WO2008032597A1 - Membrane electrode assembly and method for producing the same - Google Patents

Membrane electrode assembly and method for producing the same Download PDF

Info

Publication number
WO2008032597A1
WO2008032597A1 PCT/JP2007/067130 JP2007067130W WO2008032597A1 WO 2008032597 A1 WO2008032597 A1 WO 2008032597A1 JP 2007067130 W JP2007067130 W JP 2007067130W WO 2008032597 A1 WO2008032597 A1 WO 2008032597A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
electrolyte
catalyst layer
electrode assembly
catalyst
Prior art date
Application number
PCT/JP2007/067130
Other languages
French (fr)
Japanese (ja)
Inventor
Keizo Hayashi
Hideki Hiraoka
Original Assignee
Toagosei Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co., Ltd. filed Critical Toagosei Co., Ltd.
Priority to JP2008534293A priority Critical patent/JPWO2008032597A1/en
Publication of WO2008032597A1 publication Critical patent/WO2008032597A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/881Electrolytic membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/886Powder spraying, e.g. wet or dry powder spraying, plasma spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/106Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the chemical composition of the porous support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a membrane electrode assembly and a manufacturing method thereof, and more particularly to a membrane electrode assembly suitable for use in a fuel cell and a manufacturing method thereof.
  • a fuel cell for example, a polymer electrolyte fuel cell and a direct alcohol fuel cell are known.
  • MEA Membrane Electrode
  • This membrane electrode assembly usually has an electrode (anode, force sword) force in which a diffusion layer and a catalyst layer are laminated on both sides of an electrolyte membrane, and has a structure in which the catalyst layer side is inward.
  • the diffusion layer is a layer for supplying reactants (oxidant and fuel) to the catalyst layer and transferring electrons, and is porous and electronically conductive, such as carbon paper. Materials are used.
  • the catalyst layer is a layer that serves as a reaction field for battery reaction, and a material containing a catalyst and an electrolyte supported on a carrier is often used!
  • JP-A-2004-146279 discloses a membrane electrode assembly produced as follows.
  • platinum-supported carbon, a polymer electrolyte solution, and polytetrafluoroethylene dispersion are blended, and water is added and stirred to prepare a catalyst layer coating material.
  • this catalyst layer coating material is printed on carbon paper (diffusion layer) by screen printing and dried to produce an electrode.
  • the electrolyte membrane a porous membrane made of crosslinked polyethylene filled with a polymer of 2-acrylamido-2-methylpropanesulfonic acid is used, and on the surface of the electrolyte membrane, The electrode layers of the above electrodes are stacked and heated and pressed, etc. Combine.
  • the catalyst layer is formed by applying the coating material for the catalyst layer. Therefore, it is difficult to form pores in the catalyst layer, and the three-dimensional expansion of the pores is also small. This is because it is difficult for oxidants such as air and fuel to penetrate into the catalyst layer.
  • the catalyst layer coating when the catalyst layer coating is applied to the diffusion layer, the catalyst layer coating is easily impregnated in the pores of the diffusion layer. Therefore, it is considered that one of the causes is that the vacancies in the diffusion layer are blocked, which makes it difficult for the oxidant and the fuel to penetrate into the catalyst layer.
  • the present invention has been made in view of the above circumstances, and the problem to be solved by the present invention is that, when used in a fuel cell, it is possible to exhibit higher battery performance than before in a high load region. It is in providing a membrane electrode assembly and its manufacturing method.
  • a membrane electrode assembly according to the present invention has electrodes each having a diffusion layer and a catalyst layer on both sides of an electrolyte membrane, and the electrolyte membrane is porous.
  • the gist is that the pores of the membrane are filled with an electrolyte, and at least one of the catalyst layers is formed by spraying a liquid composition containing the catalyst and the electrolyte in the catalyst layer.
  • the surface of the porous membrane is exposed in the electrolyte membrane.
  • the catalyst layer is preferably fused to the surface of the electrolyte membrane.
  • the porous membrane is made of an olefin resin, and the electrolyte filled in the pores is a polyacrylamide having a 2-acrylamide 2-methylpropanesulfonic acid monomer unit. Or a cross-linked product thereof.
  • the method for producing a membrane / electrode assembly according to the present invention is a method for producing a membrane / electrode assembly having electrodes each provided with a diffusion layer and a catalyst layer on both sides of an electrolyte membrane,
  • the membrane is obtained by filling the pores of the porous membrane with an electrolyte, and forming at least one of the catalyst layers by spraying a liquid composition containing the catalyst and the electrolyte in the catalyst layer.
  • the catalyst layer may be formed by spraying the liquid composition on at least one surface of the electrolyte membrane.
  • the catalyst layer is preferably formed through the following steps (1) to (3).
  • the electrode is provided between the step (1) and the step (2) and / or between the step (2) and the step (3). It has a process to heat the electrolyte and insolubilize the electrolyte in the catalyst layer!
  • the sprayed catalyst layer may be further fused to the surface of the electrolyte membrane.
  • the electrolyte membrane may have the surface of the porous membrane exposed.
  • the liquid composition may be sprayed in a plurality of times.
  • the membrane / electrode assembly according to the present invention, at least one of the catalyst layers is formed by spraying the liquid composition. Therefore, in the catalyst layer, the sprayed liquid composition is appropriately aggregated and deposited.
  • the catalyst layer is presumed to have more pores in the layer than the catalyst layer formed by applying the liquid composition.
  • there are many three-dimensional vacancies in the layer and it is assumed that oxidants such as air and fuel can easily penetrate into the catalyst layer. It is. Further, it is assumed that products such as water (power sword side) and carbon dioxide (anode side) generated by the cell reaction are easily discharged due to the large number of pores in the catalyst layer.
  • the membrane electrode assembly according to the present invention when incorporated in a fuel cell, it has a higher electric power than a conventional one in a high load region (high current density region) that requires a large amount of oxidant and fuel. Pond performance can be expressed.
  • electrolyte membrane having an exposed porous membrane surface when used as the electrolyte membrane, there are the following advantages.
  • the electrolyte membrane in which the pores of the porous membrane are filled with the electrolyte and the surface of the porous membrane is exposed has good adhesion to the electrode (catalyst layer),
  • the ionic connectivity between the catalyst layer and the electrolyte in the pores tends to be insufficient.
  • the electrolyte in the catalyst layer contained in the composition spreads on the membrane surface, so The ionic connection between the desolation and the electrolyte in the catalyst layer is improved.
  • the material constituting the electrode is a heat-resistant material such as carbon fiber, it can be heated more easily than the electrolyte membrane.
  • a perfluorocarbon sulfonic acid polymer such as naphthion (registered trademark) is generally used as the electrolyte in the catalyst layer.
  • a mixed solvent such as alcohol or water. Has been. For this reason, simply removing the solvent by volatilization will cause power generation performance to deteriorate due to swelling or dissolution in an environment in contact with water or methanol, such as DMFC. In order to prevent this, it is better to insolubilize the electrolyte in the catalyst layer by heating.
  • the insolubilization by heating as described above is about tens of minutes to several hours at a temperature of about 140 to 200 ° C.
  • the electrolyte membrane When the catalyst layer is sprayed directly onto the electrolyte membrane, the electrolyte membrane must have a sufficiently high heat resistance, and the usable electrolyte membrane is limited.
  • a heating step can be inserted before the transfer or after the transfer step and before the step of bonding to the electrolyte membrane, and the options for the electrolyte membrane are widened.
  • an electrolyte membrane that uses an olefin resin as the porous substrate to expose the surface of the porous substrate is softened and fused at the temperature at which the electrodes are bonded together to strengthen the adhesion to the electrodes. Therefore, when combined with such a membrane, an excellent membrane electrode assembly can be obtained.
  • the adhesiveness between the electrolyte membrane and the catalyst layer is excellent. It becomes difficult to peel off and the durability of the membrane electrode assembly is improved.
  • the porous membrane is made of olefin resin, and the electrolyte filled in the pores is a polymer having a 2-acrylamido-2-methylpropanesulfonic acid monomer unit or a crosslinked product thereof. In this case, an electrolyte membrane having high! / Proton conductivity is obtained.
  • the monomer has good polymerizability and good water solubility, so that it is easy to increase the filling rate into the pores.
  • the liquid composition is sprayed on the surface of the electrolyte membrane to form a catalyst layer, or the liquid composition is applied to the surface of a film base prepared separately from the electrolyte membrane.
  • the catalyst layer is formed by spraying and transferred to one surface of the electrode diffusion layer to form the catalyst layer, the electrolyte in the catalyst layer contained in the composition spreads on the membrane surface, so The ionic connection between the electrolyte inside the catalyst and the electrolyte inside the catalyst layer is improved. [0045] Therefore, the utilization rate of the catalyst present on the outer surface of the pores of the electrolyte membrane is improved, the influence of the catalyst utilization rate is large, and the battery performance is high even in a low load region (low current density region). A membrane electrode assembly can be obtained. This is particularly effective when using an electrolyte membrane in which a porous membrane having no ion conductivity is exposed on the surface.
  • FIG. 1 is a cross-sectional view schematically showing an example of the present MEA.
  • FIG. 2 is a cross-sectional view schematically showing an example of a catalyst layer in this MEA.
  • the membrane electrode assembly according to the present embodiment (hereinafter sometimes referred to as “the present MEA”) and the manufacturing method thereof (hereinafter also referred to as “the present manufacturing method”) will be described in detail. To do.
  • FIG. 1 is a cross-sectional view schematically showing an example of this MEA.
  • electrodes 18 each having a diffusion layer 14 and a catalyst layer 16 are laminated on both surfaces of an electrolyte membrane 12.
  • the MEA preferably has the catalyst layer 16 bonded to the electrolyte membrane 12, but in the present application, the MEA includes one in which the catalyst layer 16 is not bonded to the electrolyte membrane 12.
  • the electrolyte membrane is a membrane in which the pores of the porous membrane are filled with electrolyte.
  • the porous membrane mainly forms the skeleton of the electrolyte membrane, and has a large number of through-holes penetrating from one surface to the other surface of the membrane.
  • non-through holes may exist.
  • the through hole may penetrate substantially perpendicularly to the film surface, or may penetrate through the film surface at an angle of less than 90 °. Moreover, it may penetrate at random, such as meandering or zigzag.
  • the cross-sectional shape of the through hole is not particularly limited as long as it can be filled with an electrolyte.
  • Specific examples of the cross-sectional shape of the through hole include a circle, an ellipse, a polygon, a shape in which these are connected, and a combination thereof.
  • the upper limit of the porosity of the porous membrane is preferably 95% or less, more preferably 90% or less, more preferably 85% or less, and still more preferably 80% or less.
  • the lower limit of the porosity of the porous membrane is most preferably 5% or more, preferably 10% or more, more preferably 15% or more, and even more preferably 20% or more. This is because if the porosity of the porous membrane is within the above range, the balance between the electrolyte group amount per unit area and the membrane strength is good.
  • the porosity is obtained by determining the volume from the thickness and area of the porous membrane, measuring the weight, and calculating the proportion of air in the total volume from the specific gravity of the constituent material.
  • the power to seek is S. Specifically, it can be obtained by the following equation.
  • Porosity% (Porous membrane thickness X Porous membrane area Porous membrane weight / Constituent material specific gravity) / (Porous membrane thickness X Porous membrane area) X 100
  • the upper limit of the pore diameter of the porous membrane is preferably a force S of 50 m or less, more preferably 10 m or less, from the viewpoint of easily holding the electrolyte filled in the pore l ⁇ Most preferred is m or less.
  • the lower limit of the pore diameter of the porous membrane is preferably 0.001 m or more, force S, and more preferably 0.01 ⁇ m or more from the viewpoint of easy filling of the pores.
  • the pore diameter of the porous membrane is within the above range, the pores can be filled with the electrolyte relatively easily, and the filled electrolyte can be retained well, and it is difficult to drop off when the membrane is deformed. Because.
  • the said hole diameter is a value measured by the mercury intrusion method.
  • the material of the porous membrane is not particularly limited as long as the above-described through-holes can be formed.
  • organic materials such as polymers, inorganic materials such as ceramics (alumina, mritite, etc.), metals (including alloys), and composite materials composed of these materials.
  • the hole is relatively easy to form, lightweight, etc. From this point of view, a polymer can be preferably used.
  • polystyrene resins resins mainly composed of an ethylene monomer such as polyethylene
  • polyolefin resins such as polypropylene and polymethylpentene
  • polychlorinated salts for example, ethylene resins (resins mainly composed of an ethylene monomer such as polyethylene), polyolefin resins such as polypropylene and polymethylpentene, and polychlorinated salts.
  • Butyl chloride resin such as bur, polytetrafluoroethylene, polytrifluoroethylene, polychlorotrifluoroethylene, poly (tetrafluoroethylene hexafluoropropylene), poly (tetrafluoroethylene par Fluoroalkyl resins such as fluoroalkyl ester), polyamide resins such as nylon 6 and nylon 66, polyester resins, aromatic polyimide, aramid, polysulfone, polyphenylene oxide, poly ether ether ketone, Polycarbonate, phenol resin, epoxy resin, unsaturated polyester, etc. It can be exemplified. One or more of these may be included. Two or more kinds of polymers may be laminated. The polymer may be cross-linked as necessary.
  • thermoplastic polymers such as polyolefin resins such as polyethylene, polysulfone, polyphenylene oxide, polyamide resins, polyester resins, and the like can be preferably used. More preferred is an olefin resin such as an ethylene resin.
  • thermoplastic polymers can be softened or melted by heating, the surface of the porous membrane is softened or melted when the spray-formed catalyst layer is heated and pressurized, and the like. This is because there are advantages such as easy fusion of the catalyst layer.
  • a material having a softening temperature or a melting temperature higher than the operating temperature may be selected in consideration of the operating temperature of the fuel cell to which the MEA is applied.
  • the upper limit of the thickness of the porous membrane from the viewpoint of the internal resistance of the battery, 200 m or less is preferable, 150 m or less is more preferable, and 100 m or less is most preferable.
  • the lower limit of the thickness of the porous membrane is preferably 1 am or more from the standpoint of maintaining the membrane strength and preventing defects such as tearing during electrode joining and incorporation into fuel cells. More preferably, 5 m or more is more preferable, and 10 m or more is most preferable.
  • the thickness of the porous membrane is within the above range, the balance between membrane strength and membrane resistance is good. Also, when fuel such as methanol is used, permeation is easy to suppress. Because.
  • the electrolyte filled in the pores of the porous membrane has a role of imparting ion conductivity to the membrane.
  • electrolyte examples include an electrolyte polymer, an electrolyte polymer bridge (hereinafter, these may be collectively referred to as "electrolyte polymer"), an acid, a room temperature molten salt, and the like.
  • electrolyte polymer an electrolyte polymer
  • electrolyte polymer bridge an electrolyte polymer bridge
  • acid an acid
  • room temperature molten salt a room temperature molten salt
  • a polymer containing an electrolyte can be exemplified as a suitable one. These include one or more types! /, May be! /.
  • the electrolyte polymer or the like filled in the pores may exist as a polymer before being filled in the pores, or an electrolyte polymer or the like is generated. After the possible polymer precursor is filled in the pores, the polymer may be polymerized and bridged to form an electrolyte polymer. A specific method for filling the electrolyte polymer and the like will be described later in “2. Production method”.
  • electrolyte group contained in the electrolyte polymer include, for example, acidic groups such as a sulfonic acid group, a sulfonimide group, a phosphonic acid group, a phosphonous acid group, and a carboxylic acid group. S can. One or more of these may be included. Of these, from the viewpoint of easily obtaining high proton conductivity, it is possible to suitably use a sulfonic acid group.
  • the electrolyte polymer include all polymer skeletons such as a perfluorocarbon sulfonic acid polymer such as naphthion, a perfluorocarbon phosphonic acid polymer, and a trifluorostyrene sulfonic acid polymer. Or a partially fluorinated fluoropolymer having an electrolyte group; polymer skeleton such as polysulfonesulfonic acid, polyaryletherketonesulfonic acid, polybenzimidazolealkylsulfonic acid, polybenzimidazolealkylphosphonic acid Does not contain fluorine!
