WO2008032749A1 - Resin composition and radiating spacer formed from the same - Google Patents

Resin composition and radiating spacer formed from the same Download PDF

Info

Publication number
WO2008032749A1
WO2008032749A1 PCT/JP2007/067761 JP2007067761W WO2008032749A1 WO 2008032749 A1 WO2008032749 A1 WO 2008032749A1 JP 2007067761 W JP2007067761 W JP 2007067761W WO 2008032749 A1 WO2008032749 A1 WO 2008032749A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
sheet
heat
aluminum hydroxide
spacer
Prior art date
Application number
PCT/JP2007/067761
Other languages
French (fr)
Japanese (ja)
Inventor
Jyunji Sugino
Hiroaki Sawa
Mitsuru Shiiba
Keiji Takano
Original Assignee
Denki Kagaku Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006247494A external-priority patent/JP2009289765A/en
Priority claimed from JP2006288072A external-priority patent/JP2009286809A/en
Application filed by Denki Kagaku Kogyo Kabushiki Kaisha filed Critical Denki Kagaku Kogyo Kabushiki Kaisha
Publication of WO2008032749A1 publication Critical patent/WO2008032749A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20436Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing
    • H05K7/20445Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing the coupling element being an additional piece, e.g. thermal standoff
    • H05K7/20472Sheet interfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a resin composition used as a heat dissipation spacer and the like, and a heat conduction member using the same and a heat dissipation spacer.
  • a heat-dissipating sheet used in an electronic circuit is required to have flame retardancy, and a flame-retardant resin such as silicone rubber filled with a heat conductive filler is disclosed (for example, Patent Document 1).
  • Patent Document 2 A method of manufacturing a heat dissipating spacer has already been disclosed (for example, Patent Document 2) in which a slurry in which an addition polymerization type liquid silicone rubber is filled with a filler is heated and cured.
  • Patent Document 3 a method of obtaining a heat dissipating spacer that recommends the use of silicone gel and spherical filler, with the aim of improving the filler fillability and improving the thermal conductivity of the heat dissipating sheet.
  • Patent Document 3 proposes a method of obtaining a heat dissipating spacer that recommends the use of silicone gel and spherical filler, with the aim of improving the filler fillability and improving the thermal conductivity of the heat dissipating sheet.
  • spherical fillers are expensive because the manufacturing process is complicated, and this is the main cause of the high cost of heat dissipating spacers.
  • Patent Document 4 As a solution to this problem, it has been proposed to use a filler having a low sphericity (Patent Document 4).
  • the proposal is intended for thin sheets of about 100 m thickness and recommends limiting the maximum particle size.
  • the product thickness of the heat dissipating spacer targeted by the present invention is assumed to be in the range of 0.3 to 5. Omm, and there is no necessity of eliminating top particles by classification or the like.
  • Patent Document 5 it has been proposed that aluminum hydroxide is used as a heat conductive filler because it is widely distributed in the market as an inexpensive filler (Patent Document 5 and Patent Document 6).
  • Patent Document 6 In the proposal Has improved the flame retardancy of the obtained sheet by using aluminum hydroxide.
  • inorganic fillers such as an aluminum oxide, boron nitride, and aluminum nitride, which are not used with aluminum hydroxide alone, are used as the second component.
  • aluminum hydroxide has a property of dehydrating and decomposing rapidly at 200 to 300 ° C. to cause a large endothermic reaction, thereby cooling the burning object and exhibiting flame retardancy.
  • the gas released during the dehydration decomposition is water vapor, and the release of the water vapor reduces the mass of aluminum hydroxide after the dehydration decomposition compared to before the start of the reaction.
  • the dehydration decomposition reaction of aluminum hydroxide takes place rapidly at 200 to 300 ° C.
  • the dehydration decomposition reaction of aluminum hydroxide begins gradually even at temperatures below 1S (eg, around 150 ° C). .
  • the heat generation temperature from a semiconductor element which is one of the usage targets of a thermally conductive molded body, is 10
  • the heat dissipating spacers used for these are required to have long-term reliability under conditions above the assumed temperature. Specifically, heat dissipation characteristics after being left for a long time in an atmosphere of 150 ° C, flame retardancy, flexibility, and other characteristics are required, and the mass reduction rate of the heat dissipation spacer itself is the same.
  • Patent Document 1 Japanese Patent No. 2704732
  • Patent Document 2 Japanese Patent Application Laid-Open No. 57-137356
  • Patent Document 3 Japanese Patent Publication No. 2000-95896
  • Patent Document 4 Japanese Patent Laid-Open No. 2005-306718
  • Patent Document 5 Japanese Patent Laid-Open No. 2002-138205
  • Patent Document 6 Japanese Patent Laid-Open No. 5-140456
  • the present invention has been made in view of the above, and is a thermally conductive filler containing an aluminum hydroxide powder, preferably silicon dioxide, which is circulated at low cost on the market, and a silicone resin. And a heat conductive spacer that is excellent in flame retardancy and has a reduced mass reduction rate after being left at high temperature for a long period of time by using the resin composition.
  • the purpose is to provide.
  • the present invention has the following gist.
  • thermoly conductive filler containing aluminum hydroxide having a frequency maximum in the particle size distribution of 5 to 70,1 m, and a silicone resin
  • a thermally conductive filler characterized in that the amount is 45 to 60% by volume of the entire resin composition.
  • the heat conductive filler includes aluminum hydroxide and silicon dioxide, and the content of the aluminum hydroxide is 30 to 50% by mass with respect to the entire resin composition. Resin composition.
  • the resin composition according to any one of the above (1) to (3) is applied on a resin film, formed into a coating film, and then heat-cured and then a resin composition is formed on one side. Or a sheet on both sides.
  • the heat dissipating spacer of the present invention can be manufactured by a simple method with a low raw material unit price, and improves the flame retardancy of the obtained heat dissipating spacer.
  • the rate of mass decrease after high-temperature storage during the period is small.
  • the resin composition in the present invention contains a heat conductive filler and a silicone resin, and a heat dissipation spacer is produced using the resin composition.
  • the heat conductive filler of the present invention includes a force containing aluminum hydroxide alone, and aluminum hydroxide and silicon dioxide.
  • Aluminum hydroxide as a thermally conductive filler used in the present invention is a powder having a frequency maximum value in the particle size distribution preferably in the range of 5 to 70 m, and the frequency maximum value is preferable. Is present in the range of 10 to 70 111, particularly preferably 30 to 50 111. As long as the aluminum hydroxide has a frequency maximum value in the particle size distribution within the above range, one or more kinds may be mixed and used at an appropriate ratio.
  • the particle size distribution and frequency maximum value of aluminum hydroxide used were measured using a laser diffraction particle size distribution measuring device “SALD-2200” manufactured by Shimadzu Corporation.
  • One of the thermally conductive fillers used in the present invention is silicon dioxide that is widely distributed in the market as an inexpensive filler that has insulating properties and relatively good thermal conductivity.
  • the particle size of silicon dioxide is the frequency maximum value in the particle size distribution, preferably in the range of 5 to 50 111, more preferably 6 to 35 111.
  • the purpose of silicon dioxide is to improve the content of the thermal conductive filler, to optimize the slurry viscosity, to optimize the moldability, and to adjust various properties such as the thermal conductivity and hardness after adhesion.
  • the density of the silicon dioxide 2. a 2 (g / cm 3), aluminum oxide Niumu (density; 3. 9g / cm 3) or zinc oxide (density; 5.
  • silicon dioxide includes crystalline silicon dioxide and amorphous silicon dioxide, crystalline silicon dioxide is preferred from the viewpoint of thermal conductivity, economy and the like of the thermal conductive filler itself.
  • the addition amount of the heat conductive filler in the resin composition in the present invention is 45 to 60% by volume, more preferably 50 to 55% by volume. If the amount of addition is less than 5% by volume, the improvement of the thermal conductivity and flame retardance of the obtained heat-dissipating spacer is small. If it exceeds 60% by volume, the moldability becomes worse.
  • the content of the aluminum hydroxide of the present invention is 30 to 50% by mass, more preferably 35 to 45% by mass, based on the entire resin composition. It is. If the content is less than 30% by mass, the improvement in flame retardancy of the obtained heat-dissipating spacer tends to be small, and if it exceeds 50% by mass, the mass reduction rate after standing at high temperature for a long time It is difficult to reduce.
  • the content of silicon dioxide is preferably 25 to 70% by volume, particularly preferably 35 to 60% by volume, based on the thermally conductive filler.
  • the content of silicon dioxide is less than 25% by volume, the thermal conductivity is low.
  • the content is more than 70% by volume, the flame retardancy deteriorates.
  • the aluminum hydroxide of the present invention is obtained by performing a surface treatment with a silane coupling agent or the like.
  • a silane coupling agent or the like it is possible to further improve the thermal conductivity by reducing the water absorption rate of the powder, increasing the strength of the resin composition, and further reducing the interface resistance between the resin and the powder.
  • the silicone resin in the present invention is preferably at least one of an addition reaction type silicone gel or a condensation reaction type silicone gel. Furthermore, it is preferable that the silicone gel is at least one of an addition reaction type liquid silicone gel and a condensation reaction type liquid silicone gel in which the liquid is a liquid. If necessary, a portion of the silicone gel component may be replaced with silicone rubber.
  • the silicone rubber is preferably at least one of addition reaction type silicone rubber or peroxide vulcanization type silicone rubber.
  • the average composition formula is Rl SiO (wherein R1 is the same or different unsubstituted or substituted monovalent hydrocarbon group and n (4-n) / 2
  • the base polymer is preferably an organopolysiloxane represented by
  • addition reaction type liquid silicone examples include, for example, a one-part silicone having both a bull group and a Si-Si group in one molecule, or an organopolysiloxane having a bull group at the terminal or side chain. And two-part silicone.
  • examples of commercially available products of such addition reaction type liquid silicone include those manufactured by GE Toshiba Silicone Co., Ltd. under the trade name “YE5822”, etc. There are product names such as “XE14-B8530” and “TSE-3062”.
  • platinum or a platinum compound is used as a means for improving the flame retardancy of the silicone resin.
  • platinum or a platinum compound is used as a catalyst for the addition reaction of silicone. Therefore, commercially available addition reaction type liquid silicone is often already added with less than 1% platinum compound.
  • Platinum compounds used are, for example, platinum black, chloroplatinic acid, chloroplatinic acid alcohol modified products, complexes of chloroplatinic acid and olefin, complexes of chloroplatinic acid and aldehyde, chloroplatinic acid and bursiloxane or acetylene. Examples thereof include a complex with alcohol, a complex of chloroplatinic acid and isopropyl alcohol, and the like.
  • the mixing method of the heat conductive filler and the silicone resin is not particularly limited. Forces that can be mixed by hand in the case of small amounts General mixers such as planetary mixers, hybrid mixers, Henschel mixers, kneaders, ball mills, and mixing rolls may be used.
  • General mixers such as planetary mixers, hybrid mixers, Henschel mixers, kneaders, ball mills, and mixing rolls may be used.
  • the resin composition of the present invention can be used as a heat conductive member, a heat dissipation spacer, and the like.
  • the heat conducting member and the heat dissipating spacer of the present invention are usually a thin molded body such as a sheet shape, and the processing method thereof is a conventionally known method such as a doctor blade method, a comma coater method, Examples include coating by a lip coater method.
  • the slurry is applied on a resin film, and after forming a coating film, it is cured by heating and formed into a sheet shape. Coating by a doctor blade method or a comma coater method is preferable.
  • the thickness of the sheet-shaped heat dissipation spacer in the present invention is 0.3 to 5. Omm, and preferably 0.5 to 3. Omm. When the thickness is less than 3 mm, the smoothness of the sheet surface cannot be maintained because the shape of the filler is greatly affected by the smoothness of the sheet surface. In addition, when the thickness exceeds 5. Omm, when the slurry is applied onto the resin film, the slurry flows on the resin film, making it difficult to control the thickness.
  • the heat conductivity of the heat conducting member and the heat dissipating spacer of the present invention is 0.8 W / m'K or more, the function as the heat conducting member can be satisfied.
  • the thermal conductivity is usually from 0.8 to 2.0 W / m′K, preferably from 1 ⁇ 0 to 2 ⁇ OW / m′K.
  • Silica B fine (crystalline, frequency maximum peak value in the particle size distribution: 8 111, density: 2. 2 (g / cm: ))
  • Silicone gel (GE Toshiba Silicone Co., Ltd.) XE14— B8530 (2-component mixed type, density: 0.9)
  • a curing agent manufactured by Dow Corning, RD-1
  • a retarder manufactured by Kanto Chemical Co., dimethyl maleate
  • Table 1 shows the blending ratios of aluminum hydroxide and silicone resin used in Examples and Table 2 in Comparative Examples.
  • silicone resin silicone gel (GE Toshiba Silicone, XE14-B8530, two-component mixed type) was used. Further, as necessary, a small amount (0.01 mass%) of a curing agent (Toray Industries, Inc., RD-1) and / or a retarder (manufactured by Kanto Chemical Co., Ltd., dimethyl maleate) was added. Mix each of the blending amounts shown in Table 1 and Table 2 using a hybrid mixer (Keyence Corporation, HM-500) to make a slurry.
  • a hybrid mixer Keyence Corporation, HM-500
  • a coating film having a predetermined thickness was prepared on a PET substrate having a thickness of 100 ⁇ by using the doctor blade method for each of the slurries of Examples and Comparative Examples degassed by the above-described method.
  • a sheet-like molded article having a thickness of 0.3 mm was obtained for evaluation of flame retardancy described later.
  • Tables 1 and 2 Each evaluation result of the obtained sheet
  • Sheet formability The sheet formability using the slurry mixed at the blending ratios shown in Table 1, Table 2, Table 11 and Table 12 was evaluated in three stages according to the following criteria.
  • The slurry viscosity is moderate, and there is no problem in the formability of the sheet.
  • the thermal conductivity was calculated by ⁇ Power (W) X Thickness (m) ⁇ / ⁇ Temperature Difference (K) X Measurement Area (m 2 ) ⁇ .
  • The surface of the sheet is smooth and there is no roughness.
  • the sheet has local roughness, but there is no practical problem.
  • Mass reduction ratio After measuring the mass (A) of the obtained sheet, it was left in an oven maintained at 150 ° C. for 1000 hours. The sample was taken out after a predetermined time and the mass (B) was measured again.
  • Mass reduction rate (%) ⁇ mass (A) —mass (B) ⁇ / mass (A) X 100,
  • the mass reduction rate was calculated at The mass reduction rate is desirably 1.5% or less.
  • Examples;! To 4 can be formed into a sheet, the sheet surface is good, and the product is good.
  • the thermal conductivity is 0.8 W / m'K or more, and the flame retardancy is also the flame retardance standard UL94V-0 level.
  • Comparative Example 2 since the frequency maximum value of aluminum hydroxide exceeds 70 m, the slurry viscosity is low and the formability of the sheet is improved compared to Comparative Example 1. However, the obtained sheet had a problem that the surface was crusted and the roughness was severe.
  • Comparative Example 3 the amount of aluminum hydroxide added to the silicone resin is 0 vol%. Although the slurry viscosity is low and the formability of the sheet is good, the heat dissipation spacer obtained has a thermal conductivity of 0.8 W / m'K or less, and the flame resistance is also at the level of UL94V-1 level. is there
  • Comparative Example 4 the amount of aluminum hydroxide added to the silicone resin is 65 vol%. There is a problem in sheet formability with high slurry viscosity. Further, the obtained sheet has a rough surface and has a problem in use.
  • the formability of the sheet is improved by optimizing the frequency maximum value of aluminum hydroxide and the amount added to the silicone resin, and the heat dissipation spacer obtained is
  • the surface condition was smooth, the thermal conductivity was 0.8 W / m'K or more, and the flame retardancy was UL94V-0 level.
  • Tables 11 and 12 show the blending ratios of silicon dioxide, aluminum hydroxide, and silicone resin used in Examples and Comparative Examples.
  • Each material was mixed using a hybrid mixer (manufactured by Keyence Corporation, HM-500) at a blending ratio described in Table 11 and Table 12 to prepare a slurry.
  • HM-500 manufactured by Keyence Corporation
  • the prepared slurry is put in a vacuum dryer and decompressed for 1 hour, and is dissolved in the slurry. Air was degassed.
  • Examples as described in Table 11; ;! To 16 can be formed into a sheet, the sheet surface is good, and the product is good.
  • the thermal conductivity is 0.8 W / m'K or more
  • the flame retardancy is also the flame retardancy standard UL94V-0 level
  • the mass reduction rate after being left for 1000 hours in an atmosphere of 150 ° C is 1. 5% or less.
  • the content of the thermally conductive filler (total of silicon dioxide and aluminum hydroxide) is 40% by volume of the entire resin composition, and the content of aluminum hydroxide is the entire resin composition. Of 50% by mass. Although the slurry viscosity is low and the formability of the sheet is good, the thermal conductivity of the obtained sheet is 0.8 W / m.K or less.
  • the content of the heat conductive filler (total of silicon dioxide and aluminum hydroxide) is 40% by volume of the entire resin composition, and the content of aluminum hydroxide is the resin composition. 30% by mass of the total.
  • the thermal conductivity of the obtained sheet is 0.8 W / m'K or less, and the flame retardancy is also at the level of UL94V-1 flame retardancy.
  • the content of the heat conductive filler (total of silicon dioxide and aluminum hydroxide) was 65% by volume of the entire resin composition, and the content of aluminum hydroxide was the resin composition. It is 50% by mass of the whole. Thermal conductivity and flame retardancy are good, but slurry viscosity is high. There is a problem with sheet formability. The obtained sheet had problems force s on the use severely roughened surface.
  • Comparative Example 14 the content of the heat conductive filler (total of silicon dioxide and aluminum hydroxide) was 65% by volume of the entire resin composition, and the content of aluminum hydroxide was the resin composition. 30% by mass of the total. Thermal conductivity and flame retardancy are good, but slurry viscosity is high. There is a problem with sheet formability. Also, the obtained sheet has a rough surface and is a problem in use. A force S.
  • Comparative Example 15 has a problem in the sheet formability where the slurry viscosity is high because the aluminum hydroxide filler having a frequency maximum in the particle size distribution of less than 5 m is used.
  • the obtained sheet has a problem in use that the surface roughness is severe.
  • Example 1 Example 1 2
  • Example 1 Silicone gel XE14-B8530 [volume%] 55 55 40
  • the thermal conductivity is 0.8 W / m'K or more
  • flame retardant A resin composition having the flame retardancy standard UL94V-0 level was obtained.
  • the heat dissipating spacer of the embodiment of the present invention can be used for an electronic circuit component as a heat conducting member, and the electronic circuit component can contribute to high performance by being incorporated in an electric appliance for home appliances, an OA device, or an automobile.
  • the resin composition of the present invention is excellent in flame retardancy by using a powder of aluminum hydroxide, which is circulated at a low price in a factory, as a heat conductive filler and in combination with silicon dioxide, and has a long-term high temperature.
  • a heat dissipating spacer having a reduced mass reduction rate after being left.
  • This heat release spacer can be used as an electronic circuit component as a heat conduction member, and the electronic circuit component can be incorporated into an electric appliance for home appliances, an OA device, or an automobile.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

