WO2008038360A1 - Plasma display panel and method for fabricating the same - Google Patents

Plasma display panel and method for fabricating the same Download PDF

Info

Publication number
WO2008038360A1
WO2008038360A1 PCT/JP2006/319267 JP2006319267W WO2008038360A1 WO 2008038360 A1 WO2008038360 A1 WO 2008038360A1 JP 2006319267 W JP2006319267 W JP 2006319267W WO 2008038360 A1 WO2008038360 A1 WO 2008038360A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective layer
partition wall
discharge
plasma display
electrode
Prior art date
Application number
PCT/JP2006/319267
Other languages
French (fr)
Japanese (ja)
Inventor
Fumiaki Yoshino
Takashi Sasaki
Tatsuhiko Kawasaki
Original Assignee
Hitachi Plasma Display Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plasma Display Limited filed Critical Hitachi Plasma Display Limited
Priority to PCT/JP2006/319267 priority Critical patent/WO2008038360A1/en
Priority to JP2008536242A priority patent/JPWO2008038360A1/en
Publication of WO2008038360A1 publication Critical patent/WO2008038360A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/40Layers for protecting or enhancing the electron emission, e.g. MgO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/241Manufacture or joining of vessels, leading-in conductors or bases the vessel being for a flat panel display
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/34Vessels, containers or parts thereof, e.g. substrates
    • H01J2211/36Spacers, barriers, ribs, partitions or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/34Vessels, containers or parts thereof, e.g. substrates
    • H01J2211/42Fluorescent layers

Definitions

  • the present invention relates to a plasma display panel and a method for manufacturing the same, and more particularly to a plasma display panel having a wide viewing angle and improved luminous efficiency and a method for manufacturing the same.
  • the surface discharge type PDP a display electrode pair is provided on the front substrate, and address electrodes, barrier ribs for dividing the discharge space, and a phosphor layer for color display are provided on the rear substrate.
  • the surface discharge PDP is suitable for extending the life compared to the counter discharge type in which the X and Y display electrodes are separately arranged on the front and back substrates.
  • the rear substrate is provided with strip-like or grid-like barriers that divide phosphors of different emission colors, and the front substrate has a dielectric layer covering the display electrodes, MgO, etc.
  • the protective layer is provided, and the protective layer and the top of the partition wall are in contact with each other. Since the barrier rib on the back substrate is also an insulator such as glass and is a kind of dielectric, a part of the electric field formed in the discharge space by the voltage applied to the display electrode also goes to the barrier rib. For this reason, a part of the electric charge generated by the discharge collides with the partition wall.
  • a protective layer such as MgO that covers the dielectric layer on the display electrode, in addition to the function of protecting the dielectric layer from the impact of the discharge ions, prevents secondary electrons from colliding with the discharge ions. It has a function of releasing a large amount to grow a discharge.
  • force-formed barriers such as glass materials have a lower secondary electron emission coefficient than MgO, and the amount of secondary electrons emitted by ions colliding with the barriers is much less than that of MgO protective layers. For this reason, the discharge during the display period is hindered by the barrier ribs on the rear substrate side, which reduces the discharge scale and is one of the causes of the decrease in PDP emission efficiency.
  • Patent Document 1 A structure in which the emission efficiency is increased by increasing the amount of secondary electron emission has been proposed (Patent Document 1).
  • Patent Document 1 the entire surface of the phosphor layer of the back substrate is covered with MgO as a protective layer to increase the amount of secondary electron emission.
  • a phosphor layer is formed on the surface of the back substrate and the lower side region of the barrier rib, and only the protective layer of MgO is formed on the upper side region of the barrier rib without forming the phosphor layer.
  • the phosphor layer should be covered with a protective layer. By preventing the protective layer from covering the phosphor layer, the phosphor layer is prevented from being degraded by the MgO formation process.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-110046
  • Patent Document 1 since the entire phosphor layer is covered with a protective layer, the amount of secondary electron emission increases due to the presence of the MgO protective layer above the barrier ribs. Although the discharge scale increases, there is a problem that the amount of ultraviolet light that reaches the phosphor layer is reduced when the protective layer absorbs the ultraviolet light generated by the ionization of the discharge gas, and the luminous efficiency does not increase.
  • the MgO protective layer is formed only on the side wall of the barrier rib, and the phosphor layer is formed on the lower region on the side wall of the barrier rib and on the address electrode on the back substrate.
  • the phosphor layer is formed in the upper region of the side wall of the barrier rib, and therefore corresponds to the upper side of the barrier rib in the cell space sandwiched between the barrier ribs. At both ends, there is a problem that the amount of light emission decreases and the viewing angle decreases.
  • an object of the present invention is to provide a PDP having a wide viewing angle and improved luminous efficiency.
  • Another object of the present invention is to provide a PDP having an increased emission scale by increasing the amount of secondary electron emission while suppressing a decrease in viewing angle.
  • Another object of the present invention is to provide a method for producing the PDP.
  • a front substrate and a back substrate are provided.
  • a display electrode group, a dielectric layer on the display electrode, and a secondary layer covering the dielectric layer are formed on the front substrate.
  • a first protective layer having a material strength with a high electron emission coefficient is formed on the back substrate.
  • an address electrode group, barrier ribs arranged on both sides of the address electrode, and an upper side of the address electrode are formed.
  • the phosphor layer reaching the top of the lower side of the side wall of the partition wall and the phosphor layer on the address electrode and the lower region of the side surface of the partition wall are not covered, and the phosphor layer near the top of the side surface of the partition wall And a second protective layer made of the above-described material for covering the substrate.
  • the phosphor layer is formed so as to reach the top of the side wall of the partition wall, so that a reduction in viewing angle can be suppressed, and the lower region on the side surface of the partition wall is excluded.
  • the discharge scale can be increased by secondary electron emission from the second protective layer.
  • the second protective layer covers a part of the phosphor layer, so that part of the ultraviolet light is absorbed by the protective layer.
  • the ultraviolet light reaches the phosphor layer near the top of the barrier rib and emits light, the viewing angle is reduced. The decrease can be suppressed.
  • a method for manufacturing an AC plasma display panel having a discharge space in which a discharge gas is sealed between a front substrate and a back substrate Forming a display electrode group on the front substrate, a dielectric layer thereon, and a first protective layer made of a material having a high secondary electron emission coefficient that covers the dielectric layer, and an address on the rear substrate.
  • Cover nearby phosphor layers Characterized by a step of forming a second protective layer made of sea urchin said material mosquitoes ⁇ al.
  • the second protective layer can be deposited only in the vicinity of the top of the side wall of the partition wall, the amount of secondary electrons emitted can be reduced while suppressing the absorption of ultraviolet rays into the phosphor layer. Increased PDP can be formed.
  • FIG. 1 is a cross-sectional view of a PDP in a first embodiment.
  • FIG. 2 is a perspective view showing the basic structure of a PDP.
  • FIG. 3 is a block diagram showing a configuration of a PDP drive circuit.
  • FIG. 4 is a diagram showing a PDP drive sequence.
  • FIG. 5 is a diagram showing a driving waveform of a PDP.
  • FIG. 6 is a cross-sectional view of a PDP in a second embodiment.
  • FIG. 7 is a diagram showing a production method in the present invention.
  • FIG. 8 is a diagram showing the viewing angle dependency in a cell in the present embodiment.
  • FIG. 9 is a diagram showing the discharge mechanism of PDP.
  • FIG. 2 is a perspective view showing a general configuration of the PDP.
  • the PDP shown in Fig. 2 is an AC-driven three-electrode surface discharge PDP for color display.
  • the front substrate 1 and the rear substrate 9 are placed facing each other across the discharge gas space.
  • a plurality of display electrodes 2X and a display electrode 2Y extending in the horizontal direction are arranged in parallel.
  • the display line is completely between the adjacent display electrode 2X and display electrode 2Y.
  • This PDP is a PDP with a V-type ALIS structure in which the display electrode 2X and the display electrode 2Y are arranged at equal intervals, and all the display lines between the adjacent display electrodes 2X and 2Y become display lines.
  • the present invention can also be applied to a PDP having a structure in which the pair of display electrodes 2X and 2Y is arranged with a non-discharge gap that does not generate discharge.
  • Each display electrode 2X, 2Y includes a transparent electrode 10 made of ITO, Sn02, etc. and, for example, Ag, Au, Al, Cu, Cr formed thereon and a laminate thereof (for example, a stack of CrZCuZCr).
  • the structure is composed of a metal nose electrode 11 that also has force.
  • the display electrodes 2X and 2Y use thick film formation technology such as screen printing for Ag and Au, and thin film formation technology such as vapor deposition and sputtering and etching technology for other metals. It is formed with a specified number, thickness, width and spacing.
  • the transparent electrode 10 is mainly formed of a light-transmitting material so that it can contribute to the discharge and the light emission of the phosphor can be seen from the front substrate 1 side.
  • the nose electrode 11 should have low resistance in order to allow the current during discharge to flow.
  • a dielectric layer 3 is formed on the display electrodes 2X and 2Y so as to cover the display electrodes 2X and 2Y.
  • Dielectric layer 3 is made of glass paste mainly composed of low melting point glass powder, It is formed by applying it on the substrate 1 by screen printing and baking at high temperature. There is also a method of attaching and firing a sheet-like dielectric layer. Furthermore, the dielectric layer 3 may be formed by forming a Si02 film by plasma CVD.
  • a protective film 4 is formed on the dielectric layer 3 in order to protect the dielectric layer 3 from the impact force caused by the collision of ions generated by the discharge.
  • This protective film 4 is made of a material having a high secondary electron emission coefficient when ions collide, and, for example, MgO or MgF is used.
  • the protective film 4 is formed by a thin film formation process known in the art, such as electron beam evaporation or sputtering.
  • a plurality of address electrodes 8 are formed in a direction intersecting the display electrodes 2X and 2Y when viewed in plan, and a dielectric layer 7 is formed covering the address electrodes 8. ing.
  • the address electrode 8 generates an address discharge for selecting a light emitting cell at the intersection with the display electrode 2Y, and is formed of, for example, a three-layer structure of CrZCuZCr.
  • the address electrode 8 can be formed of Ag, Au, Al, Cu, Cr, or the like.
  • the address electrode 8 uses a thick film formation technique such as screen printing for Ag and Au, and a thin film formation technique such as vapor deposition and sputtering and an etching technique for other metals. By using it, it is formed with a predetermined number, thickness, width and spacing.
  • the dielectric layer 7 can be formed using the same material and the same method as the dielectric layer 3 on the front substrate 1. The dielectric layer 7 is not necessarily provided.
  • partition walls 5 are formed between adjacent address electrodes 8, respectively.
  • the shape of the partition wall 5 in this example is a stripe shape parallel to the address electrode, but it may be a lattice shape surrounding the cell region at the intersection of the address electrode and the display electrode.
  • the partition wall 5 is formed by a sand blast method, a photo etching method, or the like.
  • a sand blast method for example, a low-melting-point glass powder, a binder resin, a solvent-based glass base such as a solvent is applied on the dielectric layer 7 and dried, and then a partition wall pattern is formed on the glass paste layer.
  • the partition wall 5 is formed by spraying cutting particles with the cutting mask having the above-mentioned opening, cutting the glass paste layer exposed at the opening of the mask, and further baking.
  • photosensitive paste method instead of cutting with cutting particles, photosensitive resin is used as binder resin for glass paste, and after exposure and development using a mask, baking is performed. It is formed from Kotoko.
  • the red (R), green (G), and blue (B) phosphor layers 6R, 6G, and 6B are formed on the side and bottom surfaces of the discharge space partitioned by the barrier ribs 5, respectively.
  • Phosphor layers 6R, 6G, and 6B are coated with a phosphor paste containing phosphor powder, binder resin, and solvent in the discharge space separated by the barrier ribs by a method using screen printing or a dispenser. However, this is repeated for each color and then formed by firing.
  • the phosphor layers 6R, 6G, and 6B use a sheet-like phosphor layer material containing a phosphor powder, a photosensitive material, and a binder resin, a so-called green sheet, and are formed by photolithography technology. It can also be formed. In this case, a phosphor sheet 6 of each color is formed between the corresponding barrier ribs 5 by applying a sheet of a predetermined color to the entire display area on the substrate, exposing and developing, and repeating this for each color. To do.
  • the phosphor layers 6R, 6G, and 6B are formed on the address electrode 8, that is, on the dielectric layer when the dielectric layer 7 is provided, and on the address electrode when the dielectric layer 7 is not provided. Further, it is formed up to the side wall of the partition wall.
  • the front substrate and the rear substrate are placed facing each other so that the display electrodes 2X, 2Y and the address electrode 8 intersect, the periphery is sealed, and the discharge space surrounded by the barrier ribs 5 is Xe It is made by filling discharge gas mixed with Ne.
  • the discharge space at the intersection of the display electrodes 2X and 2Y and the address electrode 8 is one cell (unit emission region), which is the smallest unit of display.
  • One pixel consists of three cells, R, G, and B.
  • FIG. 3 is a block diagram showing an overall configuration of an example of a plasma display module.
  • display electrodes XI, X2, X3,... That perform sustain discharge and display electrodes Y1, Y2, Y3,... That are also scan electrodes are alternately arranged to form a display line.
  • a display cell in the form of a matrix is formed by the electrodes and address electrodes Al, A2, A3,... Perpendicular to these electrodes.
  • the address drive circuit 15, scan driver 16, Y drive circuit 17, and X drive circuit 18 are connected to the corresponding electrodes.
  • a control circuit 19 for controlling them is also provided.
  • the scan driver 16 selects scan electrodes (display lines) by sequentially applying scan pulses to the scan electrodes Y during the address period, and selects the scan electrodes selected with the address electrodes A connected to the address drive circuit 15. Address discharge to select whether the cell is lit or not Z is lit with electrode Y Cause it to occur.
  • the Y drive circuit 17 and the X drive circuit 18 generate the number of sustain discharges corresponding to the weight of each subfield for the cells selected by the address discharge during the display period.
  • the control circuit 19 controls a predetermined image display by outputting a control signal suitable for each drive circuit from image data inputted from an external device such as a TV tuner or a computer, a synchronization signal, and a control signal.
  • FIG. 4 is a diagram showing an example of a gradation drive sequence in the PDP of FIG.
  • the grayscale drive sequence in the plasma display device consists of one field (frame) 20 consisting of multiple subfields (subframes) 21 (SFl to SFn) each having a predetermined luminance weight.
  • a predetermined gradation is displayed by combining the subfields.
  • the ratio of the number of sustain discharges is set to 1: 2: 4: 8: 16: 32: 64: 128 and has a luminance weight of power of 2 8
  • the 256 sub-fields SF1 to SF8 display 256 gray levels.
  • the number of subfields and the weight of each subfield can be combined in various ways!
  • each subfield is selected by an initialization process (reset period 22) for uniforming wall charges of all cells in the display area, an address process (address period 23) for selecting a lighted cell, and a selection process. It consists of a display process (sustain discharge period 24) in which the cells are discharged and turned on the number of times corresponding to the luminance (weight of each subfield). Then, for each subfield, the cell is turned on according to the brightness, and display control of one field is performed by controlling display of, for example, eight subfields SF1 to SF8.
  • FIG. 5 shows an example of the drive waveform.
  • Figures 5 (a) to 5 (e) show the drive waveforms applied to the display electrodes XI, Yl, Y3, Y2, and the address electrode A during the period from the reset period 22 to the sustain discharge period 24, respectively.
  • the numbers attached to ⁇ and ⁇ indicate the number of rows, and this waveform shows the case of discharge between two electrodes with the same number.
  • Yl, ⁇ 3 is an example representing ⁇ odd rows and ⁇ 2 is an even row.
  • the Y write obtuse wave 32 and the X voltage 25 for forming wall charges in all the cells are applied to the electrodes XI and Y1 in FIGS. 5 (a) and 5 (b).
  • the Y compensation blunt wave 33 and the X compensation voltage 26 are applied to erase the wall charges formed in the cell while leaving a necessary amount.
  • the voltage waveform applied in the next address period 23 is an odd-numbered scan scan 34 for discharging to determine display cells in the row direction, and an X voltage 27 for forming charges by this discharge. .
  • the scanning pulse 34 is applied at a different timing for each row. In the subsequent sustain discharge period 24, the first sustain pulse 28, 35, repeated sustain pulse 29, 30, 31, 36, 37, 38 force S is applied.
  • Fig. 5 (c) shows the voltage waveform applied to electrode Y3, which is the same as the voltage waveform applied to electrode Y1 shown in Fig. 5 (b) except for the timing of scan pulse 39. If no cell on the electrode Y3 line is lit, the scan pulse 39 is unnecessary and can be thinned out. Thereby, drive time can be shortened. At this time, no voltage is applied to all the address electrodes, and they can be thinned out in the same way. Since the voltage applied to the display electrode is also a constant value, similar time reduction is easy.
  • the Y write blunt wave 40 that forms charges in all cells is applied to the electrode Y2 in Fig. 5 (d). Subsequently, a Y compensation blunt wave 41 is applied to erase the charge formed in the cell while leaving a necessary amount.
  • the voltage waveform applied in the next address period 23 is the scan pulse 42 of the even-numbered row that performs the discharge that determines the display cell in the row direction. This scan pulse 42 is also applied while shifting the timing for each row.
  • a first sustain pulse 44, repeated sustain pulses 44, 45, and a discharge pulse adjusting pulse 46 are applied.
  • the voltage waveform applied to the address electrode A in FIG. 5 (e) during the address period is the address pulses 47 and 48 for performing discharge that determines the cells to be displayed in the column direction.
  • the address pulse is applied at the timing when a discharge is generated in the cell to be displayed located at the intersection of the scan electrode and the address electrode A in synchronization with the scan pulse applied for each row.
  • a voltage waveform for erasing wall charges may be added at the end of the display period 24.
  • FIG. 1 shows a cross-sectional view of the PDP in the first embodiment.
  • the front glass substrate 1 has a display electrode 2 made of a transparent electrode material, a dielectric layer 3 covering the display electrode 2, and a dielectric layer.
  • a first protective film 4-1 having a high secondary electron emission coefficient and containing any of MgO, MgF, and SrO to be coated is formed. These forming methods are as described above.
  • the rear glass substrate 9 has a plurality of address electrodes 8 extending in a direction intersecting with the display electrodes, a dielectric layer 7 covering the address electrodes 8, and a stripe shape that divides the discharge space into cell arrays.
  • a grid-like partition wall 5 is formed. As described above, this partition wall 5 is formed by sandblasting using glass paste.
  • a phosphor layer 6 is formed on the dielectric layer 7 on the address electrodes 8 and on the side surfaces of the barrier ribs 5. As described above, this phosphor layer 6 is formed of phosphor materials that emit RGB light separately. If the dielectric layer 7 is not provided, the phosphor layer 6 is formed on the address electrode 8.
  • the phosphor layer 6 is applied to reach the top of the lower region force on the side surface of the partition wall 5 of the back glass substrate 9. Then, a second protective layer 4-2 having a high secondary electron emission coefficient such as MgO, MgF, or SrO is formed so as to cover the phosphor layer 6 in the vicinity of the top of the side wall of the partition wall 5.
  • a second protective layer 4-2 having a high secondary electron emission coefficient such as MgO, MgF, or SrO is formed so as to cover the phosphor layer 6 in the vicinity of the top of the side wall of the partition wall 5.
  • FIG. 8 is a diagram showing the spread of PDP discharge.
  • the protective layer 41 on the front substrate side and the protective layer 4-2 on the top of the partition wall of the rear substrate are shown enlarged.
  • charged particles (electrons) that exist in the discharge space move due to the electric field, collide with the gas molecules 49 of the discharge gas, and are separated into positive ions 50 and electrons 51.
  • the positive ions 50 generated at this time move by the electric field and collide with the scanning electrode (Y electrode), which is the cathode.
  • the protective layer 4-1 covering the Y electrode of the cathode emits secondary electrons.
  • the emitted secondary electrons collide with gas molecules 49 and are separated into positive ions 50 and electrons 51.
  • gas molecules are ionized, ultraviolet rays are emitted, and the ultraviolet rays collide with the phosphor to excite the phosphor and induce light emission.
  • the phosphor layer 6 is formed on the side surface of the partition wall 5 partitioning the cells of the rear glass substrate 9 until the lower region force reaches the top, that is, the height of the side surface of the partition wall is full.
  • the protective layer 4-2 was deposited to cover the phosphor layer 6 only near the top of the side wall of the partition wall 5.
  • the phosphor layer 6 is formed to reach the top surface of the dielectric layer 7 on the address electrode 8 and the top of the lower region force on the side wall of the partition wall, it is high in the cell region. Emission brightness can be achieved and the viewing angle can be kept wide.
  • the phosphor layer 6 is covered with the protective film 4-2 in the vicinity of the top of the partition wall, so that the ultraviolet rays are partially absorbed by the protective layer 4-2, but the remaining ultraviolet rays reach the phosphor layer 6. Exciting and contributing to light emission, it is possible to widen the high emission luminance region in the cell region.
  • the phosphor layer 6 near the top of the barrier rib affected by the ion bombardment due to the discharge is protected by the protective layer 42, so that the lifetime of the phosphor layer 6 can be extended.
  • FIG. 9 is a graph showing the correlation between the cell center distance and the luminance in the present embodiment, and showing the viewing angle dependence of the luminance.
  • the solid line shows the emission intensity ratio of the present embodiment
  • the broken line shows the emission intensity ratio of Patent Document 1 described above.
  • the phosphor layer 6B is not formed only up to the lower side region of the partition wall 5 but the phosphor layer is formed up to the top of the side surface as shown by the broken line. ⁇ ⁇ For this reason, the emission brightness decreases as the cell centering force moves away.
  • the solid line As shown, since the phosphor layer 6A is applied to the vicinity of the top of the side wall of the partition wall 5, the emission luminance hardly decreases even when the cell center force is separated.
  • the protective layer 42 since only the phosphor layer 6 near the top of the side surface of the partition wall 5 is covered with the protective layer 42, the ultraviolet rays generated by the discharge are absorbed by the protective layer 4-2, and the phosphor layer It is possible to minimize the failure to reach 6. Therefore, the decrease in phosphor emission due to the provision of protective layer 4-2 can be minimized. From the above, in this embodiment, it is possible to improve the discharge near the top of the partition wall while preventing the viewing angle and the luminance from being lowered.
  • FIG. 7 is an explanatory diagram of the PDP manufacturing method in the present embodiment.
  • a protective layer having MgO force is formed only near the top of the side wall of the partition wall on the back glass substrate.
  • MgO pellets 13 placed on the hearth 12 as the deposition source were placed on the rear glass substrate 9 on which the partition walls 5 were formed in the deposition apparatus.
  • MgO is deposited while holding it diagonally and exposing only one side of partition wall 5 to the deposition source.
  • the MgO pellet 13 placed on the hearth 12 is irradiated with the electron beam 14 to sublimate the pellet 13, and the sublimated MgO is blown in the direction of arrow 11. Therefore, in this embodiment, the rear glass substrate 9 is tilted and the state in which only one side surface of the partition wall faces the deposition source is passed through the rear glass substrate 9 through the vapor deposition apparatus. In this way, MgO is deposited on one side of the side wall of the partition wall on the inclined rear glass substrate. At this time, MgO is not deposited on the lower region of the side wall of the partition wall and the address electrode, which is behind the adjacent partition wall 5.
  • the MgO film is also deposited near the top of the side wall on the opposite side of the partition wall by changing the tilt direction to the opposite side and passing it over the MgO pellet again.
  • MgO can be deposited only near the tops of both sides of the partition wall 5 by changing the inclination direction of the back glass substrate 9 and reciprocating the MgO pellets 13 as the deposition source. .
  • the force can be easily realized by simply tilting the rear glass substrate 9 in a predetermined direction.
  • the protective layer 42 is formed from the vicinity of the top of the partition wall side surface to the top.
  • FIG. 6 is a cross-sectional view of the PDP in the second embodiment of the present invention.
  • the parts other than the protective layer 42 on the top of the partition wall 5 on the rear glass substrate 9 are shown in FIG. This is the same as the first embodiment.
  • a protective layer 42 is formed near the top of the partition wall 5 of the rear glass substrate 9, whereas in the second embodiment of FIG.
  • a protective layer 42 that covers the phosphor layer 6 is provided only in the vicinity of the top of the side surface excluding the top of the partition wall 5 of the substrate 9.
  • the top of the barrier rib 5 is in contact with the protective layer 4-1 on the front substrate side, so it does not contribute to secondary electron emission during discharge.
  • the protective layer that also has MgO power is hygroscopic in itself and causes deterioration of the discharge characteristics after sealing the panel. Therefore, it is desirable not to form an MgO protective layer on top of unnecessary barrier ribs.
  • MgO is deposited near the top of the partition wall 5 by vapor deposition or the like, and then MgO on the top of the partition wall is polished.
  • the protective layer 4-2 can be formed only on the phosphor layer 6 near the top of the barrier rib.
  • MgO may be formed by covering the top of the barrier rib with a mask and covering the portion of the phosphor layer surface except the vicinity of the top of the barrier rib with a mask.

Abstract

In order to enhance emission efficiency while suppressing deterioration of view angle, a phosphor layer is formed from the lower portion to the top of a partition wall partitioning the cell region of a backside substrate, and a protective layer composed of MgO or the like, having a high secondary electron emission coefficient is formed in the vicinity of the top of the partition wall. Since emission efficiency is enhanced by increasing secondary electron emission in the vicinity of the top of the partition wall thereby increasing the scale of discharge and the phosphor layer is formed from the lower portion to the top of the partition wall, high emission luminance can be achieved over the entire cell region.

Description

明 細 書  Specification
プラズマディスプレイパネル及びその製造方法  Plasma display panel and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は,プラズマディスプレイパネル及びその製造方法に関し,特に,視野角を 広くしつつ発光効率を向上させたプラズマディスプレイパネル及びその製造方法に 関する。  TECHNICAL FIELD [0001] The present invention relates to a plasma display panel and a method for manufacturing the same, and more particularly to a plasma display panel having a wide viewing angle and improved luminous efficiency and a method for manufacturing the same.
背景技術  Background art
[0002] 現在商品化されている PDPは, AC駆動方式,面放電型である。面放電型 PDPで は,前面基板に表示電極対を設け,背面基板にアドレス電極と放電空間を区画する 隔壁とカラー表示のための蛍光体層とを設ける。蛍光体層を表示電極対からパネル の厚さ方向に遠ざけて配置することで,放電時のイオン衝撃による蛍光体の特性劣 化を低減することができる。従って,面放電型 PDPは, Xおよび Yの表示電極を前面 基板と背面基板とに別々に配置する対向放電型に比べて,長寿命化に適している。  [0002] Currently commercialized PDPs are of AC drive type and surface discharge type. In the surface discharge type PDP, a display electrode pair is provided on the front substrate, and address electrodes, barrier ribs for dividing the discharge space, and a phosphor layer for color display are provided on the rear substrate. By disposing the phosphor layer away from the display electrode pair in the thickness direction of the panel, deterioration of the phosphor characteristics due to ion bombardment during discharge can be reduced. Therefore, the surface discharge PDP is suitable for extending the life compared to the counter discharge type in which the X and Y display electrodes are separately arranged on the front and back substrates.
[0003] AC駆動,面放電型 PDPでは,背面基板に発光色の異なる蛍光体を区分けするス トライプ状または格子状の隔壁が設けられ,前面基板に表示電極を被覆する誘電体 層と MgOなどの保護層とが設けられ,保護層と隔壁頂部が接する構造になっている 。この背面基板側の隔壁もガラスなどの絶縁物であり誘電体の一種であるので,表示 電極に印加された電圧により放電空間に形成される電界の一部は隔壁へも向かう。 このため,放電により生じた電荷の一部は隔壁に衝突する。  [0003] In AC-driven, surface-discharge PDPs, the rear substrate is provided with strip-like or grid-like barriers that divide phosphors of different emission colors, and the front substrate has a dielectric layer covering the display electrodes, MgO, etc. The protective layer is provided, and the protective layer and the top of the partition wall are in contact with each other. Since the barrier rib on the back substrate is also an insulator such as glass and is a kind of dielectric, a part of the electric field formed in the discharge space by the voltage applied to the display electrode also goes to the barrier rib. For this reason, a part of the electric charge generated by the discharge collides with the partition wall.
[0004] 一方,表示電極上の誘電体層を被覆する MgOなどの保護層は,放電イオンの衝 撃から誘電体層を保護する機能に加えて,放電イオンが衝突することにより二次電子 を多く放出して放電を成長させる機能を有する。しかし,ガラス材料など力 形成され る隔壁は MgOに比較すると二次電子放出係数が低く,隔壁に衝突したイオンによる 二次電子放出量は MgOの保護層に比べはるかに少ない。このため,表示期間の放 電は,背面基板側の隔壁によって阻害されて放電規模が小さくなり, PDPの発光効 率を下げる原因の 1つになる。  [0004] On the other hand, a protective layer such as MgO that covers the dielectric layer on the display electrode, in addition to the function of protecting the dielectric layer from the impact of the discharge ions, prevents secondary electrons from colliding with the discharge ions. It has a function of releasing a large amount to grow a discharge. However, force-formed barriers such as glass materials have a lower secondary electron emission coefficient than MgO, and the amount of secondary electrons emitted by ions colliding with the barriers is much less than that of MgO protective layers. For this reason, the discharge during the display period is hindered by the barrier ribs on the rear substrate side, which reduces the discharge scale and is one of the causes of the decrease in PDP emission efficiency.
[0005] これに対して背面基板側の構造物にも保護層を設け,放電イオンの衝突による二 次電子放出量を増大させて発光効率を上げた構造が提案されて ヽる (特許文献 1)。 この特許文献 1の一つの実施の形態によれば,背面基板の蛍光体層全面を保護層 である MgOで被覆して二次電子放出量を増大させている。また,別の実施の形態に よれば,背面基板の表面と隔壁の側面下部領域とに蛍光体層を形成し,隔壁の側面 上部領域には蛍光体層を形成せずに MgOの保護層だけを形成し,蛍光体層を保 護層で被覆しな ヽようにして ヽる。保護層が蛍光体層を被覆しな ヽようにすることで, MgOの形成プロセスにより蛍光体層が劣化するのを防止している。 [0005] On the other hand, a protective layer is also provided on the structure on the rear substrate side, so A structure in which the emission efficiency is increased by increasing the amount of secondary electron emission has been proposed (Patent Document 1). According to one embodiment of Patent Document 1, the entire surface of the phosphor layer of the back substrate is covered with MgO as a protective layer to increase the amount of secondary electron emission. Further, according to another embodiment, a phosphor layer is formed on the surface of the back substrate and the lower side region of the barrier rib, and only the protective layer of MgO is formed on the upper side region of the barrier rib without forming the phosphor layer. The phosphor layer should be covered with a protective layer. By preventing the protective layer from covering the phosphor layer, the phosphor layer is prevented from being degraded by the MgO formation process.
特許文献 1:特開 2002— 110046号公報  Patent Document 1: Japanese Patent Laid-Open No. 2002-110046
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] しかしながら,上記特許文献 1の一つの実施の形態では,蛍光体層全面を保護層 で被覆しているため,確かに隔壁上部の MgO保護層の存在により二次電子放出量 が増大して放電規模が拡大するが,放電ガスの電離に伴って発生する紫外線が保 護層で吸収され蛍光体層に達する紫外線の量が減り,逆に発光効率が上がらないと いう課題が存在する。 [0006] However, in one embodiment of Patent Document 1 described above, since the entire phosphor layer is covered with a protective layer, the amount of secondary electron emission increases due to the presence of the MgO protective layer above the barrier ribs. Although the discharge scale increases, there is a problem that the amount of ultraviolet light that reaches the phosphor layer is reduced when the protective layer absorbs the ultraviolet light generated by the ionization of the discharge gas, and the luminous efficiency does not increase.
[0007] また,別の実施の形態のように,隔壁の側面の上部にのみ MgO保護層を形成し, 蛍光体層は隔壁の側面の下部領域と背面基板上のアドレス電極上に形成する場合 は, MgO保護層による紫外線吸収の課題は解決されるものの,蛍光体層が隔壁の 側面の上部領域に形成されて 、な 、ため,隔壁に挟まれたセル空間の隔壁の側面 上部に対応する両端部では発光量が低下し,視野角の低下を招くという課題を有す る。  [0007] In another embodiment, the MgO protective layer is formed only on the side wall of the barrier rib, and the phosphor layer is formed on the lower region on the side wall of the barrier rib and on the address electrode on the back substrate. Although the problem of ultraviolet absorption by the MgO protective layer is solved, the phosphor layer is formed in the upper region of the side wall of the barrier rib, and therefore corresponds to the upper side of the barrier rib in the cell space sandwiched between the barrier ribs. At both ends, there is a problem that the amount of light emission decreases and the viewing angle decreases.
[0008] そこで,本発明の目的は,視野角を広くし発光効率を向上させた PDPを提供するこ とにある。  Therefore, an object of the present invention is to provide a PDP having a wide viewing angle and improved luminous efficiency.
[0009] また,本発明の別の目的は,視野角の低下を抑えつつ二次電子放出量の増大に より発光規模を拡大させた PDPを提供することにある。  [0009] Another object of the present invention is to provide a PDP having an increased emission scale by increasing the amount of secondary electron emission while suppressing a decrease in viewing angle.
[0010] さらに,本発明の別の目的は,上記 PDPの製造方法を提供することにある。 [0010] Furthermore, another object of the present invention is to provide a method for producing the PDP.
課題を解決するための手段  Means for solving the problem
[0011] 上記の目的を達成するために,本発明の第 1の側面によれば,前面基板と背面基 板との間に放電ガスを封入した放電空間を有する AC型プラズマディスプレイパネル において,前面基板上には,表示電極群と,当該表示電極上の誘電体層と,誘電体 層を被覆する二次電子放出係数の高い材料力もなる第 1の保護層とが形成され,背 面基板上には,アドレス電極群と,当該アドレス電極の両側に配置された隔壁と,前 記アドレス電極の上側に形成されるとともに前記隔壁の側面の下部力 頂部に至る 蛍光体層と,前記アドレス電極上及び前記隔壁の側面の下部領域上の蛍光体は被 覆せず,前記隔壁の側面頂部近傍の前記蛍光体層を被覆する前記材料からなる第 2の保護層とが形成されていることを特徴とする。 In order to achieve the above object, according to a first aspect of the present invention, a front substrate and a back substrate are provided. In an AC plasma display panel having a discharge space in which a discharge gas is sealed between a plate and a plate, a display electrode group, a dielectric layer on the display electrode, and a secondary layer covering the dielectric layer are formed on the front substrate. A first protective layer having a material strength with a high electron emission coefficient is formed. On the back substrate, an address electrode group, barrier ribs arranged on both sides of the address electrode, and an upper side of the address electrode are formed. The phosphor layer reaching the top of the lower side of the side wall of the partition wall and the phosphor layer on the address electrode and the lower region of the side surface of the partition wall are not covered, and the phosphor layer near the top of the side surface of the partition wall And a second protective layer made of the above-described material for covering the substrate.
[0012] 上記の第 1の側面によれば,蛍光体層を隔壁の側面下部力 頂部に至るように形 成することで視野角の低下を抑えることができ,隔壁の側面の下部領域を除いて頂 部近傍で蛍光体層を被覆する第 2の保護層を形成することで,第 2の保護層からの 二次電子放出により放電規模を拡大することができる。第 2の保護層が蛍光体層の 一部を被覆するため紫外線が一部保護層で吸収されるが,それでも隔壁の頂部近 傍の蛍光体層に紫外線が達して発光するので,視野角の低下を抑制することができ る。 [0012] According to the first aspect described above, the phosphor layer is formed so as to reach the top of the side wall of the partition wall, so that a reduction in viewing angle can be suppressed, and the lower region on the side surface of the partition wall is excluded. By forming the second protective layer covering the phosphor layer near the top, the discharge scale can be increased by secondary electron emission from the second protective layer. The second protective layer covers a part of the phosphor layer, so that part of the ultraviolet light is absorbed by the protective layer. However, since the ultraviolet light reaches the phosphor layer near the top of the barrier rib and emits light, the viewing angle is reduced. The decrease can be suppressed.
[0013] 上記の目的を達成するために,本発明の第 2の側面によれば,前面基板と背面基 板との間に放電ガスを封入した放電空間を有する AC型プラズマディスプレイパネル の製造方法において,前面基板上に表示電極群とその上の誘電体層と誘電体層を 被覆する二次電子放出係数の高い材料からなる第 1の保護層とを形成する工程と, 背面基板上にアドレス電極群と当該アドレス電極の両側に配置された隔壁と前記ァ ドレス電極の上側に形成されるとともに前記隔壁の側面の下部から頂部に至る蛍光 体層とを形成する工程と,さらに,当該背面基板を前記材料の蒸着源に対して斜め に傾けて前記側壁の一方の側面が前記蒸着源に露出した状態に保持してながら蒸 着を行 ヽ,前記隔壁の側面の下部領域を除 ヽて頂部近傍の蛍光体層を被覆するよ うに前記材料カゝらなる第 2の保護層を形成する工程とを有することを特徴とする。  [0013] In order to achieve the above object, according to a second aspect of the present invention, there is provided a method for manufacturing an AC plasma display panel having a discharge space in which a discharge gas is sealed between a front substrate and a back substrate. Forming a display electrode group on the front substrate, a dielectric layer thereon, and a first protective layer made of a material having a high secondary electron emission coefficient that covers the dielectric layer, and an address on the rear substrate. A step of forming an electrode group, a partition disposed on both sides of the address electrode, a phosphor layer formed on the upper side of the address electrode and extending from the lower part to the top of the side surface of the partition, and the rear substrate Is deposited obliquely with respect to the deposition source of the material, and vapor deposition is performed while holding one side surface of the side wall exposed to the deposition source, and the top portion is removed except for the lower region on the side surface of the partition wall. Cover nearby phosphor layers Characterized by a step of forming a second protective layer made of sea urchin said material mosquitoes ゝ al.
[0014] 上記の第 2の側面によれば,隔壁側面の頂部近傍にのみ第 2の保護層を蒸着する ことができるので,蛍光体層への紫外線の吸収を抑えつつ二次電子放出量を増加さ せた PDPを形成することができる。 発明の効果 [0014] According to the second aspect described above, since the second protective layer can be deposited only in the vicinity of the top of the side wall of the partition wall, the amount of secondary electrons emitted can be reduced while suppressing the absorption of ultraviolet rays into the phosphor layer. Increased PDP can be formed. The invention's effect
[0015] 視野角の低下を抑えつつ二次電子放出量の増大により発光規模を拡大させて格 好効率を向上した PDPを提供することができる。  [0015] It is possible to provide a PDP with improved efficiency by expanding the emission scale by increasing the amount of secondary electron emission while suppressing a decrease in viewing angle.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]第 1の実施の形態における PDPの断面図である。 FIG. 1 is a cross-sectional view of a PDP in a first embodiment.
[図 2]PDPの基本構造を示す斜視図である。  FIG. 2 is a perspective view showing the basic structure of a PDP.
[図 3]PDPの駆動回路の構成を示すブロック図である。  FIG. 3 is a block diagram showing a configuration of a PDP drive circuit.
[図 4]PDPの駆動シーケンスを示す図である。  FIG. 4 is a diagram showing a PDP drive sequence.
[図 5]PDPの駆動波形を示す図である。  FIG. 5 is a diagram showing a driving waveform of a PDP.
[図 6]第 2の実施の形態における PDPの断面図である。  FIG. 6 is a cross-sectional view of a PDP in a second embodiment.
[図 7]本発明における製造方法を示す図である。  FIG. 7 is a diagram showing a production method in the present invention.
[図 8]本実施の形態におけるセル内の視野角依存性を示す図である。  FIG. 8 is a diagram showing the viewing angle dependency in a cell in the present embodiment.
[図 9]PDPの放電メカニズムを示す図である。  FIG. 9 is a diagram showing the discharge mechanism of PDP.
符号の説明  Explanation of symbols
[0017] 1 前面ガラス基板 [0017] 1 Front glass substrate
2 表示電極 X  2 Display electrode X
2 表示電極 Y  2 Display electrode Y
3 誘電体層  3 Dielectric layer
4-1前面基板側保護層 (第 1の保護層)  4-1 Front substrate side protective layer (first protective layer)
4-2背面基板側保護層 (第 2の保護層)  4-2 Back substrate side protective layer (second protective layer)
4-3 二次電子  4-3 Secondary electrons
5 隔壁  5 Bulkhead
6R 蛍光体 R  6R Phosphor R
6G 蛍光体 G  6G phosphor G
6B 蛍光体 B  6B Phosphor B
7 下地反射層  7 Base reflective layer
8 アドレス電極  8 Address electrode
9 背面ガラス基板 11 電子ビームによって昇華した MgO 9 Rear glass substrate 11 MgO sublimated by electron beam
12 ハース(固体 MgOを置く場所)  12 Haas (place to put solid MgO)
13 MgOペレット  13 MgO pellets
14 電子ビーム  14 Electron beam
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下,図面にしたがって本発明の実施の形態について説明する。但し,本発明の 技術的範囲はこれらの実施の形態に限定されず,特許請求の範囲に記載された事 項とその均等物まで及ぶものである。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the technical scope of the present invention is not limited to these embodiments, but extends to the matters described in the claims and their equivalents.
[0019] 図 2は, PDPの一般的構成を示す斜視図である。図 2に示す PDPは,カラー表示 用の AC駆動型の 3電極面放電型 PDPであり,前面基板 1と背面基板 9とが放電ガス 空間を隔てて対向して設けられている。  FIG. 2 is a perspective view showing a general configuration of the PDP. The PDP shown in Fig. 2 is an AC-driven three-electrode surface discharge PDP for color display. The front substrate 1 and the rear substrate 9 are placed facing each other across the discharge gas space.
[0020] 前面基板 1の内側面には,水平方向に延びる複数の表示電極 2Xと表示電極 2Yと が平行に配置されている。隣接する表示電極 2Xと表示電極 2Yとの間がすべて表示 ラインになる。この PDPは,表示電極 2Xと表示電極 2Yとが等間隔に配置され,隣接 する表示電極 2Xと表示電極 2Yとの間がすべて表示ラインになる, Vヽゎゆる ALIS構 造の PDPである。ただし,一対の表示電極 2Xと表示電極 2Yとが放電が発生しない 非放電ギャップを隔てて配置された構造の PDPであっても,本発明を適用することが できる。  [0020] On the inner surface of the front substrate 1, a plurality of display electrodes 2X and a display electrode 2Y extending in the horizontal direction are arranged in parallel. The display line is completely between the adjacent display electrode 2X and display electrode 2Y. This PDP is a PDP with a V-type ALIS structure in which the display electrode 2X and the display electrode 2Y are arranged at equal intervals, and all the display lines between the adjacent display electrodes 2X and 2Y become display lines. However, the present invention can also be applied to a PDP having a structure in which the pair of display electrodes 2X and 2Y is arranged with a non-discharge gap that does not generate discharge.
[0021] 各表示電極 2X, 2Yは, ITO, Sn02などからなる透明電極 10と,その上に形成さ れた例えば Ag, Au, Al, Cu, Crおよびそれらの積層体(例えば CrZCuZCrの積 層構造)など力もなる金属製のノ ス電極 11とから構成されている。表示電極 2X, 2Y は, Ag, Auについてはスクリーン印刷のような厚膜形成技術を用い,その他の金属 につ 、ては蒸着法ゃスパッタ法などの薄膜形成技術とエッチング技術とを用いて,所 定の本数,厚さ,幅および間隔で形成される。透明電極 10は,主に放電に寄与し, 蛍光体の発光を前面基板 1側カゝら見ることができるように光透過性材料で形成される 。ノ ス電極 11は,放電時の電流を流すために低抵抗性であることが望ましい。  [0021] Each display electrode 2X, 2Y includes a transparent electrode 10 made of ITO, Sn02, etc. and, for example, Ag, Au, Al, Cu, Cr formed thereon and a laminate thereof (for example, a stack of CrZCuZCr). The structure is composed of a metal nose electrode 11 that also has force. The display electrodes 2X and 2Y use thick film formation technology such as screen printing for Ag and Au, and thin film formation technology such as vapor deposition and sputtering and etching technology for other metals. It is formed with a specified number, thickness, width and spacing. The transparent electrode 10 is mainly formed of a light-transmitting material so that it can contribute to the discharge and the light emission of the phosphor can be seen from the front substrate 1 side. The nose electrode 11 should have low resistance in order to allow the current during discharge to flow.
[0022] 表示電極 2X, 2Yの上には,表示電極 2X, 2Yを覆うように誘電体層 3が形成され ている。誘電体層 3は,低融点ガラス粉体を主成分とするガラスペーストを,前面ガラ ス基板 1上にスクリーン印刷法で塗布し,高温焼成することにより形成している。また, シート状の誘電体層を貼り付けて焼成する方法もある。さらに誘電体層 3は,プラズマ CVD法で Si02膜を成膜することにより形成してもよい。 A dielectric layer 3 is formed on the display electrodes 2X and 2Y so as to cover the display electrodes 2X and 2Y. Dielectric layer 3 is made of glass paste mainly composed of low melting point glass powder, It is formed by applying it on the substrate 1 by screen printing and baking at high temperature. There is also a method of attaching and firing a sheet-like dielectric layer. Furthermore, the dielectric layer 3 may be formed by forming a Si02 film by plasma CVD.
[0023] 誘電体層 3の上には,放電により生じるイオンの衝突による衝撃力も誘電体層 3を 保護するために保護膜 4が形成されて ヽる。この保護膜 4はイオンが衝突した際の二 次電子放出係数の高 、材料で形成されており,たとえば MgOや MgFが使用される 。保護膜 4は,電子ビーム蒸着法ゃスパッタ法のような,当該分野で公知の薄膜形成 プロセスによって形成される。  A protective film 4 is formed on the dielectric layer 3 in order to protect the dielectric layer 3 from the impact force caused by the collision of ions generated by the discharge. This protective film 4 is made of a material having a high secondary electron emission coefficient when ions collide, and, for example, MgO or MgF is used. The protective film 4 is formed by a thin film formation process known in the art, such as electron beam evaporation or sputtering.
[0024] 背面基板 9の内側面には,平面的に見て表示電極 2X, 2Yと交差する方向に複数 のアドレス電極 8が形成され,そのアドレス電極 8を覆って誘電体層 7が形成されてい る。アドレス電極 8は,表示電極 2Yとの交差部で発光セルを選択するためのアドレス 放電を発生させるものであり,例えば CrZCuZCrの 3層構造で形成されている。ァ ドレス電極 8は,それ以外に,例えば Ag, Au, Al, Cu, Crなどで形成することもでき る。アドレス電極 8も,表示電極 2X, 2Yと同様に, Ag, Auについてはスクリーン印刷 のような厚膜形成技術を用い,その他の金属については蒸着法ゃスパッタ法などの 薄膜形成技術とエッチング技術を用いることにより,所定の本数,厚さ,幅および間 隔で形成される。誘電体層 7は,前面基板 1上の誘電体層 3と同じ材料,同じ方法を 用いて形成することができる。また,誘電体層 7は必ずしも設けなくても良い。  [0024] On the inner surface of the back substrate 9, a plurality of address electrodes 8 are formed in a direction intersecting the display electrodes 2X and 2Y when viewed in plan, and a dielectric layer 7 is formed covering the address electrodes 8. ing. The address electrode 8 generates an address discharge for selecting a light emitting cell at the intersection with the display electrode 2Y, and is formed of, for example, a three-layer structure of CrZCuZCr. In addition, the address electrode 8 can be formed of Ag, Au, Al, Cu, Cr, or the like. Similarly to the display electrodes 2X and 2Y, the address electrode 8 uses a thick film formation technique such as screen printing for Ag and Au, and a thin film formation technique such as vapor deposition and sputtering and an etching technique for other metals. By using it, it is formed with a predetermined number, thickness, width and spacing. The dielectric layer 7 can be formed using the same material and the same method as the dielectric layer 3 on the front substrate 1. The dielectric layer 7 is not necessarily provided.
[0025] 誘電体層 7の上には,隣接するアドレス電極 8の間にそれぞれ隔壁 5が形成されて いる。本例の隔壁 5の形状は,アドレス電極に平行なストライプ状であるが,アドレス 電極と表示電極の交差位置のセル領域を囲む格子状の形状であっても良い。  [0025] On the dielectric layer 7, partition walls 5 are formed between adjacent address electrodes 8, respectively. The shape of the partition wall 5 in this example is a stripe shape parallel to the address electrode, but it may be a lattice shape surrounding the cell region at the intersection of the address electrode and the display electrode.
[0026] 隔壁 5は,サンドブラスト法,フォトエッチング法などにより形成される。例えば,サン ドプラスト法では,低融点ガラス粉体,ノ インダー榭脂,溶媒など力もなるガラスべ一 ストを誘電体層 7上に塗布して乾燥させた後,そのガラスペースト層上に隔壁パター ンの開口を有する切削マスクを設けた状態で切削粒子を吹き付けて,マスクの開口 部に露出したガラスペースト層を切削し,さらに焼成することにより隔壁 5を形成する。 また,感光体ペースト法では,切削粒子で切削することに代えて,ガラスペーストのバ インダー榭脂に感光性榭脂を使用し,マスクを用いた露光および現像の後,焼成す ること〖こより形成する。 The partition wall 5 is formed by a sand blast method, a photo etching method, or the like. For example, in the sand plast method, a low-melting-point glass powder, a binder resin, a solvent-based glass base such as a solvent is applied on the dielectric layer 7 and dried, and then a partition wall pattern is formed on the glass paste layer. The partition wall 5 is formed by spraying cutting particles with the cutting mask having the above-mentioned opening, cutting the glass paste layer exposed at the opening of the mask, and further baking. In the photosensitive paste method, instead of cutting with cutting particles, photosensitive resin is used as binder resin for glass paste, and after exposure and development using a mask, baking is performed. It is formed from Kotoko.
[0027] 隔壁 5で区切られた放電空間の側面および底面には,赤 (R),緑 (G) ,青 (B)の蛍 光体層 6R, 6G, 6Bが形成されている。蛍光体層 6R, 6G, 6Bは,蛍光体粉体とバイ ンダー榭脂と溶媒とを含む蛍光体ペーストを隔壁で区切られた放電空間内にスクリ ーン印刷またはディスペンサーを用いた方法などで塗布し,これを各色ごとに繰り返 した後,焼成することにより形成する。  [0027] The red (R), green (G), and blue (B) phosphor layers 6R, 6G, and 6B are formed on the side and bottom surfaces of the discharge space partitioned by the barrier ribs 5, respectively. Phosphor layers 6R, 6G, and 6B are coated with a phosphor paste containing phosphor powder, binder resin, and solvent in the discharge space separated by the barrier ribs by a method using screen printing or a dispenser. However, this is repeated for each color and then formed by firing.
[0028] 蛍光体層 6R, 6G, 6Bは,蛍光体粉体と感光性材料とバインダー榭脂とを含むシ ート状の蛍光体層材料,いわゆるグリーンシート,を使用し,フォトリソグラフィー技術 で形成することもできる。この場合,所定の色のシートを基板上の表示領域全面に貼 り付けて,露光,現像を行い,これを各色ごとに繰り返すことで,対応する隔壁 5間に 各色の蛍光体層 6を形成する。なお,蛍光体層 6R, 6G, 6Bは,アドレス電極 8の上 ,即ち,誘電体層 7が設けられる場合は誘電体層の上に,設けられない場合はァドレ ス電極の上に形成され,さらに隔壁の側壁上まで形成される。  [0028] The phosphor layers 6R, 6G, and 6B use a sheet-like phosphor layer material containing a phosphor powder, a photosensitive material, and a binder resin, a so-called green sheet, and are formed by photolithography technology. It can also be formed. In this case, a phosphor sheet 6 of each color is formed between the corresponding barrier ribs 5 by applying a sheet of a predetermined color to the entire display area on the substrate, exposing and developing, and repeating this for each color. To do. The phosphor layers 6R, 6G, and 6B are formed on the address electrode 8, that is, on the dielectric layer when the dielectric layer 7 is provided, and on the address electrode when the dielectric layer 7 is not provided. Further, it is formed up to the side wall of the partition wall.
[0029] この PDPは,前面基板と背面基板とを,表示電極 2X, 2Yとアドレス電極 8とが交差 するように対向配置し,周囲を封止し,隔壁 5で囲まれた放電空間に Xeと Neとを混 合した放電ガスを充填することにより作製される。この PDPでは,表示電極 2X, 2Yと アドレス電極 8との交差部の放電空間が,表示の最小単位である 1つのセル(単位発 光領域)となる。 1画素は R, G, Bの 3つのセルで構成される。  [0029] In this PDP, the front substrate and the rear substrate are placed facing each other so that the display electrodes 2X, 2Y and the address electrode 8 intersect, the periphery is sealed, and the discharge space surrounded by the barrier ribs 5 is Xe It is made by filling discharge gas mixed with Ne. In this PDP, the discharge space at the intersection of the display electrodes 2X and 2Y and the address electrode 8 is one cell (unit emission region), which is the smallest unit of display. One pixel consists of three cells, R, G, and B.
[0030] 図 3は,プラズマディスプレイモジュールの一例の全体構成を示すブロック図である 。 PDPは,維持放電を行う表示電極 XI, X2, X3,…と走査電極でもある表示電極 Y 1, Y2, Y3,…とが交互に配置されて表示ラインを構成し,表示電極 Xおよび走査電 極とこれらの電極に垂直に交差するアドレス電極 Al, A2, A3,…によりマトリクス状 の表示セルが構成されている。また,それぞれの電極に電圧を印加するために,アド レス駆動回路 15,スキャンドライバ 16, Y駆動回路 17, X駆動回路 18が対応する電 極に接続されている。また,それらを制御するための制御回路 19を備えている。  FIG. 3 is a block diagram showing an overall configuration of an example of a plasma display module. In the PDP, display electrodes XI, X2, X3,... That perform sustain discharge and display electrodes Y1, Y2, Y3,... That are also scan electrodes are alternately arranged to form a display line. A display cell in the form of a matrix is formed by the electrodes and address electrodes Al, A2, A3,... Perpendicular to these electrodes. In order to apply a voltage to each electrode, the address drive circuit 15, scan driver 16, Y drive circuit 17, and X drive circuit 18 are connected to the corresponding electrodes. A control circuit 19 for controlling them is also provided.
[0031] スキャンドライバ 16は,アドレス期間において,走査電極 Yに順次走査パルスを印 加して走査電極 (表示ライン)を選択し,アドレス駆動回路 15に繋がれたアドレス電極 Aと選択された走査電極 Yとの間で,セルの点灯 Z非点灯を選択するアドレス放電を 生じさせる。また, Y駆動回路 17および X駆動回路 18は,表示期間において,ァドレ ス放電により選択されたセルに対して各サブフィールドの重みに応じた数のサスティ ン放電を生じさせる。制御回路 19は, TVチューナやコンピュータ等の外部装置から 入力された画像データと同期信号や制御信号から,それぞれの駆動回路に適した制 御信号を出力して所定の画像表示を制御する。 [0031] The scan driver 16 selects scan electrodes (display lines) by sequentially applying scan pulses to the scan electrodes Y during the address period, and selects the scan electrodes selected with the address electrodes A connected to the address drive circuit 15. Address discharge to select whether the cell is lit or not Z is lit with electrode Y Cause it to occur. The Y drive circuit 17 and the X drive circuit 18 generate the number of sustain discharges corresponding to the weight of each subfield for the cells selected by the address discharge during the display period. The control circuit 19 controls a predetermined image display by outputting a control signal suitable for each drive circuit from image data inputted from an external device such as a TV tuner or a computer, a synchronization signal, and a control signal.
[0032] 図 4は,図 2の PDPにおける階調駆動シーケンスの一例を示す図である。図 4に示 されるように,プラズマディスプレイ装置における階調駆動シーケンスは, 1フィールド (フレーム) 20をそれぞれ所定の輝度の重みを有する複数のサブフィールド (サブフ レーム) 21 (SFl〜SFn)で構成し,サブフィールドの組み合わせにより所定の階調 表示を行うようになっている。具体的には,複数のサブフィールド,例えば,維持放電 の回数の比が 1 : 2 :4 : 8 : 16 : 32 : 64 : 128に設定されて 2の巾乗の輝度の重みを有 する 8つのサブフィールド SF1〜SF8により, 256階調の表示を行う。なお,サブフィ 一ルドの数および各サブフィールドの重みは様々な組み合わせが可能なのは!、うま でもない。 FIG. 4 is a diagram showing an example of a gradation drive sequence in the PDP of FIG. As shown in Fig. 4, the grayscale drive sequence in the plasma display device consists of one field (frame) 20 consisting of multiple subfields (subframes) 21 (SFl to SFn) each having a predetermined luminance weight. However, a predetermined gradation is displayed by combining the subfields. Specifically, the ratio of the number of sustain discharges is set to 1: 2: 4: 8: 16: 32: 64: 128 and has a luminance weight of power of 2 8 The 256 sub-fields SF1 to SF8 display 256 gray levels. The number of subfields and the weight of each subfield can be combined in various ways!
[0033] また,各サブフィールドは,それぞれ表示領域における全てのセルの壁電荷を均一 にする初期化過程 (リセット期間 22) ,点灯セルを選択するアドレス過程 (アドレス期 間 23)および,選択されたセルを輝度 (各サブフィールドの重み)に応じた回数だけ 放電して点灯させる表示過程 (維持放電期間 24)で構成される。そして,各サブフィ 一ルド毎にその輝度に応じてセルを点灯させ,例えば, 8つのサブフィールド SF1〜 SF8を表示制御することで 1フィールドの表示制御を行う。  [0033] In addition, each subfield is selected by an initialization process (reset period 22) for uniforming wall charges of all cells in the display area, an address process (address period 23) for selecting a lighted cell, and a selection process. It consists of a display process (sustain discharge period 24) in which the cells are discharged and turned on the number of times corresponding to the luminance (weight of each subfield). Then, for each subfield, the cell is turned on according to the brightness, and display control of one field is performed by controlling display of, for example, eight subfields SF1 to SF8.
[0034] 次に,図 5に駆動波形の一例を示す。図 5 (a)〜(e)は,それぞれリセット期間 22か ら維持放電期間 24に至る期間において,表示電極 XI, Yl, Y3, Y2,アドレス電極 Aに印加する駆動波形を示している。尚, Χ,Υに付された数字は行数を示し,本波形 は同じ数字を付した 2電極間で放電する場合を示す。なお, Yl, Υ3は Υの奇数行, Υ2は偶数行を代表する 1例である。  Next, FIG. 5 shows an example of the drive waveform. Figures 5 (a) to 5 (e) show the drive waveforms applied to the display electrodes XI, Yl, Y3, Y2, and the address electrode A during the period from the reset period 22 to the sustain discharge period 24, respectively. The numbers attached to Χ and Υ indicate the number of rows, and this waveform shows the case of discharge between two electrodes with the same number. Yl, Υ3 is an example representing 奇数 odd rows and Υ2 is an even row.
[0035] まず,図 5 (a) (b)の電極 XI, Y1に,全セルに壁電荷を形成するための Y書き込み 鈍波 32と X電圧 25が印加される。続いてセル内に形成された壁電荷を必要量残して 消去する Y補償鈍波 33と X補償電圧 26が印加される。 [0036] 次のアドレス期間 23において印加される電圧波形は,行方向の表示セルを決める 放電を行なう奇数行の走査ノ ルス 34と,本放電により電荷を形成するための X電圧 2 7である。この走査パルス 34は,行毎にタイミングをずらして印加される。その後の維 持放電期間 24には,第 1のサスティンパルス 28, 35,繰り返しサスティンパルス 29, 30, 31, 36, 37, 38力 S印カロされる。 First, the Y write obtuse wave 32 and the X voltage 25 for forming wall charges in all the cells are applied to the electrodes XI and Y1 in FIGS. 5 (a) and 5 (b). Subsequently, the Y compensation blunt wave 33 and the X compensation voltage 26 are applied to erase the wall charges formed in the cell while leaving a necessary amount. [0036] The voltage waveform applied in the next address period 23 is an odd-numbered scan scan 34 for discharging to determine display cells in the row direction, and an X voltage 27 for forming charges by this discharge. . The scanning pulse 34 is applied at a different timing for each row. In the subsequent sustain discharge period 24, the first sustain pulse 28, 35, repeated sustain pulse 29, 30, 31, 36, 37, 38 force S is applied.
[0037] 図 5 (c)は電極 Y3に印加される電圧波形であり,走査パルス 39のタイミングを除い て図 5 (b)に示した電極 Y1に印加される電圧波形と同じである。今,電極 Y3のライン のセルが 1つも点灯しないとすると,走査パルス 39は不要であり,間引くことができる 。これにより,駆動時間を短縮できる。この時,全てのアドレス電極に電圧は印加され ておらず,同様に間引くことができる。表示電極に印加されている電圧も一定値であ るため,同様な時間短縮は容易である。  [0037] Fig. 5 (c) shows the voltage waveform applied to electrode Y3, which is the same as the voltage waveform applied to electrode Y1 shown in Fig. 5 (b) except for the timing of scan pulse 39. If no cell on the electrode Y3 line is lit, the scan pulse 39 is unnecessary and can be thinned out. Thereby, drive time can be shortened. At this time, no voltage is applied to all the address electrodes, and they can be thinned out in the same way. Since the voltage applied to the display electrode is also a constant value, similar time reduction is easy.
[0038] 図 5 (d)の電極 Y2には,リセット期間 22において,全セルに電荷を形成する Y書き 込み鈍波 40が印加される。さらに続いてセル内に形成された電荷を必要量残して消 去する Y補償鈍波 41が印加される。  [0038] In the reset period 22, the Y write blunt wave 40 that forms charges in all cells is applied to the electrode Y2 in Fig. 5 (d). Subsequently, a Y compensation blunt wave 41 is applied to erase the charge formed in the cell while leaving a necessary amount.
[0039] 次のアドレス期間 23において印加される電圧波形は,行方向の表示セルを決める 放電を行なう偶数行のスキャンパルス 42である。このスキャンパルス 42も行毎にタイミ ングをずらして印加される。その後の表示期間 24には第 1のサスティンパルス 44,繰 り返しサスティンパルス 44, 45,放電回数の合わせパルス 46が印加される。  [0039] The voltage waveform applied in the next address period 23 is the scan pulse 42 of the even-numbered row that performs the discharge that determines the display cell in the row direction. This scan pulse 42 is also applied while shifting the timing for each row. In the subsequent display period 24, a first sustain pulse 44, repeated sustain pulses 44, 45, and a discharge pulse adjusting pulse 46 are applied.
[0040] 図 5 (e)のアドレス電極 Aにアドレス期間に印加される電圧波形は,列方向の表示す るセルを決める放電を行なうアドレスパルス 47, 48である。尚,アドレスパルスは,行 毎に印加されるスキャンパルスに同期して,走査電極とアドレス電極 Aの交点に位置 する表示させたいセルに放電を起こすタイミングで印加される。  [0040] The voltage waveform applied to the address electrode A in FIG. 5 (e) during the address period is the address pulses 47 and 48 for performing discharge that determines the cells to be displayed in the column direction. The address pulse is applied at the timing when a discharge is generated in the cell to be displayed located at the intersection of the scan electrode and the address electrode A in synchronization with the scan pulse applied for each row.
[0041] 以上の駆動波形に加え,表示期間 24の最後に壁電荷消去のための電圧波形を加 えることもある。  [0041] In addition to the above driving waveforms, a voltage waveform for erasing wall charges may be added at the end of the display period 24.
[0042] 以上が PDPの一般的な構造と駆動シーケンス及び駆動波形である。次に,本実施 の形態における背面基板の隔壁に保護層を形成した構成について説明する。  [0042] The general structure, drive sequence, and drive waveform of the PDP have been described above. Next, a configuration in which a protective layer is formed on the partition wall of the rear substrate in this embodiment will be described.
[0043] 図 1は,第 1の実施の形態における PDPの断面図を示している。前面ガラス基板 1 には透明電極材料からなる表示電極 2と,それを被覆する誘電体層 3と,誘電体層を 被覆する MgO, MgF, SrOのいずれかを含む二次電子放出係数が高い材料力ゝらな る第 1の保護膜 4-1が形成されている。これらの形成方法は前述の通りである。 FIG. 1 shows a cross-sectional view of the PDP in the first embodiment. The front glass substrate 1 has a display electrode 2 made of a transparent electrode material, a dielectric layer 3 covering the display electrode 2, and a dielectric layer. A first protective film 4-1 having a high secondary electron emission coefficient and containing any of MgO, MgF, and SrO to be coated is formed. These forming methods are as described above.
[0044] 一方,背面ガラス基板 9には,表示電極と交差する方向に延びる複数のアドレス電 極 8と,それを被覆する誘電体層 7と,放電空間をセル配列に区画するストライプ状ま たは格子状の隔壁 5が形成されている。この隔壁 5は,前述のとおり,ガラスペースト を使用したサンドブラスト法などにより形成される。そして,アドレス電極 8の上の誘電 体層 7上と,隔壁 5の側面上には,蛍光体層 6が形成されている。この蛍光体層 6は, 前述のとおり RGBを発光する蛍光体材料が別々に形成される。なお,誘電体層 7が 設けられない場合は,アドレス電極 8の上に蛍光体層 6が形成される。  On the other hand, the rear glass substrate 9 has a plurality of address electrodes 8 extending in a direction intersecting with the display electrodes, a dielectric layer 7 covering the address electrodes 8, and a stripe shape that divides the discharge space into cell arrays. A grid-like partition wall 5 is formed. As described above, this partition wall 5 is formed by sandblasting using glass paste. A phosphor layer 6 is formed on the dielectric layer 7 on the address electrodes 8 and on the side surfaces of the barrier ribs 5. As described above, this phosphor layer 6 is formed of phosphor materials that emit RGB light separately. If the dielectric layer 7 is not provided, the phosphor layer 6 is formed on the address electrode 8.
[0045] 本実施の形態における PDPのセル構造によれば,アドレス電極 8の上に加えて,背 面ガラス基板 9の隔壁 5の側面の下部領域力 頂部に至るまで蛍光体層 6を塗付し, 隔壁 5の側面の頂部近傍に蛍光体層 6を覆うように二次電子放出係数が高い MgO, MgF, SrOなどの材料力 なる第 2の保護層 4-2を形成する。力かる構成にすること で,視野角が狭くなるのを抑制しつつ放電時の二次電子放出量を増大させて放電規 模を大きくし,発光効率を高くすることができる。  [0045] According to the cell structure of the PDP in the present embodiment, in addition to the address electrode 8, the phosphor layer 6 is applied to reach the top of the lower region force on the side surface of the partition wall 5 of the back glass substrate 9. Then, a second protective layer 4-2 having a high secondary electron emission coefficient such as MgO, MgF, or SrO is formed so as to cover the phosphor layer 6 in the vicinity of the top of the side wall of the partition wall 5. By adopting a powerful configuration, it is possible to increase the discharge size by increasing the amount of secondary electrons emitted during discharge while suppressing the narrowing of the viewing angle, and to increase the luminous efficiency.
[0046] 図 8は, PDPの放電の広がりを示す図である。前面基板側の保護層 4 1と背面基 板の隔壁頂部の保護層 4— 2とが拡大して示されている。 PDPの放電は,放電空間 中に存在する荷電粒子 (電子)が電場により移動し,放電ガスの気体分子 49に衝突 してプラスイオン 50と電子 51に分離させる。このとき発生したプラスイオン 50が,電 場により移動して陰極である走査電極 (Y電極)に衝突する。プラスイオンが陰極に衝 突することにより,陰極の Y電極を被覆する保護層 4—1が二次電子を放出する。放 出された二次電子がさらに気体分子 49に衝突してプラスイオン 50と電子 51に分離さ せる。この過程を繰り返すことでガス空間の電荷が増加して放電に至る。気体分子が 電離するときに紫外線を放出し,この紫外線が蛍光体に衝突し蛍光体を励起して発 光を誘発する。  FIG. 8 is a diagram showing the spread of PDP discharge. The protective layer 41 on the front substrate side and the protective layer 4-2 on the top of the partition wall of the rear substrate are shown enlarged. In the PDP discharge, charged particles (electrons) that exist in the discharge space move due to the electric field, collide with the gas molecules 49 of the discharge gas, and are separated into positive ions 50 and electrons 51. The positive ions 50 generated at this time move by the electric field and collide with the scanning electrode (Y electrode), which is the cathode. When the positive ions collide with the cathode, the protective layer 4-1 covering the Y electrode of the cathode emits secondary electrons. The emitted secondary electrons collide with gas molecules 49 and are separated into positive ions 50 and electrons 51. By repeating this process, the charge in the gas space increases and discharge occurs. When gas molecules are ionized, ultraviolet rays are emitted, and the ultraviolet rays collide with the phosphor to excite the phosphor and induce light emission.
[0047] アドレス放電では,走査電極 Yに負極性のパルスが印加され,アドレス電極 8に正 極性のパルスが印加されると,まず走査電極 Yとアドレス電極 8との間で放電が発生 し,それにより発生した走査電極 Y上の壁電荷により走査電極 Yと表示電極 Xとの間 でも放電が発生し,両電極 X, Yの誘電体層上に正と負の壁電荷が蓄積される。この 蓄積された壁電荷により,その後の維持放電パルス印加に応答して電極 X, Y間で 維持放電が繰り返される。 [0047] In the address discharge, when a negative pulse is applied to the scan electrode Y and a positive polarity pulse is applied to the address electrode 8, a discharge is first generated between the scan electrode Y and the address electrode 8, The wall charges on the scan electrode Y generated thereby cause a gap between the scan electrode Y and the display electrode X. However, a discharge occurs and positive and negative wall charges accumulate on the dielectric layers of both electrodes X and Y. This accumulated wall charge causes the sustain discharge to be repeated between electrodes X and Y in response to subsequent sustain discharge pulse application.
[0048] 以上のとおり,放電規模を拡大するためには,放電空間中により多くの電子を放出 することが大切であり,特に放電が集中する前面基板側の保護層 4 1の近傍と,背 面基板側の隔壁側面の頂部近傍とに,二次電子放出係数が高い物質が形成されて 、ることが望まし!/、。  [0048] As described above, in order to expand the discharge scale, it is important to release more electrons in the discharge space. In particular, the vicinity of the protective layer 41 on the front substrate side where the discharge is concentrated and the back of the discharge space are important. It is desirable that a substance with a high secondary electron emission coefficient be formed near the top of the side wall surface on the surface substrate side! /.
[0049] そこで,本実施の形態では,背面ガラス基板 9のセルを区画する隔壁 5の側面にお いて下部領域力も頂部に至るまで,つまり隔壁側面の高さ方向いっぱいに,蛍光体 層 6を塗付し,隔壁 5の側面の頂部近傍でのみ蛍光体層 6を覆うように保護層 4-2を 成膜した。その結果,電圧を印加して気体分子をプラスイオンと電子に電離させるこ とで放電を開始させると,発生したプラスイオンが電場により前面基板側の保護層 4 —1への衝突に加えて,背面ガラス基板の隔壁頂部の保護層 4-2にも衝突し,衝突 した保護層 4-2からも二次電子 4-3を放出して放電を成長させることが可能となる。  Therefore, in the present embodiment, the phosphor layer 6 is formed on the side surface of the partition wall 5 partitioning the cells of the rear glass substrate 9 until the lower region force reaches the top, that is, the height of the side surface of the partition wall is full. The protective layer 4-2 was deposited to cover the phosphor layer 6 only near the top of the side wall of the partition wall 5. As a result, when discharge is started by applying voltage to ionize gas molecules into positive ions and electrons, the generated positive ions are applied to the protective layer 4-1 on the front substrate side by the electric field. It can also collide with the protective layer 4-2 at the top of the partition wall of the back glass substrate, and secondary electrons 4-3 can be emitted from the colliding protective layer 4-2 to grow a discharge.
[0050] し力も,本実施の形態では,蛍光体層 6がアドレス電極 8上の誘電体層 7の上面と 隔壁側面の下部領域力 頂部に至るまで形成されるので,セル領域内で高 、発光 輝度を実現でき,視野角を広く保つことができる。つまり,隔壁の頂部近傍で蛍光体 層 6が保護膜 4— 2で被覆されるので,保護層 4— 2により紫外線が一部吸収されるも のの,残りの紫外線は蛍光体層 6に達して励起し発光に寄与するので,セル領域内 における高い発光輝度領域を広くすることができる。そして,放電によるイオン衝撃の 影響を受ける隔壁頂部近傍の蛍光体層6は,保護層 4 2により保護されるので,蛍 光体層 6の寿命を長くする効果もある。 In this embodiment, since the phosphor layer 6 is formed to reach the top surface of the dielectric layer 7 on the address electrode 8 and the top of the lower region force on the side wall of the partition wall, it is high in the cell region. Emission brightness can be achieved and the viewing angle can be kept wide. In other words, the phosphor layer 6 is covered with the protective film 4-2 in the vicinity of the top of the partition wall, so that the ultraviolet rays are partially absorbed by the protective layer 4-2, but the remaining ultraviolet rays reach the phosphor layer 6. Exciting and contributing to light emission, it is possible to widen the high emission luminance region in the cell region. The phosphor layer 6 near the top of the barrier rib affected by the ion bombardment due to the discharge is protected by the protective layer 42, so that the lifetime of the phosphor layer 6 can be extended.
[0051] 図 9は,本実施の形態におけるセル中心距離と輝度との相関を示しており,輝度の 視野角依存性を示したグラフ図である。実線が本実施の形態の発光強度比を示し, 破線が前述の特許文献 1の発光強度比を示す。グラフ図の下に示した断面図のとお り,前述の特許文献 1では破線のように蛍光体層 6Bを隔壁 5の側面下部領域までし か形成せず側面頂部近傍まで蛍光体層を形成して 、な 、。そのため,セル中心位 置力も外側に離れていくと発光輝度が低下する。しかし,本実施の形態では,実線で 示したとおり,隔壁 5の側面の頂部近傍まで蛍光体層 6Aを塗布するため,セル中心 位置力も離れても発光輝度がほとんど低下しない。また,本実施の形態では,隔壁 5 の側面の頂部近傍の蛍光体層 6のみ保護層 4 2で覆っているため,放電により発 生する紫外線が保護層 4— 2で吸収されて蛍光体層 6に達しな ヽようになるのを最小 限に抑えることができる。したがって,保護層 4— 2を設けたことによる蛍光体の発光 の低下を最小限に抑えることができる。以上のことから,本実施の形態では,視野角 の低下や輝度低下を防ぎつつ,隔壁の頂部近傍での放電も改善することができる。 FIG. 9 is a graph showing the correlation between the cell center distance and the luminance in the present embodiment, and showing the viewing angle dependence of the luminance. The solid line shows the emission intensity ratio of the present embodiment, and the broken line shows the emission intensity ratio of Patent Document 1 described above. As shown in the cross-sectional view shown below the graph, in Patent Document 1 described above, the phosphor layer 6B is not formed only up to the lower side region of the partition wall 5 but the phosphor layer is formed up to the top of the side surface as shown by the broken line. 、、 、 For this reason, the emission brightness decreases as the cell centering force moves away. However, in this embodiment, the solid line As shown, since the phosphor layer 6A is applied to the vicinity of the top of the side wall of the partition wall 5, the emission luminance hardly decreases even when the cell center force is separated. In the present embodiment, since only the phosphor layer 6 near the top of the side surface of the partition wall 5 is covered with the protective layer 42, the ultraviolet rays generated by the discharge are absorbed by the protective layer 4-2, and the phosphor layer It is possible to minimize the failure to reach 6. Therefore, the decrease in phosphor emission due to the provision of protective layer 4-2 can be minimized. From the above, in this embodiment, it is possible to improve the discharge near the top of the partition wall while preventing the viewing angle and the luminance from being lowered.
[0052] 次に本実施の形態における PDPの製造方法について説明する。図 7は,本実施の 形態における PDPの製造方法の説明図である。本実施の形態では,背面ガラス基 板上の隔壁側面の頂部近傍にのみ MgO力もなる保護層を形成する。このように部分 的に保護層を形成するために,図 7に示されるとおり,蒸着装置内で隔壁 5を形成し た背面ガラス基板 9を蒸着源であるハース 12上に載せられた MgOペレット 13に対し て斜めに保持し,隔壁 5の一方の側面のみが蒸着源に露出される状態で, MgOの 蒸着を行う。 [0052] Next, a method for producing a PDP in the present embodiment will be described. FIG. 7 is an explanatory diagram of the PDP manufacturing method in the present embodiment. In this embodiment, a protective layer having MgO force is formed only near the top of the side wall of the partition wall on the back glass substrate. In order to partially form a protective layer in this way, as shown in Fig. 7, MgO pellets 13 placed on the hearth 12 as the deposition source were placed on the rear glass substrate 9 on which the partition walls 5 were formed in the deposition apparatus. On the other hand, MgO is deposited while holding it diagonally and exposing only one side of partition wall 5 to the deposition source.
[0053] 蒸着装置では,電子ビーム 14をハース 12に載せてある MgOペレット 13に照射し てペレット 13を昇華させ,昇華した MgOを矢印 11の方向に飛ばす。そこで,本実施 の形態では,背面ガラス基板 9を傾斜させ且つ隔壁の一方の側面のみが蒸着源に 向くような状態を維持して,背面ガラス基板 9に蒸着装置を通過させる。これにより, 傾斜した背面ガラス基板上の隔壁側面の片側の面に MgOを成膜させる。このとき, 隣接する隔壁 5の陰になり隔壁側面の下部領域及びアドレス電極上には MgOは蒸 着されない。さらに,傾斜方向を反対側に変えて再度 MgOペレット上を通過させるこ とで隔壁の逆側の側面頂部近傍にも MgOを成膜する。以上のように,背面ガラス基 板 9の傾斜方向を変えて蒸着源である MgOペレット 13の上を往復させることで,隔 壁 5の両側面の頂部付近にのみ MgOを成膜することができる。し力も,背面ガラス基 板 9を所定の方向に傾けるだけで良いので,簡単に実現できる。この場合は,保護層 4 2は,隔壁側面の頂部近傍から頂部上まで形成される。  In the vapor deposition apparatus, the MgO pellet 13 placed on the hearth 12 is irradiated with the electron beam 14 to sublimate the pellet 13, and the sublimated MgO is blown in the direction of arrow 11. Therefore, in this embodiment, the rear glass substrate 9 is tilted and the state in which only one side surface of the partition wall faces the deposition source is passed through the rear glass substrate 9 through the vapor deposition apparatus. In this way, MgO is deposited on one side of the side wall of the partition wall on the inclined rear glass substrate. At this time, MgO is not deposited on the lower region of the side wall of the partition wall and the address electrode, which is behind the adjacent partition wall 5. In addition, the MgO film is also deposited near the top of the side wall on the opposite side of the partition wall by changing the tilt direction to the opposite side and passing it over the MgO pellet again. As described above, MgO can be deposited only near the tops of both sides of the partition wall 5 by changing the inclination direction of the back glass substrate 9 and reciprocating the MgO pellets 13 as the deposition source. . The force can be easily realized by simply tilting the rear glass substrate 9 in a predetermined direction. In this case, the protective layer 42 is formed from the vicinity of the top of the partition wall side surface to the top.
[0054] 図 6は,本発明における第 2の実施の形態における PDPの断面図である。第 2の実 施の形態では,背面ガラス基板 9上の隔壁 5頂部の保護層 4 2以外は,図 1に示し た第 1の実施の形態と同じである。図 1の第 1の実施の形態では,背面ガラス基板 9の 隔壁 5の頂部近傍に保護層 4 2を形成しているのに対して,図 6の第 2の実施の形 態では,背面ガラス基板 9の隔壁 5の頂部を除く側面の頂部近傍でのみ蛍光体層 6 を被覆する保護層 4 2を設けている。すなわち,隔壁 5の頂部は前面基板側の保護 層 4—1と接するので,放電時の二次電子放出に寄与しない。そして, MgO力もなる 保護層は,それ自体が吸湿性があり,パネル封着後の放電特性劣化の原因になる。 したがって, MgOの保護層は不要な隔壁の頂部には形成しないことが望ましい。 FIG. 6 is a cross-sectional view of the PDP in the second embodiment of the present invention. In the second embodiment, the parts other than the protective layer 42 on the top of the partition wall 5 on the rear glass substrate 9 are shown in FIG. This is the same as the first embodiment. In the first embodiment of FIG. 1, a protective layer 42 is formed near the top of the partition wall 5 of the rear glass substrate 9, whereas in the second embodiment of FIG. A protective layer 42 that covers the phosphor layer 6 is provided only in the vicinity of the top of the side surface excluding the top of the partition wall 5 of the substrate 9. In other words, the top of the barrier rib 5 is in contact with the protective layer 4-1 on the front substrate side, so it does not contribute to secondary electron emission during discharge. The protective layer that also has MgO power is hygroscopic in itself and causes deterioration of the discharge characteristics after sealing the panel. Therefore, it is desirable not to form an MgO protective layer on top of unnecessary barrier ribs.
[0055] 第 2の実施の形態の製造方法としては,隔壁 5の頂部付近に MgOを蒸着などで成 膜した後に,隔壁の頂部上の MgOを研磨する方法がある。これにより,隔壁の頂部 近傍の蛍光体層 6上にのみ保護層 4— 2を形成することができる。また,他の製造方 法としては,隔壁の頂部をマスクで覆うと共に蛍光体層表面の隔壁頂部近傍を除い た部分をマスクで覆って MgOを成膜する方法でもよい。 [0055] As a manufacturing method of the second embodiment, there is a method in which MgO is deposited near the top of the partition wall 5 by vapor deposition or the like, and then MgO on the top of the partition wall is polished. As a result, the protective layer 4-2 can be formed only on the phosphor layer 6 near the top of the barrier rib. As another manufacturing method, MgO may be formed by covering the top of the barrier rib with a mask and covering the portion of the phosphor layer surface except the vicinity of the top of the barrier rib with a mask.
産業上の利用可能性  Industrial applicability
[0056] 本発明によれば,視野角の低下を抑えつつ発光効率を高めた PDPを提供すること ができる。 [0056] According to the present invention, it is possible to provide a PDP with improved luminous efficiency while suppressing a decrease in viewing angle.

Claims

請求の範囲 The scope of the claims
[1] 前面基板と背面基板との間に放電ガスを封入した放電空間を有する AC型プラズ マディスプレイパネルにぉ 、て,  [1] An AC type plasma display panel having a discharge space filled with discharge gas between the front substrate and the rear substrate.
前面基板上には,表示電極群と,当該表示電極上の誘電体層と,誘電体層を被覆 する二次電子放出係数の高い材料からなる第 1の保護層とが形成され,  On the front substrate, a display electrode group, a dielectric layer on the display electrode, and a first protective layer made of a material having a high secondary electron emission coefficient that covers the dielectric layer are formed.
背面基板上には,アドレス電極群と,当該アドレス電極の少なくとも両側に配置され た隔壁と,前記アドレス電極上に加えて前記隔壁の側面の下部力 頂部に至る蛍光 体層と,前記アドレス電極上及び前記隔壁の側面の下部領域上の蛍光体は被覆せ ず,前記隔壁の側面頂部近傍の前記蛍光体層を被覆する前記材料からなる第 2の 保護層とが形成されていることを特徴とするプラズマディスプレイパネル。  On the rear substrate, an address electrode group, barrier ribs arranged on at least both sides of the address electrode, a phosphor layer reaching the lower peak on the side surface of the barrier rib in addition to the address electrode, and on the address electrode And a second protective layer made of the material that covers the phosphor layer in the vicinity of the top of the side surface of the partition wall is formed without covering the phosphor on the lower region of the side surface of the partition wall. Plasma display panel.
[2] 請求項 1において,  [2] In claim 1,
前記第 2の保護層は,前記隔壁の頂部上力 側面の頂部近傍までを被覆すること を特徴とするプラズマディスプレイパネル。  The plasma display panel, wherein the second protective layer covers up to the vicinity of the top of the side surface of the top upper force of the partition wall.
[3] 請求項 1において,  [3] In claim 1,
前記第 2の保護層は,前記隔壁の頂部上には形成されず,当該隔壁の側面の頂 部近傍にのみ形成されていることを特徴とするプラズマディスプレイパネル。  2. The plasma display panel according to claim 1, wherein the second protective layer is not formed on the top of the partition, but only near the top of the side surface of the partition.
[4] 前記材料は, MgO, MgF, SrOのいずれかを含むことを特徴とするプラズマデイス プレイパネノレ。  [4] The plasma display panerole characterized in that the material contains any of MgO, MgF, and SrO.
[5] 前面基板と背面基板との間に放電ガスを封入した放電空間を有する AC型プラズ マディスプレイパネルの製造方法にぉ 、て,  [5] In a method for manufacturing an AC type plasma display panel having a discharge space in which a discharge gas is sealed between a front substrate and a rear substrate,
前面基板上に表示電極群と,その上の誘電体層と,誘電体層を被覆する二次電子 放出係数の高い材料カゝらなる第 1の保護層とを形成する工程と,  Forming a display electrode group on the front substrate, a dielectric layer thereon, and a first protective layer made of a material having a high secondary electron emission coefficient covering the dielectric layer;
背面基板上にアドレス電極群と,当該アドレス電極の両側に配置された隔壁と,前記 アドレス電極上に加えて前記隔壁の側面の下部から頂部に至る蛍光体層とを形成す る工程と,  Forming a group of address electrodes on the rear substrate, barrier ribs disposed on both sides of the address electrode, and a phosphor layer extending from the bottom to the top of the side wall of the barrier rib in addition to the address electrodes;
さらに,当該背面基板を前記材料の蒸着源に対して斜めに傾けて前記側壁の一方 の側面が前記蒸着源に露出した状態に保持してながら蒸着を行い,前記隔壁の側 面の下部領域を除いて頂部近傍の蛍光体層を被覆するように前記材料力 なる第 2 の保護層を形成する工程とを有することを特徴とするプラズマディスプレイパネルの 製造方法。 Further, the rear substrate is tilted with respect to the material vapor deposition source, and vapor deposition is performed while one side surface of the side wall is exposed to the vapor deposition source, and a lower region on the side surface of the partition wall is formed. Except for the second, the second material force is applied to cover the phosphor layer near the top. Forming a protective layer of the plasma display panel.
請求項 5において,  In claim 5,
前記蒸着工程において,前記背面基板を第 1の方向に傾けて前記隔壁の一方の 側面の頂部近傍に前記第 2の保護層を形成し,さらに,前記背面基板を前記第 1の 方向と反対の第 2の方向に傾けて前記隔壁の他方の側面の頂部近傍に前記第 2の 保護層を形成することを特徴とするプラズマディスプレイパネルの製造方法。  In the vapor deposition step, the back substrate is tilted in the first direction to form the second protective layer near the top of one side surface of the partition wall, and the back substrate is opposite to the first direction. A method for manufacturing a plasma display panel, wherein the second protective layer is formed near the top of the other side surface of the partition wall by inclining in a second direction.
PCT/JP2006/319267 2006-09-28 2006-09-28 Plasma display panel and method for fabricating the same WO2008038360A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2006/319267 WO2008038360A1 (en) 2006-09-28 2006-09-28 Plasma display panel and method for fabricating the same
JP2008536242A JPWO2008038360A1 (en) 2006-09-28 2006-09-28 Plasma display panel and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/319267 WO2008038360A1 (en) 2006-09-28 2006-09-28 Plasma display panel and method for fabricating the same

Publications (1)

Publication Number Publication Date
WO2008038360A1 true WO2008038360A1 (en) 2008-04-03

Family

ID=39229807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319267 WO2008038360A1 (en) 2006-09-28 2006-09-28 Plasma display panel and method for fabricating the same

Country Status (2)

Country Link
JP (1) JPWO2008038360A1 (en)
WO (1) WO2008038360A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010073508A (en) * 2008-09-19 2010-04-02 Hitachi Ltd Plasma display panel and image display device with same

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05342992A (en) * 1992-06-05 1993-12-24 Fujitsu Ltd Plane discharge type plasma display panel
JPH08185802A (en) * 1994-12-28 1996-07-16 Noritake Co Ltd Discharge display device
JPH08212929A (en) * 1995-02-09 1996-08-20 Dainippon Printing Co Ltd Ac type plasma display panel and manufacture thereof
JPH10302645A (en) * 1997-04-22 1998-11-13 Matsushita Electric Ind Co Ltd Gas discharge panel
JP2000311614A (en) * 1999-04-27 2000-11-07 Matsushita Electric Ind Co Ltd Ac type plasma display device
JP2001035385A (en) * 1999-07-16 2001-02-09 Kyocera Corp Plasma display panel and manufacture thereof
JP2001052614A (en) * 1998-09-08 2001-02-23 Matsushita Electric Ind Co Ltd Display panel and manufacture of the same
JP2002110046A (en) * 2000-09-27 2002-04-12 Matsushita Electric Ind Co Ltd Surface discharge type plasma display panel
WO2004038753A1 (en) * 2002-10-22 2004-05-06 Matsushita Electric Industrial Co., Ltd. Plasma display panel
JP2004200040A (en) * 2002-12-19 2004-07-15 Pioneer Electronic Corp Plasma display panel
JP2004214049A (en) * 2003-01-06 2004-07-29 Matsushita Electric Ind Co Ltd Gas discharge panel and its manufacturing method
WO2006038654A1 (en) * 2004-10-05 2006-04-13 Matsushita Electric Industrial Co., Ltd. Plasma display panel and production method therefor

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05342992A (en) * 1992-06-05 1993-12-24 Fujitsu Ltd Plane discharge type plasma display panel
JPH08185802A (en) * 1994-12-28 1996-07-16 Noritake Co Ltd Discharge display device
JPH08212929A (en) * 1995-02-09 1996-08-20 Dainippon Printing Co Ltd Ac type plasma display panel and manufacture thereof
JPH10302645A (en) * 1997-04-22 1998-11-13 Matsushita Electric Ind Co Ltd Gas discharge panel
JP2001052614A (en) * 1998-09-08 2001-02-23 Matsushita Electric Ind Co Ltd Display panel and manufacture of the same
JP2000311614A (en) * 1999-04-27 2000-11-07 Matsushita Electric Ind Co Ltd Ac type plasma display device
JP2001035385A (en) * 1999-07-16 2001-02-09 Kyocera Corp Plasma display panel and manufacture thereof
JP2002110046A (en) * 2000-09-27 2002-04-12 Matsushita Electric Ind Co Ltd Surface discharge type plasma display panel
WO2004038753A1 (en) * 2002-10-22 2004-05-06 Matsushita Electric Industrial Co., Ltd. Plasma display panel
JP2004200040A (en) * 2002-12-19 2004-07-15 Pioneer Electronic Corp Plasma display panel
JP2004214049A (en) * 2003-01-06 2004-07-29 Matsushita Electric Ind Co Ltd Gas discharge panel and its manufacturing method
WO2006038654A1 (en) * 2004-10-05 2006-04-13 Matsushita Electric Industrial Co., Ltd. Plasma display panel and production method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010073508A (en) * 2008-09-19 2010-04-02 Hitachi Ltd Plasma display panel and image display device with same

Also Published As

Publication number Publication date
JPWO2008038360A1 (en) 2010-01-28

Similar Documents

Publication Publication Date Title
JP2006147542A (en) Plasma display panel and driving method for driving it
JP2006147538A (en) Plasma display panel
US20060043883A1 (en) Plasma display panel
JP2006018258A (en) Plasma display panel
JP4637941B2 (en) Plasma display panel and plasma display device using the same
WO2008038360A1 (en) Plasma display panel and method for fabricating the same
JP4670990B2 (en) Plasma display panel
KR100421489B1 (en) Plasma Display Panel
US20070126659A1 (en) Plasma display apparatus and driving method thereof
JP2005249949A (en) Method for driving plasma display panel
JP2002075215A (en) Plasma display panel
US20060066516A1 (en) Driving method of plasma display panel
US20110259624A1 (en) Plasma display panel and multi-plasma display panel
US6667581B2 (en) Plasma display panel
US7692387B2 (en) Plasma display panel
JPWO2005116965A1 (en) Driving method of display device
KR100766948B1 (en) Plasma display panel
KR100581905B1 (en) Plasma display panel
US20080158099A1 (en) Plasma display apparatus and driving method thereof
US20090146923A1 (en) Plasma display device and plasma display panel
KR101073317B1 (en) Plasma Display Panel
KR100553770B1 (en) Plasma display panel
JP2007047755A (en) Method of driving plasma display panel and plasma display device driven using the same
KR100550994B1 (en) Plasma display panel
JP4701991B2 (en) Plasma display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06810716

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008536242

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06810716

Country of ref document: EP

Kind code of ref document: A1