が重量比で 2
2 3 〜20倍であることを特徴と する上記(1)のジオール又はポリジオールの製法である。
[0018] また、本発明は、(5)還元的カップリングさせる反応雰囲気が空気中であることを特 徴とする上記(1)のジオール又はポリジオールの製法である。 [カルボニル化合物の 定義]
[0019] 本発明にお!/、て、カルボニル化合物とは、カルボニル基に二つの置換基が結合した 化合物であり、二つの置換基は、それぞれアルキル基、ァリール基及び水素のうちか ら選ばれた一つであると定義する。ただし、二つの置換基が同時に水素である化合 物を含まない。
[ジオールの定義]
[0020] 本発明にお!/、て、ジオールとは隣接する二つの炭素原子それぞれにヒドロキシ基が 結合した化合物と定義する。また、ポリジオールは、該ジオール構造を 2以上含む化 合物と定義する。
[0021] さらに、本発明は、(6)ケージ内に、 1019cm— 3以上、 2. 3 X 1021cm— 3以下の電子を 含む 12CaO ' 7Al Oエレクトライドを還元剤として用い、下記反応式 1の化合物 1の
2 3
式で示されるケトン化合物を水、有機溶媒、又は水一有機溶媒の混合溶媒中におい て還元させて下記反応式 1の化合物 2の式で示される 2級アルコールを合成すること を特徴とする 2級アルコールの製法、である。
[0022] (反応式 1)
[化 2]
(化合物 2 : 2級アルコール)
(ただし、 R及び R1は、ァリール基及びアルキル基から選ばれる官能基であり、 R及び R1の少なくとも一方は、ァリール基を含む。 )
[0023] また、本発明は、(7)ケージ内に、 1019cm— 3以上、 2. 3 X 1021cm— 3以下の電子を含 む 12CaO ' 7Al Oエレクトライドを還元剤として用い、下記反応式 2の化合物 3の式
2 3
で示されるァリールケトン化合物(アントロン anthron)を水一有機溶媒の混合溶媒中 において 2量化させて下記反応式 2の化合物 4の式で示されるジアントロンを合成す ることを特徴とするジアントロンの製法、である。
[0024] (反応式 2)
[化 3]
化含物 3 (アント CIン) 化食 «1 (ジァント。ン)
[0025] さらに、本発明は、 (8)ケージ内に、 10 cm— d以上、 2. 3 X 10 cm— d以下の電子を 含む 12CaO ' 7Al Oエレクトライドを還元剤として用い、下記反応式 3の化合物 5の
2 3
式で示される炭素 2重結合を含むケトン化合物(カルコン chalcone)を水一有機溶媒 の混合溶媒中において 2量化させて下記反応式 3の化合物 6及び化合物 7の式で示 されるジカルコンを合成することを特徴とするジカルコン混合物の製法、である。
[0026] (反応式 3)
[化 4]
化合物 5 化合物 6 化合物 7
[0027] [12CaO - 7Al O (C12A7)エレクトライドの定義]
2 3
C12A7の結晶構造には、 2分子から構成される単位胞当たり、 12個のケージ (籠) が存在し、そのうちの 2個のケージに酸素イオン (O2—)が包接されている。該酸素ィ オンは、電子で部分的又は完全に置換することができる。完全に置換した場合の電 子濃度は、 2. 3 X 1021cm— 3である。本発明において、包接された酸素イオンを、電 子で部分的(1 X 1019個電子 cm— 3以上 2. 3 X 1021個電子 cm— 3以下)又は完全(2. 3 X 1021個電子 cm_3)に置換した化合物を C12A7エレクトライド(C12A7: e_)と定 義する。
[0028] C12A7エレクトライドは、化学当量組成の C12A7を、 Ca金属蒸気中で、 700°C付
近でァニールする、又は、 Ti金属蒸気中で、 1100°C付近でァニールすることで、得 ること力 Sできる。ァニール時間により、 C12A7中の電子濃度は多くなる。
[0029] Ti金属蒸気処理の場合は、 24時間程度ァニールすれば、 3mm厚の単結晶 C12A 7でも、理論的最大電子濃度 (2. 3 X 1021cm_3)を有する C12A7エレクトライドを得る ことができる。また、化学当量組成の C12A7融液を還元雰囲気中で固化しても良い 。還元雰囲気中の固化で得られた C12A7エレクトライドの濃度は、 1021cm 3以下で ある。また、 Ar+イオンを C12A7に高濃度にイオン打ち込みすることによつても C12 A7エレクトライドを作成できる。得られた C12A7エレクトライド中の電子濃度は、 2. 8 eVにピークを有する光吸収帯の強度から求めることができる。電子濃度が小さ!/、とき は、電子スピン共鳴吸収帯の強度からも、電子濃度を求めることができる。
発明の効果
[0030] 本発明の方法により、合成反応に高価かつ有害な金属水素化物又は金属塩を用い ることなぐかつ、従来法のように反応雰囲気が不活性ガス雰囲気下に制限されずに 、短時間かつ容易な操作でカルボニル化合物を原料として、ジオール又はポリジォ ールを、また、ケトン化合物を原料として、 2級アルコール又はジケトン化合物を合成 すること力 Sでさる。
発明を実施するための最良の形態
[0031] 還元剤として用いる C12A7エレクトライドは、粉末、固体焼結体、固体結晶等、その 形状はいずれでもよい。粉末の C12A7エレクトライドは、化学当量組成の C12A7粉 末を Ca金属蒸気中又は Ti金属蒸気中でァニールすればよい。また、固体焼結体の C12A7エレクトライドは、化学当量組成の C12A7融液を還元雰囲気中で固化すれ ば良い。また、固体単結晶の C12A7エレクトライドは、 C12A7単結晶を Ca金属蒸気 中又は Ti金属蒸気中でァニールすればよい。還元反応速度を大きくするために、固 体試料は粉末に加工することが最適である。粉末加工は、乳鉢中での粉砕、ジェット ミノレによる粉碎等を用いることカできる。
[0032] <カルボニル化合物の還元方法〉
以下、本発明のカルボニル化合物の還元方法について詳細に説明する。 本発明のカルボニル化合物の還元方法は、ケージ内に、 1019cm— 3以上、 2. 3 X 1
0 cm— 3以下の電子を含む 12CaO' 7Al Oエレクトライドを還元剤として用い、カル
2 3
ボニル化合物を溶媒中において還元的カップリングさせる方法である。例えば、カル ボニル化合物としてべンズアルデヒドを用いた場合は、下記の式に示す還元カツプリ ング反応により、 1 , 2—ジフエ二ルー 1 , 2—エタンジオールを生成することができる。
[0033] [化 5]
[0034] 本発明は、カルボニル化合物に適用可能であるが、前記一般式で表されるカルボ二 ル化合物としては、 1 ナフトアルデヒド、 2—ナフトアルデヒド、 1ーブロモー 2—ナフ トァノレデヒド、 2—ヒドロキシ一 1—ナフトアルデヒド、 1—ヒドロキシ一 2—ナフトアルデ ヒド、 2 メトキシ 1 ナフトアルデヒド、 1ーメトキシ 2 ナフトアルデヒド、 6 メト キシ一 2—ナフトアルデヒド、 1—ニトロ一 2—ナフトアルデヒド、 3—ジメトキシ一 1 ナフトアルデヒド、 4ーヒドロキシー 1 ナフトアルデヒド、 2, 3—ナフタレンジアルデ ヒド、等が挙げられる。
[0035] さらに、前記一般式で表されるカルボニル化合物のうち、 R1が Hである化合物として は、ベンズアルデヒド、 4 メチルベンズアルデヒド、 4 ェチルベンズアルデヒド、 4 ターシャルブチルベンズアルデヒド、 4 クロ口べンズアルデヒド、 4ーメトキシベン ズアルデヒド、 2 二トロべンズアルデヒド、 3 二トロべンズアルデヒド、 4ーヒドロキシ ベンズアルデヒド、 4 シァノベンズアルデヒド、 4 エトキシカルボニルベンズアルデ ヒド、 2, 4 ジメトキシベンズアルデヒド、 4 ブロモベンズアルデヒド、 4ーォクチロキ シベンズアルデヒド、 4ージメチルァミノべンズアルデヒド、 2 ヒドロキシベンズアルデ ヒド、等が挙げられる。
[0036] 溶媒には水、メタノール、エタノール、プロパノール等のアルコール類ゃテトラヒドロフ ラン、ジォキサン、ジェチルエーテル等のエーテル類、クロ口ホルムや塩化メチレン、 ベンゼン、トルエン、 N, N ジメチルホルムアミド、ジメチルスルホキシド等の有機溶 媒ゃ、これらの混合有機溶媒又は水一有機混合溶媒が用いられるが、環境面からは
、水のみ、又は水を含む有機混合溶媒が最も好ましい。有機溶媒の容量割合 (有機 溶媒/水 +有機溶媒)が増加すると反応速度が小さくなり、該割合は、 0以上 80未 満が望ましい。
[0037] カルボニル化合物に対する C 12A7エレクトライドの使用量(C 12A7/カルボニル化 合物)は、重量比で 2〜20倍であることが好ましい。 2倍未満では、反応速度が小さく なり、また、 20倍以上では、溶液の粘度が増加して、スムースな撹拌がしに《なる。
[0038] 反応の雰囲気は、 1気圧の空気雰囲気下がよいが、不活性雰囲気でもよい。反応温 度の上昇と共に反応速度は速くなる。実用上は、室温が最も望ましいが、好ましくは 0 °Cから 100°Cの温度の範囲である。 0°C以下では、水が凍ってしまうし、 100°Cでは、 気化してしまい、反応が進まない。反応時間は、カルボニル化合物の種類及び反応 温度に依存するが、 15時間から 96時間で反応は完結する。
[0039] 上記のような条件で、カルボニル化合物と C12A7を溶媒中で攪拌混合する。次いで 、後処理として反応溶液から生成物を抽出する。抽出方法は、反応溶液からの抽出 方法として採用される公知の方法でよい。すなわち、例えば、反応溶液に塩酸を加え た後、例えば、酢酸ェチルを加えて、生成物を抽出する。該抽出プロセスを 3回程度 繰り返した後、重曹水及び食塩水で生成物を洗浄し、硫酸マグネシウムを加えて、乾 燥させ、その後、硫酸マグネシウムをろ別し、溶媒を留去し、カラムクロマトグラフィー( シリカゲル)で精製する。最終生成化合物は、化学的前処理とカラムクロマトグラフィ 一により分離できる。該化合物の同定及び原料からの変換率は、 H1の核磁気共鳴ス ぺク卜ノレ力、ら求めること力 Sでさる。
[0040] <ケトン化合物の還元方法〉
以下、本発明のケトン化合物の還元方法について詳細に説明する。本発明のケト ン化合物の還元方法は、ケージ内に、 1019cm— 3以上、 2. 3 X 1021cm— 3以下の電子 を含む 12CaO' 7Al Oエレクトライドを還元剤として用い、ケトン化合物を水、有機
2 3
溶媒、又は水一有機溶媒の混合溶媒中において、ケトン化合物のカルボニル基 C = Oを CH— OHに変換して 2級アルコールを合成する方法である。ケトン化合物は下 記の式で示される化合物 1を用いる。
[0041] [化 6]
R人 R1
(化合物 1 : ケトン)
R及び R1が、ァリール基及びアルキル基から選ばれる官能基であり、少なくとも R及 び R1の少なくとも一方は、ァリール基である。好ましくは、 R及び R1は、メチル基、フエ ニル基、フエ二ルシアノ基、又はフエニルメトキシ基から選ばれる 1種である。ただし、 R及び R1が、同時にメチル基であるケトン化合物を除く。具体的には、 p—シァノ 'メチ ノレ'ケトン、ジ p—メトキシ'ケトン、ジフエ二ル'ケトン等が挙げられる。例えば、ケトン化 合物として p—シァノフエニル'メチル 'ケトンを用いた場合は、還元反応により、 p—シ ァノフエニル .メチル .アルコールを生成することができる。
[0042] また、本発明は、ケージ内に、 1019cm— 3以上、 2. 3 X 1021cm— 3以下の電子を含む 1 2CaO - 7Al Oエレクトライドを還元剤として用い、ケトン基以外に他の活性基 (炭素
2 3
2重結合等)を含むケトン化合物を溶媒中において 2量化してジケトンを合成する方 法である。
[0043] ケトン基以外に他の活性基を含むケトン化合物としては、下記の式で示されるァリー ルケトン化合物 3 (アントロン; 9, 10—ジヒドロアントラセン- 9-オン)又は炭素 2重結合を 含むケトン化合物 5 (カルコン;ベンジリデンァセトフエノン)を用いる。活性基を含むケ トン化合物として、アントロン又はカルコンを用いた場合には、ジアントロン又はジカル コンを生成することができる。
[0044] [化 7]
[0046] 還元が容易なケトン化合物に対しては、 C12A7中の電子の 50%ほどが還元反応に 使われるので、電子濃度の高い C12A7エレクトライドほど望ましい。しかし、電子濃 度の少ないエレクトライドでも、投入量を増加すれば、ケトンの還元反応をすることが できる。電子濃度は 1019cm— 3〜2. 3 X 1021cm— 3である力 より好ましくは 102°cm 3 〜2. 3 X 1021cm— 3である。融液を還元雰囲気で固化して、直接得られる C12A7ェ レクトライドの電子濃度は 1019cm 3以上であり、該低電子濃度エレクトライドもケトンの 還元剤として有効である。
[0047] ケトンの還元による 2級アルコールの生成反応では、溶媒に水、メタノール、エタノー ノレ、プロパノール等のアルコール類ゃテトラヒドロフラン (THF)、ジォキサン、ジェチノレ エーテル等のエーテル類、クロ口ホルムや塩化メチレン、ベンゼン、トルエン、 N, N ージメチルホルムアミド、ジメチルスルホキシド等の有機溶媒や、これらの混合有機溶 媒又は水一有機溶媒の混合溶媒が用いることができる力 環境面からは、水のみ、 又は水を含む有機溶媒の混合溶媒が好まし V、。有機溶媒の容量割合 (有機溶媒/ 水 +有機溶媒)が増加すると還元反応速度が小さくなり、該割合は、 0以上 80以下が 望ましい。
[0048] 一方、ケトン化合物の 2量化反応では、水のみの溶媒では、反応が進行しな!/、ので、 水-有機溶媒の混合溶媒を用いる。有機溶媒としては、 CH CN、 Et_OH、 t-Bu
3
—〇H、ジォキサン(H〇一 CH CH—〇H)、テトラヒドロフラン (THF)等を用いるこ
2 2
と力できる。アントロンの 2量化反応においては、副産物を生じない点で、 CH CNが
3 適している。また、カルコンの 2量化反応においては、収率が高い点で、テトラヒドロフ ラン (THF)が適している。
[0049] ケトンの還元反応及び 2量化反応のいずれにおいても、ケトン化合物に対する C12A 7エレクトライドの使用量 (C12A7/ケトン化合物)は、重量比で 2〜20倍程度である
ことが好ましい。 2倍未満では、還元反応速度が小さくなり、また、 20倍超では、溶液 の粘度が増加して、スムースな撹拌がしに《なる。より好ましくは、 5〜; 15倍程度であ る。本発明のケトン化合物の還元方法においては、 C12A7エレクトライドに含まれる 電子は還元反応において放出されてその電子がケトン化合物と反応するので、触媒 は、特に必要としない。
[0050] 還元反応の圧力は、常圧、加圧、減圧の何れであってもよぐ空気中、不活性雰囲気 のいずれでもよいが、生産性の点からは 1気圧の空気雰囲気下が好ましい。反応温 度については、反応温度の上昇と共に還元反応速度は速くなるので、生産性の点で は高温が望ましいが、 100°Cを超えると副反応等により収率が低下するので 100°C 以下が好ましい。一方、反応操作が簡便に行える面では、室温が望ましい。 o°c未満 では、水が凍ってしまう。好ましくは、 25°C以上、 100°C以下、より好ましくは 50°C以 上、 100°C以下である。還元反応時間は、ケトン化合物の種類及び反応温度等に依 存するが、 15時間から 96時間程度で還元反応は完結する。
[0051] 他の活性基を含むケトンの 2量化反応では、酸素ガスを含む大気中でもジケトンの生 成は可能である。しかし、大気中では、該活性基が酸化された副産物が生成するの で、ジケトン化合物を選択的に合成するためには、不活性ガス雰囲気がより好ましい 。不活性ガス雰囲気としては、経済的な面で窒素ガス雰囲気が適している。
[0052] 好ましくは、単結晶 C12A7エレクトライド又は多結晶エレクトライドを乳鉢で粉砕し、 平均粒径約 10 inの粉末にして還元剤とする。該粉末をケトン化合物に加え、上記 のような条件で、溶媒中で攪拌混合する。次いで、後処理として反応溶液から生成物 を抽出する。抽出方法は、反応溶液からの抽出方法として採用される公知の方法で よい。
[0053] すなわち、例えば、反応溶液に塩酸を加えた後、例えば、酢酸ェチルを加えて、生 成物を抽出する。該抽出プロセスを 3回程度繰り返した後、重曹水及び食塩水で生 成物を洗浄し、硫酸マグネシウムを加えて、水を吸着させ、水分を除く。次に、硫酸マ グネシゥムをろ別し、溶媒を留去し、カラムクロマトグラフィー(シリカゲル)で精製する 。最終生成化合物は、化学的前処理とカラムクロマトグラフィーにより分離できる。該 化合物の同定及び原料からの変換率は、 H1の核磁気共鳴スペクトルから求めること
ができる。
[0054] ケトンの 2量化反応の変換率は、溶媒の種類及び反応雰囲気のガスの種類に依存 するが、 40〜60%程度の範囲である。また、副生成物の生成の有無、化学構造も溶 媒の種類及び反応雰囲気のガスの種類に依存する。例えば、アントロンを 2量化して 、ジアントロンを生成する反応では、シァノメタンを溶媒として、乾燥窒素雰囲気で反 応させると、副生成物は生成されず、ジアントロンのみが生成さる。しかし、空気中で 反応させると、アントロンが酸化された下記の式 [化 9]で示すアントラキノンカ S、変換 率 30%程度で生成される。また、溶媒として、ジォキサンを用いると、アントロンとジォ キサンが結合した下記の式 [化 10]で示す副生成物が、変換率 20%程度で、生成す
[0055] [化 9]
[0056] [化 10]
[0057] 以下に、実施例により、本発明をより詳細に説明する。
(C12A7エレクトライドの調製)
電子濃度が約 2 X 1021cm_3の C12A7エレクトライドを準備した。この C12A7エレ クトライドは以下の方法で製造した。チョコラルスキー法で作成した C12A7単結晶ィ ンゴット力、ら、 1 Omm X I Omm X 3mmの板を切り出し、 Ti金属と共に、石英管中に真 空封入した。該石英管を、電気炉に入れ、 1100°Cに 24時間保持した後空冷した。 得られた C12A7エレクトライドの電子濃度は、該エレクトライドの光反射スペクトルを 光吸収スペクトルに変換し、 2. 8eVの吸収バンドの強度から求めた。この単結晶 C1 2A7エレクトライドを乳鉢で粉砕し、平均粒径約 10 mの粉末を得た。
<ジオール又はポリジオールの製造〉
[実施例;!〜 14]
[0058] [表 1]
例 1〜: 1 4は 1 O m g, Hffi例 1 5は 2 6 m g 氺②水:エタノール = 1 : 4
[0059] 表 1に記載したカルボニル化合物 10mgと、 C12A7エレクトライド、溶媒を表 1に示す それぞれの量を容量 10ミリリツタ (mL)のナスフラスコに入れ、大気中解放状態で、表 1に記載した反応時間、反応温度で撹拌しながら反応させて反応溶液を形成した。
[0060] 次に、反応溶液を容量 50ミリリツタ(mUのナスフラスコに移し、塩酸(1N、 7mUを 加えた後、酢酸ェチル(20mL)を加えて、生成物を抽出した。該抽出プロセスを 3回 繰り返した後、重曹水及び食塩水で洗浄し、硫酸マグネシウムを加えて、乾燥させた 。硫酸マグネシウムをろ別し、溶媒を留去し、カラムクロマトグラフィー(シリカゲル)で 精製し、純度 98%超のジオール化合物を得た。化合物の同定は、 H1の核磁気共鳴 スペクトルで行った。各実施例の生成物を表 2に示す。転換率(出発原料のカルボ二 ル化合物の減少率)は表 1に示すとおりであった。
[0061] [表 2]
生成化合物
1 1 , 2—ジフエ二ルー 1, 2—エタンジオール
2 1, 2—ジフエニル一1. 2—エタンジォ一ル
3 1 , 2—ジフエニル一 1, 2—エタンジ才一ル
4 1, 2_ビス(4—メチルフエニル)一 1 , 2—エタンジオール
5 1 , 2—ビス(4一ェチルフエニル)ー1 , 2—エタンジオール
6 1 , 2—ビス(4—工チルフエ二ル)一 1 , 2—エタンジォ一ル
7 1, 2_ビス(4ータ一シャルブチルフエ二ル)一 1, 2—エタンジォ一ル
8 1 , 2—ビス(4—クロ口フエ二ル)一 1 , 2—エタンジオール
9 1 , 2_ビス(4·—メトキシフエ二ル)一 1, 2—エタンジオール
10 1, 2_ビス(4—メトキシフエ二ル)一 1 , 2—エタンジオール
11 1 , 2_ビス(2—二トロフエニル)ー1 , 2—エタンジオール
12 1. 2—ビス(2—ニトロフエ二ル)一 1, 2—ェタンジォ一ル
13 1 , 2—ビス(4—ヒドロキシフエニル) _1, 2—エタンジオール
14 1 , 2—ビス(4一シァノフエニル)一 1 , 2—エタンジオール
15 1, 2—ジフエニル一 1, 2—エタンジ才一ル
[実施例 15]
[0062] 電子濃度 1 X 1019の C12A7エレクトライドを以下の方法で作成した。すなわち、 C12 A7粉末を蓋つきのカーボンルツボに入れ、大気中で 1600°Cに加熱して、融解し、 約 400°C/時間の降下速度で冷却して、多結晶の C12A7を得た。電子濃度は、電 子スピン共鳴スペクトルから求めた。該多結晶 C12A7エレクトライドを乳鉢で粉砕し、 平均粒径約 10 H mの粉末を得た。
[0063] このエレクトライドを用いた以外は実施例 1と同様な方法で表 1に示す条件で反応さ せた。ただし、ベンズアルデヒドの量は 25mgとした。生成物は、 1, 2—ジフエニル一 1, 2—エタンジオールであり、転換率は、 95%超であった。この結果から、電子濃度 の少ない C12A7エレクトライドを用いても、カルボニル化合物の還元的カップリング 反応が生じることが示された。
[0064] [比較例 1]
C12A7エレクトライドの代わりに、電子を含まない化学当量組成の C12A7粉末を 用いた以外は、表 1に示す実施例 1と同様の条件で反応させた。反応後もべンズァ ルデヒドのみが検出され、還元的カップリング反応は生じな力、つた。
< 2級アルコール又はジケトン化合物の製造〉
[実施例 16]
[0065] (2級アルコールの合成)
表 3に記載した原料 (化合物 1)として、 No.1の R及び R1基を有するケトン化合物 1
Omgと、 C 12A7エレクトライド 196mgと、溶媒(水:ジォキサン 1 : 4) 5mLとを容量 10mLのナスフラスコに入れ、大気中開放状態で、表 3に記載した反応時間、反応温 度で撹拌混合しながら反応させて反応溶液を形成した。
[0066] [表 3]
[0068] 次に、反応溶液を容量 50mLのナスフラスコに移し、塩酸(1N 7mUを加えた後、 酢酸ェチル(20mUを加えて、生成物を抽出した。該抽出プロセスを 3回繰り返した 後、重曹水及び食塩水で生成物を洗浄し、硫酸マグネシウムを加えて、水を吸着さ せ、水分を除いた。次に、硫酸マグネシウムをろ別し、溶媒を留去し、カラムクロマトグ ラフィー(シリカゲル)で精製し、純度 98%超の化合物を得た。化合物の同定は、 H1 の核磁気共鳴スペクトルで行った。生成物(化合物 2)を表 4に示す。化合物は、表 4
に RR^HC— OHの式で示される 2級アルコールであった。精製した 2級アルコールの 収率は 59%であった。
[実施例 17]
[0069] 原料(化合物 1)として、表 3の No. 2の R及び R1基を有するケトン化合物を用い、ェ レクトライドの量及び反応時間を表 3に示すとおりとした以外は実施例 16と同じ条件 で反応させ、表 4の RI^HC— OHの式で示される 2級アルコールが得られた。収率 は 3%であった。
[実施例 18]
[0070] 原料(化合物 1)として、表 3の No. 3の R及び R1基を有するケトン化合物を用い、エレ クトライドの量及び反応時間を表 3に示すとおりとした以外は実施例 16と同じ条件で 反応させ、表 4の RI^HC— OHの式で示される 2級アルコールが得られた。収率は 5 7%であった。
[実施例 19]
[0071] (ジアントロンの合成)
アントロン 10mgと、 C12A7エレクトライド 164mgを水とシァノメタン(1 : 4)混合溶媒 に入れ、容量 10mLのナスフラスコに入れ、窒素ガス雰囲気で、 12時間、 100°Cで撹 拌しながら反応させて反応溶液を形成した。
[0072] 次に、反応溶液を容量 50ミリリツタ(mUのナスフラスコに移し、塩酸(1N、 7mUを 加えた後、酢酸ェチル(20mL)を加えて、生成物を抽出した。該抽出プロセスを 3回 繰り返した後、重曹水及び食塩水で洗浄し、硫酸マグネシウムを加えて、水を吸着さ せ、水分を除いた。次に、硫酸マグネシウムをろ別し、溶媒を留去し、カラムクロマトグ ラフィー(シリカゲル)で精製し、純度 98%超の化合物を得た。化合物の同定は、 H1 の核磁気共鳴スペクトルで行った。化合物は、ジアントロンであった。生成物の重量 から求めた収率は、 45%であった。
[実施例 20]
[0073] (ジカルコンの合成)
カルコン lOOmgと、 C12A7エレクトライド 1200mgを水と THF (1 : 4)混合溶媒に 入れ、容量 10mLのナスフラスコ中で、窒素ガス雰囲気で、 18時間、 25°Cの条件で
撹拌しながら反応させて反応溶液を形成した。
[0074] 次に、反応溶液を容量 50mLのナスフラスコに移し、塩酸(1N、 7mUを加えた後、 酢酸ェチル(20mUを加えて、生成物を抽出した。該抽出プロセスを 3回繰り返した 後、重曹水及び食塩水で洗浄し、硫酸マグネシウムを加えて、水を吸着させ、水分を 除いた。次に、硫酸マグネシウムをろ別し、溶媒を留去し、カラムクロマトグラフィー( シリカゲル)で精製し、化合物を得た。化合物の同定は、 H1の核磁気共鳴スぺクトノレ で行った。化合物は、化合物 6及び化合物 7の式で示されるジカルコン混合物であつ た。生成物の重量から求めたそれぞれの収率は、化合物 6は、 5%、化合物 7は、 23 %であった。
[比較例 2]
[0075] C12A7エレクトライドの代わりに、電子を含まない化学当量組成の C12A7粉末を用 いた以外は、実施例 16と同じ条件で反応させた。反応後もケトン化合物のみが検出 され、還元反応は生じなかった。
産業上の利用可能性
[0076] 本発明は、薬剤の中間化合物等として使用される 2級アルコール又はジケトン、又は ジオール又はポリジオールを高効率、短時間で合成する方法を提供するものである 。また、重金属等の触媒を必要としない水溶媒中又は、水と有機溶媒との混合溶媒 中での反応であり、有害な物質を必要としない環境性に優れた、安全な合成法を提 供する。また、大気中、室温での反応が可能であることから、安価な合成法を提供で きる。
Claims
[1] ケージ内に、 1019cm— 3以上、 2· 3 X 1021cm— 3以下の電子を含む 12CaO ' 7Al Oェ
2 3 レクトライドを還元剤として用い、カルボニル化合物を水、有機溶媒、又は水一有機 混合溶媒中において還元的カップリングさせることを特徴とするジオール又はポリジ オールの製法。
[2] カルボニル化合物力 カルボニル基に結合した二つの置換基のうち、少なくとも一つ はァリール基であることを特徴とする請求項 1記載のジオール又はポリジオールの製 法。
[3] カルボニル化合物が、下記の一般式で示されることを特徴とする請求項 1記載のジォ ール又はポリジオールの製法。
[化 1]
(ただし、 R1は、水素原子、アルキル基及びァリール基から選ばれる官能基、 R2、 R3 、 R4、 R5および R6は、それぞれ水素原子、クロ口基、ブロモ基、ョード基、アルキル基 、ァリール基、カルボニル基、ァリル基、ビュル基、アミノ基、ヒドロキシ基、アルコキシ 基、ニトロ基、シァノ基及びイミノ基から選ばれるァリール基に結合した官能基。また、 R1とァリ一ル基は互いに結合して環構造を形成して V、てもよ!/、。 )
[4] カルボニル化合物に対する 12CaO' 7Al Oエレクトライドの使用量(12CaO' 7A1
2 3 2
O /カルボニル化合物)が重量比で 2〜20倍であることを特徴とする請求項 1記載の
3
ジオール又はポリジオールの製法。
[5] 還元的カップリングさせる反応雰囲気が空気中であることを特徴とする請求項 1記載 のジオール又はポリジオールの製法。
[6] ケージ内に、 1019cm— 3以上、 2· 3 X 1021cm— 3以下の電子を含む 12CaO ' 7Al Oェ
2 3 レクトライドを還元剤として用い、下記反応式 1の化合物 1で示されるケトン化合物を 水、有機溶媒、又は水一有機溶媒の混合溶媒中において還元させて下記反応式 1
の化合物 2で示される 2級アルコールを合成することを特徴とする 2級アルコールの
(反応式 1)
[化 2]
(化合物 1 : ケトン)
(化合物 2 : 2級アルコール)
(ただし、 R及び R1は、ァリール基及びアルキル基から選ばれる官能基であり、 R及 び R1の少なくとも一方は、ァリール基を含む。 )
[7] R及び R1は、メチル基、フエニル基、フエ二ルシアノ基、又はフエニルメトキシ基から選 ばれる 1種 (ただし、 R及び R1が、同時にメチル基であるケトン化合物を除く。)である ことを特徴とする請求項 6記載の 2級アルコールの製法。
[8] 該有機溶媒、又は該混合溶媒の有機溶媒が、ジォキサンであることを特徴とする請 求項 6記載の 2級アルコールの製法。
[9] ケトン化合物に対する 12CaO' 7Al Oエレクトライドの使用量(12CaO .7A1 O /ケ
2 3 2 3 トン化合物)が重量比で 2〜20倍であることを特徴とする請求項 6記載の 2級アルコ ールの製法。
[10] 反応雰囲気が空気中であることを特徴とする請求 6記載の 2級アルコールの製法。
[11] ケージ内に、 1019cm— 3以上、 2· 3 X 1021cm— 3以下の電子を含む 12CaO ' 7Al Oェ
2 3 レクトライドを還元剤として用い、下記反応式 2の化合物 3で示されるァリールケトン化 合物(アントロン)を水一有機溶媒の混合溶媒中において 2量化させて下記反応式 2 の化合物 4で示されるジアントロンを合成することを特徴とするジアントロンの製法。 (反応式 2)
[化 3]
[12] 有機溶媒は、 CH CN, Et-OH, t— Bu— OH、又はジォキサン(HO— CH CH -
3 2 2
OH)のうちから選ばれることを特徴とする請求項 11記載のジアントロンの製法。
[13] 反応雰囲気が不活性ガス中であることを特徴とする請求項 11記載のジアントロンの [14] ケージ内に、 1019cm_3以上、 2. 3 X 1021cm_3以下の電子を含む 12Ca〇' 7Al〇ェ
2 3 レクトライドを還元剤として用い、下記反応式 3の化合物 5で示される炭素 2重結合を 含むケトン化合物 (カルコン)を水一有機溶媒の混合溶媒中において 2量化させて下 記反応式 3の化合物 6及び化合物 7で示されるジカルコンを合成することを特徴とす るジカルコン混合物の製法。
(反応式 3)
[化 4]
化合物 5 化合物 6 化合物 7 有機溶媒がテトラヒドロフラン (THF)であることを特徴とする請求項 14記載のジカル コンの製法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/441,780 US7696386B2 (en) | 2006-09-29 | 2007-09-28 | Method of producing diol, polydiol, secondary alcohol or diketone compound |
EP07828841.2A EP2067761B1 (en) | 2006-09-29 | 2007-09-28 | Method of producing diol, polydiol, secondary alcohol or diketone compound |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006268796A JP5000251B2 (ja) | 2006-09-29 | 2006-09-29 | ジオール又はポリジオールの製法 |
JP2006-268796 | 2006-09-29 | ||
JP2007-056820 | 2007-03-07 | ||
JP2007056820A JP5000331B2 (ja) | 2007-03-07 | 2007-03-07 | ケトン化合物を用いた2級アルコール又はジケトン化合物の製法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008038801A1 true WO2008038801A1 (fr) | 2008-04-03 |
Family
ID=39230232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/069100 WO2008038801A1 (fr) | 2006-09-29 | 2007-09-28 | Procédé de production de composé diol, polydiol, alcool secondaire ou dicétone |
Country Status (3)
Country | Link |
---|---|
US (1) | US7696386B2 (ja) |
EP (1) | EP2067761B1 (ja) |
WO (1) | WO2008038801A1 (ja) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04300971A (ja) * | 1991-03-29 | 1992-10-23 | Mita Ind Co Ltd | ジアントラキノン系化合物及びそれを用いた感光体 |
JPH1087530A (ja) | 1996-09-12 | 1998-04-07 | Shin Etsu Chem Co Ltd | アルデヒド又はケトンの還元方法 |
JP2002265391A (ja) | 2001-01-05 | 2002-09-18 | Tashiro Masashi | 有機化合物の還元方法 |
JP2002332252A (ja) * | 2001-05-08 | 2002-11-22 | Mitsui Chemicals Inc | 光学活性ベンズヒドロール類の製造方法 |
WO2003089373A1 (en) * | 2002-04-19 | 2003-10-30 | Japan Science And Technology Agency | Hydrogen-containing electrically conductive organic compound |
JP2004026608A (ja) | 2002-06-27 | 2004-01-29 | Japan Science & Technology Corp | アルカリ金属を包接する電子伝導性無機化合物 |
WO2005000741A1 (ja) | 2003-06-26 | 2005-01-06 | Japan Science And Technology Agency | 電気伝導性12CaO・7Al 2O3 及び同型化合物とその製造方法 |
WO2007060890A1 (ja) | 2005-11-24 | 2007-05-31 | Japan Science And Technology Agency | 金属的電気伝導性12CaO・7Al2O3化合物とその製法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3531868B2 (ja) * | 2000-04-18 | 2004-05-31 | 独立行政法人 科学技術振興機構 | 活性酸素種を包接する12CaO・7Al2O3化合物およびその製造方法 |
JP3560580B2 (ja) * | 2001-10-18 | 2004-09-02 | 独立行政法人 科学技術振興機構 | 12CaO・7Al2O3化合物とその作成方法 |
-
2007
- 2007-09-28 US US12/441,780 patent/US7696386B2/en active Active
- 2007-09-28 EP EP07828841.2A patent/EP2067761B1/en active Active
- 2007-09-28 WO PCT/JP2007/069100 patent/WO2008038801A1/ja active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04300971A (ja) * | 1991-03-29 | 1992-10-23 | Mita Ind Co Ltd | ジアントラキノン系化合物及びそれを用いた感光体 |
JPH1087530A (ja) | 1996-09-12 | 1998-04-07 | Shin Etsu Chem Co Ltd | アルデヒド又はケトンの還元方法 |
JP2002265391A (ja) | 2001-01-05 | 2002-09-18 | Tashiro Masashi | 有機化合物の還元方法 |
JP2002332252A (ja) * | 2001-05-08 | 2002-11-22 | Mitsui Chemicals Inc | 光学活性ベンズヒドロール類の製造方法 |
WO2003089373A1 (en) * | 2002-04-19 | 2003-10-30 | Japan Science And Technology Agency | Hydrogen-containing electrically conductive organic compound |
JP2004026608A (ja) | 2002-06-27 | 2004-01-29 | Japan Science & Technology Corp | アルカリ金属を包接する電子伝導性無機化合物 |
WO2005000741A1 (ja) | 2003-06-26 | 2005-01-06 | Japan Science And Technology Agency | 電気伝導性12CaO・7Al 2O3 及び同型化合物とその製造方法 |
WO2007060890A1 (ja) | 2005-11-24 | 2007-05-31 | Japan Science And Technology Agency | 金属的電気伝導性12CaO・7Al2O3化合物とその製法 |
Non-Patent Citations (8)
Title |
---|
BUCHAMMAGARI H. ET AL.: "Room Temperature-Stable Electride as a Synthetic Organic Reagent: Application to Pinacol Coupling Reaction in Aqueous Media", ORGANIC LETTERS, vol. 9, no. 21, 2007, pages 4287 - 4289, XP003021749 * |
DATABASE CAPLUS [online] XU J.H. ET AL.: "Photoinduces reductions of chalcone derivatives in the prosonoc of aminos", XP003021748, Database accession no. (1996:424552) * |
F. J. TEHAN; B. L. BARRETT; J. L. DYE, J. AM. CHEM. SOCITY, vol. 96, 1974, pages 7203 - 7208 |
H. B. BARTL; T, SCHELLER; N. JARHRB, MINERAL MONATSH, vol. 35, 1970, pages 547 - 552 |
HAGINIWA J. ET AL.: "Reactions Concerned in Tertiary Amine N-Oxides. XV. Dimerization Reactions of Anthrone and Its Derivatives Using Pyridine N-Oxide as Oxidizing Reagent", vol. 103, no. 3, 1983, pages 273 - 278, XP003021747 * |
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY, A: CHEMISTRY, vol. 97, no. 1-2, 1996, pages 33 - 43 * |
S. MATSUISHI ET AL., SCIENCE, vol. 301, 2003, pages 626 - 629 |
See also references of EP2067761A4 |
Also Published As
Publication number | Publication date |
---|---|
EP2067761A1 (en) | 2009-06-10 |
US20090240085A1 (en) | 2009-09-24 |
US7696386B2 (en) | 2010-04-13 |
EP2067761B1 (en) | 2015-07-08 |
EP2067761A4 (en) | 2011-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2822684A1 (fr) | Utilisation de certaines plantes accumulatrices de metaux pour la mise en oeuvre de reactions de chimie organique | |
CA2879059A1 (fr) | Utilisation de certaines plantes accumulatrices de manganese pour la mise en oeuvre de reactions de chimie organique | |
EP2130583A1 (en) | Method for producing carbonyl compound | |
Jhulki et al. | Facile organocatalytic domino oxidation of diols to lactones by in situ-generated TetMe-IBX | |
JP5000331B2 (ja) | ケトン化合物を用いた2級アルコール又はジケトン化合物の製法 | |
Zolfigol et al. | H5IO6/KI: A new combination reagent for iodination of aromatic amines, and trimethylsilylation of alcohols and phenols through in situ generation of iodine under mild conditions | |
Dandia et al. | CeO2 NPs/rGO composite catalyzed chemoselective synthesis of 2, 8-dioxabicyclo [3.3. 1] nonanes in aqueous medium via aldol condensation/Michael addition/bicyclization reaction sequence | |
US6184420B1 (en) | Preparation of unsaturated ketones | |
Regen | Ruthenium-catalyzed hydrogen-deuterium exchange in alcohols. Method for deuterium labeling of primary alcohols | |
WO2008038801A1 (fr) | Procédé de production de composé diol, polydiol, alcool secondaire ou dicétone | |
Li et al. | Heterometal clusters Ln2Na8 (OCH2CH2NMe2) 12 (OH) 2 as homogeneous catalysts for the tishchenko reaction | |
Narasimhan et al. | Calcium Borohydride: A Reagent for Facile Conversion of Carboxylic Esters to Alcohols and Aldehydes | |
CN115485255A (zh) | 有机金属亲核试剂的制造方法及使用有机金属亲核试剂的反应方法 | |
JP5000251B2 (ja) | ジオール又はポリジオールの製法 | |
CN117263801A (zh) | 一种光催化lmct制备二氟甲基类化合物的方法 | |
Ley et al. | Chemistry of insect antifeedants from azadirachta indica (Part 22): Functionalisation of the decalin fragment of azadirachtin via a claisen rearrangement reaction | |
Casiraghi et al. | Unusual Friedel–Crafts reactions. Part 7. Synthesis of α-(2-hydroxyphenyl) ethyl lactates and their reductive cyclization to 3-methyl-2, 3-dihydrobenzofuran-2-ols | |
He et al. | Preparative conversion of oximes to parent carbonyl compounds by cerium (IV) sulfate in acetonitrile and alcohol | |
CN109265391B (zh) | 联苯多取代1,2,5,6-四氢吡啶化合物及其合成方法与应用 | |
CN110452212B (zh) | 一种11-十一内酯类化合物和己内酯类化合物的制备方法 | |
Sha et al. | Total Synthesis of Dimethyl Glolosiphone A via α‐Carbonyl Radical Spiro‐Cyclization | |
Zeynizadeh et al. | A mild and convenient reduction of nitro compounds with NaBH4/SbF3 system in wet CH3CN | |
Torad et al. | Carbon‐Based Materials as Catalysts/Supports in Solvent‐Free Organic Reactions | |
Xiang‐Hui et al. | Use of Cyclic Allylic Bromides in the SnCl2/Cu‐mediated Aqueous Carbonyl Allylation Reaction | |
CN116063177A (zh) | 一种9,10-菲醌类化合物的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07828841 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12441780 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007828841 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1725/CHENP/2009 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |