WO2008037133A1 - Method and device for security-inspection of liquid articles with radiations - Google Patents

Method and device for security-inspection of liquid articles with radiations Download PDF

Info

Publication number
WO2008037133A1
WO2008037133A1 PCT/CN2006/003327 CN2006003327W WO2008037133A1 WO 2008037133 A1 WO2008037133 A1 WO 2008037133A1 CN 2006003327 W CN2006003327 W CN 2006003327W WO 2008037133 A1 WO2008037133 A1 WO 2008037133A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
inspected
radiation
detector
information
Prior art date
Application number
PCT/CN2006/003327
Other languages
English (en)
French (fr)
Other versions
WO2008037133A8 (fr
Inventor
Haifeng Hu
Yuanjing Li
Kejun Kang
Zhiqiang Chen
Yinong Liu
Yulan Li
Li Zhang
Wanlong Wu
Ziran Zhao
Xilei Luo
Bin Sang
Original Assignee
Nuctech Company Limited
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuctech Company Limited, Tsinghua University filed Critical Nuctech Company Limited
Priority to EP06817965.4A priority Critical patent/EP2085771B1/en
Priority to PL06817965T priority patent/PL2085771T3/pl
Priority to BRPI0614513-2A priority patent/BRPI0614513B1/pt
Priority to JP2008535874A priority patent/JP4944892B2/ja
Publication of WO2008037133A1 publication Critical patent/WO2008037133A1/zh
Publication of WO2008037133A8 publication Critical patent/WO2008037133A8/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/10Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the material being confined in a container, e.g. in a luggage X-ray scanners
    • G01V5/22

Definitions

  • the present invention relates to the field of radiation inspection techniques, and more particularly to a method and apparatus for rapid safety inspection of liquid articles by radiation. Background technique
  • Electromagnetic methods take an active measurement method that distinguishes liquid objects according to the dielectric constants of different liquid objects to electromagnetic waves.
  • the electromagnetic method itself is susceptible to the adverse effects of metal packaging and thicker material packaging. Therefore, in the actual situation where the packaging materials are complicated, the electromagnetic method has certain limitations.
  • X-ray two-dimensional imaging technology integrates the three-dimensional information of the object to be inspected in the direction of the X-ray beam. Project an image of the two-dimensional information to the object. These images use grayscale or pseudo-color representations to show differences in the image, giving the device operator an intuitive display.
  • X-ray two-dimensional imaging technology lacks information on one dimension of the object to be inspected, so the inspection of liquid objects by this technique is particularly affected by the shape and size of the liquid object being inspected.
  • Three-dimensional CT scanning imaging technology is the promotion and application of CT technology.
  • CT technology was first used in medicine and is a tool to assist doctors in their diagnosis. It is achieved by multi-angle projection of each fault of the object under inspection.
  • the reconstruction of the multi-angle projection data of each of the above-mentioned faults is performed by a computer, and the reconstructed image of each fault is calculated, and different attenuation coefficient information in the reconstructed image is displayed in different gradations, thereby displaying the internal difference of the object to be inspected.
  • industrial CT for non-destructive testing and baggage CT for safety inspection have emerged. These CT expansion techniques are still aimed at obtaining tomographic images showing internal differences in objects. Therefore, the traditional X-ray 3D imaging technology is used to check the liquid objects safely, and only the tomographic image information with no difference can be seen.
  • the CT type safety inspection equipment mentioned above has a wide range of objects to be inspected, resulting in high cost, cumbersome equipment, and difficulty in promotion and application.
  • a method of performing a security inspection of a liquid article with radiation comprising the steps of: acquiring environmental initial information; emitting a beam of radiation to transmit the liquid article; receiving a transmission of the liquid article a beam of rays to form multi-angle projection data; based on the environmental initial information and the uniformity of the liquid item, calculating a ray absorption coefficient of the liquid object to be inspected by performing an inverse operation on the multi-angle projection data; And comparing the ray absorption coefficient with preset data to obtain related information of the liquid object to be inspected.
  • the environmental initial information includes a geometric boundary of the liquid object to be inspected Information.
  • the geometric boundary information is obtained by radiographic techniques or scanning imaging techniques.
  • the liquid object to be inspected exhibits uniformity in ray absorption.
  • an apparatus for performing a security inspection of a liquid article with radiation comprising: a radiation source for emitting a beam of radiation; and a carrier mechanism for carrying the liquid object to be inspected for transmission by the beam a detecting and collecting device, configured to acquire environmental initial information and multi-angle projection data of the liquid object to be inspected; and a computer data processor, wherein the computer data processor comprises: an initial environment of the liquid object to be inspected Information and the uniformity of the liquid substance to be inspected as a limiting condition, performing inverse operation on the acquired multi-angle projection data, calculating a ray absorption coefficient of the liquid object to be inspected; and calculating the ray absorption coefficient and the preset The means for comparing the data to obtain information about the liquid item to be inspected.
  • the source of radiation is an X-ray machine or an isotope source.
  • the source of radiation is one or more.
  • the ray energy of the source is adjustable.
  • the detecting and collecting device is provided by a detector and a data collector
  • the detector is a solid state detector, a liquid detector, a gas detector or a semiconductor detector.
  • the detectors are one or more.
  • the detector has the form of a one-dimensional array or a two-dimensional array. According to an embodiment of the present invention, the detector has an energy selection function.
  • the detector operates in a (current) integration mode or a pulse (count) mode.
  • the multi-angle projection data is obtained by rotating a liquid object to be inspected or a rotating ray source and a detecting and collecting device.
  • the multi-angle projection data is obtained by increasing the number of projection angles or by 1/4 of the size of the detector mounting offset detector unit.
  • the computer data processor may perform the comparison using a predetermined identification algorithm.
  • the coordination of the source, the detecting and collecting device, the carrier mechanism and the computer data processor is controlled by a scan controller.
  • the device of the invention has the advantages of small footprint, high accuracy, safety and reliability, and easy protection.
  • the invention is applicable to safety inspections in the aerospace sector and other important locations.
  • FIG 2 is a block diagram showing the structure of a computer data processor in the inspection apparatus shown in Figure 1;
  • Figure 3 is a flow chart showing an inspection method according to an embodiment of the present invention.
  • Fig. 4 is a functional block diagram showing a computer data processor in the inspection apparatus shown in Fig. 1. detailed description
  • FIG. 1 is a schematic structural view of an inspection apparatus according to an embodiment of the present invention.
  • the inspection apparatus includes a radiation source 10 that emits inspection rays, such as an X-ray machine or an isotope (X or ⁇ -ray source), and a carrier mechanism 30 that carries the liquid object to be inspected 20 Rotating around the axis, and can be raised and lowered, so that the liquid object 20 to be inspected enters the detection area, so that the radiation emitted by the radiation source 10 can pass through the liquid object to be inspected 20; the detecting and collecting device 40, which is a probe having an integral module structure And a data collector for detecting radiation transmitted through the liquid article 20 to be inspected, obtaining an analog signal, and converting the analog signal into a digital signal to output scan data of the liquid article 20; and a scan controller 50 for controlling the entire
  • a radiation source 10 that emits inspection rays, such as an X-ray machine or an isotope (X or ⁇ -ray source)
  • a carrier mechanism 30 that carries the liquid object to be inspected 20 Rotating around the axis, and can
  • the source 10 is placed on the side of the carrier mechanism 30 on which the liquid article 20 to be inspected can be placed, and the detection and collection device 40 is placed on the other side of the carrier mechanism 30, including the detector and data collector.
  • the data collector includes a data amplification forming circuit that operates in either (current) integration mode or pulse (count) mode. Detection and mining
  • the data output cable of the collection device 40 is coupled to the computer data processor 60, and the acquired data is stored in the computer data processor 60.
  • Fig. 2 shows a block diagram of the computer data processor 60 shown in Fig. 1.
  • the data collected by the data collector is stored in the memory 61.
  • the read-only memory (ROM) 62 stores configuration information and programs of the computer data processor.
  • Random access memory (RAM) 63 is used to temporarily store various data during the operation of processor 66.
  • the memory 61 also stores a computer program for performing data processing and a pre-programmed database storing information about various known liquid items, such as ray absorption coefficient, density, etc., for use with the processor. The calculated ray absorption coefficients of the liquid objects 20 to be inspected are compared.
  • the internal bus 64 is connected to the above-described memory 61, read only memory 62, random access memory 63, input device 65, processor 66, and display device 67.
  • the instruction code in the computer program instructs the processor 66 to execute a predetermined data processing algorithm, and after obtaining the data processing result, displays it on, for example, an LCD.
  • the processing result is outputted directly on the display device 67 such as a display or in the form of a hard copy.
  • Figure 3 shows a flow chart of an inspection method in accordance with one embodiment of the present invention.
  • step S10 the liquid object to be inspected 20 is placed on the carrying mechanism 30.
  • the scanning controller 50 controls the radiation source 10 to emit radiation, and controls the carrying mechanism 30 to rise or Falling, entering the detection space consisting of the X-ray source 10 and the detector, that is, the detection area.
  • a beam of rays is emitted from the source 10 to transmit the liquid article 20 to be inspected.
  • Scan controller 50 controls detection and acquisition device 40 to receive radiation transmitted through the liquid item being inspected to obtain environmental initial information, such as geometric boundary information, of the liquid item being inspected.
  • This geometric boundary information can be obtained by X-ray photography or by X-ray scanning imaging technology.
  • X-ray scanning imaging technology can be used in translation mode, rotation mode or spiral mode.
  • the environmental initial information of the liquid substance to be inspected 20 is obtained, including the size of the package, the material of the package, the package and the volume ratio of the liquid object to be inspected, and the like.
  • the neural network recognition algorithm can be used to classify these information and ray absorption coefficients of various liquid articles in advance to form a database.
  • the classification characteristics of the actual measurement are compared with the classification features in the database, thereby realizing the inspection of the liquid object 20 to be inspected.
  • step S20 the carrier mechanism 30 is rotated under the control of the scanning controller 50, and when the first angle is reached, rays are emitted from the radiation source 10 to penetrate the liquid article 20 to be inspected.
  • Detection and acquisition The set 40 receives the transmitted ray and obtains a first angular projection data, denoted as a 1 XN dimensional vector gl , stored in a memory 61 of the computer data processor 60, where N represents the number of detector elements in a row in the detector.
  • step S20' the carrier mechanism 30 continues to rotate under the control of the scanning controller 50, and when the second angle is reached, rays are emitted from the radiation source 10 to penetrate the liquid object 20 to be inspected.
  • the detection and collection device 40 receives the transmitted radiation and obtains second angular projection data, represented as a 1 XN dimensional vector g2 , which is stored in the memory 61 of the computer data processor 60.
  • step S20 the carrier mechanism 30 is rotated under the control of the scan controller 50, and until the Mth angle, the Mth angle projection data is obtained, expressed as 1 XN dimensional vector g M , and stored.
  • the memory 61 of the computer data processor 60 In the memory 61 of the computer data processor 60.
  • the angular projection number may be increased in the scanning or the detector mounting offset may be made up to 1/4 of the size of the detector unit of the detector.
  • H l .., H M are the system matrices of NX I, and each of their elements H n j reflects the signal collected by the nth detector at the corresponding angle of the discrete pixel point j in the object image. Contribution coefficient.
  • H ⁇ . ⁇ HM is a sparse matrix, determined by the specific design of the scanning system, and can be stored in the memory 61 by pre-calculation or determined on the basis of system parameters. Therefore, the line attenuation coefficient information of the scanned object can be obtained by performing the inverse operation on the formula (1).
  • the inverse operation is the inverse of the positive operation.
  • the positive operation process refers to an operation process in which the initial signal from the radiation source is attenuated when passing through the liquid object 20 to be inspected, and the attenuated radiation signal is received by the detector. Therefore, the process of calculating the attenuation information of the liquid object to be detected according to the received signal of the detector is an inverse operation.
  • the inversion operation since the inversion operation is an ill-conditioned problem, it is necessary to fuse other information, such as the geometric boundary information of the liquid object 20 to be inspected obtained in the previous step S10, to improve the validity and stability of the solution. Sex.
  • step S30 the boundary conditions for the inverse operation and the uniformity conditions are set based on the initial environment information including the geometric boundary information of the liquid object 20 to be inspected obtained in step S10.
  • the spatial shape of the liquid article 20 to be inspected can be expressed as a bounded function, and the geometric boundary information of the liquid object to be inspected can be determined by the above-described X-ray radiography or X-ray scanning imaging technique, thereby defining the effective scope of the object function.
  • ⁇ , gP f, - 0, ⁇ ⁇ ⁇
  • the introduction of boundary conditions can improve the speed of the solution and improve the morbidity of the problem to some extent.
  • the target object of the inspection system is a liquid object portion
  • the scanned object can be divided into two parts: a liquid item area and a non-liquid item area ⁇ ⁇ .
  • the smoothing function is characterized by a limited overall variance in the area of the liquid item and limited local fluctuations in the area of the liquid item.
  • the use of liquid articles is highly optimized to optimize the extraction of liquid materials and improve the robustness of the system.
  • a liquid article with uniformity refers to a solution, suspension or emulsion that absorbs radiation uniformly.
  • a liquid item such as milk or porridge is also a liquid item having uniformity in the above sense. That is to say, the uniformity of the liquid article means that the liquid article to be inspected exhibits uniformity in radiation absorption.
  • step S40 the computer data processor 60 calculates the liquid product 20 to be inspected by using the geometrical boundary size of the liquid article 20 to be inspected as a boundary condition, and the uniformity of the liquid article as a convergence condition by the above formula (1). Ray absorption coefficient. Then, the effective ray absorption coefficient of the liquid article is calculated based on the statistical characteristics of the pixel values in the obtained region.
  • step S50 the computer data processor 60 gives relevant information about the liquid object 20 to be inspected by comparing the calculated radiation absorption coefficient with the radiation absorption coefficient of a known liquid article in the database. For example, if the absorption coefficient of alcohol is -280, then for an unknown liquid item, if the result of the measurement falls between -270 and -290, it can be considered to have a high probability of being alcohol. Then, the identification information of the liquid object to be inspected or the direct print output is presented by the display device 67.
  • the Bayesian method may be used to calculate the ray absorption coefficient of the liquid object 20 to be inspected using the geometric boundary information and the uniformity as a condition, or the above formula (1) may be first solved by a non-statistical method.
  • the line attenuation coefficient of the liquid object 20 to be inspected is estimated according to the distribution of fi, i to improve the validity and stability of the calculation.
  • the following examples illustrate the use of Bayesian methods and non-statistical methods to calculate shots. The process of line absorption coefficient.
  • fefl; or liquid argmax ( (f ))
  • the absorption coefficient of the liquid item is obtained according to the statistical characteristics of fe Q/, eg / ⁇ - meanW ⁇ ; b) if the uniformity is not satisfied sexual requirements, boundary condition processing and smoothing of the ray absorption coefficient f, to obtain f'.
  • the orthographic projection of f' and the collected data g are compared, 'the difference between the two' is re-analyzed and reconstructed f, and back to step 2.
  • the speed and accuracy of the calculation can be adjusted by setting different uniformity requirements.
  • the absorption coefficient of liquid articles can be obtained in one step without iteration.
  • step S10 if the liquid object 20 to be inspected is found to be sandwiched or layered, for example, having two layers, the geometric boundary information of the two liquid articles is obtained by the method described above, respectively. Then, the same subsequent processing is performed for each liquid product, and finally, the identification information of the two liquid articles is output as the final identification information of the liquid object 20 to be inspected.
  • steps S10 to S50 as described above can be performed on the first liquid article region ⁇ 1 ⁇ and the second liquid article region ⁇ 1 ⁇ , respectively.
  • information such as the package size of various liquid articles, the packaging material, the volume ratio of the package and the liquid substance to be inspected, and the ray absorption coefficient, such as artificial neural network (ANN), support vector machine (SVM).
  • ANN artificial neural network
  • SVM support vector machine
  • a recognition algorithm such as Bayesian Network (BNN) builds a classification table for various known liquid items and stores them in a database.
  • the same neural network identification algorithm is used to determine the category of the liquid substance 20 to be inspected in the database, thereby obtaining Information for identification of the liquid article 20 to be inspected.
  • the scanning of the liquid article 20 to be inspected is used to realize scanning.
  • this scanning method the volume of the device is reduced, and the cost of the device is reduced.
  • source 10 may include one or more X-ray machines, or one or more isotope sources, and the energy of the X-ray machine's rays is adjustable.
  • the number of detectors may be the same as the number of X-ray machines or isotope sources, and the plurality of detectors are disposed corresponding to the radiation sources.
  • the detector may be a gas detector, a liquid detector, a solid state detector or a semiconductor detector, and has an energy selection function.
  • the detector can be used in a one-dimensional array or a two-dimensional array, that is, a line array detector or an area array detector.
  • FIG. 4 shows a functional block diagram of computer data processor 60 in the inspection apparatus as shown in Figure 1.
  • the computer data processor 60' includes: a data memory 71, storage environment initial information and multi-angle projection data, and other data, such as a system describing system characteristics.
  • Matrix H ?? H M may also store a database of classification tables of various liquid items, for comparison in the inspection process
  • the absorption coefficient calculation unit 72 is based on environmental initial information stored in the data memory 71, such as geometric boundary information of the liquid object to be inspected, and multi-angle projection data, according to the above formula (1), using the uniformity of the liquid item as
  • the condition calculates the ray absorption coefficient of the liquid article 20 to be inspected;
  • the comparison unit 73 compares the ray absorption coefficient of the liquid object 20 to be inspected calculated by the absorption coefficient calculation unit 72 with the ray absorption coefficient stored in advance in the database, Thereby determining the identification information of the liquid object 20 to be inspected; the output unit 75, for example,

Description

一种用射线对液态物品进行安全检查的方法及设备
技术领域
本发明涉及辐射检査技术领域,特别涉及一种用射线对液态物品进行快速安 全检查的方法及设备。 背景技术
美国的 9 · 11事件发生以后, 航空领域的安全检査工作越来越受到重视。 在 以往进行的行李包裹安全检査的基础上, 增加了对旅客随身携带的液态物品的安 全检査要求。 因此, 急需有效的方式和手段进行行李物品中液态物品的快速安全 检査。
当前, 有如下四类的方法可以用于液态物品的安全检査: 化学方法、 电磁方 法、 中子方法和射线方法, 具体描述如下-
1 ) 化学方法可以细分为气味识别、 离子扫描探测和物质分析。 气味识别在 实际应用中常常因为液态物品被密封包装而无法实现检査。离子扫描探测以高敏 感性著称, 但是其缺点在于误报率高, 常常受到背景环境的影响。 物质分析具有 精度高和准确性高的特点, 但是这种方法需要一定的时间对样品进行分析, 不能 满足现场快速检査的需求。
2) 电磁方法采取主动的测量方式, 其根据不同液态物品对电磁波的介电常 数不同从而将液态物品区分开来。 电磁方法本身容易受到金属包装和较厚材料包 装的不利影响。 因此, 在包装材料复杂的实际情况下, 电磁方法具有一定的局限 性。
3 ) 中子检査方法的使用会出现 "中子活化" 的现象, 即经过中子检查的被 检查液态物品会有辐射残留现象。 并且, 由于中子的穿透能力更强, 故其辐射屏 蔽更为复杂、 设备占地面积大, 因而不适合在民航的安全检査系统中使用。
4) 当前, 航空领域的安全检査装置多为射线装置, 这些装置中, 目前采用 最多的技术是 X射线二维成像技术和三维 CT扫描成像技术。这些技术主要用于 对行李物品进行安全检查, 不能专门针对行李物品中的液态物品进行安全检査。
X射线二维成像技术是将被检査物体的三维信息在 X射线束方向上积分而得 到物体的二维信息投影图像。这些图像采用灰度或伪彩色的表现形式表现出图像 上的差异, 给设备操作人员以直观的显示。 但是, X射线二维成像技术毕竟缺少 了被检查物体一个维度的信息, 因此用该技术对液态物品进行检查受到被检查液 态物品的外形和尺寸的影响特别严重。
三维 CT扫描成像技术是 CT技术的推广和应用。 CT技术最早应用于医学, 是辅助医生进行诊断的工具。它是通过对被检查物的各个断层进行多角度的投影 来实现的。 通过计算机对上述各个断层的多角度投影数据的重建, 计算得到每个 断层的重建图像, 以不同的灰度显示重建图像中不同的衰减系数信息, 从而显示 被检查物的内部差异。 随着 CT技术的发展, 出现了用于无损探伤的工业 CT和 用于安全检查的行李 CT等, 这些 CT拓展技术仍然是以获得显示物体内部差异 的断层图像为目的的。 因此, 采用传统的 X射线三维成像技术对液态物品进行安 全检査, 只能看到没有差异的断层图像信息。
上述 CT型安全检査设备, 因其所覆盖的被检査物范围广, 而导致造价髙昂, 设备笨重, 推广应用困难。
综上所述, 对于液态物品进行快速检查, 化学方法、 电磁方法和中子方法存 在着本身不适合快速安全检查的特点, 采用 X射线二维成像技术和三维 CT扫描 成像技术, 获得了具有对比性的灰度图像或者伪彩色图像, 但不能为液态物品安 全检査提供充分依据。 发明内容
为了克服上述现有技术中存在的不足, 本发明的目的是提供了一种用射线对 液态物品进行安全检査的方法和设备, 它可以在不破坏液态物品包装的情况下对 其进行快速检査, 得到被检査液态物品的定量信息。
'在本发明的一 方面, 提出了一种用射线对液态物品进行安全检査的方法, 包括步骤: 获取环境初始信息; 发出射线束以透射所述液态物品; 接收透射过 所述液态物品的射线束, 以形成多角度投影数据; 基于所述环境初始信息和所 述液态物品的均匀性, 通过对所述多角度投影数据进行求逆运算, 来计算得到被 检液态物品的射线吸收系数; 以及将所述射线吸收系数与预设数据进行比对, 得 到被检液态物品的相关信息。
根据本发明的一个实施例, 所述环境初始信息包括被检液态物品的几何边界 信息。
根据本发明的一个实施例, 所述几何边界信息是通过射线照相技术或者扫描 成像技术而获取的。
根据本发明的一个实施例, 所述被检液态物品对射线吸收表现出均匀性。 在本发明的另一方面, 提出了一种用射线对液态物品进行安全检查的设备, 包括: 射线源, 用于发出射线束; 承载机构, 用于承载被检液态物品使其被射线 束透射; 探测和采集装置, 用于获取环境初始信息和所述被检液态物品的多角度 投影数据; .以及计算机数据处理器, 其中, 所述计算机数据处理器包括: 以被检 液态物品的环境初始信息和被检液态物品的均匀性作为限定条件, 对获取的多角 度投影数据进行求逆运算, 计算得到所述被检液态物品的射线吸收系数的装置; 以及将所述射线吸收系数与预设数据进行比对, 以得到被检液态物品的相关信息 的装置。
根据本发明的一个实施例, 所述射线源是 X光机或者同位素源。
根据本发明的一个实施例, 所述射线源是一个或者多个。
根据本发明的一个实施例, 所述射线源的射线能量是可调的。
根据本发明的一个实施例, 所述探测和采集装置是由探测器和数据采集器以
—体的形式形成的。
根据本发明的一个实施例, 所述探测器是固体探测器、 液体探测器、 气体探 测器或者半导体探测器。
根据本发明的一个实施例, 所述探测器是一个或者多个。
根据本发明的一个实施例, 所述探测器具有一维阵列或者二维阵列的形式。 根据本发'明的一个实施例, 所述探测器具有能量选择功能。
根据本发明的一个实施例, 所述探测器工作于 (电流) 积分方式或脉冲 (计 数) 方式。
根据本发明的一个实施例, 所述多角度投影数据是采用旋转被检液态物品或 旋转射线源和探测和釆集装置来获得的。
根据本发明的一个实施例, 所述多角度投影数据是通过增加投影角度数或使 探测器安装偏移探测器单元尺寸的 1/4来获得的。
根据本发明的一个实施例, 所述计算机数据处理器可采用预定的识别算法 来进行所述比对。 根据本发明的一个实施例, 所述射线源、 探测和采集装置、 承载机构以及计 算机数据处理器的协调工作由扫描控制器控制。
本发明装置具有占地面积小、 准确性高、 安全可靠、 易于防护的优点。 本发 明适用于航空领域和其它重要场所的安全检査。 附图说明
从下面结合附图的详细描述中, 本发明的上述特征和优点将更明显, 其中: 图 1是根据本发明一个实施方式的检查设备的结构示意图。
图 2示出了如图 1所示的检査设各中的计算机数据处理器的结构图; 图 3示出了根据本发明一个实施例的检査方法的流程图; 以及
图 4示出了如图 1所示的检査设备中的计算机数据处理器的功能框图。 具体实施方式
下面, 参考附图详细说明本发明的优选实施方式。 在附图中, 虽然示于不同 的附图中, 但相同的附图标记用于表示相同的或相似的组件。 为了清楚和简明, 包含在这里的已知的功能和结构的详细描述将被省略, 否则它们将使本发明的主 题不清楚。
图 1是根据本发明一个实施方式的检査设备的结构示意图。
如图 1所示,根据本实施方式的检查设备包括:发出检查用射线的射线源 10, 诸如 X光机或者同位素 (X或 γ射线源); '承载机构 30, 其承载被检液态物品 20 围绕轴 Ζ转动, 并且可以升降, 使得被检液态物品 20进入检测区域, 从而由射 线源 10发出的射线能够透过被检液态物品 20; 探测和采集装置 40, 它是具有整 体模块结构的探测器及数据采集器, 用于探测透射被检液态物品 20 的射线, 获 得模拟信号, 并且将模拟信号转换成数字信号, 从而输出液态物品 20 的扫描数 据; 扫描控制器 50, 它用于控制整个系统的各个部分同步工作; 以及计算机数据 处理器 60, 它用来处理由数据采集器采集的数据, 并输出检查结果。
如图 1所示, 射线源 10置于可放置被检液态物品 20的承载机构 30—侧, 探测和釆集装置 40置于承载机构 30的另一侧, 包括探测器和数据采集器, 用于 获取被捡液态物品 20 的环境初始信息和多角度投影数据。 数据采集器中包括数 据放大成形电路, 它可工作于 (电流) 积分方式或脉冲 (计数) 方式。 探测和采 集装置 40的数据输出电缆与计算机数据处理器 60连接, 将采集的数据存储在计 算机数据处理器 60中。
图 · 2示出了如图 1所示的计算机数据处理器 60的结构框图。 如图 2所示, 数据釆集器所釆集的数据存储在存储器 61中。 只读存储器 (ROM) 62中存储有 计算机数据处理器的配置信息以及程序。 隨机存取存储器 (RAM) 63 用于在处 理器 66工作过程中暂存各种数据。 另外, 存储器 61中还存储有用于进行数据处 理的计算机程序和预先编制的数据库, 该数据库存储有各种已知液态物品的相关 信息, 例如射线吸收系数、 密度等等信息, 用于与处理器 66所计算出的被检液 态物品 20的射线吸收系数进行比对。 内部总线 64连接上述的存储器 61、只读存 储器 62、 随机存取存储器 63、 输入装置 65、 处理器 66和显示装置 67。
在用户通过诸如键盘和鼠标之类的输入装置 65 输入的操作命令后, 该计算 机程序中的指令代码命令处理器 66执行预定的数据处理算法, 在得到数据处理 结果之后, 将其显示在诸如 LCD显示器之类的显示装置 67上, 或者直接以硬拷 贝的形式输出处理结果。
图 3示出了根据本发明一个实施例的检查方法的流程图。
如图 3所示, 在步骤 S 10, 将被检液态物品 20放置在承载机构 30上, 当操作员 发出开始扫描命令之后, 扫描控制器 50控制射线源 10发出射线, 控制承载机构 30上升或者下降, 进入由 X射线源 10和探测器构成的检测空间, 即检测区域。 此时, 从射线源 10发出射线束, 透射被检液态物品 20。 扫描控制器 50控制探测 和采集装置 40接收透射过被检液态物品的射线, 获得被检测液态物品的环境初 始信息, 例如几何边界信息。 该几何边界信息可以通过 X射线照相技术, 也可以 通过 X射线扫描成像技术来获得。 X射线扫描成像技术可以采用平移方式、 旋转 方式或者螺旋方式。
此外, 在上述的处理过程中, 所获得被检测液态物品 20的环境初始信息, 还包括包装的大小、 包装的材质、 包装和被检测液态物品的体积比等。 可以利用 神经网络识别算法事先对各种液态物品的这些信息和射线吸收系数建立分类, 形 成数据库。在实际的检査过程中根据实际测量的各分类特征与数据库中的分类特 征进行比对, 从而实现对被检测液态物品 20的检査。
然后, 在步骤 S20, 承载机构 30在扫描控制器 50的控制下, 进行旋转, 当 达到第一角度时, 从射线源 10发出射线, 穿透被检液态物品 20。 探测和采集装 置 40接收透射的射线, 获得第一角度投影数据, 表示为 1 XN维向量 gl, 存储在 计算机数据处理器 60的存储器 61中,这里 N表示探测器中一行探测器单元的数 目。
在步骤 S20', 承载机构 30在扫描控制器 50的控制下, 继续旋转, 当达到 第 2角度时, 从射线源 10发出射线, 穿透被捡测液态物品 20。 探测和釆集装置 40接收透射的射线, 获得第二角度投影数据, 表示为 1 XN维向量 g2, 存储在计 算机数据处理器 60的存储器 61中。
这样, 重复上述的步骤, 在步骤 S20", 承载机构 30在扫描控制器 50的控 制下, 进行旋转, 直到第 M角度时, 获得第 M角度投影数据, 表示为 1 XN维 向量 gM, 存储在计算机数据处理器 60的存储器 61 中。 经过上述的扫描过程, 获得了被检液态物品 20的多角度投影数据, 以 MXN维向量 g表示。 因此, 可 以在一个断层内连续获取被检液态物品 20的多角度投影数据 g。
这里, 为了增加多角度投影数据, 在扫描中可以增加角度投影数或将探测 器安装偏移组成探测器的探测器单元的尺寸的 1/4。
设被扫描液态物品 20的线衰减系数 (吸收系数) 表示为 I维的向量 f, 其中 I表示被扫描液态物品的离散化像素维数。 由 X射线与物质的相互作用, 根据比 尔定律有:
gi = e p(-H!f)
2 = exp(-H2f) gM = exp(-HMf) ( 1 )
其中, Hl ..,HM均为 NX I的系统矩阵, 它们的每个元素 Hnj反映了物体图像中离 散象素点 j在该对应角度时对第 n个探测器所采集信号的贡献系数。 H^.^ HM的 每一个为稀疏矩阵, 由扫描系统的具体设计决定, 可以通过预计算存储在存储器 61 中或根据系统参数即时计算确定。 因此, 通过对公式 (1 ) 进行求逆运算即可 以得到被扫描物体的线衰减系数信息。
求逆运算是指正运算的逆过程。正运算过程是指射线源发出的初始信号在经 过被检液态物品 20时进行衰减, 衰减后的射线信号被探测器接收的运算过程。 因此, 根据探测器的接收信号来计算被检液态物品对射线的衰减信息的过程即为 逆运算。 但是, 在液态物品检査过程中, 由于求逆运算是一个病态问题, 需要融合其 它信息, 例如前面在步骤 S 10获得的被检液态物品 20的几何边界信息, 来提高 解的有效性和稳定性。
在步骤 S30, 基于在步骤 S10中获得的包括被检液态物品 20的几何边界信 息的初始环境信息来设定求逆运算用的边界条件以及均匀性条件。被检液态物品 20的空间形状可以表示为一个有界函数, 通过上述的 X射线照相技术或者 X射 线扫描成像技术可以确定被检液态物品 20·的几何边界信息, 从而限定物体函数 的有效作用域 Ω, gP f,- = 0, ί ^Ω ο 边界条件的引入可以提高求解速度, 并且一定 程度改善问题的病态性。 其次, 由于检查系统的目标物体是液态物品部分, 所以 可以把扫描物体分为两个部分: 液态物品区域 和非液态物品区域 Ωη。根据液态 物品的均匀性, 有 fi =平滑函数, i e 。 该平滑函数的特点是液态物品区域 内的整体方差有限, 液态物品区域 内局部的波动有限。液态物品均勾性的使用 很大程度上优化了液态物品信息的提取, 提高了系统的鲁棒性。
注意, 具有均勾性的液态物品, 是指对射线吸收均匀的溶液、 悬浊液或者 乳浊液。 例如, 牛奶、 粥等液态物品也是上述意义上具有均匀性的液态物品。 也 就是说, 液态物品的均匀性是指被检液态物品对射线吸收表现出均匀性。
因此, 在步骤 S40, 计算机数据处理器 60以被检液态物品 20的几何边界尺 寸为边界条件, 通过上述的公式 (1 ) 以液态物品的均匀性为收敛条件, 计算得 到被检液态物品 20的射线吸收系数。 然后, 根据得到的 区域内象素值的统计 特性计算出液态物品的有效射线吸收系数。
然后, 在步骤 S50, 计算机数据处理器 60, 通过将计算出的射线吸收系数与 数据库中的已知液态物品的射线吸收系数进行比较来给出关于该被检液态物品 20的相关信息。例如,酒精的射线吸收系数是 -280,则对于一个未知的液态物品, 如果测量的结果落在 -270〜- 290之间, 可以认为它有很大的概率是酒精。 然后, 通过显示装置 67呈现出该被检液态物品的识别用信息或者直接打印输出。
在上述的步骤 S40中, 既可以采用贝叶斯方法, 将几何边界信息和均匀性作 为条件来计算被检液态物品 20 的射线吸收系数, 也可以采用非统计方法首先求 解上述的公式 (1 ), 得到初步射线吸收系数之后, 利用边界条件和均匀性优化处 理后, 根据 fi, i 的分布估计出被检液态物品 20的线衰减系数, 以提高计算 的有效性和稳定性。下面以示例的形式说明用贝叶斯方法和非统计方法来计算射 线吸收系数的过程。
【贝叶斯方法计算液态物品线吸收系数示例】 .
1、 确定目标函数:
0(f) = 0/(g;f) + AJp(f) (2)
其中, Φ^;ί)是似然函数, 由釆集到的数据的噪声特性确定, 为对 ί Ω,的 均匀性的度量, 比如尸 (f) = - Variance(f)|fEfi,, A为调节参数, 根据经验预先设置;
2、 由数值优化方法求解 f = argmax[ D(f)] , 在此求解过程中, 让 ¾ = 0, i ^Ω;
3、 统计 f 的概率分布
Figure imgf000010_0001
, 可以得到被扫描液态物品的线吸收系数, 例如〃液体 =∞ean(f)|fefl;或者 液体 = argmax( (f ))|fe。, 。
【非统计方法计算液态物品线吸收系数示例】
1、 用解析方法, 例如滤波反投影重建方法或 ART方法, 得到射线吸收系数 f的初步估计;
2、 计算 f, e 的均勾性
a) 如果满足预先设定的均匀性要求, 例如局部方差小于某个阈值, 则 根据 f e Q/的统计特性, 例如/ ^ - meanW^^ , 得到液态物品的吸收系数; b)如果不满足均匀性要求, 对射线吸收系数 f进行边界条件处理和平滑 处理, 得到 f'。 计算处理后 f'的正投影和采集数据 g比较, '对两者的差异进'行再 次地解析重建修改 f , 回到步骤 2。
在非统计方法的实现过程中, 可以通过设置不同的均匀性要求来调节运算速 度和精度, 极端情况下, 可以一步得到液态物品的吸收系数, 无需迭代。
此外, 在上述的步骤 S10中, 如果发现被检液态物品 20是有夹层的或者是 分层的, 例如具有两层, 则釆用如上所述的方法分别得到这两层液态物品的几何 边界信息, 分别针对各层液态物品进行如上相同的后续的处理, 最后分别输出这 两种液态物品的识别用信息, 作为被检液态物品 20的最终识别用信息。
例如, 在液态物品分两层的情况下, 液态物品区域 包括第一液态物品区 域 Ω和第二液态物品区域 Ω,如果第一液态物品区域 Ω的线衰减系数表示为 ΪΑ, 第二液态物品区域 Ω的线衰减系数表示为 , 则 fA=平滑函数 1, ΑεΩ, =平滑函数 2, ΒεΩΙΒ
这样,可以分别对第一液态物品区域 Ω和第二液态物品区域 Ω执行如上所 述的步骤 S10〜S50。 如上所述, 还可以基于各种液态物品的包装大小、 包装材质、 包装和被检测 液态物品的体积比这些信息, 以及射线吸收系数,利用诸如人工神经网络 (ANN)、 支持向量机 (SVM)、 贝叶斯网络 (BNN)之类的识别算法针对已知的各种液态物品 建立分类表, 存储在数据库中。 如上所述, 在步骤 S 10和步骤 S40, 获得了被检 液态物品 20 的环境初始信息和射线吸收系数之后, 利用相同的神经网络识别算 法确定被检液态物品 20在数据库中的类别, 从而得到关于该被检液态物品 20的 识别用信息。
在本实施例中, 采用被检液态物品 20 旋转的方式来实现扫描, 采用这种扫 描方式, 减小了设备的体积, 降低了设备的成本。 但是, 也可以采用被检液态物 品 20静止, 而射线源 10和探测和采集装置 40旋转的扫描方式。
此外, 射线源 10可以包括一个或者多个 X光机, 或者一个或者多个同位素 源, 并且 X光机的射线的能量是可调的。 在射线源 10包括多个 X光机或者多个 同位素源的情况下, 探测器的数目可以与 X光机或者同位素源的数目相同, 并且 这多个探测器与射线源相对应地设置。 这里, 探测器可以是气体探测器、 液体探 测器、 固体探测器或者半导体探测器, 并且具有能量选择功能。 此外, 探测器使 用方式可以是一维阵列或者二维阵列, 也就是线阵探测器或者面阵探测器。
以上以在计算机数据处理器 60 执行包含了预定数据处理算法的计算机程序 的形式描述了射线吸收系数的计算过程和被检测液态物品 20 的识别用信息获得 过程, 但是计算机数据处理器 60还可以以其他的形式来实现。 图 4示出了如图 1 所示的检査设备中的计算机数据处理器 60的功能框图。
如图 4所示,作为计算机数据处理器的另一个例子,.该计算机数据处理器 60' 包括: 数据存储器 71, 存储环境初始信息和多角度投影数据以及其他的数据, 例 如描述系统特性的系统矩阵 H …… HM ; 数据库 74, 存储有各种液态物品的吸 收系数,或者其他的特征信息,也可以存储具有各种液态物品的分类表的数据库, 用于检查过程中的比对之用; 吸收系数计算单元 72, 它基于数据存储器 71中存 储的环境初始信息, 例如被检液态物品的几何边界信息, 和多角度投影数据, 根 据上述的公式 (1 ), 以液态物品的均匀性作为条件, 计算被检液态物品 20 的射 线吸收系数; 比对单元 73, 它根据吸收系数计算单元 72所计算的被检液态物品 20的射线吸收系数与数据库中预先存储的射线吸收系数进行比对,从而确定该被 检液态物品 20的识别用信息; 输出单元 75, 例如显示器或者其他的输出设备, 将比对单元 73所得到的识别用信息直接呈现给操作员。
上面的描述仅用于实现本发明的实施方式, 本领域的技术人员应该理解, 在 不脱离本发明的范围的任何修改或局部替换, 均应该属于本发明的权利要求来限 定的范围, 因此, 本发明的保护范围应该以权利要求书的保护范围为准。

Claims

权 利 要 求
1、 一种用射线对液态物品进行安全检查的方法, 包括步骤- 获取环境初始信息;
发出射线束以透射所述液态物品;
接收透射过所述液态物品的射线束, 以形成多角度投影数据;
基于所述环境初始信息和所述液态物品的均匀性, 通过对所述多角度投影数 据进行求逆运算, 来计算得到被检液态物品的射线吸收系数; 以及
将所述射线吸收系数与预设数据进行比对, 得到被检液态物品的相关信息。
2、 根据权利要求 1 所述的方法, 其特征在于, 所述环境初 信息包括被捡 液态物品的几何边界信息。
3、 根据权利要求 2所述的方法, 其特征在于, 所述几何边界信息是通过射 线照相技术或者扫描成像技术而获取的。
4、 按照权利要求 2所述的方法, 其特征在于, 所述被检液态物品对射线吸 收表现出均匀性。
5、 一种用射线对液态物品进行安全检査的设备, 包括:
射线源 (10), 用于发出射线束;
承载机构 (30), 用于承载被检液态物品使其被射线束透射;
'探测和采集装置 (40 ), 用于获取环境初始信息和所述被检液态物品的多角 度投影数据; 以及
计算机数据处理器 (60、 60' ), 其中,
所述计算机数据处理器 (60、 60' ) 包括:
以被检液态物品的环境初始信息和被检液态物品的均匀性作为限定条 件, 对获取的多角度投影数据进行求逆运算, 计算得到所述被检液态物品的射线 吸收系数的装置; 以及
将所述射线吸收系数与预设数据进行比对, 以得到被检液态物品的相关 信息的装置。
6、 根据权利要求 5所述的设备, 其特征在于, 所述射线源 (10) 是 X光机 或者同位素源。 •
7、 根据权利要求 6所述的设备, 其特征在于, 所述射线源 (10) 是一个或 者多个。
8、 根据权利要求 6所述的设备, 其特征在于, 所述射线源 (10) 的射线能 量是可调的。
9、 根据权利要求 5所述的设备, 其特征在于, 所述探测和采集装置是由探 测器和数据釆集器以一体的形式形成的。
10、 根据权利要求 9所述的设备, 其特征在于, 所述探测器是固体探测器、 液体探测器、 气体探测器或者半导体探测器。
11、根据权利要求 9所述的设备, 其特征在于, 所述探测器是一个或者多个。
12、 根据权利要求 9所述的设备, 其特征在于, 所述探测器具有一维阵列或 者二维阵列的形式。
13、 根据权利要求 9所述的设备, 其特征在于, 所述探测器具有能量选择功 能。
14、 根据权利要求 9所述的设备, 其特征在于, 所述探测器工作于积分方式 或脉冲方式。
15、 根据权利要求 9所述的设备, 其特征在于, 所述多角度投影数据是采用 旋转被检液态物品或旋转射线源和探测和采集装置来获得的。
16、 根据权利要求 9所述的设备, 其特征在于, 所述多角度投影数据是通过 增加投影角度数或使探测器安装偏移探测器单元尺寸的 1/4来获得的。
17、 根据权利要求 5所述的设备, 其特征在于, 所述计算机数据处理器可采 用预定的识别算法来进行所述比对。
18 根据权利要求 5所述的设备, 其特征在于, 所述射线源 (10 )、 探测和 采集装置 (40)、 承载机构 (30 ) 以及计算机数据处理器 (60、 60' ) 的协调工作 由扫描控制器 ( 50 ) 控制。
PCT/CN2006/003327 2006-09-05 2006-12-07 Method and device for security-inspection of liquid articles with radiations WO2008037133A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06817965.4A EP2085771B1 (en) 2006-09-05 2006-12-07 Method and device for security-inspection of liquid articles with radiations
PL06817965T PL2085771T3 (pl) 2006-09-05 2006-12-07 Sposób i urządzenie do kontroli bezpieczeństwa artykułów ciekłych za pomocą promieniowania
BRPI0614513-2A BRPI0614513B1 (pt) 2006-09-05 2006-12-07 Método e dispositivo para inspeção de segurança de artigos líquidos com radiações
JP2008535874A JP4944892B2 (ja) 2006-09-05 2006-12-07 放射線を用いて液体物品に対する保安検査を行う方法及び装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNB2006101276527A CN100483120C (zh) 2006-09-05 2006-09-05 一种用射线对液态物品进行安全检查的方法及设备
CN200610127652.7 2006-09-05

Publications (2)

Publication Number Publication Date
WO2008037133A1 true WO2008037133A1 (en) 2008-04-03
WO2008037133A8 WO2008037133A8 (fr) 2008-07-24

Family

ID=39092243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/003327 WO2008037133A1 (en) 2006-09-05 2006-12-07 Method and device for security-inspection of liquid articles with radiations

Country Status (14)

Country Link
US (1) US7634055B2 (zh)
EP (1) EP2085771B1 (zh)
JP (1) JP4944892B2 (zh)
KR (1) KR100963186B1 (zh)
CN (1) CN100483120C (zh)
AU (1) AU2006252041B2 (zh)
BR (1) BRPI0614513B1 (zh)
DE (1) DE102006000529A1 (zh)
FR (1) FR2905466A1 (zh)
HK (1) HK1117231A1 (zh)
IT (1) ITTO20060890A1 (zh)
PL (1) PL2085771T3 (zh)
RU (1) RU2372610C1 (zh)
WO (1) WO2008037133A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202007019256U1 (de) * 2006-09-18 2012-01-31 Optosecurity Inc. Vorrichtung zur Beurteilung der Eigenschaften von Flüssigkeiten
US8676744B2 (en) * 2007-10-25 2014-03-18 Lawrence Livermore National Security, Llc Physics-based, Bayesian sequential detection method and system for radioactive contraband
WO2010025539A1 (en) * 2008-09-05 2010-03-11 Optosecurity Inc. Method and system for performing x-ray inspection of a liquid product at a security checkpoint
CA2737075A1 (en) * 2008-09-15 2010-03-18 Optosecurity Inc. Method and apparatus for assessing properties of liquids by using x-rays
EP2396646B1 (en) * 2009-02-10 2016-02-10 Optosecurity Inc. Method and system for performing x-ray inspection of a product at a security checkpoint using simulation
EP2443441B8 (en) 2009-06-15 2017-11-22 Optosecurity Inc. Method and apparatus for assessing the threat status of luggage
US8879791B2 (en) 2009-07-31 2014-11-04 Optosecurity Inc. Method, apparatus and system for determining if a piece of luggage contains a liquid product
CN103959048B (zh) * 2011-10-04 2018-04-06 株式会社尼康 X射线装置、x射线照射方法及构造物的制造方法
CN102901740B (zh) * 2012-07-30 2014-10-22 公安部第一研究所 一种通道式四视角x射线液态物品安全检查系统
CN103162627A (zh) * 2013-03-28 2013-06-19 广西工学院鹿山学院 一种利用柑橘类果实果皮镜面反射进行果实体积估测的方法
WO2014181478A1 (ja) * 2013-05-10 2014-11-13 株式会社ニコン X線装置及び構造物の製造方法
JP6677161B2 (ja) * 2014-09-02 2020-04-08 株式会社ニコン 測定処理装置、測定処理方法および測定処理プログラム
CN107076683B (zh) 2014-09-02 2021-05-07 株式会社尼康 测量处理装置、测量处理方法、测量处理程序和用于制造该装置的方法
DE102016217984A1 (de) * 2016-09-20 2018-04-05 Siemens Healthcare Gmbh Sinogrammbasierte Streustrahlenkorrektur in der Computertomographie
CN106959309A (zh) * 2017-03-24 2017-07-18 中国农业科学院农业信息研究所 一种剩余食物的监测系统
CN109884721A (zh) * 2018-12-10 2019-06-14 深圳极视角科技有限公司 基于人工智能的安检违禁物品检测方法、装置及电子设备
EP3764089A1 (en) * 2019-07-11 2021-01-13 Direct Conversion AB X-ray weld inspection
US11276542B2 (en) 2019-08-21 2022-03-15 Varex Imaging Corporation Enhanced thermal transfer nozzle and system
US11733182B2 (en) * 2019-12-20 2023-08-22 Varex Imaging Corporation Radiographic inspection system for pipes and other structures using radioisotopes
CN114706120B (zh) * 2022-04-15 2023-03-31 电子科技大学 一种降低高效采集可控震源补炮率的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1319759A (zh) * 2000-01-24 2001-10-31 模拟技术公司 使用双能量扫描信息的爆炸材料检测装置和方法
CN1439338A (zh) * 2002-02-22 2003-09-03 Ge医疗系统环球技术有限公司 逆投影方法和x射线计算机化断层摄影装置
US7050533B2 (en) * 2003-10-15 2006-05-23 Siemens Aktiengesellschaft Method and device for determining the type of fluid in a fluid mass in an object
CN1779444A (zh) * 2004-11-26 2006-05-31 清华大学 一种用射线源对液体进行ct安全检测的方法及其装置
US7092485B2 (en) * 2003-05-27 2006-08-15 Control Screening, Llc X-ray inspection system for detecting explosives and other contraband

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4035647A (en) * 1972-05-17 1977-07-12 E M I Limited Radiography
US4663711A (en) * 1984-06-22 1987-05-05 Shell Oil Company Method of analyzing fluid saturation using computerized axial tomography
JPS61226022A (ja) * 1985-03-30 1986-10-07 株式会社東芝 画像処理装置
US4920491A (en) * 1988-05-16 1990-04-24 General Electric Company Enhancement of image quality by utilization of a priori information
SU1636748A1 (ru) * 1988-12-16 1991-03-23 Харьковский государственный университет им.А.М.Горького Устройство дл рентгенофлуоресцентного анализа жидкостей
JPH04276600A (ja) * 1991-03-04 1992-10-01 Nippon Steel Corp X線画像撮影装置及びこの装置を利用したx線ct装置
JP3291410B2 (ja) * 1995-05-31 2002-06-10 株式会社日立製作所 対象物の組成分析方法および装置
RU2095795C1 (ru) * 1995-08-29 1997-11-10 Виктор Михайлович Федосеев Рентгеновский способ обнаружения вещества по значению его эффективного атомного номера
EP0825457A3 (en) * 1996-08-19 2002-02-13 Analogic Corporation Multiple angle pre-screening tomographic systems and methods
AU9474298A (en) * 1997-10-10 1999-05-03 Analogic Corporation Ct target detection using surface normals
US6026171A (en) 1998-02-11 2000-02-15 Analogic Corporation Apparatus and method for detection of liquids in computed tomography data
US6320193B1 (en) * 1999-02-26 2001-11-20 The United States Of America As Represented By The United States Department Of Energy Method for non-intrusively identifying a contained material utilizing uncollided nuclear transmission measurements
JP2004177138A (ja) * 2002-11-25 2004-06-24 Hitachi Ltd 危険物探知装置および危険物探知方法
JP2004325183A (ja) * 2003-04-23 2004-11-18 M & C:Kk 放射線検出方法、放射線検出器、及び、この検出器を搭載した放射線撮像システム
JP2005121528A (ja) * 2003-10-17 2005-05-12 Rigaku Corp 2次元イメージ素子及びそれを利用した2次元イメージ検出装置並びにx線分析装置
US7203267B2 (en) * 2004-06-30 2007-04-10 General Electric Company System and method for boundary estimation using CT metrology
GB2420683B (en) 2004-11-26 2009-03-18 Univ Tsinghua A computer tomography method and apparatus for identifying a liquid article based on the density of the liquid article
CN2747301Y (zh) * 2004-11-26 2005-12-21 清华大学 翼缘弯折的工形截面构件
CN1779451B (zh) 2004-11-26 2010-04-28 清华大学 一种用放射源对液体进行背散射安全检测的装置
US20060234902A1 (en) 2005-04-19 2006-10-19 Unilever Home & Personal Care Usa Fabric care article and method
JP4127699B2 (ja) * 2005-04-25 2008-07-30 アンリツ産機システム株式会社 濃度データ変換方法および装置並びにx線検査システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1319759A (zh) * 2000-01-24 2001-10-31 模拟技术公司 使用双能量扫描信息的爆炸材料检测装置和方法
CN1439338A (zh) * 2002-02-22 2003-09-03 Ge医疗系统环球技术有限公司 逆投影方法和x射线计算机化断层摄影装置
US7092485B2 (en) * 2003-05-27 2006-08-15 Control Screening, Llc X-ray inspection system for detecting explosives and other contraband
US7050533B2 (en) * 2003-10-15 2006-05-23 Siemens Aktiengesellschaft Method and device for determining the type of fluid in a fluid mass in an object
CN1779444A (zh) * 2004-11-26 2006-05-31 清华大学 一种用射线源对液体进行ct安全检测的方法及其装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2085771A4 *

Also Published As

Publication number Publication date
RU2008103176A (ru) 2009-08-10
US7634055B2 (en) 2009-12-15
ITTO20060890A1 (it) 2008-03-06
WO2008037133A8 (fr) 2008-07-24
EP2085771A4 (en) 2010-01-27
KR20080077078A (ko) 2008-08-21
CN100483120C (zh) 2009-04-29
PL2085771T3 (pl) 2014-02-28
AU2006252041A1 (en) 2008-03-20
FR2905466A1 (fr) 2008-03-07
CN101140247A (zh) 2008-03-12
AU2006252041B2 (en) 2009-08-27
BRPI0614513A2 (pt) 2016-11-01
US20080056443A1 (en) 2008-03-06
BRPI0614513B1 (pt) 2018-06-05
RU2372610C1 (ru) 2009-11-10
DE102006000529A1 (de) 2008-03-27
HK1117231A1 (en) 2009-01-09
JP2009503557A (ja) 2009-01-29
JP4944892B2 (ja) 2012-06-06
EP2085771A1 (en) 2009-08-05
EP2085771B1 (en) 2013-09-11
KR100963186B1 (ko) 2010-06-14

Similar Documents

Publication Publication Date Title
WO2008037133A1 (en) Method and device for security-inspection of liquid articles with radiations
JP4624439B2 (ja) 液体物品に隠れている麻薬を検査する方法及び装置
US8036337B2 (en) Method and device for inspection of liquid articles
EP2196797B1 (en) Method and device for detecting a liquid article
GB2441551A (en) Method and apparatus for security inspection of liquid articles using radiation
WO2017012562A1 (zh) 在安检系统中估算被检查物体重量的方法和装置
JP2008536138A (ja) Ctにおけるエネルギー分布再構成
AU2017376804A1 (en) Dual-energy microfocus radiographic imaging method for meat inspection
JP2008519634A (ja) エネルギー分解コンピュータトモグラフィ
Susanto et al. Development of low-cost industrial x-ray computed tomography system based on digital fluoroscopy
JPH10268055A (ja) 放射性廃棄物計測装置及び計測方法
Lehmann et al. Neutron tomography as tool for applied research and technical inspection
JP2016075541A (ja) 溶液散乱法の放射線強度から散乱断面積に変換する方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 404/DELNP/2008

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2008535874

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020087002570

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2008103176

Country of ref document: RU

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06817965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006817965

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0614513

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080130