A resin composition for use as a thermally conductive member, radiating spacer, etc. which are inexpensive and have satisfactory thermal conductivity and excellent flame retardancy; and a thermally conductive member and a radiating spacer each formed from the resin composition. The resin composition contains a thermally conductive filler in an amount of 45-60 vol.% based on the whole resin composition, the thermally conductive filler comprising an aluminum hydroxide power having a particle size distribution in which the frequency maximum is preferably at 5-70 µm. The filler more desirably contains silicon dioxide. The radiating spacer is obtained by preparing a slurry from a resin composition comprising a thermally conductive filler comprising aluminum hydroxide and a silicone resin, applying the slurry to a resin film to form a coating film, and then heating and curing it to form a sheet. The spacer has a thickness of preferably 0.3-5.0 mm and a thermal conductivity of preferably 0.8 W/m•K or higher.

Description

明 細 書  Specification
樹脂組成物及びこれを用いた放熱スぺーサー  Resin composition and heat dissipation spacer using the same
技術分野  Technical field
[0001] 本発明は放熱スぺーサ一などとして用いられる樹脂組成物、及びこれを用いた熱 伝導部材ゃ放熱スぺーサ一に関する。  [0001] The present invention relates to a resin composition used as a heat dissipation spacer and the like, and a heat conduction member using the same and a heat dissipation spacer.
背景技術  Background art
[0002] 近年の電子回路の高集積化および回路を伝送する電気信号の高周波数化に伴い 回路の制御用の CPUおよび半導体メモリーの発熱量が増大し放熱用部材としての 放熱スぺーサ一の需要は高まっている。電子回路に用いられる放熱シートには難燃 性が求められシリコーンゴム等の難燃性樹脂に熱伝導性フイラ一を充填したものが開 示されている(例えば、特許文献 1)。  [0002] With recent high integration of electronic circuits and higher frequency of electric signals transmitted through the circuit, the heat generation amount of CPU and semiconductor memory for circuit control has increased, and heat dissipation spacers as heat dissipation members Demand is increasing. A heat-dissipating sheet used in an electronic circuit is required to have flame retardancy, and a flame-retardant resin such as silicone rubber filled with a heat conductive filler is disclosed (for example, Patent Document 1).
[0003] 家電製品等の製造コスト低減のため構成部材につ!/、ては安価でかつ放熱性能の 面で要求水準を満たすものが求められており、本発明の樹脂組成物、放熱スぺーサ 一も例外ではない。 [0003] In order to reduce the manufacturing cost of home appliances, etc., there is a need for constituent members that are inexpensive and that meet the required level in terms of heat dissipation performance. The resin composition and heat dissipation space of the present invention are required. The first is no exception.
[0004] すでに、付加重合型液状シリコーンゴムにフィラーを充填したスラリーを加熱硬化さ せ作製する放熱スぺーサ一の製造方法が開示されてレ、る(例えば特許文献 2)。また 、本発明者らはフイラ一の充填性を改良し放熱シートの熱伝導度を向上させることを 目的とし、シリコーンゲルと球状フィラーの使用を推奨した放熱スぺーサーを得る手 法を提案している(特許文献 3)。しかしながら球状フイラ一は製造工程が煩雑である ことから高価であり放熱スぺーサ一の原価高騰の主因となる。  [0004] A method of manufacturing a heat dissipating spacer has already been disclosed (for example, Patent Document 2) in which a slurry in which an addition polymerization type liquid silicone rubber is filled with a filler is heated and cured. In addition, the present inventors have proposed a method of obtaining a heat dissipating spacer that recommends the use of silicone gel and spherical filler, with the aim of improving the filler fillability and improving the thermal conductivity of the heat dissipating sheet. (Patent Document 3). However, spherical fillers are expensive because the manufacturing process is complicated, and this is the main cause of the high cost of heat dissipating spacers.
[0005] この問題の解決策として、球形度の低いフィラーを用いることが提案されている(特 許文献 4)。該提案は、 100 m厚み程度の薄物のシートを志向したものであり最大 粒子径を制限することを推奨している。しかし、本発明が対象とする放熱スぺーサー の製品厚みは 0. 3〜5. Ommの範囲を想定しており分級等によるトップ粒子の排除 の必然性は無い。  [0005] As a solution to this problem, it has been proposed to use a filler having a low sphericity (Patent Document 4). The proposal is intended for thin sheets of about 100 m thickness and recommends limiting the maximum particle size. However, the product thickness of the heat dissipating spacer targeted by the present invention is assumed to be in the range of 0.3 to 5. Omm, and there is no necessity of eliminating top particles by classification or the like.
また、安価フイラ一として市場に多く流通して!/、るもので水酸化アルミニウムを熱伝 導性フイラ一として用いることが提案されている(特許文献 5、特許文献 6)。該提案で は、水酸化アルミニウムを使用することで、得られたシートの難燃性を向上させている 。しかしながら、いずれの提案も水酸化アルミニウム単独での使用ではなぐ酸化ァ ノレミニゥム、窒化ホウ素、窒化アルミニウム等の無機フィラーが第 2成分として用いら れている。 In addition, it has been proposed that aluminum hydroxide is used as a heat conductive filler because it is widely distributed in the market as an inexpensive filler (Patent Document 5 and Patent Document 6). In the proposal Has improved the flame retardancy of the obtained sheet by using aluminum hydroxide. However, in any of the proposals, inorganic fillers such as an aluminum oxide, boron nitride, and aluminum nitride, which are not used with aluminum hydroxide alone, are used as the second component.
[0006] さらに、水酸化アルミニウムは、 200〜300°Cで急激に脱水分解し、大きな吸熱反 応を起こすという特性を持ち、これにより燃焼物体を冷却して難燃性を発現する。ま た、この脱水分解時に放出されるガスは水蒸気であり、この水蒸気が放出されること により脱水分解後の水酸化アルミニウムの質量は反応開始前と比較して減少する。 前述したとおり、水酸化アルミニウムの脱水分解反応は 200〜300°Cで急激に起こる 1S それ以下の温度(例えば、 150°C近辺)においても水酸化アルミニウムの脱水分 解反応は徐々に開始される。  [0006] Furthermore, aluminum hydroxide has a property of dehydrating and decomposing rapidly at 200 to 300 ° C. to cause a large endothermic reaction, thereby cooling the burning object and exhibiting flame retardancy. In addition, the gas released during the dehydration decomposition is water vapor, and the release of the water vapor reduces the mass of aluminum hydroxide after the dehydration decomposition compared to before the start of the reaction. As described above, the dehydration decomposition reaction of aluminum hydroxide takes place rapidly at 200 to 300 ° C. The dehydration decomposition reaction of aluminum hydroxide begins gradually even at temperatures below 1S (eg, around 150 ° C). .
この状態が長期間続くと、水酸化アルミニウムの脱水分解反応はさらに進行し、水 蒸気が放出され続けるために水酸化アルミニウムの質量減少も進行する。また脱水 分解反応に伴う質量減少率は、水酸化アルミニウムの粒子径が大き!/、程顕著であり 大きい。  If this state continues for a long period of time, the dehydration decomposition reaction of aluminum hydroxide further proceeds, and water vapor continues to be released, so that the mass reduction of aluminum hydroxide also proceeds. In addition, the mass reduction rate associated with the dehydration / decomposition reaction is more remarkable as the particle size of aluminum hydroxide is larger / larger.
[0007] 一方、熱伝導性成形体の使用対象の一つである半導体素子からの発熱温度は 10 [0007] On the other hand, the heat generation temperature from a semiconductor element, which is one of the usage targets of a thermally conductive molded body, is 10
0〜120°Cと想定され、その発熱量は年々増加傾向にある。これらに使用される放熱 スぺーサ一には想定温度以上の条件下での長期信頼性が要求されている。具体的 には 150°Cの雰囲気下において長時間放置した後の放熱特性や難燃性、柔軟性等 の特性が要求され、放熱スぺーサー自体の質量減少率も同様である。 It is assumed that the temperature is 0 to 120 ° C, and the calorific value is increasing year by year. The heat dissipating spacers used for these are required to have long-term reliability under conditions above the assumed temperature. Specifically, heat dissipation characteristics after being left for a long time in an atmosphere of 150 ° C, flame retardancy, flexibility, and other characteristics are required, and the mass reduction rate of the heat dissipation spacer itself is the same.
特許文献 1:特許番号第 2704732号公報  Patent Document 1: Japanese Patent No. 2704732
特許文献 2:特開昭 57— 137356号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 57-137356
特許文献 3:特開 2000— 95896号公幸  Patent Document 3: Japanese Patent Publication No. 2000-95896
特許文献 4 :特開 2005— 306718号公報  Patent Document 4: Japanese Patent Laid-Open No. 2005-306718
特許文献 5:特開 2002— 138205号公報  Patent Document 5: Japanese Patent Laid-Open No. 2002-138205
特許文献 6:特開平 5— 140456号公報  Patent Document 6: Japanese Patent Laid-Open No. 5-140456
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0008] 本発明は、上記に鑑みてなされたものであり、市場に安価に流通している水酸化ァ ノレミニゥムの粉末、好ましくはさらに二酸化珪素を含む熱伝導性フイラ一と、シリコー ン系樹脂とを含有してなる樹脂組成物、及び該樹脂組成物を用いることにより、難燃 性に優れ、かつ長期間の高温放置後の質量減少率を低減した熱伝導性部材ゃ放 熱スぺーサーを提供することを目的とする。 Problems to be solved by the invention [0008] The present invention has been made in view of the above, and is a thermally conductive filler containing an aluminum hydroxide powder, preferably silicon dioxide, which is circulated at low cost on the market, and a silicone resin. And a heat conductive spacer that is excellent in flame retardancy and has a reduced mass reduction rate after being left at high temperature for a long period of time by using the resin composition. The purpose is to provide.
課題を解決するための手段  Means for solving the problem
[0009] 即ち、本発明は、下記の要旨を有するものである。 That is, the present invention has the following gist.
( 1 )粒度分布における頻度極大値が 5〜 70 ,1 mである水酸化アルミニウムを含む熱 伝導性フィラーと、シリコーン系樹脂とを含有してなる樹脂組成物において、熱伝導 性フイラ一の含有量が樹脂組成物全体の 45〜60体積%であることを特徴とする樹 脂組成物。  (1) In a resin composition comprising a thermally conductive filler containing aluminum hydroxide having a frequency maximum in the particle size distribution of 5 to 70,1 m, and a silicone resin, it contains a thermally conductive filler. A resin composition characterized in that the amount is 45 to 60% by volume of the entire resin composition.
(2)前記熱伝導性フイラ一が水酸化アルミニウムと二酸化珪素とを含み、かつ、該水 酸化アルミニウムの含有量が樹脂組成物全体の 30〜50質量%である上記(1)に記 載の樹脂組成物。  (2) The heat conductive filler includes aluminum hydroxide and silicon dioxide, and the content of the aluminum hydroxide is 30 to 50% by mass with respect to the entire resin composition. Resin composition.
(3)前記二酸化珪素が結晶質の二酸化珪素である上記(2)に記載の樹脂組成物。 (3) The resin composition according to the above (2), wherein the silicon dioxide is crystalline silicon dioxide.
(4)上記(1)乃至(3)の!/、ずれか一項に記載の樹脂組成物を用いた熱伝導部材。(4) A heat conducting member using the resin composition according to any one of! / And (1) to (3) above.
(5)上記(1)乃至(3)のいずれか一項に記載の樹脂組成物を用いた放熱スぺーサ(5) A heat dissipation spacer using the resin composition according to any one of (1) to (3) above.
Yes
(6)上記(1)乃至(3)のいずれか一項に記載の樹脂組成物を用いた、厚さが 0· 3〜 5. Ommのシート。  (6) A sheet having a thickness of 0.3 to 5. Omm using the resin composition according to any one of (1) to (3) above.
(7)上記(1)乃至(3)の!/、ずれか一項に記載の樹脂組成物を、樹脂フィルム上に塗 布し、塗膜とした後に加熱硬化してなる樹脂組成物を片側又は両側に有するシート。 (7) The resin composition according to any one of the above (1) to (3) is applied on a resin film, formed into a coating film, and then heat-cured and then a resin composition is formed on one side. Or a sheet on both sides.
(8)熱伝導率が 0. 8W/m'K以上である上記(6)又は(7)に記載のシート。 (8) The sheet according to (6) or (7), wherein the thermal conductivity is 0.8 W / m′K or more.
(9)上記(6)乃至(8)の!/、ずれか一項に記載のシートを用いた熱伝導部材。  (9) A heat conducting member using the sheet according to any one of (6) to (8) above.
(10)上記(6)乃至(8)のいずれか一項に記載のシートを用いた放熱スぺーサ一。 (10) A heat dissipation spacer using the sheet according to any one of (6) to (8).
(11)難燃性が難燃性規格 UL94V— 0レベルである上記(5)又は(10)に記載の放 熱スぺーサ一。 (11) The heat release spacer according to (5) or (10) above, wherein the flame retardancy is flame retardancy standard UL94V-0 level.
(12)上記 (4)又は(9)に記載の熱伝導部材、上記(5)、 (10)及び(11)のいずれか 一項に記載の放熱スぺーサ一、上記(6)乃至(8)の!/、ずれか一項に記載のシート、 を熱伝導部材として使用した電子回路部品。 (12) The heat conducting member according to (4) or (9) above, any one of (5), (10) and (11) above An electronic circuit component using the heat dissipating spacer according to one item,! / Of the above (6) to (8), or the sheet according to any one of the above items as a heat conducting member.
(13)上記(12)に記載の電子回路部品を組み込んだ家庭用電気製品、 OA機器、 又は自動車。  (13) Household electrical appliances, OA equipment, or automobiles incorporating the electronic circuit component described in (12) above.
発明の効果  The invention's effect
[0010] 本発明の放熱スぺーサ一は、原料単価が安ぐ簡便な手法にて製造が可能であり 、得られた放熱スぺーサ一の難燃性を向上させたものであり、長期間の高温放置後 の質量減少率が少ない。  [0010] The heat dissipating spacer of the present invention can be manufactured by a simple method with a low raw material unit price, and improves the flame retardancy of the obtained heat dissipating spacer. The rate of mass decrease after high-temperature storage during the period is small.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 以下、本発明についてさらに詳しく説明する。 [0011] Hereinafter, the present invention will be described in more detail.
[0012] 本発明における樹脂組成物は、熱伝導性フイラ一とシリコーン系樹脂を含有するも のであり、該樹脂組成物を用いて放熱スぺーサ一は作製される。  [0012] The resin composition in the present invention contains a heat conductive filler and a silicone resin, and a heat dissipation spacer is produced using the resin composition.
本発明の熱伝導性フイラ一としては、水酸化アルミニウムを単独に含む力、、水酸化 アルミニウムと二酸化珪素とを含むものである。  The heat conductive filler of the present invention includes a force containing aluminum hydroxide alone, and aluminum hydroxide and silicon dioxide.
[0013] 本発明で使用する熱伝導性フイラ一としての水酸化アルミニウムは、粒度分布にお ける頻度極大値が好ましくは 5〜70 mの範囲に存在する粉末であり、頻度極大値 力はり好ましくは、 10〜70 111、特に好ましくは 30〜50 111の範囲に存在する。前 記範囲内に粒度分布における頻度極大値を有する水酸化アルミニウムであれば 1種 又は複数種を適宜な比率で混合して使用してもよい。  [0013] Aluminum hydroxide as a thermally conductive filler used in the present invention is a powder having a frequency maximum value in the particle size distribution preferably in the range of 5 to 70 m, and the frequency maximum value is preferable. Is present in the range of 10 to 70 111, particularly preferably 30 to 50 111. As long as the aluminum hydroxide has a frequency maximum value in the particle size distribution within the above range, one or more kinds may be mixed and used at an appropriate ratio.
なお、使用する水酸化アルミニウムの粒度分布及び頻度極大値については、島津 製作所社製、レーザー回折式粒度分布測定装置「SALD— 2200」を用いて測定し た。  The particle size distribution and frequency maximum value of aluminum hydroxide used were measured using a laser diffraction particle size distribution measuring device “SALD-2200” manufactured by Shimadzu Corporation.
[0014] 水酸化アルミニウムの粒度分布における頻度極大値が 5 m未満であるとシリコー ン系樹脂に混合する際にスラリー粘度の大幅な上昇を引き起こす。これらの要因によ り粘度が上昇したスラリーを樹脂フィルムに塗工する際に、スラリーが流動しに《なる ため気泡の巻込みを避けられな!/、。  [0014] When the frequency maximum value in the particle size distribution of aluminum hydroxide is less than 5 m, the viscosity of the slurry is significantly increased when mixed with the silicone resin. When applying a slurry with increased viscosity due to these factors to the resin film, the slurry will flow and avoid entrainment of bubbles! /.
[0015] また、水酸化アルミニウムの粒度分布における頻度極大値が 70 ,1 mを超えると、ス ラリー中の水酸化アルミニウムの流動性が悪くなる。そのため水酸化アルミニウムとシ リコーン系樹脂を含有するスラリーをもって塗工法にて塗膜を成す際に表面が鮫肌 状となり、表面の平滑性を損なってしまう。また、脱水分解反応に伴う質量減少率は、 水酸化アルミニウムの粒子径が大きい程顕著であり大きいため、長期間の高温放置 後の質量減少率を低減することができなレ、。 [0015] If the frequency maximum value in the particle size distribution of aluminum hydroxide exceeds 70,1 m, the fluidity of aluminum hydroxide in the slurry becomes poor. Therefore, aluminum hydroxide and shi When a coating film is formed with a slurry containing a riconic resin, the surface becomes rusted and the surface smoothness is impaired. In addition, the mass reduction rate associated with dehydration decomposition reaction becomes more prominent and larger as the particle size of aluminum hydroxide increases, so the mass reduction rate after standing at high temperature for a long time cannot be reduced.
[0016] 本発明で使用する熱伝導性フイラ一の一つは、絶縁性があり比較的熱伝導性も良 ぐ安価フイラ一として市場に多く流通している二酸化珪素である。二酸化珪素の粒 度は粒度分布における頻度極大値力 好ましくは 5〜50 111の範囲であり、より好ま しくは 6〜35 111である。二酸化珪素は、熱伝導性フイラ一含有量の向上、スラリー 粘度の適正化、成形性の適正化、成形後の熱伝導率 ·硬度 '粘着性等の諸特性の 調整を目的としている。また、二酸化珪素の密度は 2. 2 (g/cm3)であり、酸化アルミ ニゥム (密度; 3. 9g/cm3)や酸化亜鉛 (密度; 5. 6g/cm3)と比較して成形後に得 られた放熱スぺーサ一の質量を軽減することが出来る。さらには、二酸化珪素には結 晶質の二酸化珪素と非晶質の二酸化珪素があるが、熱伝導性フイラ一自体が有する 熱伝導率や経済性等の点から結晶質の二酸化珪素が好ましい。 [0016] One of the thermally conductive fillers used in the present invention is silicon dioxide that is widely distributed in the market as an inexpensive filler that has insulating properties and relatively good thermal conductivity. The particle size of silicon dioxide is the frequency maximum value in the particle size distribution, preferably in the range of 5 to 50 111, more preferably 6 to 35 111. The purpose of silicon dioxide is to improve the content of the thermal conductive filler, to optimize the slurry viscosity, to optimize the moldability, and to adjust various properties such as the thermal conductivity and hardness after adhesion. The density of the silicon dioxide 2. a 2 (g / cm 3), aluminum oxide Niumu (density; 3. 9g / cm 3) or zinc oxide (density; 5. 6g / cm 3) as compared to the molded The mass of the heat dissipation spacer obtained later can be reduced. Furthermore, although silicon dioxide includes crystalline silicon dioxide and amorphous silicon dioxide, crystalline silicon dioxide is preferred from the viewpoint of thermal conductivity, economy and the like of the thermal conductive filler itself.
[0017] 本発明における樹脂組成物中の熱伝導性フイラ一の添加量は、 45〜60体積%で あり、更に好ましくは 50〜55体積%である。添加量力 5体積%未満であると、得ら れた放熱スぺーサ一の熱伝導率および難燃性の向上が小さぐ 60体積%を超えると 成形加工性が悪くなる。  [0017] The addition amount of the heat conductive filler in the resin composition in the present invention is 45 to 60% by volume, more preferably 50 to 55% by volume. If the amount of addition is less than 5% by volume, the improvement of the thermal conductivity and flame retardance of the obtained heat-dissipating spacer is small. If it exceeds 60% by volume, the moldability becomes worse.
[0018] また、熱伝導性フイラ一が二酸化珪素を含む場合の本発明の水酸化アルミニウム の含有量は、樹脂組成物全体の 30〜50質量%であり、さらに好ましくは 35〜45質 量%である。含有量が、 30質量%未満であると、得られた放熱スぺーサ一の難燃性 の向上が小さくなる傾向にあり、 50質量%を超えると長期間の高温放置後の質量減 少率を低減することが難しレ、。  [0018] When the heat conductive filler contains silicon dioxide, the content of the aluminum hydroxide of the present invention is 30 to 50% by mass, more preferably 35 to 45% by mass, based on the entire resin composition. It is. If the content is less than 30% by mass, the improvement in flame retardancy of the obtained heat-dissipating spacer tends to be small, and if it exceeds 50% by mass, the mass reduction rate after standing at high temperature for a long time It is difficult to reduce.
また、二酸化珪素の含有量は、熱伝導性フイラ一に対して、好ましくは 25〜70体積 %、特に好ましくは 35〜60体積%であるのが好適である。二酸化珪素の含有量が、 25体積%より小さい場合には熱伝導率が低くなり、逆に 70体積%より大きい場合に は、難燃性が悪化するため好ましくない。  The content of silicon dioxide is preferably 25 to 70% by volume, particularly preferably 35 to 60% by volume, based on the thermally conductive filler. When the content of silicon dioxide is less than 25% by volume, the thermal conductivity is low. On the other hand, when the content is more than 70% by volume, the flame retardancy deteriorates.
[0019] 本発明の水酸化アルミニウムは、シランカップリング剤等の表面処理を行うことによ つて、粉末の吸水率を低減させ、樹脂組成物の高強度化、更には樹脂と粉末との間 の界面抵抗を低下させ、熱伝導率を一段と向上させることも可能である。 [0019] The aluminum hydroxide of the present invention is obtained by performing a surface treatment with a silane coupling agent or the like. Thus, it is possible to further improve the thermal conductivity by reducing the water absorption rate of the powder, increasing the strength of the resin composition, and further reducing the interface resistance between the resin and the powder.
[0020] 本発明におけるシリコーン系樹脂は、付加反応型シリコーンゲルまたは縮合反応型 シリコーンゲルの少なくとも一方であることが好ましい。さらには、該シリコーンゲルが 液状となっている付加反応型液状シリコーンゲルまたは縮合反応型液状シリコーン ゲルの少なくとも一方であることが好ましい。また、必要に応じてシリコーンゲル成分 の一部をシリコーンゴムに置き換えても差し支えない。該シリコーンゴムは付加反応 型シリコーンゴムまたは過酸化物加硫タイプのシリコーンゴムの少なくとも一方である ことが好ましい。 [0020] The silicone resin in the present invention is preferably at least one of an addition reaction type silicone gel or a condensation reaction type silicone gel. Furthermore, it is preferable that the silicone gel is at least one of an addition reaction type liquid silicone gel and a condensation reaction type liquid silicone gel in which the liquid is a liquid. If necessary, a portion of the silicone gel component may be replaced with silicone rubber. The silicone rubber is preferably at least one of addition reaction type silicone rubber or peroxide vulcanization type silicone rubber.
これらのシリコーンゲルまたはシリコーンゴムのいずれにおいても、平均組成式が、 Rl SiO (式中、 R1は同一又は異種の非置換又は置換の 1価炭化水素基で n (4-n) /2  In any of these silicone gels or silicone rubbers, the average composition formula is Rl SiO (wherein R1 is the same or different unsubstituted or substituted monovalent hydrocarbon group and n (4-n) / 2
あり、 nは 1·98〜2·02の正数である。)で示されるオルガノポリシロキサンをベースポリ マーとしたものが好ましい。  And n is a positive number between 1 · 98 and 2 · 02. The base polymer is preferably an organopolysiloxane represented by
[0021] 付加反応型液状シリコーンの具体例としては、例えば一分子中にビュル基と Η— Si 基の両方を有する 1液性のシリコーン、又は末端あるいは側鎖にビュル基を有するォ ルガノポリシロキサンの 2液性のシリコーンなどを挙げることができる。このような付加 反応型液状シリコーンの市販品としては、液状シリコーンゴムのものとしては、例えば GE東芝シリコーン社製、商品名「YE5822」など、また液状シリコーンゲルのものとし ては、例えば GE東芝シリコーン社製、商品名「XE14— B8530」、「TSE— 3062」な どがある。 [0021] Specific examples of the addition reaction type liquid silicone include, for example, a one-part silicone having both a bull group and a Si-Si group in one molecule, or an organopolysiloxane having a bull group at the terminal or side chain. And two-part silicone. Examples of commercially available products of such addition reaction type liquid silicone include those manufactured by GE Toshiba Silicone Co., Ltd. under the trade name “YE5822”, etc. There are product names such as “XE14-B8530” and “TSE-3062”.
[0022] また、シリコーン系樹脂への難燃性を向上させる手段として白金又は白金化合物を 添加する方法がある。通常、白金又は白金化合物は、シリコーンの付加反応の触媒 として用いられる為、市販の付加反応型液状シリコーンには、 1 %未満の白金化合物 が既に添加されていることが多い。使用される白金化合物は、例えば、白金ブラック、 塩化白金酸、塩化白金酸アルコール変性物、塩化白金酸とォレフィンとの錯体、塩 化白金酸とアルデヒドとの錯体、塩化白金酸とビュルシロキサン又はアセチレンアル コールとの錯体、塩化白金酸とイソプロピルアルコールとの錯体等が挙げられる。た だし、その添加量は極僅かであり、多量に添加してもコストがかかるだけで難燃性は あまり向上しない。本発明では、難燃剤としての機能を有する水酸化アルミニウムの 粉末を熱伝導性フイラ一として使用するため、系全体の難燃性を向上させるために 白金又は白金化合物を追加添加しなくてもよい。 [0022] In addition, there is a method of adding platinum or a platinum compound as a means for improving the flame retardancy of the silicone resin. Usually, platinum or a platinum compound is used as a catalyst for the addition reaction of silicone. Therefore, commercially available addition reaction type liquid silicone is often already added with less than 1% platinum compound. Platinum compounds used are, for example, platinum black, chloroplatinic acid, chloroplatinic acid alcohol modified products, complexes of chloroplatinic acid and olefin, complexes of chloroplatinic acid and aldehyde, chloroplatinic acid and bursiloxane or acetylene. Examples thereof include a complex with alcohol, a complex of chloroplatinic acid and isopropyl alcohol, and the like. However, the amount of addition is very small, and adding a large amount only adds cost and flame retardancy is low. Not much improvement. In the present invention, since aluminum hydroxide powder having a function as a flame retardant is used as a heat conductive filler, it is not necessary to add platinum or a platinum compound in order to improve the flame retardancy of the entire system. .
[0023] 熱伝導性フイラ一とシリコーン系樹脂との混合方法は、特に限定されるものではな い。少量の場合は手混合も可能である力 プラネタリーミキサー、ハイブリッドミキサー 、ヘンシェルミキサー、ニーダー、ボールミル、ミキシングロール等の一般的な混合機 を用いてもよい。 [0023] The mixing method of the heat conductive filler and the silicone resin is not particularly limited. Forces that can be mixed by hand in the case of small amounts General mixers such as planetary mixers, hybrid mixers, Henschel mixers, kneaders, ball mills, and mixing rolls may be used.
上記の混合方法により本発明の熱伝導部材、放熱スぺーサ一などとして用いられ るスラリーが作製される。  By the above mixing method, a slurry used as the heat conducting member, the heat radiating spacer, etc. of the present invention is produced.
本発明の樹脂組成物は、熱伝導部材、放熱スぺーサ一等として使用することがで きる。  The resin composition of the present invention can be used as a heat conductive member, a heat dissipation spacer, and the like.
[0024] 本発明の熱伝導部材、及び放熱スぺーサ一は、通常、シート形状等の薄型成形体 であり、その加工方法としては従来公知の方法、例えば、ドクターブレード法、コンマ コーター法、リップコーター法による塗工等が挙げられる。本発明では、スラリーを樹 脂フィルム上に塗布し、塗膜を成した後に加熱硬化させてシート状に成形するため、 スラリー粘度に対して厚さコントロールがしゃすぐ簡便な手法にて製造を可能とする ドクターブレード法、コンマコーター法による塗工が好ましい。  [0024] The heat conducting member and the heat dissipating spacer of the present invention are usually a thin molded body such as a sheet shape, and the processing method thereof is a conventionally known method such as a doctor blade method, a comma coater method, Examples include coating by a lip coater method. In the present invention, the slurry is applied on a resin film, and after forming a coating film, it is cured by heating and formed into a sheet shape. Coating by a doctor blade method or a comma coater method is preferable.
[0025] 本発明におけるシート形状の放熱スぺーサ一の厚さは、 0. 3〜5. Ommであり、好 ましくは 0. 5〜3. Ommである。 0. 3mm未満の厚さでは、シート表面の平滑性に対 する充填フィラーの形状の影響が大きい為、シート表面の平滑性を保持できない。ま た、 5. Ommを超えた厚さでは、スラリーを樹脂フィルム上に塗布した際に、スラリー が樹脂フィルム上で流れてしまい厚さコントロールが困難である。  [0025] The thickness of the sheet-shaped heat dissipation spacer in the present invention is 0.3 to 5. Omm, and preferably 0.5 to 3. Omm. When the thickness is less than 3 mm, the smoothness of the sheet surface cannot be maintained because the shape of the filler is greatly affected by the smoothness of the sheet surface. In addition, when the thickness exceeds 5. Omm, when the slurry is applied onto the resin film, the slurry flows on the resin film, making it difficult to control the thickness.
[0026] 本発明の熱伝導部材、及び放熱スぺーサ一の熱伝導率は 0. 8W/m'K以上であ れば、熱伝導部材として機能を満たすことができる。熱伝導率は、通常、 0. 8〜2. 0 W/m'Kであり、好ましくは 1 · 0〜2· OW/m'Kである。  [0026] If the heat conductivity of the heat conducting member and the heat dissipating spacer of the present invention is 0.8 W / m'K or more, the function as the heat conducting member can be satisfied. The thermal conductivity is usually from 0.8 to 2.0 W / m′K, preferably from 1 · 0 to 2 · OW / m′K.
以下、実施例により、本発明を詳細に説明するが、これらに限定して解釈されるもの ではない  Hereinafter, the present invention will be described in detail by way of examples, but is not construed as being limited thereto.
実施例 [0027] 使用した各材料を下記に示す。 Example [0027] Each material used is shown below.
1)二酸化珪素粉末 (啓和炉材社製)  1) Silicon dioxide powder (Keiwa Furnace Co., Ltd.)
シリカ B微粉 (結晶質、粒度分布における頻度極大値: 8 111、密度: 2. 2 (g/cm: ) ) Silica B fine (crystalline, frequency maximum peak value in the particle size distribution: 8 111, density: 2. 2 (g / cm: ))
2)水酸化アルミニウム粉末(日本軽金属社製)  2) Aluminum hydroxide powder (manufactured by Nippon Light Metal Co., Ltd.)
B- - 303 (粒度分布に .おける頻度極大値: 30 m 4 (g/ cm ) B--303 (Maximum frequency in particle size distribution: 30 m 4 (g / cm)
B- - 103 (粒度分布に .おける頻度極大値: 6 111 2 · 4 (g/ cm3) )B--103 (frequency maximum in particle size distribution: 6 111 2 · 4 (g / cm 3 ))
B- ■53 (粒度分布に :おける頻度極大値: 60 m 2 · 4 (g/ cm3) )B- ■ 53 (Frequency maximum in particle size distribution: 60 m 2 · 4 (g / cm 3 ))
B- - 703 (粒度分布に .おける頻度極大値: 2 111 2 · 4 (g/ cm3) )B--703 (frequency maximum in particle size distribution: 2 111 2 · 4 (g / cm 3 ))
B- ■73 (粒度分布に :おける頻度極大値: 80 m 2 · 4 (g/ cm3) )B- ■ 73 (Frequency maximum in particle size distribution: 80 m 2 · 4 (g / cm 3 ))
3)シリコーン系樹脂 3) Silicone resin
シリコーンゲル(GE東芝シリコーン社製) XE14— B8530 (2液混合型、密度: 0. 9
Figure imgf000009_0001
Silicone gel (GE Toshiba Silicone Co., Ltd.) XE14— B8530 (2-component mixed type, density: 0.9)
Figure imgf000009_0001
また、必要に応じて硬化剤(東レ 'ダウコーンング社製、 RD— 1)及び/又は遅延剤 (関東化学社製、マレイン酸ジメチル)を少量添加して硬化時間を調節した。  In addition, a curing agent (manufactured by Dow Corning, RD-1) and / or a retarder (manufactured by Kanto Chemical Co., dimethyl maleate) was added as necessary to adjust the curing time.
[0028] 表 1に実施例および表 2に比較例にて使用した水酸化アルミニウム及びシリコーン 系樹脂の配合比率を記載した。シリコーン系樹脂としては、シリコーンゲル (GE東芝 シリコーン社製、 XE14-B8530, 2液混合型)を使用した。また、必要に応じて硬化 剤(東レ 'ダウコーンング社製、 RD— 1)及び/又は遅延剤(関東化学社製、マレイン 酸ジメチル)を少量(0. 01質量%)添加した。各々を表 1及び表 2に記載の配合量に てハイブリッドミキサー(キーエンス社製、 HM— 500)を用いて混合し、スラリーを作[0028] Table 1 shows the blending ratios of aluminum hydroxide and silicone resin used in Examples and Table 2 in Comparative Examples. As the silicone resin, silicone gel (GE Toshiba Silicone, XE14-B8530, two-component mixed type) was used. Further, as necessary, a small amount (0.01 mass%) of a curing agent (Toray Industries, Inc., RD-1) and / or a retarder (manufactured by Kanto Chemical Co., Ltd., dimethyl maleate) was added. Mix each of the blending amounts shown in Table 1 and Table 2 using a hybrid mixer (Keyence Corporation, HM-500) to make a slurry.
; ^^し/ ; ^^
[0029] 作製したスラリーを真空乾燥機に入れ 1時間減圧しスラリー中に溶け込んでいるェ ァーを脱気した。  [0029] The produced slurry was put in a vacuum dryer and the pressure was reduced for 1 hour to degas the melt dissolved in the slurry.
[0030] 上記の手法にて脱気した実施例および比較例の各スラリーをドクターブレード法に て、厚さ 100 πιの PET基材上に所定の厚さの塗膜を作製し、該塗膜を 120°Cにて 2時間加熱硬化させ、厚さ 1. Ommのシート状成形体を得た。また後述する難燃性評 価用として、厚さ 0. 3mmのシート状成形体を得た。得られたシートの各評価結果を 表 1及び表 2に記載した。 [0030] A coating film having a predetermined thickness was prepared on a PET substrate having a thickness of 100 πι by using the doctor blade method for each of the slurries of Examples and Comparative Examples degassed by the above-described method. Was heated and cured at 120 ° C. for 2 hours to obtain a sheet-like molded body having a thickness of 1. Omm. Further, a sheet-like molded article having a thickness of 0.3 mm was obtained for evaluation of flame retardancy described later. Each evaluation result of the obtained sheet These are shown in Tables 1 and 2.
[0031] 得られたシートの評価項目、及び評価方法を以下に記す。 [0031] Evaluation items and evaluation methods of the obtained sheet are described below.
シート成形性:表 1、表 2、表 11及び表 12に記載の配合比率にて混合したスラリーを 用いたシートの成形性につ!/、て下記の基準にて三段階に評価した。  Sheet formability: The sheet formability using the slurry mixed at the blending ratios shown in Table 1, Table 2, Table 11 and Table 12 was evaluated in three stages according to the following criteria.
〇:スラリー粘度が適度であり、シートの成形性に問題無し。  ○: The slurry viscosity is moderate, and there is no problem in the formability of the sheet.
△:スラリー粘度がやや高ぐシートの成形性にやや問題あり。  Δ: There is a slight problem in the formability of the sheet having a slightly higher slurry viscosity.
X:スラリー粘度が高ぐシートの成形性に問題がある。  X: There is a problem in the formability of the sheet having a high slurry viscosity.
[0032] 熱伝導率測定:得られた放熱スぺーサーを TO— 3型銅製ヒーターケースと銅板と の間に挟み、スぺーサー厚みの 10%を圧縮した後、銅製ヒーターケースに電力 5W をかけて 4分間保持し、銅製ヒーターケースと銅板との温度差を測定し、 [0032] Thermal conductivity measurement: The obtained heat dissipating spacer was sandwiched between a TO-3 type copper heater case and a copper plate, and after compressing 10% of the spacer thickness, the copper heater case was supplied with electric power of 5W. Hold for 4 minutes, measure the temperature difference between the copper heater case and the copper plate,
熱伝導率(W/m.K) =  Thermal conductivity (W / m.K) =
{電力 (W) X厚み (m) }/{温度差 (K) X測定面積 (m2) }、 にて熱伝導率を算出した。 The thermal conductivity was calculated by {Power (W) X Thickness (m)} / {Temperature Difference (K) X Measurement Area (m 2 )}.
[0033] 表面状態:得られた放熱スぺーサ一の表面状態を下記の基準にて三段階に評価し た。 [0033] Surface condition: The surface condition of the obtained heat dissipating spacer was evaluated in three stages according to the following criteria.
〇:シートの表面が平滑であり荒れ等無し。  ◯: The surface of the sheet is smooth and there is no roughness.
△:シートに局所的な荒れがあるが実用上問題ないもの。  Δ: The sheet has local roughness, but there is no practical problem.
X:シートの表面の荒れが酷く使用上の問題があるもの。  X: The surface of the sheet is very rough and has problems in use.
[0034] 難燃性評価:難燃性規格 UL94Vの燃焼試験方法により、得られた放熱スぺーサ 一の難燃性を評価した。 [0034] Flame retardancy evaluation: The flame retardancy of the obtained heat dissipating spacer was evaluated by the flame test method of flame retardancy standard UL94V.
質量減少率:得られたシートの質量 (A)を測定した後、 150°Cに保持されたオーブ ンに 1000時間放置した。所定時間経過後に取り出し、再度質量 (B)を測定した。  Mass reduction ratio: After measuring the mass (A) of the obtained sheet, it was left in an oven maintained at 150 ° C. for 1000 hours. The sample was taken out after a predetermined time and the mass (B) was measured again.
質量減少率(%) = {質量 (A)—質量(B) } /質量 (A) X 100、  Mass reduction rate (%) = {mass (A) —mass (B)} / mass (A) X 100,
にて質量減少率を算出した。質量減少率は 1. 5%以下であることが望ましい。  The mass reduction rate was calculated at The mass reduction rate is desirably 1.5% or less.
[0035] 表 1に記載のように実施例;!〜 4は、シート状の成形が可能であり、シート表面は良 好で、製品として良好である。また、熱伝導率は 0. 8W/m'K以上であり、難燃性も 難燃性規格 UL94V— 0レベルである。 [0035] As shown in Table 1, Examples;! To 4 can be formed into a sheet, the sheet surface is good, and the product is good. In addition, the thermal conductivity is 0.8 W / m'K or more, and the flame retardancy is also the flame retardance standard UL94V-0 level.
[0036] 比較例 1については、水酸化アルミニウムの頻度極大値が 5 mを下回っているた め、スラリー粘度が高ぐシート成形性に問題がある。また、気泡の混入が避けられず 、得られたシートは、気泡混入の跡が残り、表面の荒れが著しい。 [0036] In Comparative Example 1, the frequency maximum value of aluminum hydroxide was less than 5 m. Therefore, there is a problem in sheet formability with high slurry viscosity. In addition, bubbles are unavoidably mixed, and the obtained sheet has traces of bubbles and the surface is extremely rough.
[0037] 比較例 2は、水酸化アルミニウムの頻度極大値が 70 mを上回っているので、比較 例 1に比べると、スラリー粘度は低くシートの成形性は良くなつている。しかし、得られ たシートは、表面が鮫肌状となり荒れが酷く問題があった。  [0037] In Comparative Example 2, since the frequency maximum value of aluminum hydroxide exceeds 70 m, the slurry viscosity is low and the formability of the sheet is improved compared to Comparative Example 1. However, the obtained sheet had a problem that the surface was crusted and the roughness was severe.
[0038] 比較例 3は、シリコーン系樹脂に対する水酸化アルミニウムの添加量力 0体積%で ある。スラリー粘度は低くシートの成形性は良いが、得られた放熱スぺーサ一は、熱 伝導率が 0. 8W/m'K以下であり、難燃性も難燃性規格 UL94V— 1レベルである  [0038] In Comparative Example 3, the amount of aluminum hydroxide added to the silicone resin is 0 vol%. Although the slurry viscosity is low and the formability of the sheet is good, the heat dissipation spacer obtained has a thermal conductivity of 0.8 W / m'K or less, and the flame resistance is also at the level of UL94V-1 level. is there
[0039] 比較例 4は、シリコーン系樹脂に対する水酸化アルミニウムの添加量が 65体積%で ある。スラリー粘度が高ぐシート成形性に問題がある。また得られたシートは、表面 の荒れが酷く使用上の問題がある。 [0039] In Comparative Example 4, the amount of aluminum hydroxide added to the silicone resin is 65 vol%. There is a problem in sheet formability with high slurry viscosity. Further, the obtained sheet has a rough surface and has a problem in use.
[0040] 以上の様に、水酸化アルミニウムの頻度極大値及びシリコーン系樹脂への添加量 を最適化することによりシートの成形性が良ぐまた、得られた放熱スぺーサ一は、シ ート表面状態が平滑であり、熱伝導率は 0. 8W/m'K以上であり、難燃性も難燃性 規格 UL94V— 0レベルであった。  [0040] As described above, the formability of the sheet is improved by optimizing the frequency maximum value of aluminum hydroxide and the amount added to the silicone resin, and the heat dissipation spacer obtained is The surface condition was smooth, the thermal conductivity was 0.8 W / m'K or more, and the flame retardancy was UL94V-0 level.
[0041] [表 1] [0041] [Table 1]
丽 表
Figure imgf000012_0001
丽 Table
Figure imgf000012_0001
Figure imgf000013_0001
Figure imgf000013_0001
次に、熱伝導性フイラ一中に二酸化珪素を併用した例を示す。  Next, an example in which silicon dioxide is used in combination in a thermally conductive filler is shown.
表 11及び表 12に、実施例と比較例に用いた、二酸化珪素、水酸化アルミニウム、 及びシリコーン系樹脂の配合比率を示した。  Tables 11 and 12 show the blending ratios of silicon dioxide, aluminum hydroxide, and silicone resin used in Examples and Comparative Examples.
各材料を表 11及び表 12に記載した配合比率で、ハイブリッドミキサー(キーエンス 社製、 HM— 500)を用いて混合し、スラリーを作製した。  Each material was mixed using a hybrid mixer (manufactured by Keyence Corporation, HM-500) at a blending ratio described in Table 11 and Table 12 to prepare a slurry.
作製したスラリーを真空乾燥機に入れ 1時間減圧し、スラリー中に溶け込んでいる エアーを脱気した。 The prepared slurry is put in a vacuum dryer and decompressed for 1 hour, and is dissolved in the slurry. Air was degassed.
[0044] 上記の方法で脱気した実施例および比較例の各スラリーをドクターブレード法にて 、厚さ 100 πιの PET基材上に所定の厚さ塗布した。塗布後、塗膜が形成された後 、 120°Cにて 2時間加熱硬化させ、厚さ 1. Ommのシート状成形体を得た。また、後 述する難燃性評価用として、厚さ 0. 3mmのシート状成形体を得た。得られたシート は、上記した各項目で評価した。その結果を表 11及び表 12に記載した。  [0044] Each slurry of Examples and Comparative Examples degassed by the above method was applied to a PET substrate having a thickness of 100 πι by a doctor blade method to a predetermined thickness. After coating, a coating film was formed, and then heat-cured at 120 ° C. for 2 hours to obtain a sheet-like molded body having a thickness of 1. Omm. In addition, a sheet-like molded article having a thickness of 0.3 mm was obtained for evaluation of flame retardance described later. The obtained sheet was evaluated for each item described above. The results are shown in Tables 11 and 12.
[0045] 表 11に記載のように実施例;!;!〜 16は、シート状の成形が可能であり、シート表面 は良好で、製品として良好である。また、熱伝導率は 0. 8W/m'K以上、難燃性も 難燃性規格 UL94V— 0レベルであり、且つ 150°Cの雰囲気下において 1000時間 放置した後の質量減少率が 1. 5%以下である。  [0045] Examples as described in Table 11; ;! To 16 can be formed into a sheet, the sheet surface is good, and the product is good. In addition, the thermal conductivity is 0.8 W / m'K or more, the flame retardancy is also the flame retardancy standard UL94V-0 level, and the mass reduction rate after being left for 1000 hours in an atmosphere of 150 ° C is 1. 5% or less.
[0046] 比較例 11は、熱伝導性フイラ一(二酸化珪素と水酸化アルミニウムの合計)の含有 量が樹脂組成物全体の 40体積%であり、且つ水酸化アルミニウムの含有量が樹脂 組成物全体の 50質量%である。スラリー粘度は低くシートの成形性は良いが、得ら れたシートの熱伝導率は 0. 8W/m.K以下である。  [0046] In Comparative Example 11, the content of the thermally conductive filler (total of silicon dioxide and aluminum hydroxide) is 40% by volume of the entire resin composition, and the content of aluminum hydroxide is the entire resin composition. Of 50% by mass. Although the slurry viscosity is low and the formability of the sheet is good, the thermal conductivity of the obtained sheet is 0.8 W / m.K or less.
[0047] 比較例 12は、熱伝導性フイラ一の含有量(二酸化珪素と水酸化アルミニウムの合 計)が樹脂組成物全体の 40体積%であり、且つ水酸化アルミニウムの含有量が樹脂 組成物全体の 30質量%である。スラリー粘度は低くシートの成形性は良いが、得ら れたシートの熱伝導率は 0. 8W/m'K以下であり、難燃性も難燃性規格 UL94V— 1レベルである。  [0047] In Comparative Example 12, the content of the heat conductive filler (total of silicon dioxide and aluminum hydroxide) is 40% by volume of the entire resin composition, and the content of aluminum hydroxide is the resin composition. 30% by mass of the total. Although the slurry viscosity is low and the formability of the sheet is good, the thermal conductivity of the obtained sheet is 0.8 W / m'K or less, and the flame retardancy is also at the level of UL94V-1 flame retardancy.
[0048] 比較例 13は、熱伝導性フイラ一の含有量(二酸化珪素と水酸化アルミニウムの合 計)が樹脂組成物全体の 65体積%であり、且つ水酸化アルミニウムの含有量が樹脂 組成物全体の 50質量%である。熱伝導率や難燃性は良いが、スラリー粘度が高ぐ シート成形性に問題がある。また得られたシートは、表面の荒れが酷く使用上の問題 力 sある。 [0048] In Comparative Example 13, the content of the heat conductive filler (total of silicon dioxide and aluminum hydroxide) was 65% by volume of the entire resin composition, and the content of aluminum hydroxide was the resin composition. It is 50% by mass of the whole. Thermal conductivity and flame retardancy are good, but slurry viscosity is high. There is a problem with sheet formability. The obtained sheet had problems force s on the use severely roughened surface.
[0049] 比較例 14は、熱伝導性フイラ一の含有量(二酸化珪素と水酸化アルミニウムの合 計)が樹脂組成物全体の 65体積%であり、且つ水酸化アルミニウムの含有量が樹脂 組成物全体の 30質量%である。熱伝導率や難燃性は良いが、スラリー粘度が高ぐ シート成形性に問題がある。また得られたシートは、表面の荒れが酷く使用上の問題 力 Sある。 [0049] In Comparative Example 14, the content of the heat conductive filler (total of silicon dioxide and aluminum hydroxide) was 65% by volume of the entire resin composition, and the content of aluminum hydroxide was the resin composition. 30% by mass of the total. Thermal conductivity and flame retardancy are good, but slurry viscosity is high. There is a problem with sheet formability. Also, the obtained sheet has a rough surface and is a problem in use. A force S.
[0050] 比較例 15は、粒度分布における頻度極大値が 5 mより小さい水酸化アルミニウム フィラーを使用している力 スラリー粘度が高ぐシート成形性に問題がある。  [0050] Comparative Example 15 has a problem in the sheet formability where the slurry viscosity is high because the aluminum hydroxide filler having a frequency maximum in the particle size distribution of less than 5 m is used.
また得られたシートは表面の荒れがひどぐ使用上の問題がある。  Moreover, the obtained sheet has a problem in use that the surface roughness is severe.
[0051] 比較例 16は、粒度分布における頻度極大値が 70 inより大きい水酸化アルミユウ ムフイラ一を使用している力 S、得られたシートは表面の荒れがひどぐ使用上の問題 力 sある。 [0051] Comparative Example 16, the frequency maxima in the particle size distribution is 70 power using in greater hydroxide Arumiyuu Mufuira one S, problems force on the obtained sheet is rough on the surface Hidogu use s .
[0052] [表 3] [0052] [Table 3]
〔〕 D0053 表 [] D0053 Table
項 目 単位 実施例 1 1 実施例 1 2実施例 1 3 シリコーンゲル XE14-B8530 [体積%] 55 55 40 使 B微粉  Item Unit Example 1 1 Example 1 2 Example 1 3 Silicone gel XE14-B8530 [volume%] 55 55 40
二酸化珪素 [体積%] 12 25 23 用 B-303 [体積%] 33 20 37 水酸化アルミ二 :ゥム  For silicon dioxide [vol.%] 12 25 23 B-303 [vol.%] 33 20 37 Aluminum hydroxide: um
[質量%] 50 30 50 材 B-103 [体積%] - - - 水酸化アルミ二 :ゥ厶  [Mass%] 50 30 50 material B-103 [volume%]---Aluminum hydroxide: 厶
[質量%] - - - 料 B-53 [体積%] - - - 水酸化アルミ二 :ゥム  [% By mass]---Material B-53 [% by volume]---Aluminum hydroxide: UM
[質量%] - - - シート シート成形後の厚さ [mm] 1 1 1 シート成形性 スラリーによる成形性 [ - ] 〇 〇 〇 評 熱伝導率 T0-3型 測定方法 [W/m - k] 0.92 0.91 1.38 表面状態 表面状態観察 [ ] 〇 〇 〇 価 難燃性 UL94 V規格 [ 一 ] V-0 V-0 V-0 質量減少率 150。C、 1000時間 [ % ] 1.2 0.8 1.3 [Mass%]---Sheet Thickness after sheet forming [mm] 1 1 1 Sheet formability Slurry formability [-] 〇 〇 〇 Thermal conductivity T0-3 type Measurement method [W / m-k] 0.92 0.91 1.38 Surface state Surface state observation [] ○ ○ ○ Value Flame retardant UL94 V standard [1] V-0 V-0 V-0 Mass reduction rate 150. C, 1000 hours [%] 1.2 0.8 1.3
Figure imgf000017_0001
Figure imgf000017_0001
水酸化アルミニウムと二酸化珪素の熱伝導性フイラ一を併用し、熱伝導性フイラ一と シリコーン系樹脂の配合量を最適化することにより、熱伝導率が 0· 8W/m'K以上、 難燃性が難燃性規格 UL94V— 0レベルである樹脂組成物が得られた。 本発明の実施例の放熱スぺーサ一は熱伝導部材として電子回路部品に使用でき 、該電子回路部品は家電用電気製品、 OA機器、又は自動車に組み込むことで高性 能化に貢献できる。 By using a thermal conductive filler of aluminum hydroxide and silicon dioxide in combination and optimizing the blending amount of the thermal conductive filler and silicone resin, the thermal conductivity is 0.8 W / m'K or more, flame retardant A resin composition having the flame retardancy standard UL94V-0 level was obtained. The heat dissipating spacer of the embodiment of the present invention can be used for an electronic circuit component as a heat conducting member, and the electronic circuit component can contribute to high performance by being incorporated in an electric appliance for home appliances, an OA device, or an automobile.
産業上の利用可能性 Industrial applicability
本発明の樹脂組成物は、巿場に安価に流通している水酸化アルミニウムの粉末を 熱伝導性フイラ一として用い、かつ二酸化珪素と併用することにより、難燃性に優れ、 長期間の高温放置後の質量減少率を低減した放熱スぺーサーを提供する。この放 熱スぺーサ一は、熱伝導部材として電子回路部品に使用でき、該電子回路部品は 家電用電気製品、 OA機器、又は自動車に組み込むことができるなど有用である。 なお、 2006年 9月 13曰に出願された曰本特許出願 2006— 247494号及び 2006 年 10月 23日に出願された日本特許出願 2006— 288072号の明細書、特許請求の 範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れ るものである。  The resin composition of the present invention is excellent in flame retardancy by using a powder of aluminum hydroxide, which is circulated at a low price in a factory, as a heat conductive filler and in combination with silicon dioxide, and has a long-term high temperature. Provided is a heat dissipating spacer having a reduced mass reduction rate after being left. This heat release spacer can be used as an electronic circuit component as a heat conduction member, and the electronic circuit component can be incorporated into an electric appliance for home appliances, an OA device, or an automobile. The specifications, claims, and abstract of Japanese Patent Application 2006-247494 filed on September 13, 2006 and Japanese Patent Application 2006- 288072 filed on October 23, 2006 Is hereby incorporated by reference as a disclosure of the specification of the present invention.

Claims

請求の範囲 The scope of the claims
粒度分布における頻度極大値が 5〜 70 ,1 mである水酸化アルミニウムを含む熱伝 導性フイラ一と、シリコーン系樹脂とを含有してなる樹脂組成物において、熱伝導性 フィラーの含有量が樹脂組成物全体の 45〜60体積%であることを特徴とする樹脂 組成物。  In a resin composition comprising a heat conductive filler containing aluminum hydroxide having a frequency maximum in the particle size distribution of 5 to 70,1 m and a silicone resin, the content of the heat conductive filler is 45 to 60% by volume of the entire resin composition.
前記熱伝導性フイラ一が水酸化アルミニウムと二酸化珪素とを含み、かつ、該水酸 化アルミニウムの含有量が樹脂組成物全体の 30〜50質量%である請求項 1に記載 の樹脂組成物。  2. The resin composition according to claim 1, wherein the thermally conductive filler includes aluminum hydroxide and silicon dioxide, and the content of the aluminum hydroxide is 30 to 50% by mass of the entire resin composition.
前記二酸化珪素が結晶質の二酸化珪素である請求項 2に記載の樹脂組成物。 請求項 1乃至 3のいずれか一項に記載の樹脂組成物を用いた熱伝導部材。  The resin composition according to claim 2, wherein the silicon dioxide is crystalline silicon dioxide. The heat conductive member using the resin composition as described in any one of Claims 1 thru | or 3.
請求項 1乃至 3のいずれか一項に記載の樹脂組成物を用いた放熱スぺーサ一。 請求項 1乃至 3のいずれか一項に記載の樹脂組成物を用いた、厚さが 0. 3〜5. 0 mmのシート。  A heat dissipating spacer using the resin composition according to any one of claims 1 to 3. A sheet using the resin composition according to any one of claims 1 to 3 and having a thickness of 0.3 to 5.0 mm.
請求項 1乃至 3のいずれか一項に記載の樹脂組成物を、樹脂フィルム上に塗布し、 塗膜とした後に加熱硬化してなる樹脂組成物を片側又は両側に有するシート。  The sheet | seat which has the resin composition formed by apply | coating the resin composition as described in any one of Claim 1 thru | or 3 on a resin film, making it a coating film, and heat-hardening it on one side or both sides.
熱伝導率が 0. 8W/m'K以上である請求項 6又は 7に記載のシート。  The sheet according to claim 6 or 7, having a thermal conductivity of 0.8 W / m'K or more.
請求項 6乃至 8のいずれか一項に記載のシートを用いた熱伝導部材。  A heat conductive member using the sheet according to claim 6.
請求項 6乃至 8のいずれか一項に記載のシートを用いた放熱スぺーサ一。  A heat dissipating spacer using the sheet according to claim 6.
難燃性が難燃性規格 UL94V—0レベルである請求項 5又は 10に記載の放熱スぺ ーサ一。  The heat dissipation spacer according to claim 5 or 10, wherein the flame retardancy is a flame retardancy standard UL94V-0 level.
請求項 4又は 9に記載の熱伝導部材、請求項 5、 10及び 11のいずれか一項に記 載の放熱スぺーサ一、請求項 6乃至 8のいずれか一項に記載のシート、を熱伝導部 材として使用した電子回路部品。  The heat conducting member according to claim 4 or 9, the heat dissipation spacer according to any one of claims 5, 10 and 11, and the sheet according to any one of claims 6 to 8. Electronic circuit parts used as heat conduction materials.
請求項 12に記載の電子回路部品を組み込んだ家庭用電気製品、 OA機器、又は 自動車。  An electrical appliance for home use, an OA device, or an automobile incorporating the electronic circuit component according to claim 12.
PCT/JP2007/067761 2006-09-13 2007-09-12 Resin composition and radiating spacer formed from the same WO2008032749A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-247494 2006-09-13
JP2006247494A JP2009289765A (en) 2006-09-13 2006-09-13 Radiating spacer
JP2006288072A JP2009286809A (en) 2006-10-23 2006-10-23 Resin composition
JP2006-288072 2006-10-23

Publications (1)

Publication Number Publication Date
WO2008032749A1 true WO2008032749A1 (en) 2008-03-20

Family

ID=39183805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067761 WO2008032749A1 (en) 2006-09-13 2007-09-12 Resin composition and radiating spacer formed from the same

Country Status (2)

Country Link
TW (1) TW200831579A (en)
WO (1) WO2008032749A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110746732A (en) * 2018-07-23 2020-02-04 旭化成株式会社 Resin composition and sheet containing resin composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002138205A (en) * 2000-11-02 2002-05-14 Polymatech Co Ltd Thermal conductive molded article
JP2004342758A (en) * 2003-05-14 2004-12-02 Bando Chem Ind Ltd Heat dissipating sheet
JP2006182836A (en) * 2004-12-27 2006-07-13 Denki Kagaku Kogyo Kk Electrically insulating, flame-retardant and heat conductive material and heat conductive sheet using the same
JP2007246664A (en) * 2006-03-15 2007-09-27 Polymatech Co Ltd Heat conductive sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002138205A (en) * 2000-11-02 2002-05-14 Polymatech Co Ltd Thermal conductive molded article
JP2004342758A (en) * 2003-05-14 2004-12-02 Bando Chem Ind Ltd Heat dissipating sheet
JP2006182836A (en) * 2004-12-27 2006-07-13 Denki Kagaku Kogyo Kk Electrically insulating, flame-retardant and heat conductive material and heat conductive sheet using the same
JP2007246664A (en) * 2006-03-15 2007-09-27 Polymatech Co Ltd Heat conductive sheet

Also Published As

Publication number Publication date
TW200831579A (en) 2008-08-01

Similar Documents

Publication Publication Date Title
JP6136952B2 (en) Thermally conductive composite silicone rubber sheet
TWI780100B (en) Thermally conductive resin composition, heat dissipation sheet, heat dissipation member, and manufacturing method thereof
JP5103364B2 (en) Manufacturing method of heat conductive sheet
TW200911924A (en) Thermally conductive compound and process for producing the same
KR20160084808A (en) Thermal conductive silicone composition and cured product, and composite sheet
JP2007119588A (en) Thermoconductive silicone rubber composition
CN109844048B (en) Heat-conductive composite silicone rubber sheet and method for producing same
JP2002003831A (en) Member for heat radiation
JP2020007569A (en) Thermally conductive sheet
CN113396055A (en) Thermally conductive silicone rubber sheet having thermally conductive adhesive layer
TW201943768A (en) Heat-conductive silicone composition and cured product thereof
CN114466905A (en) Heat-conductive silicone composition and method for producing same
TW200303898A (en) Heat-resistant silicone rubber sheet having thermal conductivity and thermocompression bonding
JP2000143808A (en) Heat conductive, electrical insulating silicone gel composition
JP2002121332A (en) Thermally softenable heat-radiating sheet
CN106118066B (en) A kind of zigzag heat conductive rubber piece and preparation method thereof
CN113874443B (en) Thermally conductive resin composition and thermally conductive sheet using same
JP5323432B2 (en) Molded body for heat conduction
WO2008032749A1 (en) Resin composition and radiating spacer formed from the same
JP2009289765A (en) Radiating spacer
JP2009286809A (en) Resin composition
JP2004099842A (en) Adhesive silicone composition for heat radiation member
CN115348951B (en) Carbonaceous alumina powder, resin composition, heat radiating member, and process for producing carbonaceous alumina powder
TW201827382A (en) Silicone-based hybrid polymer-coated AlN filler
JP2006193626A (en) Uncrosslinked resin composition and thermoconductive molded product using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07807168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07807168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP