WO2008035064A2 - Air filtration systems - Google Patents

Air filtration systems Download PDF

Info

Publication number
WO2008035064A2
WO2008035064A2 PCT/GB2007/003547 GB2007003547W WO2008035064A2 WO 2008035064 A2 WO2008035064 A2 WO 2008035064A2 GB 2007003547 W GB2007003547 W GB 2007003547W WO 2008035064 A2 WO2008035064 A2 WO 2008035064A2
Authority
WO
WIPO (PCT)
Prior art keywords
water
air
curtain
flow path
air flow
Prior art date
Application number
PCT/GB2007/003547
Other languages
French (fr)
Other versions
WO2008035064A3 (en
Inventor
Neil Antony Verner
Philip John Prosser
Original Assignee
Sideland Engineering Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sideland Engineering Limited filed Critical Sideland Engineering Limited
Priority to EP07804332A priority Critical patent/EP2069045A2/en
Publication of WO2008035064A2 publication Critical patent/WO2008035064A2/en
Publication of WO2008035064A3 publication Critical patent/WO2008035064A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/06Spray cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/117Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering using wet filtering
    • F24F8/133Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering using wet filtering by direct contact with liquid, e.g. with sprayed liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/117Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering using wet filtering
    • F24F8/142Treatment of used liquid, e.g. cleaning for recycling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2221/00Applications of separation devices
    • B01D2221/02Small separation devices for domestic application, e.g. for canteens, industrial kitchen, washing machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2247/00Details relating to the separation of dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D2247/04Regenerating the washing fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/117Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering using wet filtering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to air filtration systems and, in particular, to such systems arranged for removing contaminants from an air stream, such as arise in air extractors positioned above commercial cooking apparatus, where organic lipid contaminants such as fats, oil and grease (known collectively as "FOGS") often entrained within the air stream.
  • OGS organic lipid contaminants
  • the invention can also be applied to extraction ducts within a plant room.
  • the present invention seeks to provide a system in which both heat and fuel are removed from the duct, thereby eliminating two of the three factors of the triangle of fire.
  • Conventional air filtration systems comprise sheets of filter material which require frequent cleaning or replacement. Improved systems have been developed in which the surface of the filter material is irrigated by one or more sprays of water which serve to remove the contaminants.
  • an air filtration system comprising means defining an air flow path and means for generating a substantially continuous curtain of water which, when viewed along the air flow direction, extends substantially completely across the air flow path, the arrangement being such that, on traversing the water curtain, the air is cooled, thereby causing vaporised impurities entrained therein to condense and to fall under gravity and/or water pressure out of the air flow path.
  • Such a system finds particular application in air extractors within commercial catering environments, in which cooking apparatus presents a substantial risk of fire as a result of the combination of heat and highly inflammable vapours and grease entrained in the extracted air.
  • the filtration system By placing the filtration system in the kitchen which contains the cooking apparatus, any fire within the kitchen is prevented from spreading into other areas through the air extraction system.
  • the water supply for the filtration system is preferably also located in the kitchen. This eliminates the need for a separate water supply to be fitted, and thereby also eliminates the risk of fire spreading through apertures in the kitchen wall through which pipes connecting the water supply to the filtration system would otherwise be required.
  • the water curtain is preferably formed from at least two smaller curtains of water, each of which extends only part-way across the air flow path but which overlap when viewed along the air flow direction to form the composite curtain which extends fully across the air flow path.
  • each curtain can be generated by a nozzle having an angular range of spray which is smaller than would be required with a single curtain.
  • the at least two curtains of water may be located at different positions along the air flow path, so that interaction between the curtains is avoided, or at least reduced, so as to inhibit turbulent flow of water within the curtain.
  • the curtain generating means preferably comprises at least one nozzle of substantially circular cross-section and a respective at least one plate, disposed in relation to its associated nozzle such that water emerging from the or each nozzle is deflected by its associated plate to create a continuous substantially flat curtain of water.
  • This arrangement is advantageous, since any impurities in the water are less likely to cause a blockage in the nozzle that would be the case if the curtain were generated using simply a narrow nozzle.
  • the water is preferably pressurised to between 3 and 4 bar gauge, i.e. between 3 and 4 bar above atmospheric pressure. This contrasts with mains water, which is typically supplied at a pressure of between 0.5 bar and 3 bar gauge.
  • an air filtration system comprising means defining an air flow path and means for generating a substantially continuous curtain of water through which the air is caused to pass in use, the curtain generating means comprising a nozzle of substantially circular cross-section and a plate, disposed in relation to the nozzle such that water emerging from the nozzle is deflected by the plate to create the continuous curtain of water.
  • First and second filter screens are preferably located within the air flow path respectively upstream and downstream of the position of the water curtain.
  • a baffle arrangement is preferably located upstream of the first filter screen for removing relatively heavy particulates from the air. Such an arrangement effectively constitutes a momentum separator by which relatively heavy particulates are diverted away from the air stream and fall under gravity.
  • the design of the baffles is such as to prevent any water vapour or water droplets from being emitted from the upstream end of the filtration system.
  • a mesh filter is preferably located downstream of the second filter screen for removing residual particulates from the air.
  • the present invention extends to an air filtration system, suitable for use in a plant room and comprising an array of air filtration systems of the above type.
  • the present invention further extends to an air filtration system, suitable for use in a plant room and comprising an upstream and a downstream array of filters, each filter within the arrays being of the above type.
  • each of the upstream array of filters preferably comprises a baffle arrangement located upstream of the filter for removing relatively heavy particulates from the air, in which case there is no need for a corresponding baffle arrangement to be provided on the downstream filters.
  • the water may comprise dissolved ozone at a concentration of at least 1 ppm by mass.
  • the air filtration system advantageously further comprises means for re-circulating the water after use.
  • a filter is provided for trapping the FOGS prior to re-circulation.
  • an air filtration system comprising means defining an air flow path and means for generating a stream of water through which the air is caused to pass, wherein the water comprises dissolved ozone at a concentration of at least 1 ppm by mass.
  • the air filtration system preferably further comprises means for ionising the water.
  • Ionised water provides a number of benefits, such as enhanced cleaning power, increased sterility and an enhanced attraction of pollutants.
  • ozone may be dissolved in the water, no detergents of any kind are employed. Not only does this assist in the re-cycling of the water, but the resulting system is not only cheaper, but more environmentally friendly.
  • An electrostatic precipitator may be provided in any of the above systems for removing smoke prior to atmospheric discharge.
  • the system preferably further comprises a telemetry system for enabling remote diagnostics and maintenance of the system.
  • the above air filtration systems are preferably provided with an electronic system for monitoring and controlling their operation.
  • the monitor and control system preferably uses digital technology and is advantageously provided with memory units such as EPROMs, which retain status information in the event of a power failure.
  • the monitor and control system may include internal batteries which provide a back-up in the event of a mains power failure.
  • the monitor and control system is preferably arranged to be upgraded by uploading suitable software, since this eliminates the need for changes to the hard-wiring.
  • the monitor and control system is connected to an ISDN telephone line, such that the control software can be uploaded from a remote location.
  • the systems of the present invention are preferably arranged within a cartridge which can readily be installed within a housing in the form of a canopy located above a commercial cooking apparatus.
  • the size and shape of the canopy is adjusted so as to fit the particular configuration of the cooking apparatus, but the canopy is provided with a standard-sized aperture into which the cartridge is fitted. This arrangement enables cartridges to be manufactured in a single size, which facilitates the replacement of faulty cartridges or cartridges which have been removed for repair or reconditioning.
  • the present invention extends to a method of filtering air extracted into a flow path from a commercial cooking apparatus, the method comprising: generating a substantially continuous curtain of water which, when viewed along the flow path, extends substantially completely across the air flow path, the arrangement being such that, on traversing the water curtain, the air is cooled, thereby causing vaporised impurities entrained therein to condense and to fall under gravity out of the air flow path.
  • the substantially continuous curtain of water is preferably pressurised.
  • the pressure is between 3 and 4 bar gauge pressure.
  • the present invention further extends to a method of filtering air flowing along a path, the method comprising: generating a stream of water through which the air is caused to pass, wherein the water comprises dissolved ozone at a concentration of at least 1 ppm by mass.
  • Figure 1 is a schematic view of the complete system of a preferred embodiment of the present invention
  • Figure 2(a) is an exploded view of the main components of an air filtration system in accordance with a preferred embodiment of the present invention
  • Figure 2(b) is a cross-sectional view of the system of Figure 2(a);
  • Figure 2(c) is an isometric view of a locking handle for retaining the baffle in position;
  • Figure 3(a) is an isometric view of the cartridge used in the system of Figure 2(a);
  • Figure 4(b) is a vertical cross-sectional view of a nozzle used in the system of Figure 2(a);
  • Figure 3(c) illustrates the arrangement of nozzles in the system of Figure 2(a);
  • Figure 4 illustrates the main components of the system of Figure 2(a) together with their connections to supplies of mains electricity and water;
  • Figure 5 is a schematic electrical circuit diagram of the system of Figure 2(a);
  • Figure 6 is a diagram of the control systems used in the system of Figure 2(a);
  • Figure 7 is a schematic diagram of the control system for use with the air filtration system of Figure 2(a); and
  • Figure 8 is an illustration of the application of the present invention to a filtration unit for use in an air extraction duct in a plant room.
  • FIG. 1 illustrates the complete system of a preferred embodiment of the present invention.
  • the components of the system collectively labelled "CANOPY" comprise a unit of an air filtration system which is mounted in use above a commercial cooking installation and oriented such that exhaust air is caused to pass into the unit and also such that the FOGS entrained in the exhaust air stream are condensed by a water curtain within the unit and caused to fall under gravity into a conduit mounted at the bottom of the unit.
  • the components of the CANOPY are described in greater detail below.
  • the water, together with the condensed FOGS are then caused to flow to a further unit of the system labelled as the "BASE UNIT", to be described in greater detail below.
  • the functions, of the BASE UNIT are to filter and collect the FOGS from the water for re-use as fuel, and to re-circulate the water back up to the CANOPY for re-use.
  • the air filtration system of the preferred embodiment of the present invention comprises a cartridge 1 located within a housing 2 and a baffle 3 through which air from an extractor above a cooker is supplied.
  • the baffle 3 is in the form of a number of angled vanes 4 which act as a momentum brake for heavy particulates entrained in the extracted air, thereby causing impurities, such as oil and grease, entrained in the air to fall under gravity into a base unit 6 in the form of a collection container located below the baffle 3.
  • the baffle 3 is provided with a handle 7 (shown in more detail in Figure 2(c)) for ease of attachment and removal of the baffle 3.
  • the cartridge 1 further comprises, downstream of the baffle 3, a first mesh screen filter 8, which serves to even out air flow before entering a first chamber 9, in which two further nozzles 10 create two respective longitudinally separated continuous curtains of water but which overlap when viewed in the direction of air flow within the chamber to form a combined curtain which extends fully across the region where the extracted air passes through the chamber 9.
  • a first mesh screen filter 8 which serves to even out air flow before entering a first chamber 9
  • two further nozzles 10 create two respective longitudinally separated continuous curtains of water but which overlap when viewed in the direction of air flow within the chamber to form a combined curtain which extends fully across the region where the extracted air passes through the chamber 9.
  • the extracted air then passes via a second mesh screen filter 11 into a second chamber 12, which is identical to the first chamber 9.
  • the second mesh screen filter 11 may advantageously be provided with a smaller pitch than that of the first mesh screen filter 8 to allow it to capture any larger particulates which may have penetrated the first mesh screen 8.
  • the water curtains function to cool, and thereby condense, the remaining vaporised oil and grease within the extracted air.
  • the condensed droplets of oil and grease then fall under gravity, along with the water, into the base unit 6.
  • the air is finally extracted from the system via a stainless steel mesh filter 14, which ensures that any remaining particulates emerging through the second chamber 12 are removed by momentum brake generated by the large number of sharp changes of direction of the air flow paths within the mesh filter 14. It also ensures that the amount of water entrained in the air extracted from the filter system is minimal.
  • FIG. 3(a) illustrates the nozzle arrangement in more detail, and the water curtains 15a, 15b, 15c and 15d are indicated by dashed lines.
  • the four water curtains 15a, 15b, 15c, 15d are spaced longitudinally, i.e. in the direction of the air flow through the filter, from each other by 5 mm, and the uppermost part of curtains 15a and 15c extend over a region which is displaced to the right (as viewed in the drawing) relative to the uppermost part of the curtains 15b and 15d.
  • the uppermost parts of curtains 15a and 15c overlap the uppermost parts of curtains 15b and 15d.
  • each of the nozzles, 10, 13 is shown in greater detail in Figure 2(b).
  • the main bore 16 of the nozzle is made of stainless steel tube of 20mm 2 area circular cross- section, but the provision of a profiled plate 17 gives rise to the formation of a curtain of water of narrow width relative to the diameter of the circular bore of the nozzle.
  • the angular range of the spray from each nozzle is 130°.
  • the water and grease are directed to the base unit 6 and then via a weir to a fat removal unit, which is in the form of a single- or dual-stage multisection grease trap.
  • the grease trap, together with a particulate filter are installed within the base unit, and the capacity of the grease trap allows for settlement and separation of grease from the water and filtration of the particulate, thereby reducing the likelihood of the nozzles becoming blocked.
  • Clean water is returned to a recirculation tank and then pumped back to the nozzles.
  • the grease separation tank is removed periodically and the contents re-cycled in an environmentally friendly manner, such as, for example, to generate methane gas for power generation.
  • the water pressure is maintained between 3 and 4 bar gauge.
  • a pressure sensor may be installed to detect a drop in pressure, which would indicate the failure of a feed pipe.
  • a control system may be arranged to shut down the system immediately following a positive detection of such a pressure drop.
  • the control system may be further arranged to communicate this to a remote location to notify that location that immediate service is required.
  • hot water may be supplied into the system to ensure that any grease deposits near the nozzles are dissolved and washed away and also helping to reduce deposits within the fall pipes to the base unit 6.
  • the water used in the preferred system contains ozone, which ensures the complete eradication of water-borne pathogens.
  • the dissolved ozone (O 3 ) reacts with water (H 2 O), giving rise to hydroxyl radicals (HO) and oxygen (O 2 ).
  • HO hydroxyl radicals
  • O 2 oxygen
  • This system can be operated with "grey water” such as rain water or water from existing cooling systems.
  • the water may advantageously be passed through a copper/silver ioniser thereby to create a constant flow of charged ions in the water.
  • the resulting ionised water acts as an excellent solvent which aids the cleaning of the filter and to reduce the frequency with which the filtration system must be maintained; (b) in conjunction with the atomisation design of the nozzles, the ionisation of the water results in a significant increase in smoke attraction;
  • (d) ionisation causes the water to be sterilised and thereby rid of certain water- borne micro-organisms, such as pathogens which are responsible for disease in humans.
  • an electrostatic precipitator is attached to the downstream end of the system to remove smoke particles prior to atmospheric discharge.
  • Figure 4 illustrates how the system is connected to supplies of mains electricity and water and also to a drain.
  • Figure 5 illustrates the electrical connections within the system of the preferred embodiment
  • Figures 6 and 7 illustrate the control systems.
  • the top-level control system ensures that the cook line cannot be operated unless the air filtration system is functioning correctly.
  • the top-level control system is arranged to shut down the air filtration system automatically after 6,000 hours, and to call out a service engineer after 5,000 hours.
  • a fully interlocked system can include a manger's override key to ensure that service is maintained while an engineer attends to the problem.
  • control features are provided by a sophisticated digital electronic monitoring and control system provided with an EPROM memory for retaining status information in the event of a power failure.
  • the system is also provided with batteries which act as a back-up in the event of mains power failure.
  • the monitoring and control system are connected to a telemetry system which permits remote diagnostics and maintenance so that break-down recovery procedures can be activated at the earliest possible time.
  • the monitoring and control system is upgraded by uploading software, which requires no hard-wiring. It is also connected to an ISDN telephone line, which enables the control software to be uploaded from a remote location.
  • the air filtration system has been described above as used in the application to air extractors above cooking apparatus, such a system also finds beneficial application in air extraction ducts within plant rooms.
  • Figure 8 illustrates such an arrangement, from which it can be seen that the unit 18 consists of a first bank 19 of four filters arranged within a vertical plane in a 2 x 2 array, with a pre-stage baffle 20 mounted at the upstream end of the unit 18.
  • a second bank of filters 21 is mounted in an identical array one metre behind the first bank 19. There is no need for an additional pre-stage baffle to be mounted on the second bank of filters 21, since any large debris will already have been removed by the pre-stage baffle 20.
  • the filters of this system and the corresponding control system operate in an identical way to the systems described above in relation to the cooker air extractors, except that the design of the base tank is modified to reduce the tank depth to permit the system to be mounted at a low position in the plant room to suit the low ceilings frequently encountered in such environments. Furthermore, the routing of the water supply will be selected for this application so as to provide for ease of access and the maintenance of the desired water pressure.
  • entry level - a system which is riot interlocked and is purely a grease filtration system, as is sufficient for the majority of restaurants, such as are found in high streets;

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Particles Using Liquids (AREA)
  • Separating Particles In Gases By Inertia (AREA)

Abstract

An air filtration system is described for removing oil and grease entrained in air extracted from the region above a cooker. The system comprises a first mesh screen filter leading to a first chamber, in which two nozzles (10) create two separate continuous water curtains (15a, 15b) which overlap when viewed in the direction of the air flow to form a combined curtain which extends across the region through which the air passes. The extracted air then passes via a second mesh screen filter (11) into a second chamber (12), which is identical to the first chamber (9), and in which two further nozzles (13) are provided which create two further water curtains (15c, 15d). The water curtains (15a, 15b, 15c, 15d) cool and condense vaporised oil and grease within the air, and the condensed oil and grease droplets fall with the water into a container. The main bore of each nozzle is of circular cross-section, but a profiled plate causes the resulting water curtain to have a width which is narrow relative to the diameter of the nozzle bore. The water contains dissolved ozone and can also be 'grey water'.

Description

AIR FILTRATION SYSTEMS
The present invention relates to air filtration systems and, in particular, to such systems arranged for removing contaminants from an air stream, such as arise in air extractors positioned above commercial cooking apparatus, where organic lipid contaminants such as fats, oil and grease (known collectively as "FOGS") often entrained within the air stream. The invention can also be applied to extraction ducts within a plant room.
Such contaminants, apart from presenting environmental pollution and a health and safety risk, also constitute a fire hazard. As is well known in the field of fire prevention, the "triangle of fire" consists of the three necessary factors for a fire to start, which are heat, fuel and oxygen. In the case of fires arising in the type of commercial cooking apparatus which is provided with a duct for the extraction of air, not only can the fire extend into the duct, but residual FOGS deposited in the duct constitute a "fuel load" which can maintain such a fire. As will be appreciated, fires occurring within ducts are notoriously difficult to extinguish, because of the restricted access to such regions. Indeed, fires occurring within air extractor ducts are believed to give rise to the greatest consequential financial losses in fires in commercial cooking environments.
Clearly, it would be desirable to provide arrangements which seek not only to prevent fires from entering ducts in the first place, but also to prevent the maintenance of a fire which happens to spread within the duct. In one aspect, the present invention seeks to provide a system in which both heat and fuel are removed from the duct, thereby eliminating two of the three factors of the triangle of fire.
Conventional air filtration systems comprise sheets of filter material which require frequent cleaning or replacement. Improved systems have been developed in which the surface of the filter material is irrigated by one or more sprays of water which serve to remove the contaminants.
It would be desirable to provide an air filtration system which overcomes, or at least mitigates, this and other disadvantages of such known systems and which provides a method of filtration which is more effective at removing certain contaminants from an air stream.
Thus, in accordance with a first aspect of the present invention there is provided an air filtration system comprising means defining an air flow path and means for generating a substantially continuous curtain of water which, when viewed along the air flow direction, extends substantially completely across the air flow path, the arrangement being such that, on traversing the water curtain, the air is cooled, thereby causing vaporised impurities entrained therein to condense and to fall under gravity and/or water pressure out of the air flow path.
By providing such a curtain of water, substantially all of the air is caused to pass through the curtain, thereby cooling substantially all of the air and thereby optimising the condensation of the contaminants. Such effective cooling of the air stream also reduces the fire hazards associated with air filtration systems. In addition, since water is an effective thermal conductor, heat will be caused to dissipate in the event of a fire, which will prolong the outbreak of the fire through the extractor hood.
Such a system finds particular application in air extractors within commercial catering environments, in which cooking apparatus presents a substantial risk of fire as a result of the combination of heat and highly inflammable vapours and grease entrained in the extracted air. By placing the filtration system in the kitchen which contains the cooking apparatus, any fire within the kitchen is prevented from spreading into other areas through the air extraction system. In this case, the water supply for the filtration system is preferably also located in the kitchen. This eliminates the need for a separate water supply to be fitted, and thereby also eliminates the risk of fire spreading through apertures in the kitchen wall through which pipes connecting the water supply to the filtration system would otherwise be required.
The water curtain is preferably formed from at least two smaller curtains of water, each of which extends only part-way across the air flow path but which overlap when viewed along the air flow direction to form the composite curtain which extends fully across the air flow path. By having a number of smaller curtains of water, each curtain can be generated by a nozzle having an angular range of spray which is smaller than would be required with a single curtain.
The at least two curtains of water may be located at different positions along the air flow path, so that interaction between the curtains is avoided, or at least reduced, so as to inhibit turbulent flow of water within the curtain.
The curtain generating means preferably comprises at least one nozzle of substantially circular cross-section and a respective at least one plate, disposed in relation to its associated nozzle such that water emerging from the or each nozzle is deflected by its associated plate to create a continuous substantially flat curtain of water. This arrangement is advantageous, since any impurities in the water are less likely to cause a blockage in the nozzle that would be the case if the curtain were generated using simply a narrow nozzle. The water is preferably pressurised to between 3 and 4 bar gauge, i.e. between 3 and 4 bar above atmospheric pressure. This contrasts with mains water, which is typically supplied at a pressure of between 0.5 bar and 3 bar gauge.
In accordance with a second aspect of the present invention there is provided an air filtration system comprising means defining an air flow path and means for generating a substantially continuous curtain of water through which the air is caused to pass in use, the curtain generating means comprising a nozzle of substantially circular cross-section and a plate, disposed in relation to the nozzle such that water emerging from the nozzle is deflected by the plate to create the continuous curtain of water.
First and second filter screens are preferably located within the air flow path respectively upstream and downstream of the position of the water curtain.
A baffle arrangement is preferably located upstream of the first filter screen for removing relatively heavy particulates from the air. Such an arrangement effectively constitutes a momentum separator by which relatively heavy particulates are diverted away from the air stream and fall under gravity. The design of the baffles is such as to prevent any water vapour or water droplets from being emitted from the upstream end of the filtration system.
A mesh filter is preferably located downstream of the second filter screen for removing residual particulates from the air.
The present invention extends to an air filtration system, suitable for use in a plant room and comprising an array of air filtration systems of the above type.
The present invention further extends to an air filtration system, suitable for use in a plant room and comprising an upstream and a downstream array of filters, each filter within the arrays being of the above type. In this case, each of the upstream array of filters preferably comprises a baffle arrangement located upstream of the filter for removing relatively heavy particulates from the air, in which case there is no need for a corresponding baffle arrangement to be provided on the downstream filters.
The water may comprise dissolved ozone at a concentration of at least 1 ppm by mass.
The air filtration system advantageously further comprises means for re-circulating the water after use. In applications where FOGS are entrained in the water, a filter is provided for trapping the FOGS prior to re-circulation. Such an arrangement is not only environmentally friendly, but cost-effective when the filtration system is arranged in regions of the world in which water is scarce.
In accordance with a third aspect of the present invention there is provided an air filtration system comprising means defining an air flow path and means for generating a stream of water through which the air is caused to pass, wherein the water comprises dissolved ozone at a concentration of at least 1 ppm by mass.
The air filtration system preferably further comprises means for ionising the water. Ionised water provides a number of benefits, such as enhanced cleaning power, increased sterility and an enhanced attraction of pollutants. In preferred embodiments of the above systems, although ozone may be dissolved in the water, no detergents of any kind are employed. Not only does this assist in the re-cycling of the water, but the resulting system is not only cheaper, but more environmentally friendly.
An electrostatic precipitator may be provided in any of the above systems for removing smoke prior to atmospheric discharge.
The system preferably further comprises a telemetry system for enabling remote diagnostics and maintenance of the system.
The above air filtration systems are preferably provided with an electronic system for monitoring and controlling their operation. The monitor and control system preferably uses digital technology and is advantageously provided with memory units such as EPROMs, which retain status information in the event of a power failure. Furthermore, the monitor and control system may include internal batteries which provide a back-up in the event of a mains power failure.
The monitor and control system is preferably arranged to be upgraded by uploading suitable software, since this eliminates the need for changes to the hard-wiring. In a particularly preferred arrangement, the monitor and control system is connected to an ISDN telephone line, such that the control software can be uploaded from a remote location.
The systems of the present invention are preferably arranged within a cartridge which can readily be installed within a housing in the form of a canopy located above a commercial cooking apparatus. The size and shape of the canopy is adjusted so as to fit the particular configuration of the cooking apparatus, but the canopy is provided with a standard-sized aperture into which the cartridge is fitted. This arrangement enables cartridges to be manufactured in a single size, which facilitates the replacement of faulty cartridges or cartridges which have been removed for repair or reconditioning. The present invention extends to a method of filtering air extracted into a flow path from a commercial cooking apparatus, the method comprising: generating a substantially continuous curtain of water which, when viewed along the flow path, extends substantially completely across the air flow path, the arrangement being such that, on traversing the water curtain, the air is cooled, thereby causing vaporised impurities entrained therein to condense and to fall under gravity out of the air flow path.
The substantially continuous curtain of water is preferably pressurised. Advantageously, the pressure is between 3 and 4 bar gauge pressure.
The present invention further extends to a method of filtering air flowing along a path, the method comprising: generating a stream of water through which the air is caused to pass, wherein the water comprises dissolved ozone at a concentration of at least 1 ppm by mass.
Preferred embodiments of the invention will now be described with reference to the accompanying drawings, in which:
Figure 1 is a schematic view of the complete system of a preferred embodiment of the present invention; Figure 2(a) is an exploded view of the main components of an air filtration system in accordance with a preferred embodiment of the present invention;
Figure 2(b) is a cross-sectional view of the system of Figure 2(a); Figure 2(c) is an isometric view of a locking handle for retaining the baffle in position; Figure 3(a) is an isometric view of the cartridge used in the system of Figure 2(a);
Figure 4(b) is a vertical cross-sectional view of a nozzle used in the system of Figure 2(a);
Figure 3(c) illustrates the arrangement of nozzles in the system of Figure 2(a); Figure 4 illustrates the main components of the system of Figure 2(a) together with their connections to supplies of mains electricity and water;
Figure 5 is a schematic electrical circuit diagram of the system of Figure 2(a); Figure 6 is a diagram of the control systems used in the system of Figure 2(a); Figure 7 is a schematic diagram of the control system for use with the air filtration system of Figure 2(a); and
Figure 8 is an illustration of the application of the present invention to a filtration unit for use in an air extraction duct in a plant room.
Figure 1 illustrates the complete system of a preferred embodiment of the present invention. The components of the system collectively labelled "CANOPY" comprise a unit of an air filtration system which is mounted in use above a commercial cooking installation and oriented such that exhaust air is caused to pass into the unit and also such that the FOGS entrained in the exhaust air stream are condensed by a water curtain within the unit and caused to fall under gravity into a conduit mounted at the bottom of the unit. The components of the CANOPY are described in greater detail below.
The water, together with the condensed FOGS are then caused to flow to a further unit of the system labelled as the "BASE UNIT", to be described in greater detail below. The functions, of the BASE UNIT are to filter and collect the FOGS from the water for re-use as fuel, and to re-circulate the water back up to the CANOPY for re-use.
Referring to Figure 2(a), the air filtration system of the preferred embodiment of the present invention comprises a cartridge 1 located within a housing 2 and a baffle 3 through which air from an extractor above a cooker is supplied.
Referring to Figure 2(b), the baffle 3 is in the form of a number of angled vanes 4 which act as a momentum brake for heavy particulates entrained in the extracted air, thereby causing impurities, such as oil and grease, entrained in the air to fall under gravity into a base unit 6 in the form of a collection container located below the baffle 3.
The baffle 3 is provided with a handle 7 (shown in more detail in Figure 2(c)) for ease of attachment and removal of the baffle 3.
The cartridge 1 further comprises, downstream of the baffle 3, a first mesh screen filter 8, which serves to even out air flow before entering a first chamber 9, in which two further nozzles 10 create two respective longitudinally separated continuous curtains of water but which overlap when viewed in the direction of air flow within the chamber to form a combined curtain which extends fully across the region where the extracted air passes through the chamber 9. By separating the two curtains longitudinally, this helps to reduce water turbulence within the chamber 9. Thus, all of the extracted air passing into the first chamber 9 passes through this combined water curtain.
The extracted air then passes via a second mesh screen filter 11 into a second chamber 12, which is identical to the first chamber 9. The second mesh screen filter 11 may advantageously be provided with a smaller pitch than that of the first mesh screen filter 8 to allow it to capture any larger particulates which may have penetrated the first mesh screen 8.
As in the first chamber 9, there are provided two water nozzles 13 are provided in the second chamber 12 which create two further curtains of water which are essentially identical to those in the first chamber 9.
The water curtains function to cool, and thereby condense, the remaining vaporised oil and grease within the extracted air. The condensed droplets of oil and grease then fall under gravity, along with the water, into the base unit 6.
The air is finally extracted from the system via a stainless steel mesh filter 14, which ensures that any remaining particulates emerging through the second chamber 12 are removed by momentum brake generated by the large number of sharp changes of direction of the air flow paths within the mesh filter 14. It also ensures that the amount of water entrained in the air extracted from the filter system is minimal.
Figure 3(a) illustrates the nozzle arrangement in more detail, and the water curtains 15a, 15b, 15c and 15d are indicated by dashed lines. As can be seen in the drawing, the four water curtains 15a, 15b, 15c, 15d are spaced longitudinally, i.e. in the direction of the air flow through the filter, from each other by 5 mm, and the uppermost part of curtains 15a and 15c extend over a region which is displaced to the right (as viewed in the drawing) relative to the uppermost part of the curtains 15b and 15d. However, as viewed in the direction of the air flow, the uppermost parts of curtains 15a and 15c overlap the uppermost parts of curtains 15b and 15d.
The structure of each of the nozzles, 10, 13 is shown in greater detail in Figure 2(b). The main bore 16 of the nozzle is made of stainless steel tube of 20mm2 area circular cross- section, but the provision of a profiled plate 17 gives rise to the formation of a curtain of water of narrow width relative to the diameter of the circular bore of the nozzle. The angular range of the spray from each nozzle is 130°.
The dimensions of the preferred embodiment are shown in Figure 3(c).
In operation of the system, the water and grease are directed to the base unit 6 and then via a weir to a fat removal unit, which is in the form of a single- or dual-stage multisection grease trap. The grease trap, together with a particulate filter are installed within the base unit, and the capacity of the grease trap allows for settlement and separation of grease from the water and filtration of the particulate, thereby reducing the likelihood of the nozzles becoming blocked. Clean water is returned to a recirculation tank and then pumped back to the nozzles.
The grease separation tank is removed periodically and the contents re-cycled in an environmentally friendly manner, such as, for example, to generate methane gas for power generation.
The water pressure is maintained between 3 and 4 bar gauge. A pressure sensor may be installed to detect a drop in pressure, which would indicate the failure of a feed pipe. In this case, a control system may be arranged to shut down the system immediately following a positive detection of such a pressure drop. The control system may be further arranged to communicate this to a remote location to notify that location that immediate service is required.
When the air filtration system is not operating, such as at night, hot water may be supplied into the system to ensure that any grease deposits near the nozzles are dissolved and washed away and also helping to reduce deposits within the fall pipes to the base unit 6.
The water used in the preferred system contains ozone, which ensures the complete eradication of water-borne pathogens. The dissolved ozone (O3) reacts with water (H2O), giving rise to hydroxyl radicals (HO) and oxygen (O2). As the water passes through the nozzles, the ozone and hydroxyls are caused to break out and react with volatile organic compounds, thereby reducing the level of odours released into the atmosphere. Since ozone has a relatively short half-life, it is created continuously by the control system.
This system can be operated with "grey water" such as rain water or water from existing cooling systems.
Alternatively, or in addition to the above features, the water may advantageously be passed through a copper/silver ioniser thereby to create a constant flow of charged ions in the water. This provides the following benefits:
(a) the resulting ionised water acts as an excellent solvent which aids the cleaning of the filter and to reduce the frequency with which the filtration system must be maintained; (b) in conjunction with the atomisation design of the nozzles, the ionisation of the water results in a significant increase in smoke attraction;
(c) there is an additional attraction of gaseous phase volatile organic compounds: increased absorption of carboxylic acids and aldehydes can be monitored using the techniques of gas chromatography and mass spectrometry well known from forensic science; and
(d) ionisation causes the water to be sterilised and thereby rid of certain water- borne micro-organisms, such as pathogens which are responsible for disease in humans.
In an alternative arrangement, an electrostatic precipitator is attached to the downstream end of the system to remove smoke particles prior to atmospheric discharge. Figure 4 illustrates how the system is connected to supplies of mains electricity and water and also to a drain.
Figure 5 illustrates the electrical connections within the system of the preferred embodiment, and Figures 6 and 7 illustrate the control systems.
The top-level control system ensures that the cook line cannot be operated unless the air filtration system is functioning correctly.
Furthermore, the top-level control system is arranged to shut down the air filtration system automatically after 6,000 hours, and to call out a service engineer after 5,000 hours.
In the event of a shut-down due to failure, the system is arranged to operate for up to 4 hours without significant compromise due to build-up of grease or system deterioration, and a fully interlocked system can include a manger's override key to ensure that service is maintained while an engineer attends to the problem.
The above control features are provided by a sophisticated digital electronic monitoring and control system provided with an EPROM memory for retaining status information in the event of a power failure. The system is also provided with batteries which act as a back-up in the event of mains power failure.
The monitoring and control system are connected to a telemetry system which permits remote diagnostics and maintenance so that break-down recovery procedures can be activated at the earliest possible time.
Furthermore, the monitoring and control system is upgraded by uploading software, which requires no hard-wiring. It is also connected to an ISDN telephone line, which enables the control software to be uploaded from a remote location. Although the air filtration system has been described above as used in the application to air extractors above cooking apparatus, such a system also finds beneficial application in air extraction ducts within plant rooms.
Figure 8 illustrates such an arrangement, from which it can be seen that the unit 18 consists of a first bank 19 of four filters arranged within a vertical plane in a 2 x 2 array, with a pre-stage baffle 20 mounted at the upstream end of the unit 18. A second bank of filters 21 is mounted in an identical array one metre behind the first bank 19. There is no need for an additional pre-stage baffle to be mounted on the second bank of filters 21, since any large debris will already have been removed by the pre-stage baffle 20.
The filters of this system and the corresponding control system operate in an identical way to the systems described above in relation to the cooker air extractors, except that the design of the base tank is modified to reduce the tank depth to permit the system to be mounted at a low position in the plant room to suit the low ceilings frequently encountered in such environments. Furthermore, the routing of the water supply will be selected for this application so as to provide for ease of access and the maintenance of the desired water pressure.
Three different models for the system are envisaged by the inventors of the present invention:
(a) entry level - a system which is riot interlocked and is purely a grease filtration system, as is sufficient for the majority of restaurants, such as are found in high streets;
(b) full specification - a system which is installed and commissioned with fully interlocked systems and supplied with a maintenance programme, such system operating in accordance with the event, cause, effect, action and recovery chart illustrated in Table 1 below; for the full specification system, additional site-specific requirements can be accommodated in upgraded versions;
(c) the enhanced specification - which includes either the entry-level system or the full specification, together with additional modules for the removal of grease and smoke. Cause and Effect for Firestorm
Figure imgf000014_0001
Table 1

Claims

CLAIMS:
1. An air filtration system comprising means defining an air flow path and means for generating a substantially continuous curtain of water which, when viewed along the air flow direction, extends substantially completely across the air flow path, the arrangement being such that, on traversing the water curtain, the air is cooled, thereby causing vaporised impurities entrained therein to condense and to fall under gravity out of the air flow path.
2. A system as claimed in claim 1, wherein the water curtain generating means is arranged to generate at least two curtains of water, each of which extends only part-way across the air flow path but which overlap when viewed along the air flow direction to form a composite curtain which extends substantially completely across the air flow path.
3. A system as claimed in claim 2, wherein the at least two curtains of water are located at different positions along the air flow path.
4. A system as claimed in any preceding claim, wherein the curtain generating means comprises at least one nozzle of substantially circular cross-section and a respective at least one plate, disposed in relation to its associated nozzle such that water emerging from the or each nozzle is deflected by its associated plate to create the continuous curtain of water.
5. An air filtration system comprising means defining an air flow path and means for generating a substantially continuous curtain of water through which the air is d to pass in use, the curtain generating means comprising a nozzle of substantially circular cross-section and a plate, disposed in relation to the nozzle such that water emerging from the nozzle is deflected by the plate to create the continuous curtain of water.
6. A system as claimed in any preceding claim, further comprising first and second filter screens located within the air flow path respectively upstream and downstream of the position of the water curtain.
7. A system as claimed in claim 5, further comprising a baffle arrangement located upstream of the first filter screen for removing relatively heavy particulates from the air.
8. A system as claimed in any one of claims 5 to 7, further comprising a mesh filter located downstream of the second filter screen for removing residual particulates from the air.
9. An air filtration system comprising an array of filters, each of which comprises a system as claimed in any preceding claim.
10. An air filtration system comprising an upstream and a downstream array of filters, each filter comprising a system as claimed in any one of claims 1 to 8.
11. An air filtration system as claimed in claim 10, wherein each of the upstream array of filters comprises a baffle arrangement located upstream of the filter for removing relatively heavy particulates from the air. .
12. A system as claimed in any preceding claim, wherein the water comprises dissolved ozone at a concentration of at least 1 ppm by mass.
13. An air filtration system as claimed in any preceding claim, further comprising means for re-circulating the water after use.
14. An air filtration system as claimed in any preceding claim, wherein the substantially continuous curtain of water is pressurised.
15. An air filtration system as claimed in claim 14, wherein the water is pressurised to between 3 and 4 bar gauge.
16. An air filtration system comprising means defining an air flow path and means for generating a stream of water through which the air is caused to pass, wherein the water comprises dissolved ozone at a concentration of at least 1 ppm by mass.
17. An air filtration system as claimed in any preceding claim, further comprising means for ionising the water.
18. A system as claimed in any preceding claim, further comprising an electrostatic precipitator for removing smoke prior to atmospheric discharge.
19. A system as claimed in any preceding claim, further comprising a telemetry system for enabling remote diagnostics and maintenance of the system.
20. A method of filtering air extracted into a flow path from a commercial cooking apparatus, the method comprising: generating a substantially continuous curtain of water which, when viewed along the flow path, extends substantially completely across the air flow path, the arrangement being such that, on traversing the water curtain, the air is cooled, thereby causing vaporised impurities entrained therein to condense and to fall under gravity out of the air flow path.
21. A method as claimed in claim 20, wherein the substantially continuous curtain of water is pressurised.
22. A method of filtering air flowing along a path, the method comprising: generating a stream of water through which the air is caused to pass, wherein the water comprises dissolved ozone at a concentration of at least 1 ppm by mass.
PCT/GB2007/003547 2006-09-21 2007-09-19 Air filtration systems WO2008035064A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07804332A EP2069045A2 (en) 2006-09-21 2007-09-19 Air filtration systems

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GBGB0618633.2A GB0618633D0 (en) 2006-09-21 2006-09-21 Air filtration systems
GB0618633.2 2006-09-21
GB0622069.3 2006-11-06
GBGB0622069.3A GB0622069D0 (en) 2006-09-21 2006-11-06 Air filtration systems

Publications (2)

Publication Number Publication Date
WO2008035064A2 true WO2008035064A2 (en) 2008-03-27
WO2008035064A3 WO2008035064A3 (en) 2008-07-03

Family

ID=37421401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2007/003547 WO2008035064A2 (en) 2006-09-21 2007-09-19 Air filtration systems

Country Status (4)

Country Link
US (1) US8440007B2 (en)
EP (2) EP2069045A2 (en)
GB (2) GB0618633D0 (en)
WO (1) WO2008035064A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009134481A1 (en) * 2008-05-02 2009-11-05 Captive-Aire Systems, Inc. A kitchen hood assembly with a combination cleaning and fire suppression system
CN102921253A (en) * 2012-10-24 2013-02-13 袁志强 Water curtain device for dust-free spray room
US8378834B1 (en) 2008-05-02 2013-02-19 Captive-Aire Systems, Inc. Kitchen hood assembly with fire suppression control system including multiple monitoring circuits

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109260886B (en) * 2018-11-06 2021-04-09 国家能源投资集团有限责任公司 Cooling device for methanol-to-olefin product gas
CN109812854A (en) * 2019-03-15 2019-05-28 安吉明微智科技有限公司 A kind of oil suction sewage treatment center
CN112413798B (en) * 2020-11-12 2022-03-29 青岛海尔空调器有限总公司 Air washing device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3653179A (en) * 1967-10-02 1972-04-04 Cockle Ventilator Co Inc Grease extractor method
US3802329A (en) * 1972-08-18 1974-04-09 L Wright Grease extractor for kitchen ventilating systems
US6059866A (en) * 1997-09-30 2000-05-09 Sanki Engineering Co., Ltd Air washer
DE10127678A1 (en) * 2001-06-10 2003-01-02 Brigitte Schmalhofer Air filter especially for commercial kitchens has filter plate with parallel filter elements with narrow interspace inbetween in which water jets are directed to produce water curtain
US20040206347A1 (en) * 2003-04-18 2004-10-21 Gallagher Arlen W. Method and apparatus for removal of grease, smoke and odor from exhaust systems

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2068094A (en) * 1936-02-26 1937-01-19 United States Pipe Foundry Liquid diffusion apparatus
US2259626A (en) * 1939-04-06 1941-10-21 Binks Mfg Co Means for and method of eliminating splash in wash type spray booths
US2380826A (en) * 1943-10-02 1945-07-31 Morton I Dorfan Flue gas scrubber
US3109593A (en) * 1962-02-26 1963-11-05 Ansul Chemical Co Hydro-flame arrestor
US3324629A (en) * 1963-02-27 1967-06-13 Dohrmann Hotel Supply Co Grease extracting ventilator system
US3563005A (en) * 1968-10-22 1971-02-16 James N Jones Apparatus for extracting smoke and grease elements from combustion gases
US3837269A (en) * 1972-11-22 1974-09-24 Elster S Inc Effluent ventilation and cleaning apparatus
US3802158A (en) * 1973-06-22 1974-04-09 H Ohle Pollution control apparatus
JPS59158933U (en) * 1983-04-08 1984-10-25 日本調理機株式会社 ventilator
IT1255995B (en) * 1992-05-18 1995-11-17 FILTER UNIT, PARTICULARLY DESIGNED TO FILTER THE AIR COMING FROM HOODS INSTALLED IN KITCHENS OR CONVEYED IN AIR TREATMENT PLANTS
US5308385A (en) * 1992-06-10 1994-05-03 Dennis Winn Pollution abatement apparatus and method
US5656242A (en) 1995-06-07 1997-08-12 L2B Environmental Systems Inc. Air purifier device
US6059865A (en) * 1998-01-02 2000-05-09 Innoventor Engineering, Inc. Apparatus for removing odor from animal confinement buildings
US6079407A (en) * 1999-10-08 2000-06-27 Lai; Hung-Chih Ventilator hood for a stove
DE19949599A1 (en) * 1999-10-14 2001-04-19 Bsh Bosch Siemens Hausgeraete Extractor hood for kitchen extractor
JP4347012B2 (en) * 2003-10-02 2009-10-21 株式会社サンシ−ル Air purifier
KR20070020217A (en) * 2004-02-13 2007-02-20 케이엘에스 벤쳐 홀딩 리미티드 Self cleaning filter assembly and circulation system
JP2006334212A (en) * 2005-06-03 2006-12-14 Sanyo Electric Co Ltd Bactericidal device and air conditioner
US8695585B2 (en) * 2006-02-21 2014-04-15 Terry Kessler Grease filtration system and methods of making and using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3653179A (en) * 1967-10-02 1972-04-04 Cockle Ventilator Co Inc Grease extractor method
US3802329A (en) * 1972-08-18 1974-04-09 L Wright Grease extractor for kitchen ventilating systems
US6059866A (en) * 1997-09-30 2000-05-09 Sanki Engineering Co., Ltd Air washer
DE10127678A1 (en) * 2001-06-10 2003-01-02 Brigitte Schmalhofer Air filter especially for commercial kitchens has filter plate with parallel filter elements with narrow interspace inbetween in which water jets are directed to produce water curtain
US20040206347A1 (en) * 2003-04-18 2004-10-21 Gallagher Arlen W. Method and apparatus for removal of grease, smoke and odor from exhaust systems

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009134481A1 (en) * 2008-05-02 2009-11-05 Captive-Aire Systems, Inc. A kitchen hood assembly with a combination cleaning and fire suppression system
US7963282B2 (en) 2008-05-02 2011-06-21 Captive-Aire Systems, Inc. Kitchen hood assembly with a combination cleaning and fire suppression system
US8378834B1 (en) 2008-05-02 2013-02-19 Captive-Aire Systems, Inc. Kitchen hood assembly with fire suppression control system including multiple monitoring circuits
US8610601B2 (en) 2008-05-02 2013-12-17 Captive-Aire Systems, Inc. Kitchen hood assembly with fire suppression control system and built-in redundancy
CN102921253A (en) * 2012-10-24 2013-02-13 袁志强 Water curtain device for dust-free spray room

Also Published As

Publication number Publication date
EP2386345A3 (en) 2012-05-09
GB0618633D0 (en) 2006-11-01
US8440007B2 (en) 2013-05-14
US20100132550A1 (en) 2010-06-03
GB0622069D0 (en) 2006-12-13
WO2008035064A3 (en) 2008-07-03
EP2386345A2 (en) 2011-11-16
EP2069045A2 (en) 2009-06-17

Similar Documents

Publication Publication Date Title
US8440007B2 (en) Air filtration systems
US9327224B2 (en) Mechanical filter-based pollution control system to remediate cooking emissions
US20150266032A1 (en) Water Ion Air Purifier
CN102705885B (en) Oily fume purifying device
CN106196280A (en) A kind of self-purification type air purifier
CN100351002C (en) Process for purifying oil fume
JP6749146B2 (en) Wet gaseous substance treatment equipment
CN104048333A (en) Kitchen lampblack purification method
WO2015054527A1 (en) Cooking exhaust filter system
US20090042500A1 (en) Hood and pollution control unit with ultra violet light and electro-static precipitator
CN202442378U (en) Integrated oil smoke purifying device
JP2005530611A (en) Electrostatic filtration and particle conversion in gas environments.
CN103566693A (en) Multifunctional low-temperature plasma lampblack treatment complete equipment
CN200963604Y (en) Combined type electrostatic oil smoke purifying apparatus
US20050241484A1 (en) Air filtration system
CN210544086U (en) Wet dust filter
CN201463031U (en) High-energy photodecomposition catering oil smoke purifying machine
CN103528106A (en) Kitchen ventilator with functions of smoke purification and oil recovery and method for purifying smoke and recovering oil
CN201002055Y (en) Equipment for purifying oil-fume
CN215570712U (en) Treatment equipment for purifying oil fume
CN207708759U (en) A kind of mechanical processing generates the governing system of mist of oil
CN203648317U (en) Multifunctional low-temperature plasma oil fume treatment complete device
CN205412565U (en) Centralized oil smoke processing facility
CN113531616A (en) Treatment equipment for purifying oil fume
EP2406011A1 (en) Method for purifying an air flow and purification device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07804332

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007804332

Country of ref document: EP