  • An electrolyte monomer and the like Align the like may be exemplified polymers having as monomer units. These are one or more It may be included above.
  • the monomer having an electrolyte group examples include 2- (meth) acrylamido-2-methylpropanesulfonic acid, 2- (meth) acrylamide-2-methylpropanephosphonic acid, and styrenesulfonic acid. , (Meth) aryl sulfonic acid, vinyl sulfonic acid, isoprene sulfonic acid, (meth) acrylic acid, maleic acid, crotonic acid, burphosphonic acid, acidic phosphate group-containing (meth) acrylate, etc. .
  • (Meth) acryl means “acrylic and / or methacrylic”
  • (meth) aryl means “aryl and / or methallyl”
  • (meth) arylate means “attalylate and / or metatalylate” (The same shall apply hereinafter).
  • Specific examples of the monomer having a functional group that can be converted into an electrolyte group before and after the polymerization include salts, anhydrides, esters, and the like of the above compounds.
  • the acid residue of the monomer to be used is a derivative such as a salt, an anhydride, or an ester
  • proton conductivity can be imparted by making it into a protonic acid type after polymerization.
  • Specific examples of the monomer having a site capable of introducing an electrolyte group before and after the polymerization include monomers having a benzene ring such as styrene, ⁇ -methylstyrene, chloromethylstyrene, and t-butylstyrene. can do.
  • Specific examples of the method for introducing an electrolyte group into these include a method of sulfonation with a sulfonating agent such as chlorosulfonic acid, concentrated sulfuric acid, sulfur trioxide, and the like.
  • a bulle compound having a sulfonic acid group, a bur compound having a phosphoric acid group, and the like are more preferable, and preferably have a high polymerizability.
  • 2- (meth) acrylamide-2-methylbutanesulfonic acid is more preferable, and preferably have a high polymerizability.
  • the pores of the porous membrane are filled in the electrolyte from the viewpoint of obtaining high ionic conductivity.
  • the electrolyte is filled.
  • the electrolyte membrane included in the MEA has been described above.
  • the electrolyte membrane is a porous membrane If the electrolyte is filled in the pores, the electrolyte layer may be covered on the membrane surface (that is, outside the pores), or the porous membrane may be exposed on the membrane surface. The latter is preferred.
  • the porous membrane forming the skeleton of the electrolyte membrane and the catalyst layer can be directly fused, the interfacial strength is increased, the durability of the MEA can be improved, and a catalyst layer is provided on the membrane surface.
  • the catalyst layer is formed by spraying or forming a catalyst layer on the surface of a film substrate prepared separately from the electrolyte membrane and transferring it to one side of the diffusion layer to form an electrode with the catalyst layer.
  • the electrolyte in the membrane spreads over the membrane surface and can improve the ionic connection between the electrolyte in the pores and the electrolyte in the catalyst layer.
  • the porous film may be almost entirely exposed on the film surface, or the porous film may be partially exposed on the film surface.
  • the electrode includes a diffusion layer and a catalyst layer.
  • the diffusion layer is a layer for supplying reactants (oxidant for a force sword electrode and fuel for an anode electrode) to the catalyst layer and for transferring electrons.
  • the catalyst layer is a layer serving as a reaction field for battery reaction.
  • the catalyst layer is disposed on the membrane surface side of the electrolyte membrane.
  • the structure of the electrode for example, as illustrated in FIG. 1, a structure in which the catalyst layer 16 and the diffusion layer 14 are laminated in this order from the electrolyte membrane 12 side may be exemplified. it can.
  • an intermediate layer containing conductive powder such as carbon powder and a binder such as thermoplastic polymer is interposed between the catalyst layer and the diffusion layer from the viewpoint of increasing the catalyst utilization rate. You can let it.
  • the intermediate layer may be present on either one of the electrodes, or may be present on both of the electrodes.
  • the diffusion layer and the catalyst layer may be bonded to each other or simply in contact as long as each layer can achieve the above-described purpose. Further, in either one electrode, both layers may be bonded to each other, and in the other electrode, both layers may be in contact with each other. Preferably, the diffusion layer and the catalyst layer are bonded to each other in at least one, more preferably both electrodes. If both layers are integrated, the battery is easy to handle and can be manufactured more efficiently. is there.
  • the electrode laminated on one surface of the electrolyte membrane functions as a force sword electrode, and the electrode laminated on the other surface of the electrolyte membrane functions as an anode electrode. Therefore, as long as each electrode functions as an anode and a force sword, the material of each diffusion layer and catalyst layer may be the same or different.
  • the material of the diffusion layer is, for example, a conductive powder such as carbon paper, carbon cloth, carbon non-woven fabric, carbon black or the like formed into a sheet shape together with a binder such as PTFE.
  • a conductive powder such as carbon paper, carbon cloth, carbon non-woven fabric, carbon black or the like formed into a sheet shape together with a binder such as PTFE.
  • foam metal, metal mesh, and metal mesh fixed with conductive powder with a binder may be used alone or in combination of two or more. From the viewpoints of corrosion resistance, good strength, and easy handling, carbon paper, carbon cloth, etc. can be suitably used.
  • the diffusion layer on the force sword side may be subjected to a hydrophobic treatment, for example, by treating carbon paper or the like with a hydrophobic polymer such as fluorine resin.
  • a hydrophobic polymer such as fluorine resin.
  • carbon paper or the like is heated in air, oxidized with a strong acid, or treated with a hydrophilic polymer such as polybutyl alcohol. Even if it is hydrophilized,
  • the thickness of the diffusion layer is not particularly limited, and can be appropriately set in consideration of the size of the electrode, the current range mainly used, the size of the system, and the like.
  • the upper limit of the thickness of the diffusion layer is preferably 5000 m or less force S, more preferably 1000 m or less, and most preferably 500 m or less.
  • the lower limit of the thickness of the diffusion layer is most preferably 30 m or more, preferably 5 111 or more, more preferably 10 m or more. Note that the thickness of the diffusion layer on the force sword side and the thickness of the diffusion layer on the anode side may be the same or different.
  • the catalyst layer 16 includes a catalyst 20 and an electrolyte 22 in the catalyst layer as essential components.
  • the catalyst 20 may be contained in the catalyst layer 16 in a state of being supported on a conductive carrier 24.
  • 26 is a hole.
  • 28 is a porous membrane.
  • Reference numeral 30 denotes an electrolyte filled in the pores of the porous film 28.
  • the electrolyte membrane 12 is exemplified by the case where the surface of the porous membrane 28 is exposed. Yes.
  • Examples of the catalyst include noble metal fine particles and noble metal alloy fine particles. Specific examples include platinum, platinum ruthenium alloy, palladium, platinum-cobalt alloy, platinum-iron alloy, and the like. One or more of these may be included.
  • the force sword side catalyst for example, platinum can be suitably used.
  • the catalyst on the anode side for example, a platinum ruthenium alloy that can easily reduce the poisoning of the catalyst by carbon monoxide can be suitably used.
  • Specific examples of the carrier include carbon black. One or more of these are included! /, May be! /.
  • Examples of the electrolyte in the catalyst layer include electrolyte polymers exemplified as the electrolyte filled in the pores. These may be used alone or in combination of two or more. Among these, from the viewpoint of excellent oxidation resistance, ion conductivity, catalyst binding, methanol resistance, and the like, a fluorine-based polymer having an electrolyte group can be preferably used.
  • At least one of the catalyst layers is formed by spraying a liquid composition containing the catalyst and the electrolyte in the catalyst layer.
  • spraying and “application” are used separately as different terms.
  • the spray-formed liquid composition is appropriately aggregated and accumulated, so that a large number of pores are formed and the pores are three-dimensionally expanded. Become more.
  • both catalyst layers are formed by spraying the liquid composition from the standpoint of easily improving battery performance in a high load range.
  • Liquid as used in the above liquid composition means that the composition has fluidity that allows the composition to be sprayed by a spraying device such as a spray. Therefore, the fluidity of the liquid composition is different from that of the composition prepared in a paste form when the catalyst layer is printed by screen printing or the like.
  • the liquid composition can be obtained by diluting the catalyst and the electrolyte in the catalyst layer to a viscosity suitable for spraying using a diluent such as water or a solvent.
  • a diluent such as water or a solvent.
  • the catalyst layer may be formed by spraying the liquid composition once, or may be formed by spraying the liquid composition a plurality of times (split spray)! / Good.
  • the composition of the liquid composition sprayed in each divided layer may be the same! /, And the layer may be different in each divided layer. ,.
  • the catalyst layer is preferably divided and formed! /. This is because vacancies tend to spread three-dimensionally because the sprayed liquid composition is repeatedly condensed and deposited. Another advantage is that it is easy to control the amount of catalyst contained in the catalyst layer during production of this MEA.
  • the thickness of the catalyst layer is not particularly limited, and can be set as appropriate in consideration of the amount of catalyst required for battery design, the load during power generation, and the like.
  • the upper limit of the thickness of the catalyst layer if it is too thick, from the viewpoint of increasing the resistance of the catalyst layer itself, 200 ⁇ 111 or less force S is preferable, ⁇ ⁇ ⁇ ⁇ or less force S is preferable, l OO ⁇ m or less is most preferable.
  • the lower limit of the thickness of the catalyst layer is preferably 1 m or more, more preferably ⁇ ⁇ ⁇ or more from the viewpoint of increasing the number of reaction points by increasing the three-phase interface and improving battery performance. 10 m or more is most preferable.
  • the thickness of the catalyst layer on the force sword side and the thickness of the catalyst layer on the anode side may be the same or different.
  • the catalyst layer may be laminated in contact with the surface of the electrolyte membrane, or may be bonded to the surface of the electrolyte membrane, for example. From the viewpoint of excellent durability when incorporated in a fuel cell, the catalyst layer is preferably bonded to the surface of the electrolyte membrane, and more preferably, the catalyst layer is porous on the surface. It should be fused to the surface of the electrolyte membrane where the membrane is exposed. It should be noted that the catalyst layer and the diffusion layer may be joined together, or may be acceptable, or may be contacted or removed.
  • This production method is a method capable of producing this MEA.
  • at least one of the two electrodes formed on both surfaces of the electrolyte membrane, preferably both The catalyst layer in the electrode is formed by spraying a liquid composition containing the catalyst and the electrolyte in the catalyst layer.
  • an electrolyte membrane in which an electrolyte is filled in the pores of the porous membrane is used.
  • the detailed configuration of the electrolyte membrane is as described in “1. MEA”.
  • the method for obtaining the porous film differs depending on the material, but for example, a method by stretching, a solution of a film material in which a pore former is dispersed or a melt is applied in a film shape, Solvent is removed by volatilization or the film material in the molten state is cooled to form a film, and the pore former is removed to form a hole. Punching and drilling are performed on the film material formed in the film shape. , Laser, chemical / physical etching and other processing methods to form holes, and after pouring a melt of polymer material or other material into a bowl that can transfer holes, peel it off By doing so, a method of transferring the hole to the film surface can be exemplified.
  • the most general method is a method by stretching. That is, in this method, a film material such as a polymer and a liquid or solid pore former are mixed by a method such as melt mixing, and the pore former is once finely dispersed and extruded from a T die or the like. While stretching, the pore former is removed by a method such as washing to form a porous film.
  • stretching methods there are methods such as uniaxial stretching and biaxial stretching.
  • the force S can be used to determine the shape of the hole, etc., depending on the stretching ratio, the ratio and type of pore former, the blending amount, and the type of membrane material.
  • the porous membrane is formed of a hydrophobic polymer material
  • at least one of the surfaces of the porous membrane may be subjected to a hydrophilic treatment.
  • the porous material is impregnated with a highly hydrophilic electrolyte material, if the porous membrane has been hydrophilicized in advance, the impregnation property into the pores can be improved, and the productivity of the membrane electrode assembly can be improved. Because.
  • hydrophilic treatment method examples include surfactant treatment, corona treatment, sulfonation treatment, hydrophilic polymer graft treatment, and the like. One or more of these treatments may be used in combination.
  • the method of filling the electrolyte in the pores of the porous membrane is not particularly limited. Specifically, for example, an electrolyte solution or dispersion, or molten electrolysis After impregnating the pores with a solution or dispersion of an electrolyte precursor or a molten electrolyte precursor, the electrolyte is generated from the electrolyte precursor impregnated in the pores. A method etc. can be illustrated.
  • the impregnation method specifically, for example, a method of immersing the porous membrane in the above solution or the like, various coating methods (die coating method, comma coating) on the porous membrane of the above solution or melt.
  • various coating methods die coating method, comma coating
  • a coating method, a gravure coating method, a roll coating method, a bar coating method, a reverse coating method, etc. may be used alone or in combination of two or more.
  • the electrolyte to be filled is an electrolyte polymer or the like
  • a method of filling the electrolyte polymer or the like in the pores of the porous membrane specifically, for example, a solution or dispersion of the electrolyte polymer or a melt
  • examples thereof include a method for producing an electrolyte polymer by polymerization or by converting a functional group that can be converted to an electrolyte group into an electrolyte group after polymerization.
  • one kind of a crosslinking agent such as a photopolymerization initiator, a thermal initiator, a redox-based polymerization initiator), a curing agent, a surfactant, etc. Or two or more may be added.
  • the polymer precursor contains at least one or more of the above-described electrolyte monomers. Furthermore, a cross-linking agent may be included as necessary.
  • crosslinking agent examples include, for example, a compound having two or more polymerizable functional groups in one molecule, and a polymerizable double bond and other crosslinking reactions in one molecule. Examples thereof include compounds having both functional groups. One or more of these may be included.
  • the former cross-linking agent include, for example, N, N'-methylenebis (meth) acrylylamide, N, N, -butylenebis (meth) acrylamide, polyethylene glycol di (meth) acrylate, polypropylene glycol Di (meth) atarylate, trimethylolpropane diolenoreatenore, pentaerythritoretriolinoreatenore, divinino benzene, bisphenol di (meth) acrylate, isocyanuric acid di (meth) acrylate, tetraaryl
  • crosslinkable monomers such as oxetane, triallylamine, and diallyloxyacetate.
  • cross-linking agent examples include cross-linking monomers such as N-methylol acrylamide, N-methoxymethyl acrylamide, and N-butoxymethyl acrylamide. These can be heated after radical polymerization of a polymerizable double bond to cause a condensation reaction or the like to crosslink, and can be heated simultaneously with radical polymerization to cause a similar crosslinking reaction.
  • the cross-linking agent is not limited to a compound having a carbon-carbon double bond, and a compound having a bifunctional or higher functional epoxy compound, a phenyl group having a hydroxymethyl group, etc., although the polymerization reaction rate is slightly low. Can also be used.
  • the epoxy compound is used, a bridge point is formed by reacting with an acid such as a carboxyl group contained in the polymer.
  • the polymer precursor may further contain a monomer copolymerizable with the electrolyte monomer and / or the crosslinking agent, if necessary.
  • a monomer copolymerizable with the electrolyte monomer and / or the crosslinking agent include (meth) acrylic acid esters, (meth) acrylamides, maleimides, styrenes, organic acid butyls, aryl compounds, and methallyl compounds.
  • This type of monomer include (meth) acrylic acid esters, (meth) acrylamides, maleimides, styrenes, organic acid butyls, aryl compounds, and methallyl compounds.
  • S One or more of these are included! /, May be! /.
  • the method for polymerizing the electrolyte monomer contained in the polymer precursor is not particularly limited, and any generally known method can be used. Specifically, for example, thermal initiators such as peroxides and azo compounds, thermal polymerization using redox polymerization initiators, and photopolymerization initiators that generate radicals upon irradiation with light such as ultraviolet rays are used. Examples include photopolymerization, polymerization by electron beam, radiation, etc. The These may be used alone or in combination of two or more.
  • the electrolyte polymer and polymer precursor itself can be impregnated into the pores of the porous membrane as they are when they themselves are liquid and have a low viscosity.
  • the preferred viscosity is 1 to 25 ° C., about lOOOOmPa ′s.
  • a solution in which the electrolyte polymer and / or polymer precursor is dissolved in an appropriate solvent, or an appropriate A dispersion liquid dispersed in a suitable dispersion medium is preferable.
  • the preferred viscosity is 1 to 25 ° C, about lOOOOmPa's.
  • the viscosity is a value measured with a B-type viscometer.
  • the solvent and the dispersion medium include, for example, aromatic organic solvents such as toluene, xylene, and benzene, aliphatic organic solvents such as hexane and heptane, black mouth honolem, and dichloroethane.
  • Chlorinated solvents such as ethers, ethers such as jetyl ether, ketones such as methyl ethyl ketone and cyclohexanone, esters such as ethyl acetate and butyl acetate, cyclic ethers such as 1,4 dioxane and tetrahydrofuran, dimethylformamide, Examples include amide solvents such as dimethylacetamide and N-methyl 2-pyrrolidone, water, and alcohols. One or more of these may be included. Of these, water is preferably mainly contained. This is because it is excellent in handling and economy.
  • the concentration of the solution or dispersion it is necessary to repeat the impregnation step if the concentration is too low. From the viewpoint of productivity, 5% by mass or more is preferable, and 10% by mass or more is more preferable. Most preferred is 20% by mass or more.
  • an electrolyte polymer layer is formed on the surface of the porous membrane when the electrolyte membrane is manufactured, as a method for removing it, specifically, for example, a brush made of resin fiber or the like, a brush or the like Examples of the method include rubbing with a scraper and scraping with a scraper. At this time, the above method may be carried out after moistening with water or the like or while washing. These methods may be used alone or in combination of two or more.
  • the liquid composition contains at least a catalyst and an electrolyte in the catalyst layer.
  • a suitable diluent capable of volatilization.
  • the diluent is volatilized and deposited from the liquid composition when the catalyst layer is formed by spraying the liquid composition, or the sprayed object is heated. This is because the diluent can be volatilized instantaneously, which makes it easier to make a porous body.
  • diluent examples include aromatic organic solvents such as toluene, xylene and benzene, aliphatic organic solvents such as hexane and heptane, chloroform and dichloroethane.
  • Chlorine solvents such as jetyl ether, ketones such as methylolethyl ketone and cyclohexanone, esters such as ethyl acetate and butyl acetate, cyclic ethers such as 1,4 dioxane and tetrahydrofuran, dimethylforma
  • amide solvents such as amide, dimethylacetamide, N-methyl-2-pyrrolidone, water, alcohols, and the like. These may be included alone or in combination of two or more. From the viewpoints of economy, handleability, safety, etc., water, alcohols and the like can be preferably used. Moreover, you may add a dispersing agent etc. suitably.
  • the upper limit of the catalyst concentration (in terms of solid content) in the liquid composition is preferably 90% by mass or less, more preferably 80% by mass or less, and most preferably 70% by mass or less.
  • the lower limit of the catalyst concentration in the liquid composition is preferably 20% by mass or more, preferably 10% by mass or more, and most preferably 30% by mass or more.
  • the upper limit of the concentration of the electrolyte in the catalyst layer in the liquid composition is from the viewpoint of easily maintaining the dispersed state of the catalyst and preventing clogging of the spray nozzle and the like. 50 mass% or less is preferred 40 mass% or less is more preferred 30 mass% or less is most preferred.
  • the lower limit of the concentration of electrolyte in the catalyst layer in the liquid composition is preferably 1% by mass or more from the viewpoint of efficiently forming the catalyst layer without repeating it many times. 5% by mass or more is more preferable. 10% by mass or more is most preferable.
  • the upper limit of the viscosity (25 ° C) of the liquid composition is preferably lOOOOmPa's or less, more preferably 5000 mPa's or less, force S, and most preferably 2000 mPa's or less.
  • the lower limit of the viscosity (25 ° C) of the above liquid composition is preferably 100 mPa-s, preferably lOmPa's or more. More preferable is 500 mPa's or more.
  • the liquid composition is sprayed to form the catalyst layer in at least one, preferably both electrodes.
  • Spraying of the liquid composition may be performed on the surface of the diffusion layer, or may be performed on the surface of the electrolyte membrane. Alternatively, it may be sprayed once on the surface of a film substrate different from the electrolyte membrane and transferred to a diffusion layer constituting the electrode. Further, these may be combined.
  • the catalyst layer side is used as the surface of the electrolyte membrane.
  • a diffusion layer is laminated on the outer surface of the catalyst layer, and once sprayed on a film substrate different from the electrolyte membrane, the electrode is attached. Examples thereof include a method for transferring to the surface of the diffusion layer to be formed. These methods may be used alone or in combination of two or more.
  • the liquid composition is preferably sprayed on the surface of the electrolyte membrane. Also preferred is a method in which the liquid composition is once sprayed on a film substrate different from the electrolyte membrane to form a catalyst layer, which is then transferred to the diffusion layer.
  • the electrolyte spreads directly on the membrane surface, the catalyst layer once spread in the surface direction of the film substrate, and the electrolyte directly contacts the electrolyte membrane surface.
  • the electrolyte in the catalyst layer also adheres to the exposed porous membrane surface, making it easier to improve the ionic connection between the electrolyte in the pores and the electrolyte in the catalyst layer. Power.
  • the liquid composition may be sprayed at one time, or may be sprayed in a plurality of times (divided).
  • the composition of the liquid composition may be the same for each spray, or the composition may be different.
  • the liquid composition contains a volatilizable diluent, it is preferable to heat the material to be sprayed. This is because the diluent volatilizes quickly and easily develops three-dimensional vacancies!
  • the spraying conditions for the liquid composition are satisfactory if the optimum conditions are selected in consideration of the viscosity and concentration of the liquid composition to be used.
  • the sprayed catalyst layer is preferably heated and pressurized by hot pressing or the like. This is because the catalyst layer formed by spraying is not lifted, the adhesion to the diffusion layer or the electrolyte membrane can be improved, and the catalyst layer is difficult to peel off.
  • the diffusion layer may be heated and pressurized simultaneously with the catalyst layer by overlaying the diffusion layer on the outer surface of the catalyst layer.
  • the diffusion layer can also be integrated, it is possible to obtain a membrane / electrode assembly excellent in handleability when the fuel cell is incorporated.
  • the heating temperature and the applied pressure during the heating and pressurization may be appropriately selected in consideration of the material of the porous membrane, the material of the electrolyte in the catalyst layer, and the like.
  • the electrolyte used for the spray-formed catalyst layer is naphth ion, it is insolubilized by heating, and excessive swelling in water and methanol can be prevented, so the catalyst layer is heated. Is preferred. In that case, use a method of spraying to the diffusion layer, or a method of spraying once on the surface of the film substrate different from the electrolyte membrane or electrode and transferring it to the electrode before forming a membrane electrode assembly. Heating is preferred because the choice of electrolyte membranes that can be used is widened and can be easily combined with an electrolyte membrane that exposes a part of a porous substrate made of polyolefin or the like.
  • This MEA can be suitably used for polymer electrolyte fuel cells, direct alcohol fuel cells such as direct methanol fuel cells, and the like.
  • both surfaces of the laminate were irradiated with ultraviolet rays of 1000 mj / cm 2 to polymerize the polymer precursor in the pores.
  • the membrane was allowed to air dry.
  • An electrolyte membrane (1) filled with a cross-linked polymer having an acrylamide-2-methylpropanesulfonic acid monomer unit was obtained.
  • the electrolyte membrane (1) was sandwiched between glass cells, 10% by mass aqueous methanol solution was placed in one cell, and pure water was placed in the other cell. And the metaphor that permeates the pure water side The amount of ol was measured over time by gas chromatographic analysis, and the permeation coefficient and permeation flux of methanol were measured.
  • the methanol permeation flux (representing the amount of methanol permeating through the electrolyte membrane) of the electrolyte membrane (1) was 0 ⁇ 28 kg / (m 2 ′ h).
  • liquid composition for spray (1) instead of a commercially available catalyst in which platinum is supported on carbon black, a commercially available catalyst in which platinum and ruthenium are supported on carbon black (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.)
  • a liquid composition for spraying (2) used for forming the catalyst layer of the anode electrode was prepared in the same manner except that “TEC61E54”) was used.
  • a screen printing composition (1) for use in forming a catalyst layer of a force sword electrode was prepared in the same manner except that the mixture was made into a paste without diluting and stirring with addition of sopropyl alcohol and water.
  • the electrolyte membrane (1) cut into a 10 cm square was fixed on a stainless steel plate with an adhesive tape, and placed on a hot plate heated to 120 ° C. On this electrolyte membrane (1), a PTFE resin mask that was cut through a 2.23 cm square was placed.
  • the liquid composition for spraying (1) was sprayed for 3 seconds at an ejection pressure of 1.4 MPa from a cone type nozzle having a tip fixed 20 cm above the surface of the electrolyte membrane (1), and left for 15 seconds. This was defined as one cycle, and this cycle was repeated until the platinum power contained in the spray-formed catalyst layer was mg / cm 2 .
  • both sides of the membrane on which the catalyst layer is formed are sandwiched between two 0.1 mm thick PTFE films, and further, both sides of the stainless steel plate are 10 cm on a side and 3 mm in thickness. Clamped with 2 sheets.
  • this laminate was hot-pressed using a hydraulic hot press machine with a hot plate heated to 120 ° C and a cylinder cross-sectional area of 50 cm 2 at a gauge pressure IMPa of the hot press machine for 5 minutes. And an electrolyte membrane with a catalyst layer was produced. [0169] Next, a 0.2 mm thick carbon paper treated with PTFE for water repellent treatment on the force sword side of the electrolyte membrane with a catalyst layer, and a thickness of 0. A 2 mm carbon paper was contacted.
  • the membrane-electrode assembly was immersed in a beaker containing 25 ° C water for 24 hours, and the electrode adhesion in water was confirmed. As a result, the electrode showed extremely good electrode adhesion without peeling off.
  • each carbon paper was further arranged in accordance with each catalyst layer, and each catalyst layer and each carbon paper were hot pressed at the same time.
  • a membrane / electrode assembly according to Example 2 in which each carbon paper was adhered to each catalyst layer was obtained.
  • Example 2 As in Example 1, as a result of confirming the electrode adhesion in water of the membrane electrode assembly, the electrode showed extremely good electrode adhesion with no peeling.
  • a liquid composition for spraying (1) is sprayed onto carbon paper having a thickness of 0.2 mm that has been subjected to water repellent treatment with PTFE in the same manner as in Example 1, and the platinum weight contained in the sprayed catalyst layer was lmg / cm.
  • the sprayed liquid composition (2) is sprayed in the same manner onto a carbon paper having a thickness of 0.2 mm that has not been subjected to water repellent treatment, and the platinum layer contained in the spray-formed catalyst layer.
  • the total amount of ruthenium was 3 mg / cm 2 .
  • each carbon paper on which the catalyst layer was formed was cut into squares each having a side of 2.23 cm.
  • each of these laminates was hot-pushed for 5 minutes at a gauge pressure IMPa of the hot-press machine using a hydraulic hot-press machine with a cylinder cross-sectional area of 50 cm 2 heated to 120 ° C.
  • a pair of carbon paper with a catalyst layer was prepared.
  • both surfaces of the electrolyte membrane (1) were sandwiched between the pair of carbon papers with a catalyst layer (the catalyst layer surface was the membrane surface side), and the both surfaces were 10cm thick on one side. was sandwiched between two 3 mm stainless plates.
  • Example 2 As in Example 1, the electrode adhesion in water of the membrane electrode assembly was confirmed. As a result, the electrode showed extremely good electrode adhesion without peeling off.
  • the membrane / electrode assembly according to Example 4 was obtained in the same manner except that the catalyst layer was sprayed and then hot pressing was not performed.
  • Example 2 As in Example 1, as a result of confirming the electrode adhesion in water of the membrane electrode assembly, a part of the catalyst layer was observed to drop, but the electrode adhesion within an allowable range was observed. Indicated.
  • the electrolyte membrane (2) was used instead of the electrolyte membrane (1), and each carbon paper was further added to each catalyst layer in the hot press process.
  • a membrane electrode assembly according to Example 5 was obtained in the same manner except that the catalyst layers and the carbon papers were simultaneously hot pressed.
  • the PTFE film was fixed to a stainless steel plate and placed on a hot plate heated to 120 ° C.
  • a force sword side catalyst layer was formed on the PTFE film under the conditions described in Example 1. At that time, spraying was carried out until the amount of platinum contained in the sprayed catalyst layer was lmg / cm 2 .
  • an anode side catalyst layer was formed as described in Example 1. At that time, the total amount of platinum and ruthenium contained in the spray-formed catalyst layer was sprayed to 3 mg / cm 2 .
  • the catalyst layer of the cut out film was turned to the carbon paper side, and the thickness was set to 0.
  • these electrodes were placed in an oven heated to 150 ° C and in a nitrogen atmosphere, and heat-treated for 1 hour.
  • both sides of the membrane on which the catalyst layer was formed were sandwiched by two PTFE films having a thickness of 0.1 mm, and further, both sides of the stainless steel plate having a side of 10 cm and a thickness of 3 mm. Clamped with 2 sheets.
  • the laminate was heated in an oil plate having a cylinder cross-sectional area of 50 cm 2 heated to 120 ° C.
  • a pressure hot press machine hot press for 5 minutes with the gauge pressure IMPa of the hot press machine
  • a 2 mm carbon paper was contacted.
  • Example 1 As in Example 1, as a result of confirming the electrode adhesion in water of the membrane electrode assembly, the electrode showed extremely good electrode adhesion that did not peel off.
  • the screen printing composition (2) was sprayed on the carbon paper having a thickness of 0.2 mm that had not been subjected to the water-repellent treatment in the same manner as in Comparative Example 1, and the printed catalyst layer
  • the total amount of platinum and ruthenium contained in was 3 mg / cm 2 .
  • each carbon paper on which the catalyst layer was formed was cut into squares each having a side of 2.23 cm.
  • both sides of each cut out carbon paper were sandwiched between two PTFE films with a thickness of 0.1 mm, and further, both sides were stained with a stainless steel plate with a side force of Ocm and a thickness of 3 mm. Clamped with 2 sheets.
  • Each of these laminates was then hot-pressed (heated) for 5 minutes at a gauge pressure IMPa of the hot-press machine using a hydraulic hot-press machine with a cylinder cross-section of 50 cm 2 heated to 120 ° C. And a pair of carbon paper with a catalyst layer (forced sword electrode, anode electrode) was produced.
  • both surfaces of the electrolyte membrane (1) are sandwiched between the pair of carbon papers with a catalyst layer (the catalyst layer surface is the membrane surface side), and the both surfaces are 10 cm thick on one side.
  • the catalyst layer surface is the membrane surface side
  • Example 2 As in Example 1, the electrode adhesion in water of the membrane electrode assembly was confirmed. As a result, the electrode showed extremely good electrode adhesion that did not peel off.
  • each membrane electrode assembly was directly incorporated into a single methanol fuel cell, and the current-voltage characteristics of the single cell were measured by changing the load with an electronic load.
  • the voltage at a high load of a current density of 300 mA / cm 2 was relatively compared.
  • the voltage at low load with a current density of 20 mA / cm 2 was also relatively compared.
  • the fuel used was a 10 wt% aqueous methanol solution, air was used as the oxidant, and the cell temperature was 50 ° C.
  • Table 1 summarizes the details of the fabricated membrane electrode assembly and the battery evaluation results.
  • the catalyst layer in the example has a larger number of pores than the catalyst layer in the comparative example, and air or methanol having a large three-dimensional spread of these pores is the catalyst. This is presumably due to the fact that it easily penetrated into the inside of the bed and the discharge of products such as water (power sword side) and carbon dioxide (anode side) generated by the cell reaction was promoted.
  • the membranes of Examples 1 and 2 in which the catalyst layer was spray-formed on the surface of the electrolyte membrane rather than the membrane-electrode assembly of Example 3 in which the catalyst layer was spray-formed on the diffusion layer (in this case, carbon paper) The electrode assembly and the membrane electrode assembly of Example 6 in which a catalyst layer spray-formed on the surface of a separately prepared PET film is transferred to the diffusion layer are superior in voltage characteristics from the high load range to the low load range. It was.
  • the electrolyte polymer contained in the composition becomes the surface of the membrane. It is presumed that the ionic connection with the electrolyte polymer in the pores was improved, so that the catalyst in contact with the exposed porous membrane surface was effectively used and the voltage characteristics in the low load region were improved.
  • the membrane electrode assemblies of Examples 1, 2, and 6 were all excellent in battery performance with high voltage characteristics in a high load region and a low load region.
  • the membrane / electrode assembly of Example 2 was also integrated with the diffusion layer, it was excellent in the alignment and properties when assembled in the battery! /.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

Disclosed is a membrane electrode assembly which enables to exhibit higher battery performance than the conventional ones in a high load region when used in a fuel cell. Also disclosed is a method for producing such a membrane electrode assembly. Specifically disclosed is a membrane electrode assembly (10) comprising an electrode (18) having a diffusion layer (14) and a catalyst layer (16) on both sides of an electrolyte membrane (12). The electrolyte membrane (12) is obtained by filling pores of a porous membrane (28) with an electrolyte (30). At least one catalyst layer (16) is formed by spraying a liquid composition containing a catalyst (20) and an electrolyte (22) for inside the catalyst layer.

Description

明 細 書  Specification
膜電極接合体およびその製造方法  Membrane electrode assembly and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、膜電極接合体およびその製造方法に関し、さらに詳しくは、燃料電池に 用いて好適な膜電極接合体およびその製造方法に関するものである。  TECHNICAL FIELD [0001] The present invention relates to a membrane electrode assembly and a manufacturing method thereof, and more particularly to a membrane electrode assembly suitable for use in a fuel cell and a manufacturing method thereof.
背景技術  Background art
[0002] 従来、燃料電池としては、例えば、固体高分子形燃料電池、直接アルコール形燃 料電池などが知られている。  Conventionally, as a fuel cell, for example, a polymer electrolyte fuel cell and a direct alcohol fuel cell are known.
[0003] これら燃料電池の内部には、一般に、膜電極接合体(MEA : Membrane Electrode[0003] Inside these fuel cells, a membrane electrode assembly (MEA: Membrane Electrode) is generally used.
Assembly)と呼ばれる電池心臓部を司る部材が組み込まれて!/、る。 The member that manages the heart of the battery called Assembly) is built in!
[0004] この膜電極接合体は、通常、電解質膜の両面に、拡散層と触媒層とが積層されて なる電極(アノード、力ソード)力 触媒層側を内側にして接合された構造を有してい [0004] This membrane electrode assembly usually has an electrode (anode, force sword) force in which a diffusion layer and a catalyst layer are laminated on both sides of an electrolyte membrane, and has a structure in which the catalyst layer side is inward. Have
[0005] 上記拡散層は、触媒層への反応物(酸化剤や燃料)の供給および電子の授受を行 うための層であり、例えば、カーボンペーパーなどの多孔質かつ電子伝導性を有す る材料が用いられる。 [0005] The diffusion layer is a layer for supplying reactants (oxidant and fuel) to the catalyst layer and transferring electrons, and is porous and electronically conductive, such as carbon paper. Materials are used.
[0006] 一方、触媒層は、電池反応の反応場となる層であり、担体に担持させた触媒と電解 質とを含んだ材料が多く用いられて!/、る。  [0006] On the other hand, the catalyst layer is a layer that serves as a reaction field for battery reaction, and a material containing a catalyst and an electrolyte supported on a carrier is often used!
[0007] この種の膜電極接合体としては、例えば、特開 2004— 146279号公報には、以下 のように作製した膜電極接合体が開示されている。 [0007] As this type of membrane electrode assembly, for example, JP-A-2004-146279 discloses a membrane electrode assembly produced as follows.
[0008] すなわち、先ず、白金担持カーボンと、高分子電解質溶液と、ポリテトラフルォロェ チレンデイスパージヨンとを配合し、水を加えて撹拌し触媒層用塗料を調製する。 That is, first, platinum-supported carbon, a polymer electrolyte solution, and polytetrafluoroethylene dispersion are blended, and water is added and stirred to prepare a catalyst layer coating material.
[0009] 次いで、この触媒層用塗料を、スクリーン印刷法によりカーボンペーパー(拡散層) に印刷、乾燥して電極を作製する。 Next, this catalyst layer coating material is printed on carbon paper (diffusion layer) by screen printing and dried to produce an electrode.
[0010] 次いで、電解質膜として、架橋ポリエチレン製の多孔質膜の孔部内に、 2—アクリル アミドー 2—メチルプロパンスルホン酸の重合体が充填されたものを用い、この電解 質膜の表面に、上記電極の触媒層を重ね合わせて加熱プレスするなどし、膜電極接 合体とする。 [0010] Next, as the electrolyte membrane, a porous membrane made of crosslinked polyethylene filled with a polymer of 2-acrylamido-2-methylpropanesulfonic acid is used, and on the surface of the electrolyte membrane, The electrode layers of the above electrodes are stacked and heated and pressed, etc. Combine.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0011] しかしながら、従来の膜電極接合体は、以下の点で未だ改良の余地があった。 However, the conventional membrane / electrode assembly still has room for improvement in the following points.
[0012] すなわち、従来の膜電極接合体を、例えば、直接メタノール形燃料電池に組み込 んで発電させた場合、高負荷域 (高電流密度域)における電池特性がそれほど高く なぐこれを向上させる必要があった。 That is, when a conventional membrane electrode assembly is directly incorporated into a methanol fuel cell to generate electric power, for example, the cell characteristics in a high load region (high current density region) are not so high, and this needs to be improved. was there.
[0013] この原因としては、第 1に、触媒層用塗料の塗布により触媒層を形成しているため、 触媒層中に空孔ができ難い上、空孔の 3次元的な広がりも少なぐ空気などの酸化 剤や燃料が触媒層の内部まで浸透し難いことが挙げられる。 [0013] Firstly, the catalyst layer is formed by applying the coating material for the catalyst layer. Therefore, it is difficult to form pores in the catalyst layer, and the three-dimensional expansion of the pores is also small. This is because it is difficult for oxidants such as air and fuel to penetrate into the catalyst layer.
[0014] 第 2に、触媒層中に空孔が少ないことにより、電池反応により生じる水(力ソード側) や二酸化炭素(アノード側)などの生成物が排出され難レ、こと力 S挙げられる。 [0014] Secondly, due to the small number of pores in the catalyst layer, products such as water (power sword side) and carbon dioxide (anode side) generated by the cell reaction are difficult to be discharged. .
[0015] また、触媒層用塗料を拡散層に塗布した場合には、拡散層の空孔に触媒層用塗 料が含浸されやすい。そのため、拡散層の空孔が塞がれ、これにより、酸化剤や燃 料が触媒層の内部へ一層浸透し難くなることも原因の一つであると考えられる。 [0015] Further, when the catalyst layer coating is applied to the diffusion layer, the catalyst layer coating is easily impregnated in the pores of the diffusion layer. Therefore, it is considered that one of the causes is that the vacancies in the diffusion layer are blocked, which makes it difficult for the oxidant and the fuel to penetrate into the catalyst layer.
[0016] 本発明は、上記事情を鑑みてなされたもので、本発明が解決しょうとする課題は、 燃料電池に用いた場合に、高負荷域において、従来よりも高い電池性能を発現可能 な膜電極接合体およびその製造方法を提供することにある。 [0016] The present invention has been made in view of the above circumstances, and the problem to be solved by the present invention is that, when used in a fuel cell, it is possible to exhibit higher battery performance than before in a high load region. It is in providing a membrane electrode assembly and its manufacturing method.
課題を解決するための手段  Means for solving the problem
[0017] 上記課題を解決するため、本発明に係る膜電極接合体は、電解質膜の両面に、拡 散層と触媒層とを備えた電極を有するものであって、上記電解質膜は、多孔質膜の 孔部内に電解質が充填されたものであり、少なくとも一方の上記触媒層は、触媒と触 媒層内電解質とを含む液状組成物の噴霧により形成されたものであることを要旨とす [0017] In order to solve the above problems, a membrane electrode assembly according to the present invention has electrodes each having a diffusion layer and a catalyst layer on both sides of an electrolyte membrane, and the electrolyte membrane is porous. The gist is that the pores of the membrane are filled with an electrolyte, and at least one of the catalyst layers is formed by spraying a liquid composition containing the catalyst and the electrolyte in the catalyst layer.
[0018] ここで、上記電解質膜は、上記多孔質膜の表面が露出していると良い。 [0018] Here, it is preferable that the surface of the porous membrane is exposed in the electrolyte membrane.
[0019] また、上記触媒層は、上記電解質膜表面に融着されていると良い。 [0019] The catalyst layer is preferably fused to the surface of the electrolyte membrane.
[0020] また、上記多孔質膜は、ォレフィン系樹脂よりなり、上記孔部内に充填されている電 解質は、 2 アクリルアミド 2—メチルプロパンスルホン酸単量体単位を有するポリ マーまたはその架橋体であると良い。 [0020] Further, the porous membrane is made of an olefin resin, and the electrolyte filled in the pores is a polyacrylamide having a 2-acrylamide 2-methylpropanesulfonic acid monomer unit. Or a cross-linked product thereof.
[0021] 一方、本発明に係る膜電極接合体の製造方法は、電解質膜の両面に、拡散層と触 媒層とを備えた電極を有する膜電極接合体の製造方法であって、上記電解質膜は、 多孔質膜の孔部内に電解質が充填されたものであり、少なくとも一方の上記触媒層 を、触媒と触媒層内電解質とを含む液状組成物の噴霧により形成することを要旨とす [0021] On the other hand, the method for producing a membrane / electrode assembly according to the present invention is a method for producing a membrane / electrode assembly having electrodes each provided with a diffusion layer and a catalyst layer on both sides of an electrolyte membrane, The membrane is obtained by filling the pores of the porous membrane with an electrolyte, and forming at least one of the catalyst layers by spraying a liquid composition containing the catalyst and the electrolyte in the catalyst layer.
[0022] ここで、上記製造方法では、上記電解質膜の少なくとも一方面に、上記液状組成物 を噴霧して触媒層を形成すると良い。 [0022] Here, in the above production method, the catalyst layer may be formed by spraying the liquid composition on at least one surface of the electrolyte membrane.
[0023] あるいは、上記触媒層は、以下の(1)〜(3)の工程を経て形成するのが好ましい。 [0023] Alternatively, the catalyst layer is preferably formed through the following steps (1) to (3).
(1)別途準備したフィルム基材表面に、上記液状組成物を噴霧して触媒層を形成す る工程  (1) A step of spraying the liquid composition on the surface of a separately prepared film substrate to form a catalyst layer
(2) (1)にて形成した触媒層を拡散層の一方の面へ転写し、触媒層を備えた電極を 作製する工程  (2) Step of transferring the catalyst layer formed in (1) to one surface of the diffusion layer to produce an electrode provided with the catalyst layer
(3) (2)にて作製した電極の触媒層表面と、上記電解質膜表面とを貼り合わせるェ 程  (3) A process of bonding the surface of the catalyst layer of the electrode prepared in (2) and the surface of the electrolyte membrane.
[0024] この場合、より好ましくは、上記(1)の工程と上記(2)の工程の間、および/または、 上記(2)の工程と上記(3)の工程との間に、上記電極を加熱し、触媒層内電解質を 不溶化する工程を有して!/、ると良レ、。  [0024] In this case, more preferably, the electrode is provided between the step (1) and the step (2) and / or between the step (2) and the step (3). It has a process to heat the electrolyte and insolubilize the electrolyte in the catalyst layer!
[0025] また、噴霧形成された触媒層を、さらに上記電解質膜表面に融着させると良い。  [0025] The sprayed catalyst layer may be further fused to the surface of the electrolyte membrane.
[0026] また、上記電解質膜は、上記多孔質膜の表面が露出していると良い。  [0026] Further, the electrolyte membrane may have the surface of the porous membrane exposed.
[0027] また、上記液状組成物は、複数回に分けて噴霧すると良い。  [0027] The liquid composition may be sprayed in a plurality of times.
発明の効果  The invention's effect
[0028] 本発明に係る膜電極接合体は、少なくともその一方の触媒層が、上記液状組成物 の噴霧により形成されている。そのため、上記触媒層では、噴霧された液状組成物が 適度に凝集し、堆積している。  [0028] In the membrane / electrode assembly according to the present invention, at least one of the catalyst layers is formed by spraying the liquid composition. Therefore, in the catalyst layer, the sprayed liquid composition is appropriately aggregated and deposited.
[0029] それ故、上記触媒層は、上記液状組成物の塗布により形成した触媒層に比較して 、層中に多くの空孔を有しているものと推察される。また、層中の空孔の 3次元的な広 狗も多く、空気などの酸化剤や燃料が触媒層の内部まで浸透しやすいものと推察さ れる。また、触媒層中に空孔が多いことにより、電池反応により生じる水(力ソード側) や二酸化炭素(アノード側)などの生成物も排出されやすレ、ものと推察される。 [0029] Therefore, the catalyst layer is presumed to have more pores in the layer than the catalyst layer formed by applying the liquid composition. In addition, there are many three-dimensional vacancies in the layer, and it is assumed that oxidants such as air and fuel can easily penetrate into the catalyst layer. It is. Further, it is assumed that products such as water (power sword side) and carbon dioxide (anode side) generated by the cell reaction are easily discharged due to the large number of pores in the catalyst layer.
[0030] これにより、本発明に係る膜電極接合体は、燃料電池に組み込んだ場合に、酸化 剤や燃料を多量に必要とする高負荷域 (高電流密度域)において、従来よりも高い電 池性能を発現することができる。  [0030] Thus, when the membrane electrode assembly according to the present invention is incorporated in a fuel cell, it has a higher electric power than a conventional one in a high load region (high current density region) that requires a large amount of oxidant and fuel. Pond performance can be expressed.
[0031] ここで、上記電解質膜として、多孔質膜の表面が露出している電解質膜を用いた場 合には、さらに次の利点がある。  [0031] Here, when an electrolyte membrane having an exposed porous membrane surface is used as the electrolyte membrane, there are the following advantages.
[0032] すなわち、多孔質膜の孔部内に電解質が充填されており、かつ、多孔質膜の表面 が露出している電解質膜は、電極 (触媒層)との接着性が良好である一方、触媒層と 孔部内の電解質とのイオン的な接続性は不十分となりやすい傾向がある。  That is, the electrolyte membrane in which the pores of the porous membrane are filled with the electrolyte and the surface of the porous membrane is exposed has good adhesion to the electrode (catalyst layer), The ionic connectivity between the catalyst layer and the electrolyte in the pores tends to be insufficient.
[0033] ところが、この電解質膜の表面に上記液状組成物を噴霧し、触媒層を形成した場 合には、組成物中に含まれる触媒層内電解質が膜表面に広がるため、孔部内の電 解質と触媒層内電解質とのイオン的な接続が向上する。  However, when the liquid composition is sprayed on the surface of the electrolyte membrane to form a catalyst layer, the electrolyte in the catalyst layer contained in the composition spreads on the membrane surface, so The ionic connection between the desolation and the electrolyte in the catalyst layer is improved.
[0034] また、電解質膜とは別に準備したフィルム基材表面に、上記液状組成物を噴霧して 触媒層を形成する工程を経ると、形成された触媒層のうち、当該フィルム基材表面に 接した面では同様に触媒層内電解質が広がる。次いで、触媒層を電極用の拡散層 の一方面へ転写し、触媒層付きの電極を作製する工程を経ると、結果的に触媒層内 電解質が広がった面が電解質膜側に接することになる。そのため、この場合も、孔部 内の電解質と触媒層内電解質とのイオン的な接続が向上する効果が得られる。  [0034] Further, when a step of forming the catalyst layer by spraying the liquid composition on the surface of the film base prepared separately from the electrolyte membrane, the surface of the film base in the formed catalyst layer is performed. Similarly, the electrolyte in the catalyst layer spreads on the contact surface. Next, when the catalyst layer is transferred to one surface of the diffusion layer for the electrode and an electrode with the catalyst layer is produced, the surface in which the electrolyte in the catalyst layer spreads comes into contact with the electrolyte membrane side. . Therefore, also in this case, the effect of improving the ionic connection between the electrolyte in the hole and the electrolyte in the catalyst layer can be obtained.
[0035] さらに前述のような転写方法を用いた場合は、電極を構成する材料が炭素繊維な どの耐熱材料であるため、電解質膜に比べて容易に加熱することができる。  [0035] Furthermore, when the transfer method as described above is used, since the material constituting the electrode is a heat-resistant material such as carbon fiber, it can be heated more easily than the electrolyte membrane.
[0036] 触媒層内電解質には、ナフイオン(登録商標)などのパーフルォロカーボンスルホン 酸系ポリマーなどを用いることが一般に行われている力 通常はアルコール、水など の混合溶媒に溶解もしくは分散されている。そのため、溶媒を揮発除去しただけでは 、 DMFCのように水やメタノールに接触する環境下において膨潤したり、溶解したり するなどして発電性能が低下する。これを防ぐ目的で加熱により触媒層内電解質を 不溶化させると良い。  [0036] A perfluorocarbon sulfonic acid polymer such as naphthion (registered trademark) is generally used as the electrolyte in the catalyst layer. Usually dissolved or dispersed in a mixed solvent such as alcohol or water. Has been. For this reason, simply removing the solvent by volatilization will cause power generation performance to deteriorate due to swelling or dissolution in an environment in contact with water or methanol, such as DMFC. In order to prevent this, it is better to insolubilize the electrolyte in the catalyst layer by heating.
[0037] 前述のような加熱による不溶化は、約 140〜200°C程度の温度で数十分から数時 間行われるもので、電解質膜上へ直接触媒層を噴霧する場合は、電解質膜の耐熱 性が十分に高いものを使用しなければならず、使用できる電解質膜が限定される。 [0037] The insolubilization by heating as described above is about tens of minutes to several hours at a temperature of about 140 to 200 ° C. When the catalyst layer is sprayed directly onto the electrolyte membrane, the electrolyte membrane must have a sufficiently high heat resistance, and the usable electrolyte membrane is limited.
[0038] このため、拡散層上へ転写する方法では、転写前もしくは転写工程後で電解質膜 に貼り合わせる工程の前に加熱工程を入れることができ、電解質膜の選択肢が広が る。特に多孔性基材としてォレフィン系樹脂を用いた電解質膜で多孔性基材表面を 露出させた電解質膜は、電極を貼り合わせる際の温度で軟化融着して電極との接着 性を強固にすることができることから、このような膜と組み合わせると優れた膜電極接 合体を得ること力できる。  [0038] For this reason, in the method of transferring onto the diffusion layer, a heating step can be inserted before the transfer or after the transfer step and before the step of bonding to the electrolyte membrane, and the options for the electrolyte membrane are widened. In particular, an electrolyte membrane that uses an olefin resin as the porous substrate to expose the surface of the porous substrate is softened and fused at the temperature at which the electrodes are bonded together to strengthen the adhesion to the electrodes. Therefore, when combined with such a membrane, an excellent membrane electrode assembly can be obtained.
[0039] 上述のように、イオン的な接続が向上すると、電解質膜の孔部外側表面に存在する 触媒の利用率が向上し、触媒利用率の影響が大きい低負荷域 (低電流密度域)でも 高い電池性能を発現することが可能となる。つまり、この場合には、上記高負荷域お よび低負荷域の両方にぉレ、て高!/、電池性能を発現することが可能となる利点がある [0039] As described above, when the ionic connection is improved, the utilization factor of the catalyst existing on the outer surface of the pore portion of the electrolyte membrane is improved, and the low load region (low current density region) where the influence of the catalyst utilization factor is large. However, high battery performance can be achieved. In other words, in this case, there is an advantage that the battery performance can be expressed in both the high load range and the low load range.
Yes
[0040] また、本発明に係る膜電極接合体において、上記触媒層が電解質膜表面に融着さ れている場合には、電解質膜と触媒層との接着性に優れることから、触媒層が剥離し 難くなり、膜電極接合体の耐久性が向上する。  [0040] Further, in the membrane electrode assembly according to the present invention, when the catalyst layer is fused to the electrolyte membrane surface, the adhesiveness between the electrolyte membrane and the catalyst layer is excellent. It becomes difficult to peel off and the durability of the membrane electrode assembly is improved.
[0041] また、上記多孔質膜がォレフィン系樹脂よりなり、上記孔部内に充填されている電 解質が 2—アクリルアミドー 2—メチルプロパンスルホン酸単量体単位を有するポリマ 一またはその架橋体である場合には、高!/、プロトン伝導度を有する電解質膜となる。  [0041] The porous membrane is made of olefin resin, and the electrolyte filled in the pores is a polymer having a 2-acrylamido-2-methylpropanesulfonic acid monomer unit or a crosslinked product thereof. In this case, an electrolyte membrane having high! / Proton conductivity is obtained.
[0042] これは、当該単量体は、重合性が良ぐ水溶解性も良好なため、孔部内への充填 率を上げることが容易であるためである。  [0042] This is because the monomer has good polymerizability and good water solubility, so that it is easy to increase the filling rate into the pores.
[0043] 一方、本発明に係る膜電極接合体の製造方法によれば、上記の通り、高負荷域に おいて、従来よりも高い電池性能を発現できる膜電極接合体が得られる。  [0043] On the other hand, according to the method for producing a membrane / electrode assembly according to the present invention, as described above, a membrane / electrode assembly capable of exhibiting higher battery performance than before can be obtained in a high load region.
[0044] ここで、前述したように、電解質膜の表面に上記液状組成物を噴霧し、触媒層を形 成するか、電解質膜とは別に準備したフィルム基材の表面に上記液状組成物を噴霧 して触媒層を形成し、これを電極用の拡散層の一方面へ転写して触媒層を形成した 場合には、組成物中に含まれる触媒層内電解質が膜表面に広がるため、孔部内の 電解質と触媒層内電解質とのイオン的な接続が向上する。 [0045] そのため、電解質膜の孔部外側表面に存在する触媒の利用率が向上し、触媒利 用率の影響が大きレ、低負荷域 (低電流密度域)でも高レ、電池性能を発現できる膜電 極接合体を得ることができる。これは、イオン伝導性のない多孔質膜が表面に露出し ている電解質膜を用いた場合に特に有効である。 Here, as described above, the liquid composition is sprayed on the surface of the electrolyte membrane to form a catalyst layer, or the liquid composition is applied to the surface of a film base prepared separately from the electrolyte membrane. When the catalyst layer is formed by spraying and transferred to one surface of the electrode diffusion layer to form the catalyst layer, the electrolyte in the catalyst layer contained in the composition spreads on the membrane surface, so The ionic connection between the electrolyte inside the catalyst and the electrolyte inside the catalyst layer is improved. [0045] Therefore, the utilization rate of the catalyst present on the outer surface of the pores of the electrolyte membrane is improved, the influence of the catalyst utilization rate is large, and the battery performance is high even in a low load region (low current density region). A membrane electrode assembly can be obtained. This is particularly effective when using an electrolyte membrane in which a porous membrane having no ion conductivity is exposed on the surface.
[0046] また、噴霧形成された触媒層を、さらに電解質膜の表面に融着させた場合には、電 解質膜と触媒層との接着性が向上する。そのため、触媒層が剥離し難くなり、耐久性 に優れた膜電極接合体が得られる。これは、多孔質膜が表面に露出している電解質 膜を用いた場合に特に有効である。  [0046] When the spray-formed catalyst layer is further fused to the surface of the electrolyte membrane, the adhesion between the electrolyte membrane and the catalyst layer is improved. Therefore, the catalyst layer is difficult to peel off, and a membrane electrode assembly with excellent durability can be obtained. This is particularly effective when an electrolyte membrane having a porous membrane exposed on the surface is used.
[0047] また、上記液状組成物を複数回に分けて噴霧した場合には、触媒層中により多くの 空孔を形成しやすくなる。  [0047] When the liquid composition is sprayed in a plurality of times, it becomes easier to form more pores in the catalyst layer.
図面の簡単な説明  Brief Description of Drawings
[0048] [図 1]本 MEAの一例を模式的に示した断面図である。  FIG. 1 is a cross-sectional view schematically showing an example of the present MEA.
[図 2]本 MEAにおける触媒層の一例を模式的に拡大して示した断面図である。 発明を実施するための最良の形態  FIG. 2 is a cross-sectional view schematically showing an example of a catalyst layer in this MEA. BEST MODE FOR CARRYING OUT THE INVENTION
[0049] 以下、本実施形態に係る膜電極接合体(以下、「本 MEA」ということがある。 )およ びその製造方法(以下、「本製造方法」ということがある。)について詳細に説明する。 [0049] Hereinafter, the membrane electrode assembly according to the present embodiment (hereinafter sometimes referred to as "the present MEA") and the manufacturing method thereof (hereinafter also referred to as "the present manufacturing method") will be described in detail. To do.
[0050] 1.本 MEA [0050] 1. This MEA
図 1は、本 MEAの一例を模式的に示した断面図である。本 MEA10は、電解質膜 12の両面に、拡散層 14と触媒層 16とを備えた電極 18が積層されている。なお、本 MEAは、電解質膜 12に触媒層 16が接合されていることが好ましいが、本願では、 電解質膜 12に触媒層 16が接合されていないものも含むものとする。  FIG. 1 is a cross-sectional view schematically showing an example of this MEA. In this MEA 10, electrodes 18 each having a diffusion layer 14 and a catalyst layer 16 are laminated on both surfaces of an electrolyte membrane 12. The MEA preferably has the catalyst layer 16 bonded to the electrolyte membrane 12, but in the present application, the MEA includes one in which the catalyst layer 16 is not bonded to the electrolyte membrane 12.
[0051] 1. 1 電解質膜 [0051] 1.1 Electrolyte membrane
本 MEAにおいて、電解質膜は、多孔質膜の孔部内に電解質が充填された膜であ  In this MEA, the electrolyte membrane is a membrane in which the pores of the porous membrane are filled with electrolyte.
[0052] (多孔質膜) [0052] (Porous membrane)
上記多孔質膜は、主に、電解質膜の骨格をなすもので、膜の一方面から他方面に 貫通する貫通孔を多数有している。なお、貫通孔以外にも、非貫通孔が存在してい ても構わない。 [0053] この場合、貫通孔は、例えば、膜面に対してほぼ垂直に貫通していても良いし、膜 面に対して 90° 未満の角度で傾斜して貫通していても良い。また、蛇行、ジグザク状 など、ランダムに貫通していても良い。 The porous membrane mainly forms the skeleton of the electrolyte membrane, and has a large number of through-holes penetrating from one surface to the other surface of the membrane. In addition to the through holes, non-through holes may exist. In this case, for example, the through hole may penetrate substantially perpendicularly to the film surface, or may penetrate through the film surface at an angle of less than 90 °. Moreover, it may penetrate at random, such as meandering or zigzag.
[0054] 上記貫通孔の断面形状は、電解質を充填することができれば何れの形状であって も良ぐその断面形状は、特に限定されるものではない。貫通孔の断面形状としては 、具体的には、例えば、円形、楕円形、多角形、これらが連接された形、これらの組 み合わせなどを例示することができる。  [0054] The cross-sectional shape of the through hole is not particularly limited as long as it can be filled with an electrolyte. Specific examples of the cross-sectional shape of the through hole include a circle, an ellipse, a polygon, a shape in which these are connected, and a combination thereof.
[0055] 上記多孔質膜の空孔率の上限としては、 95%以下が好ましぐ 90%以下がより好 ましぐ 85%以下がさらにより好ましぐ 80%以下が最も好ましい。一方、上記多孔質 膜の空孔率の下限としては、 5%以上が好ましぐ 10%以上がより好ましぐ 15%以 上がさらにより好ましぐ 20%以上が最も好ましい。多孔質膜の空孔率が上記範囲内 にあれば、単位面積当たりの電解質基量と膜強度とのバランスが良いからである。  [0055] The upper limit of the porosity of the porous membrane is preferably 95% or less, more preferably 90% or less, more preferably 85% or less, and still more preferably 80% or less. On the other hand, the lower limit of the porosity of the porous membrane is most preferably 5% or more, preferably 10% or more, more preferably 15% or more, and even more preferably 20% or more. This is because if the porosity of the porous membrane is within the above range, the balance between the electrolyte group amount per unit area and the membrane strength is good.
[0056] なお、上記空孔率は、多孔質膜の厚さと面積から体積を求め、その重量を測定し、 構成する材料の比重とから、全体積中に占める空気の割合を計算することにより求め ること力 Sできる。具体的には、下記の式により求めることができる。  [0056] The porosity is obtained by determining the volume from the thickness and area of the porous membrane, measuring the weight, and calculating the proportion of air in the total volume from the specific gravity of the constituent material. The power to seek is S. Specifically, it can be obtained by the following equation.
空孔率% = (多孔質膜の厚さ X多孔質膜の面積 多孔質膜の重量/構成材料の 比重) / (多孔質膜の厚さ X多孔質膜の面積) X 100  Porosity% = (Porous membrane thickness X Porous membrane area Porous membrane weight / Constituent material specific gravity) / (Porous membrane thickness X Porous membrane area) X 100
[0057] 上記多孔質膜の孔部径の上限としては、孔部内に充填された電解質を保持しやす いなどの観点から、 50 m以下力 S好ましく、 10 m以下がより好ましぐ l ^ m以下が 最も好ましい。一方、上記多孔質膜の孔部径の下限としては、孔部内への充填のし やすさなどの観点から、 0. 001 m以上力 S好ましく、 0· 01 m以上がより好ましい。  [0057] The upper limit of the pore diameter of the porous membrane is preferably a force S of 50 m or less, more preferably 10 m or less, from the viewpoint of easily holding the electrolyte filled in the pore l ^ Most preferred is m or less. On the other hand, the lower limit of the pore diameter of the porous membrane is preferably 0.001 m or more, force S, and more preferably 0.01 · m or more from the viewpoint of easy filling of the pores.
[0058] 多孔質膜の孔部径が上記範囲内にあれば、孔部内に電解質を比較的充填しやす ぐまた、充填された電解質の保持性が良好で、膜変形時などに脱落しにくいからで ある。なお、上記孔部径は、水銀圧入法により測定される値である。  [0058] If the pore diameter of the porous membrane is within the above range, the pores can be filled with the electrolyte relatively easily, and the filled electrolyte can be retained well, and it is difficult to drop off when the membrane is deformed. Because. In addition, the said hole diameter is a value measured by the mercury intrusion method.
[0059] 上記多孔質膜の材質は、上述したような貫通孔を形成することができれば、特に限 定されるものではない。例えば、高分子などの有機材料、セラミックス(アルミナ、ムラ イトなど)、金属(合金含む)などの無機材料、これらを複合した複合材料などを例示 すること力 Sできる。これらのうち、孔部を比較的容易に形成しやすい、軽量であるなど の観点から、高分子を好適に用いることができる。 [0059] The material of the porous membrane is not particularly limited as long as the above-described through-holes can be formed. For example, it is possible to exemplify organic materials such as polymers, inorganic materials such as ceramics (alumina, mritite, etc.), metals (including alloys), and composite materials composed of these materials. Of these, the hole is relatively easy to form, lightweight, etc. From this point of view, a polymer can be preferably used.
[0060] 上記高分子としては、具体的には、例えば、エチレン系樹脂(ポリエチレンなどのェ チレン単量体を主成分とする樹脂)、ポリプロピレン、ポリメチルペンテンなどのォレフ イン系樹脂、ポリ塩化ビュルなどの塩化ビュル樹脂、ポリテトラフルォロエチレン、ポリ トリフルォロエチレン、ポリクロ口トリフルォロエチレン、ポリ(テトラフルォロエチレン へキサフルォロプロピレン)、ポリ(テトラフルォロエチレン パーフルォロアルキルェ 一テル)などのフッ素系樹脂、ナイロン 6、ナイロン 66などのポリアミド系樹脂、ポリエ ステル系樹脂、芳香族ポリイミド、ァラミド、ポリスルホン、ポリフエ二レンオキサイド、ポ リエ一テルエーテルケトン、ポリカーボネート、フエノール樹脂、エポキシ樹脂、不飽 和ポリエステルなどを例示することができる。これらは 1種または 2種以上含まれてい ても良い。また、 2種以上の高分子を積層するなどしても良い。また、上記高分子は、 必要に応じて架橋されていても良い。  [0060] Specific examples of the polymer include, for example, ethylene resins (resins mainly composed of an ethylene monomer such as polyethylene), polyolefin resins such as polypropylene and polymethylpentene, and polychlorinated salts. Butyl chloride resin such as bur, polytetrafluoroethylene, polytrifluoroethylene, polychlorotrifluoroethylene, poly (tetrafluoroethylene hexafluoropropylene), poly (tetrafluoroethylene par Fluoroalkyl resins such as fluoroalkyl ester), polyamide resins such as nylon 6 and nylon 66, polyester resins, aromatic polyimide, aramid, polysulfone, polyphenylene oxide, poly ether ether ketone, Polycarbonate, phenol resin, epoxy resin, unsaturated polyester, etc. It can be exemplified. One or more of these may be included. Two or more kinds of polymers may be laminated. The polymer may be cross-linked as necessary.
[0061] 上記高分子のうち、好ましくは、ポリエチレンなどのォレフィン系樹脂、ポリスルホン 、ポリフエ二レンオキサイド、ポリアミド系樹脂、ポリエステル系樹脂などといった熱可 塑性高分子を好適に用いることができる。より好ましくは、エチレン系樹脂などのォレ フィン系樹脂である。  [0061] Of the above polymers, thermoplastic polymers such as polyolefin resins such as polyethylene, polysulfone, polyphenylene oxide, polyamide resins, polyester resins, and the like can be preferably used. More preferred is an olefin resin such as an ethylene resin.
[0062] これら熱可塑性高分子は、加熱により軟化または溶融させることができるので、噴霧 形成された触媒層を加熱加圧などした場合に、多孔質膜表面が軟化または溶融し、 多孔質膜と触媒層とを融着させやすくなるなどの利点があるからである。なお、上記 熱可塑性高分子は、本 MEAを適用する燃料電池の作動温度などを考慮して、その 作動温度よりも軟化温度または溶融温度が高い材料を選択すれば良い。  [0062] Since these thermoplastic polymers can be softened or melted by heating, the surface of the porous membrane is softened or melted when the spray-formed catalyst layer is heated and pressurized, and the like. This is because there are advantages such as easy fusion of the catalyst layer. For the thermoplastic polymer, a material having a softening temperature or a melting temperature higher than the operating temperature may be selected in consideration of the operating temperature of the fuel cell to which the MEA is applied.
[0063] 上記多孔質膜の厚みの上限としては、電池の内部抵抗の観点から、 200 m以下 が好ましぐ 150 m以下がより好ましぐ 100 m以下が最も好ましい。一方、上記 多孔質膜の厚みの下限としては、膜強度を維持し、電極の接合や燃料電池セルへ の組み込みの際に、破れなどの欠損を防止するなどの観点から、 1 a m以上が好まし く、 5 m以上がより好ましぐ 10 m以上が最も好ましい。  [0063] As the upper limit of the thickness of the porous membrane, from the viewpoint of the internal resistance of the battery, 200 m or less is preferable, 150 m or less is more preferable, and 100 m or less is most preferable. On the other hand, the lower limit of the thickness of the porous membrane is preferably 1 am or more from the standpoint of maintaining the membrane strength and preventing defects such as tearing during electrode joining and incorporation into fuel cells. More preferably, 5 m or more is more preferable, and 10 m or more is most preferable.
[0064] 上記多孔質膜の厚みが上記範囲内にあれば、膜強度と膜抵抗とのバランスが良い 力、らである。また、メタノールなどの燃料が用いられる場合に、その透過も抑制しやす いからである。 [0064] If the thickness of the porous membrane is within the above range, the balance between membrane strength and membrane resistance is good. Also, when fuel such as methanol is used, permeation is easy to suppress. Because.
[0065] (電解質) [0065] (Electrolyte)
上記多孔質膜の孔部内に充填される電解質は、膜にイオン伝導性を付与する役割 を有する。  The electrolyte filled in the pores of the porous membrane has a role of imparting ion conductivity to the membrane.
[0066] 上記電解質としては、具体的には、例えば、電解質ポリマー、電解質ポリマーの架 橋体 (以下、両者をまとめて「電解質ポリマー等」ということがある。)、酸、常温溶融塩 などの電解質を含ませたポリマーなどを好適なものとして例示することができる。これ らは 1種または 2種以上含まれて!/、ても良!/、。  [0066] Specific examples of the electrolyte include an electrolyte polymer, an electrolyte polymer bridge (hereinafter, these may be collectively referred to as "electrolyte polymer"), an acid, a room temperature molten salt, and the like. A polymer containing an electrolyte can be exemplified as a suitable one. These include one or more types! /, May be! /.
[0067] 電解質として電解質ポリマー等を用いる場合、孔部内に充填されている電解質ポリ マー等は、孔部内に充填される前からポリマーとして存在するものであっても良いし、 電解質ポリマー等を生成可能なポリマー前駆体が孔部内に充填された後、重合、架 橋などが行われて電解質ポリマー等とされたものであっても良い。なお、電解質ポリ マー等の具体的な充填方法については、「2.本製造方法」にて後述する。  [0067] When an electrolyte polymer or the like is used as the electrolyte, the electrolyte polymer or the like filled in the pores may exist as a polymer before being filled in the pores, or an electrolyte polymer or the like is generated. After the possible polymer precursor is filled in the pores, the polymer may be polymerized and bridged to form an electrolyte polymer. A specific method for filling the electrolyte polymer and the like will be described later in “2. Production method”.
[0068] 電解質ポリマー等に含まれる電解質基としては、具体的には、例えば、スルホン酸 基、スルホンイミド基、ホスホン酸基、亜ホスホン酸基、カルボン酸基などの酸性基を 例示すること力 Sできる。これらは 1種または 2種以上含まれていても良い。これらのうち 、高プロトン伝導性が得られやすいなどの観点から、スルホン酸基を好適に用いるこ と力 Sできる。  [0068] Specific examples of the electrolyte group contained in the electrolyte polymer include, for example, acidic groups such as a sulfonic acid group, a sulfonimide group, a phosphonic acid group, a phosphonous acid group, and a carboxylic acid group. S can. One or more of these may be included. Of these, from the viewpoint of easily obtaining high proton conductivity, it is possible to suitably use a sulfonic acid group.
[0069] 上記電解質ポリマーとしては、具体的には、例えば、ナフイオンなどのパーフルォロ カーボンスルホン酸系ポリマー、パーフルォロカーボンホスホン酸系ポリマー、トリフ ルォロスチレンスルホン酸系ポリマーなど、ポリマー骨格の全部または一部がフッ素 化されたフッ素系ポリマーであって電解質基を有するもの;ポリスルホンスルホン酸、 ポリアリールエーテルケトンスルホン酸、ポリべンズイミダゾールアルキルスルホン酸、 ポリべンズイミダゾールアルキルホスホン酸など、ポリマー骨格にフッ素を含まな!/、炭 化水素系ポリマーであって電解質基を有するもの;電解質基を有するモノマー、電解 質基に変換し得る官能基を有するモノマー、および、重合前後に電解質基を導入可 能な部位を有するモノマー、これらの組み合わせなどからなる電解質モノマーを単量 体単位として有するポリマーなどを例示することができる。これらは 1種または 2種以 上含まれていても良い。 [0069] Specific examples of the electrolyte polymer include all polymer skeletons such as a perfluorocarbon sulfonic acid polymer such as naphthion, a perfluorocarbon phosphonic acid polymer, and a trifluorostyrene sulfonic acid polymer. Or a partially fluorinated fluoropolymer having an electrolyte group; polymer skeleton such as polysulfonesulfonic acid, polyaryletherketonesulfonic acid, polybenzimidazolealkylsulfonic acid, polybenzimidazolealkylphosphonic acid Does not contain fluorine! /, A hydrocarbon-based polymer having an electrolyte group; a monomer having an electrolyte group, a monomer having a functional group that can be converted to an electrolyte group, and an electrolyte group introduced before and after polymerization Monomers with possible sites, combinations of these An electrolyte monomer and the like Align the like may be exemplified polymers having as monomer units. These are one or more It may be included above.
[0070] 上記電解質基を有するモノマーとしては、具体的には、例えば、 2—(メタ)アクリル アミドー 2—メチルプロパンスルホン酸、 2— (メタ)アクリルアミドー 2—メチルプロパン ホスホン酸、スチレンスルホン酸、(メタ)ァリルスルホン酸、ビニルスルホン酸、イソプ レンスルホン酸、(メタ)アクリル酸、マレイン酸、クロトン酸、ビュルホスホン酸、酸性リ ン酸基含有 (メタ)アタリレートなどを例示することができる。  Specific examples of the monomer having an electrolyte group include 2- (meth) acrylamido-2-methylpropanesulfonic acid, 2- (meth) acrylamide-2-methylpropanephosphonic acid, and styrenesulfonic acid. , (Meth) aryl sulfonic acid, vinyl sulfonic acid, isoprene sulfonic acid, (meth) acrylic acid, maleic acid, crotonic acid, burphosphonic acid, acidic phosphate group-containing (meth) acrylate, etc. .
なお、「(メタ)アクリル」は「アクリルおよび/またはメタクリル」を、「(メタ)ァリル」は「 ァリルおよび/またはメタリル」を、「(メタ)アタリレート」は「アタリレートおよび/または メタタリレート」を意味する(以下同様である)。  “(Meth) acryl” means “acrylic and / or methacrylic”, “(meth) aryl” means “aryl and / or methallyl”, “(meth) arylate” means “attalylate and / or metatalylate” (The same shall apply hereinafter).
[0071] 上記重合前後に電解質基に変換し得る官能基を有するモノマーとしては、具体的 には、例えば上記化合物の塩、無水物、エステルなどを例示することができる。使用 するモノマーの酸残基が塩、無水物、エステルなどの誘導体となっている場合には、 重合後にプロトン酸型にすることでプロトン伝導性を付与することができる。  [0071] Specific examples of the monomer having a functional group that can be converted into an electrolyte group before and after the polymerization include salts, anhydrides, esters, and the like of the above compounds. When the acid residue of the monomer to be used is a derivative such as a salt, an anhydride, or an ester, proton conductivity can be imparted by making it into a protonic acid type after polymerization.
[0072] 上記重合前後に電解質基を導入可能な部位を有するモノマーとしては、具体的に は、例えば、スチレン、 α—メチルスチレン、クロロメチルスチレン、 tーブチルスチレ ンなどのベンゼン環を有するモノマーを例示することができる。なお、これらに電解質 基を導入する方法としては、具体的には、例えば、クロロスルホン酸、濃硫酸、三酸 化硫黄などのスルホン化剤でスルホン化する方法などが挙げられる。  [0072] Specific examples of the monomer having a site capable of introducing an electrolyte group before and after the polymerization include monomers having a benzene ring such as styrene, α-methylstyrene, chloromethylstyrene, and t-butylstyrene. can do. Specific examples of the method for introducing an electrolyte group into these include a method of sulfonation with a sulfonating agent such as chlorosulfonic acid, concentrated sulfuric acid, sulfur trioxide, and the like.
[0073] これら電解質モノマーとしては、プロトン伝導性に優れるなどの観点から、スルホン 酸基を有するビュル化合物、リン酸基を有するビュル化合物などが好ましぐより好ま しくは、高い重合性を有するなどの観点から、 2—(メタ)アクリルアミドー 2—メチルプ 口バンスノレホン酸などである。  [0073] As these electrolyte monomers, from the standpoint of excellent proton conductivity, a bulle compound having a sulfonic acid group, a bur compound having a phosphoric acid group, and the like are more preferable, and preferably have a high polymerizability. From the point of view, 2- (meth) acrylamide-2-methylbutanesulfonic acid.
[0074] 上記電解質は、高イオン伝導性が得られるなどの観点から、実質的に、上記多孔 質膜の孔部のほぼ全てに充填されていることが好ましい。もっとも、多孔質膜が有す る全ての孔部に電解質が充填されていなければならないわけではなぐイオン伝導 性、燃料の透過性などに悪影響を及ぼさない範囲内であれば、電解質が充填されて V、なレ、孔部が部分的に存在してレ、ても構わなレ、。  [0074] It is preferable that substantially all of the pores of the porous membrane are filled in the electrolyte from the viewpoint of obtaining high ionic conductivity. However, not all pores in the porous membrane need to be filled with electrolyte, so long as it does not adversely affect ionic conductivity, fuel permeability, etc., the electrolyte is filled. V, nare, les that may have holes partially.
[0075] 以上、本 MEAが有する電解質膜について説明した。上記電解質膜は、多孔質膜 の孔部内に電解質が充填されておれば、膜表面(つまり、孔部外)に電解質層が被 覆されていても良いし、膜表面に多孔質膜が露出されていても良い。好ましくは、後 者である。 [0075] The electrolyte membrane included in the MEA has been described above. The electrolyte membrane is a porous membrane If the electrolyte is filled in the pores, the electrolyte layer may be covered on the membrane surface (that is, outside the pores), or the porous membrane may be exposed on the membrane surface. The latter is preferred.
[0076] 電解質膜の骨格をなす多孔質膜と触媒層とを直接融着することができるので、界面 強度が増し、本 MEAの耐久性を向上させることができるうえ、膜表面に触媒層を噴 霧形成するか、電解質膜とは別に準備したフィルム基材の表面に触媒層を噴霧形成 し、これを拡散層の一方面へ転写して触媒層付きの電極を形成することで、触媒層 中の電解質が膜面に広がり、孔部内の電解質と触媒層内の電解質とのイオン的な接 続をも向上させること力できるカゝらである。  [0076] Since the porous membrane forming the skeleton of the electrolyte membrane and the catalyst layer can be directly fused, the interfacial strength is increased, the durability of the MEA can be improved, and a catalyst layer is provided on the membrane surface. The catalyst layer is formed by spraying or forming a catalyst layer on the surface of a film substrate prepared separately from the electrolyte membrane and transferring it to one side of the diffusion layer to form an electrode with the catalyst layer. The electrolyte in the membrane spreads over the membrane surface and can improve the ionic connection between the electrolyte in the pores and the electrolyte in the catalyst layer.
[0077] この場合、膜表面に多孔質膜がほぼ全部露出されていても良いし、膜表面に多孔 質膜が部分的に露出されてレ、なレ、箇所があっても良レ、。  [0077] In this case, the porous film may be almost entirely exposed on the film surface, or the porous film may be partially exposed on the film surface.
[0078] 1. 2電極  [0078] 1. Two electrodes
本 MEAにおいて、電極は、拡散層と触媒層とを備えている。拡散層は、触媒層へ の反応物(力ソード電極では酸化剤、アノード電極では燃料)の供給および電子の授 受を行うための層である。一方、触媒層は、電池反応の反応場となる層である。上記 触媒層は、電解質膜の膜面側に配置される。  In this MEA, the electrode includes a diffusion layer and a catalyst layer. The diffusion layer is a layer for supplying reactants (oxidant for a force sword electrode and fuel for an anode electrode) to the catalyst layer and for transferring electrons. On the other hand, the catalyst layer is a layer serving as a reaction field for battery reaction. The catalyst layer is disposed on the membrane surface side of the electrolyte membrane.
[0079] 上記電極の構造としては、具体的には、例えば、図 1に例示するように、電解質膜 1 2側から、触媒層 16、拡散層 14の順に積層した構造などを例示することができる。他 にも例えば、触媒利用率を高めるなどの観点から、触媒層と拡散層との間に、炭素粉 末などの導電性粉末と熱可塑性高分子などの結着材とを含む中間層を介在させても 良い。なお、中間層は、何れか一方の電極に存在させても良いし、両方の電極に存 在させても良い。 [0079] Specifically, as the structure of the electrode, for example, as illustrated in FIG. 1, a structure in which the catalyst layer 16 and the diffusion layer 14 are laminated in this order from the electrolyte membrane 12 side may be exemplified. it can. In addition, for example, an intermediate layer containing conductive powder such as carbon powder and a binder such as thermoplastic polymer is interposed between the catalyst layer and the diffusion layer from the viewpoint of increasing the catalyst utilization rate. You can let it. Note that the intermediate layer may be present on either one of the electrodes, or may be present on both of the electrodes.
[0080] 上記電極は、各層が上述した目的を達成することができれば良ぐ拡散層と触媒層 とは互いに接着していても良いし、単に接触しているだけでも良い。また、何れか一 方の電極では両層が互いに接着しており、他方の電極では両層は接触しているだけ であっても良い。好ましくは、少なくとも一方、より好ましくは、両方の電極において、 拡散層と触媒層とが互いに接着されていると良い。両層が一体化されておれば、電 池組み込み時の取り扱い性などに優れ、電池製造性を向上させることができるからで ある。 [0080] In the above electrode, the diffusion layer and the catalyst layer may be bonded to each other or simply in contact as long as each layer can achieve the above-described purpose. Further, in either one electrode, both layers may be bonded to each other, and in the other electrode, both layers may be in contact with each other. Preferably, the diffusion layer and the catalyst layer are bonded to each other in at least one, more preferably both electrodes. If both layers are integrated, the battery is easy to handle and can be manufactured more efficiently. is there.
[0081] 上記電極は、電解質膜の一方面に積層されたものが力ソード電極として機能し、電 解質膜の他方面に積層されたものがアノード電極として機能する。そのため、各電極 がそれぞれ、アノード、力ソードとして機能すれば、各拡散層および触媒層の材質は 、ともに同じであっても良いし、それぞれ異なっていても良い。  [0081] The electrode laminated on one surface of the electrolyte membrane functions as a force sword electrode, and the electrode laminated on the other surface of the electrolyte membrane functions as an anode electrode. Therefore, as long as each electrode functions as an anode and a force sword, the material of each diffusion layer and catalyst layer may be the same or different.
[0082] 上記拡散層の材質としては、具体的には、例えば、カーボンペーパー、カーボンク ロス、カーボン不織布、カーボンブラックなどの導電性粉末を PTFEなどの結着材とと もにシート状にしたもの、発泡金属、金属メッシュ、金属メッシュに導電性粉末を結着 材で固定したものなどを例示することができる。これらは 1つまたは 2つ以上組み合わ せて用いても良い。耐腐食性、強度が良好である、取扱い性が容易であるなどの観 点から、カーボンペーパー、カーボンクロスなどを好適に用いることができる。  [0082] Specifically, the material of the diffusion layer is, for example, a conductive powder such as carbon paper, carbon cloth, carbon non-woven fabric, carbon black or the like formed into a sheet shape together with a binder such as PTFE. Examples thereof include foam metal, metal mesh, and metal mesh fixed with conductive powder with a binder. These may be used alone or in combination of two or more. From the viewpoints of corrosion resistance, good strength, and easy handling, carbon paper, carbon cloth, etc. can be suitably used.
[0083] また、力ソード側の拡散層については、例えば、カーボンペーパーなどを、フッ素樹 脂などの疎水性ポリマーにて処理するなどして疎水化処理を施しても良い。一方、ァ ノード側の拡散層については、例えば、カーボンペーパーなどを、空気中で加熱処 理したり、強酸などにより酸化処理したり、ポリビュルアルコールなどの親水性ポリマ 一にて処理するなどして親水化処理を施しても良レ、。  [0083] Further, the diffusion layer on the force sword side may be subjected to a hydrophobic treatment, for example, by treating carbon paper or the like with a hydrophobic polymer such as fluorine resin. On the other hand, for the diffusion layer on the anode side, for example, carbon paper or the like is heated in air, oxidized with a strong acid, or treated with a hydrophilic polymer such as polybutyl alcohol. Even if it is hydrophilized,
[0084] 上記拡散層の厚みは、特に限定されるものではなぐ電極の大きさ、主に使用する 電流範囲、システムの大きさなどを考慮して適宜設定することができる。  [0084] The thickness of the diffusion layer is not particularly limited, and can be appropriately set in consideration of the size of the electrode, the current range mainly used, the size of the system, and the like.
[0085] 上記拡散層の厚みの上限としては、 5000 m以下力 S好ましく、 1000 m以下がよ り好ましぐ 500 m以下が最も好ましい。一方、上記拡散層の厚みの下限としては、 5 111以上が好ましぐ 10 m以上がより好ましぐ 30 m以上が最も好ましい。なお 、力ソード側の拡散層の厚みとアノード側の拡散層の厚みとは、同じであっても良い し、異なっていても良い。  [0085] The upper limit of the thickness of the diffusion layer is preferably 5000 m or less force S, more preferably 1000 m or less, and most preferably 500 m or less. On the other hand, the lower limit of the thickness of the diffusion layer is most preferably 30 m or more, preferably 5 111 or more, more preferably 10 m or more. Note that the thickness of the diffusion layer on the force sword side and the thickness of the diffusion layer on the anode side may be the same or different.
[0086] ここで、図 2に示すように、触媒層 16は、触媒 20と、触媒層内電解質 22とを必須成 分として含んでいる。この場合、上記触媒 20は、導電性を有する担体 24に担持され た状態で触媒層 16中に含まれていても良い。なお、図 2中、 26は、空孔である。 28 は多孔質膜である。 30は、多孔質膜 28の孔部内に充填されている電解質である。ま た、図 2では、電解質膜 12は、多孔質膜 28の表面が露出されている場合を例示して いる。 Here, as shown in FIG. 2, the catalyst layer 16 includes a catalyst 20 and an electrolyte 22 in the catalyst layer as essential components. In this case, the catalyst 20 may be contained in the catalyst layer 16 in a state of being supported on a conductive carrier 24. In FIG. 2, 26 is a hole. 28 is a porous membrane. Reference numeral 30 denotes an electrolyte filled in the pores of the porous film 28. Further, in FIG. 2, the electrolyte membrane 12 is exemplified by the case where the surface of the porous membrane 28 is exposed. Yes.
[0087] 上記触媒としては、貴金属微粒子、貴金属合金微粒子などが挙げられる。具体的 には、例えば、白金、白金 ルテニウム合金、パラジウム、白金 コバルト合金、白金 —鉄合金などを例示することができる。これらは 1種または 2種以上含まれていても良 い。  [0087] Examples of the catalyst include noble metal fine particles and noble metal alloy fine particles. Specific examples include platinum, platinum ruthenium alloy, palladium, platinum-cobalt alloy, platinum-iron alloy, and the like. One or more of these may be included.
[0088] より具体的には、力ソード側の触媒としては、例えば、白金などを好適に用いること 力できる。一方、アノード側の触媒としては、例えば、一酸化炭素による触媒の被毒を 軽減しやすい、白金 ルテニウム合金などを好適に用いることができる。  [0088] More specifically, as the force sword side catalyst, for example, platinum can be suitably used. On the other hand, as the catalyst on the anode side, for example, a platinum ruthenium alloy that can easily reduce the poisoning of the catalyst by carbon monoxide can be suitably used.
[0089] 上記担体としては、具体的には、例えば、カーボンブラックなどを例示することがで きる。これらは 1種または 2種以上含まれて!/、ても良!/、。  [0089] Specific examples of the carrier include carbon black. One or more of these are included! /, May be! /.
[0090] 上記触媒層内電解質としては、上記孔部内に充填する電解質として例示した電解 質ポリマーを例示することができる。これらは 1種または 2種以上併用しても良い。これ らのうち、耐酸化性、イオン伝導性、触媒の結着性、メタノール耐性などに優れる観 点から、電解質基を有するフッ素系ポリマーなどを好適に用いることができる。  [0090] Examples of the electrolyte in the catalyst layer include electrolyte polymers exemplified as the electrolyte filled in the pores. These may be used alone or in combination of two or more. Among these, from the viewpoint of excellent oxidation resistance, ion conductivity, catalyst binding, methanol resistance, and the like, a fluorine-based polymer having an electrolyte group can be preferably used.
[0091] ここで、本 MEAにおいて、上記触媒層のうち、少なくとも一方は、上記触媒と上記 触媒層内電解質とを含む液状組成物の噴霧により形成されている。なお、本願では 、「噴霧」と「塗布」とは別個の用語として区別して使用してレ、る。  [0091] Here, in the present MEA, at least one of the catalyst layers is formed by spraying a liquid composition containing the catalyst and the electrolyte in the catalyst layer. In the present application, “spraying” and “application” are used separately as different terms.
[0092] このように形成された触媒層では、噴霧形成された液状組成物が適度に凝集し、堆 積するため、多くの空孔が形成されるとともに、空孔の 3次元的な広がりも多くなる。  [0092] In the catalyst layer thus formed, the spray-formed liquid composition is appropriately aggregated and accumulated, so that a large number of pores are formed and the pores are three-dimensionally expanded. Become more.
[0093] 好ましくは、高負荷域における電池性能をより向上させやすくなるなどの観点から、 両触媒層が、上記液状組成物の噴霧により形成されていると良い。  [0093] Preferably, both catalyst layers are formed by spraying the liquid composition from the standpoint of easily improving battery performance in a high load range.
[0094] 上記液状組成物にいう「液状」とは、スプレーなどの噴霧装置により、当該組成物を 噴霧可能な程度の流動性を有していることを意味する。したがって、上記液状組成物 は、スクリーン印刷などによって触媒層を印刷形成する際にペースト状に調製された 組成物とは、その流動性が異なっている。  [0094] "Liquid" as used in the above liquid composition means that the composition has fluidity that allows the composition to be sprayed by a spraying device such as a spray. Therefore, the fluidity of the liquid composition is different from that of the composition prepared in a paste form when the catalyst layer is printed by screen printing or the like.
[0095] 上記液状組成物は、具体的には、上記触媒と上記触媒層内電解質とを、水や溶剤 などの希釈剤を用いて噴霧に適した粘度にまで希釈するなどすれば得ることができ [0096] なお、上記液状組成物については、「2.本製造方法」について詳細に説明するの で、ここでは以上の説明に留める。 [0095] Specifically, the liquid composition can be obtained by diluting the catalyst and the electrolyte in the catalyst layer to a viscosity suitable for spraying using a diluent such as water or a solvent. Can [0096] Since the above-mentioned liquid composition will be described in detail in "2. Production method", only the above description will be given here.
[0097] 上記触媒層は、上記液状組成物を 1度噴霧することにより形成されていても良いし 、上記液状組成物を複数回噴霧(分割噴霧)することにより形成されて!/、ても良レ、。 触媒層が分割形成されてレ、る場合、各分割層毎に噴霧する液状組成物の組成は同 じであっても良!/、し、各分割層毎に異なってレ、ても良レ、。  [0097] The catalyst layer may be formed by spraying the liquid composition once, or may be formed by spraying the liquid composition a plurality of times (split spray)! / Good. In the case where the catalyst layer is dividedly formed, the composition of the liquid composition sprayed in each divided layer may be the same! /, And the layer may be different in each divided layer. ,.
[0098] 上記触媒層は、好ましくは分割形成されて!/、ると良!/、。噴霧された液状組成物の凝 集-堆積が繰り返されるため、 3次元的に空孔が広がりやすいからである。また、本 M EAの製造時に、触媒層に含ませる触媒量を制御しやすいなどの利点もあるからであ  [0098] The catalyst layer is preferably divided and formed! /. This is because vacancies tend to spread three-dimensionally because the sprayed liquid composition is repeatedly condensed and deposited. Another advantage is that it is easy to control the amount of catalyst contained in the catalyst layer during production of this MEA.
[0099] 上記触媒層の厚みは、特に限定されるものではなぐ電池設計上必要となる触媒量 や、発電時の負荷などを考慮して適宜設定することができる。 [0099] The thickness of the catalyst layer is not particularly limited, and can be set as appropriate in consideration of the amount of catalyst required for battery design, the load during power generation, and the like.
[0100] 上記触媒層の厚みの上限としては、厚すぎると、触媒層自体の抵抗が増大するな どの観点から、 200 ^ 111以下力 S好ましく、 Ι δΟ ^ ιη以下力 Sより好ましく、 l OO ^ m以下 が最も好ましい。一方、上記触媒層の厚みの下限としては、三相界面を増やして反 応点を多くし、電池性能を向上させるなどの観点から、 1 m以上が好ましぐ δ μ ηι 以上がより好ましぐ 10 m以上が最も好ましい。  [0100] As the upper limit of the thickness of the catalyst layer, if it is too thick, from the viewpoint of increasing the resistance of the catalyst layer itself, 200 ^ 111 or less force S is preferable, Ο δΟ ^ ιη or less force S is preferable, l OO ^ m or less is most preferable. On the other hand, the lower limit of the thickness of the catalyst layer is preferably 1 m or more, more preferably δ μ ηι or more from the viewpoint of increasing the number of reaction points by increasing the three-phase interface and improving battery performance. 10 m or more is most preferable.
[0101] なお、力ソード側の触媒層の厚みとアノード側の触媒層の厚みとは、同じであっても 良いし、異なっていても良い。  [0101] The thickness of the catalyst layer on the force sword side and the thickness of the catalyst layer on the anode side may be the same or different.
[0102] 上記触媒層は、上記電解質膜の表面に接触して積層されていても良いし、上記電 解質膜の表面に融着されるなどして接合されていても良い。燃料電池に組み込んだ ときの耐久性に優れるなどの観点から、上記触媒層は、上記電解質膜の表面に接合 されているのが好ましぐより好ましくは、上記触媒層は、その表面に多孔質膜が露出 している電解質膜の表面に融着されていると良い。なお、触媒層と拡散層とは接合さ れてレ、ても良レ、し、接触してレ、るだけであっても良レ、。  [0102] The catalyst layer may be laminated in contact with the surface of the electrolyte membrane, or may be bonded to the surface of the electrolyte membrane, for example. From the viewpoint of excellent durability when incorporated in a fuel cell, the catalyst layer is preferably bonded to the surface of the electrolyte membrane, and more preferably, the catalyst layer is porous on the surface. It should be fused to the surface of the electrolyte membrane where the membrane is exposed. It should be noted that the catalyst layer and the diffusion layer may be joined together, or may be acceptable, or may be contacted or removed.
[0103] 2.本製造方法  [0103] 2. Manufacturing method
本製造方法は、本 MEAを製造することが可能な方法である。この本製造方法では 、電解質膜の両面に形成される 2つの電極のうち、少なくとも一方、好ましくは両方の 電極中の触媒層を、触媒と触媒層内電解質とを含む液状組成物の噴霧により形成 する。 This production method is a method capable of producing this MEA. In this manufacturing method, at least one of the two electrodes formed on both surfaces of the electrolyte membrane, preferably both The catalyst layer in the electrode is formed by spraying a liquid composition containing the catalyst and the electrolyte in the catalyst layer.
[0104] (電解質膜の準備)  [0104] (Preparation of electrolyte membrane)
本製造方法では、多孔質膜の孔部内に電解質が充填された電解質膜を使用する 。この電解質膜の詳細な構成については、「1.本 MEA」にて説明した通りである。  In this manufacturing method, an electrolyte membrane in which an electrolyte is filled in the pores of the porous membrane is used. The detailed configuration of the electrolyte membrane is as described in “1. MEA”.
[0105] ここで、上記多孔質膜を得る方法は、その材質によっても異なるが、例えば、延伸 による方法、造孔材を分散させた膜材料の溶液または溶融物を膜状に塗工し、溶剤 を揮発除去したり、溶融状態の膜材料を冷却するなどして膜状にし、造孔材を除去し て孔部とする方法、膜状に形成された膜材料に対して、パンチング、ドリリング、レー ザ、化学的 ·物理的エッチングなどの加工手段を用いて孔部を形成する方法、孔部 を転写可能な铸型に高分子などの膜材料の融液を流し込んだ後、これを剥離するこ とにより、膜面に孔部を転写する方法などを例示することができる。  [0105] Here, the method for obtaining the porous film differs depending on the material, but for example, a method by stretching, a solution of a film material in which a pore former is dispersed or a melt is applied in a film shape, Solvent is removed by volatilization or the film material in the molten state is cooled to form a film, and the pore former is removed to form a hole. Punching and drilling are performed on the film material formed in the film shape. , Laser, chemical / physical etching and other processing methods to form holes, and after pouring a melt of polymer material or other material into a bowl that can transfer holes, peel it off By doing so, a method of transferring the hole to the film surface can be exemplified.
[0106] 多孔性膜の材質が高分子である場合、最も一般的な方法は、延伸による方法であ る。すなわち、この方法では、高分子などの膜材料と液状または固体の造孔材とを溶 融混合などの方法で混合し、造孔材を一旦微分散させておき、これを Tダイなどから 押し出しながら延伸し、洗浄などの方法によって造孔材を除去し、多孔質膜とする。  [0106] When the material of the porous membrane is a polymer, the most general method is a method by stretching. That is, in this method, a film material such as a polymer and a liquid or solid pore former are mixed by a method such as melt mixing, and the pore former is once finely dispersed and extruded from a T die or the like. While stretching, the pore former is removed by a method such as washing to form a porous film.
[0107] また、延伸方法としては 1軸延伸、 2軸延伸などの方法がある。なお、延伸の比率や 、造孔材の比率や種類、配合量、膜材料の種類などによって孔部の形状などを決定 すること力 Sでさる。  [0107] As stretching methods, there are methods such as uniaxial stretching and biaxial stretching. The force S can be used to determine the shape of the hole, etc., depending on the stretching ratio, the ratio and type of pore former, the blending amount, and the type of membrane material.
[0108] 上記多孔性膜が、疎水性の高分子材料力 形成されている場合、この多孔質膜の 表面のうち、少なくとも一方面は、親水処理されていても良い。親水性の高い電解質 材料を孔部内に含浸させる場合に、多孔性膜が予め親水化されておれば、孔部内 への含浸性が向上し、膜電極接合体の製造性を向上させることができるからである。  [0108] When the porous membrane is formed of a hydrophobic polymer material, at least one of the surfaces of the porous membrane may be subjected to a hydrophilic treatment. When the porous material is impregnated with a highly hydrophilic electrolyte material, if the porous membrane has been hydrophilicized in advance, the impregnation property into the pores can be improved, and the productivity of the membrane electrode assembly can be improved. Because.
[0109] 上記親水処理の方法としては、具体的には、例えば、界面活性剤処理、コロナ処 理、スルホン化処理、親水性ポリマーのグラフト処理などを例示することができる。こ れら処理は、 1または 2以上併用しても良い。  Specific examples of the hydrophilic treatment method include surfactant treatment, corona treatment, sulfonation treatment, hydrophilic polymer graft treatment, and the like. One or more of these treatments may be used in combination.
[0110] また、上記多孔質膜の孔部内に電解質を充填する方法は、特に限定されるもので はない。具体的には、例えば、電解質の溶液もしくは分散液または溶融状態の電解 質などを孔部内に含浸させる方法、電解質前駆体の溶液もしくは分散液または溶融 状態の電解質前駆体などを孔部内に含浸させた後、孔部内に含浸された電解質前 駆体から電解質を生成させる方法などを例示することができる。 [0110] The method of filling the electrolyte in the pores of the porous membrane is not particularly limited. Specifically, for example, an electrolyte solution or dispersion, or molten electrolysis After impregnating the pores with a solution or dispersion of an electrolyte precursor or a molten electrolyte precursor, the electrolyte is generated from the electrolyte precursor impregnated in the pores. A method etc. can be illustrated.
[0111] なお、含浸方法としては、具体的には、例えば、上記溶液などに多孔質膜を浸漬す る方法、上記溶液や溶融物を多孔質膜に各種の塗工方法 (ダイコート法、コンマコー ト法、グラビアコート法、ロールコート法、バーコート法、リバースコート法など)を用い て塗工する方法などを例示することができる。これらは 1種または 2種以上併用しても 良い。 [0111] As the impregnation method, specifically, for example, a method of immersing the porous membrane in the above solution or the like, various coating methods (die coating method, comma coating) on the porous membrane of the above solution or melt. For example, a coating method, a gravure coating method, a roll coating method, a bar coating method, a reverse coating method, etc.). These may be used alone or in combination of two or more.
[0112] 充填される電解質が電解質ポリマー等である場合、上記多孔質膜の孔部内に電解 質ポリマー等を充填する方法としては、具体的には、例えば、電解質ポリマーの溶液 もしくは分散液または溶融状態の電解質ポリマーを孔部内に含浸させる方法、電解 質ポリマーのポリマー前駆体の溶液もしくは分散液または溶融状態のポリマー前駆 体を孔部内に含浸させた後、孔部内に含浸されたポリマー前駆体を重合したり、重 合後に、電解質基に変換し得る官能基を電解質基に変換したりするなどして、電解 質ポリマーを生成させる方法などを例示することができる。  [0112] When the electrolyte to be filled is an electrolyte polymer or the like, as a method of filling the electrolyte polymer or the like in the pores of the porous membrane, specifically, for example, a solution or dispersion of the electrolyte polymer or a melt A method of impregnating the electrolyte polymer in the state of the pores, a solution or dispersion of the polymer precursor of the electrolyte polymer or a polymer precursor in the molten state in the pores, and then the polymer precursor impregnated in the pores. Examples thereof include a method for producing an electrolyte polymer by polymerization or by converting a functional group that can be converted to an electrolyte group into an electrolyte group after polymerization.
[0113] なお、上記含浸時には、必要に応じて、架橋剤、重合開始剤 (光重合開始剤、熱開 始剤、レドックス系開始重合開始剤など)、硬化剤、界面活性剤などを 1種または 2種 以上添加しても良い。 [0113] At the time of the above impregnation, one kind of a crosslinking agent, a polymerization initiator (such as a photopolymerization initiator, a thermal initiator, a redox-based polymerization initiator), a curing agent, a surfactant, etc. Or two or more may be added.
[0114] 上記ポリマー前駆体を用いる場合、このポリマー前駆体には、上述した電解質モノ マーが少なくとも 1種以上含有される。さらに、必要に応じて架橋剤を含有させても良 い。  [0114] When the polymer precursor is used, the polymer precursor contains at least one or more of the above-described electrolyte monomers. Furthermore, a cross-linking agent may be included as necessary.
[0115] この場合には、電解質ポリマーの生成時に架橋点を形成することができるので、電 解質ポリマーの架橋体を形成しやすくなる。そのため、電解質膜の孔部内に充填さ れた電解質ポリマーの不溶性、不融性が向上し、孔部から脱落し難くなる。  [0115] In this case, since a crosslinking point can be formed at the time of production of the electrolyte polymer, it becomes easy to form a crosslinked body of the electrolyte polymer. Therefore, the insolubility and infusibility of the electrolyte polymer filled in the pores of the electrolyte membrane are improved, and it is difficult for the electrolyte polymer to fall off the pores.
[0116] 上記架橋剤としては、具体的には、例えば、 1分子中に重合可能な官能基を 2個以 上有する化合物、 1分子中に重合性二重結合とその他の架橋反応が可能な官能基 を合わせ持つ化合物などを例示することができる。これらは 1種または 2種以上含ま れていても良い。 [0117] 前者の架橋剤としては、具体的には、例えば、 N, N'—メチレンビス (メタ)アクリル リルアミド、 N, N,ーブチレンビス(メタ)アクリルアミド、ポリエチレングリコールジ(メタ) アタリレート、ポリプロピレングリコールジ(メタ)アタリレート、トリメチロールプロパンジ ァリノレエーテノレ、ペンタエリスリトーノレトリァリノレエーテノレ、ジビニノレベンゼン、ビスフエ ノールジ (メタ)アタリレート、イソシァヌル酸ジ (メタ)アタリレート、テトラァリルォキシェ タン、トリアリルァミン、ジァリルォキシ酢酸塩などの架橋性モノマーを例示することが できる。 [0116] Specific examples of the crosslinking agent include, for example, a compound having two or more polymerizable functional groups in one molecule, and a polymerizable double bond and other crosslinking reactions in one molecule. Examples thereof include compounds having both functional groups. One or more of these may be included. [0117] Specific examples of the former cross-linking agent include, for example, N, N'-methylenebis (meth) acrylylamide, N, N, -butylenebis (meth) acrylamide, polyethylene glycol di (meth) acrylate, polypropylene glycol Di (meth) atarylate, trimethylolpropane diolenoreatenore, pentaerythritoretriolinoreatenore, divinino benzene, bisphenol di (meth) acrylate, isocyanuric acid di (meth) acrylate, tetraaryl Examples thereof include crosslinkable monomers such as oxetane, triallylamine, and diallyloxyacetate.
[0118] 後者の架橋剤としては、具体的には、例えば、 N メチロールアクリルアミド、 N メ トキシメチルアクリルアミド、 N—ブトキシメチルアクリルアミドなどの架橋性モノマーを 例示すること力 Sできる。これらは、重合性二重結合のラジカル重合を行った後で加熱 して縮合反応などを起こさせて架橋する力、、ラジカル重合と同時に加熱を行って同様 の架橋反応を起こさせることができる。  [0118] Specific examples of the latter cross-linking agent include cross-linking monomers such as N-methylol acrylamide, N-methoxymethyl acrylamide, and N-butoxymethyl acrylamide. These can be heated after radical polymerization of a polymerizable double bond to cause a condensation reaction or the like to crosslink, and can be heated simultaneously with radical polymerization to cause a similar crosslinking reaction.
[0119] なお、上記架橋剤は、炭素 炭素二重結合を有する化合物に限られず、重合反応 速度はやや小さいものの、 2官能以上のエポキシ化合物、ヒドロキシメチル基を有す るフエニル基などを有する化合物なども使用することもできる。上記エポキシ化合物を 用いる場合は、ポリマー中に含まれるカルボキシル基などの酸と反応することにより架 橋点が形成される。  [0119] The cross-linking agent is not limited to a compound having a carbon-carbon double bond, and a compound having a bifunctional or higher functional epoxy compound, a phenyl group having a hydroxymethyl group, etc., although the polymerization reaction rate is slightly low. Can also be used. When the epoxy compound is used, a bridge point is formed by reacting with an acid such as a carboxyl group contained in the polymer.
[0120] 上記ポリマー前駆体には、さらに、必要に応じて、上記電解質モノマーおよび/ま たは上記架橋剤と共重合可能なモノマーを含有させても良い。この種のモノマーとし ては、具体的には、例えば、(メタ)アクリル酸エステル類、(メタ)アクリルアミド類、マ レイミド類、スチレン類、有機酸ビュル類、ァリル化合物、メタリル化合物などを例示す ること力 Sできる。これらは 1種または 2種以上含まれて!/、ても良!/、。  [0120] The polymer precursor may further contain a monomer copolymerizable with the electrolyte monomer and / or the crosslinking agent, if necessary. Specific examples of this type of monomer include (meth) acrylic acid esters, (meth) acrylamides, maleimides, styrenes, organic acid butyls, aryl compounds, and methallyl compounds. Ability to do S. One or more of these are included! /, May be! /.
[0121] 上記ポリマー前駆体に含まれる電解質モノマーを重合させる方法は、特に限定され るものではなぐ一般に知られる方法であれば、何れの方法であっても使用すること 力できる。具体的には、例えば、過酸化物、ァゾ化合物などの熱開始剤、レドックス系 重合開始剤を用いた熱重合、紫外線などの光の照射によりラジカルを発生する光重 合開始剤を用いた光重合、電子線、放射線などによる重合などを例示することができ る。これらは 1種または 2種以上併用しても良い。 [0121] The method for polymerizing the electrolyte monomer contained in the polymer precursor is not particularly limited, and any generally known method can be used. Specifically, for example, thermal initiators such as peroxides and azo compounds, thermal polymerization using redox polymerization initiators, and photopolymerization initiators that generate radicals upon irradiation with light such as ultraviolet rays are used. Examples include photopolymerization, polymerization by electron beam, radiation, etc. The These may be used alone or in combination of two or more.
[0122] 上記電解質膜を作製する際、上記電解質ポリマー、ポリマー前駆体は、そのもの自 体が液体であり、低粘度である場合には、そのまま多孔質膜の孔部へ含浸させること ができる。この場合、好ましい粘度としては、 25°Cにおいて 1〜; lOOOOmPa ' s程度で ある。 [0122] When the electrolyte membrane is produced, the electrolyte polymer and polymer precursor itself can be impregnated into the pores of the porous membrane as they are when they themselves are liquid and have a low viscosity. In this case, the preferred viscosity is 1 to 25 ° C., about lOOOOmPa ′s.
[0123] これに対して、そのままでは多孔質膜の孔部へ含浸させ難!/、場合には、電解質ポリ マーおよび/またはポリマー前駆体を、適当な溶媒に溶解させた溶液、または、適当 な分散媒に分散させた分散液とすると良い。この場合、好ましい粘度は、 25°Cにお いて 1〜; lOOOOmPa ' s程度である。なお、上記粘度は、 B型粘度計にて測定される 値である。  [0123] On the other hand, it is difficult to impregnate the pores of the porous membrane as it is! / In some cases, a solution in which the electrolyte polymer and / or polymer precursor is dissolved in an appropriate solvent, or an appropriate A dispersion liquid dispersed in a suitable dispersion medium is preferable. In this case, the preferred viscosity is 1 to 25 ° C, about lOOOOmPa's. The viscosity is a value measured with a B-type viscometer.
[0124] 上記溶媒、分散媒としては、具体的には、例えば、例えばトルエン、キシレン、ベン ゼンなどの芳香族系有機溶剤、へキサン、ヘプタンなどの脂肪族系有機溶剤、クロ口 ホノレム、ジクロロェタンなどの塩素系溶剤、ジェチルエーテルなどのエーテル類、メ チルェチルケトン、シクロへキサノンなどのケトン類、酢酸ェチル、酢酸ブチルなどの エステル類、 1 , 4 ジォキサン、テトラヒドロフランなどの環状エーテル類、ジメチルホ ルムアミド、ジメチルァセトアミド、 N メチル 2—ピロリドンなどのアミド系溶剤、水、 アルコール類などを例示することができる。これらは 1種または 2種以上含まれていて も良い。これらのうち、好ましくは、水を主に含んでいると良い。取扱い性、経済性な どに優れるからである。  [0124] Specific examples of the solvent and the dispersion medium include, for example, aromatic organic solvents such as toluene, xylene, and benzene, aliphatic organic solvents such as hexane and heptane, black mouth honolem, and dichloroethane. Chlorinated solvents such as ethers, ethers such as jetyl ether, ketones such as methyl ethyl ketone and cyclohexanone, esters such as ethyl acetate and butyl acetate, cyclic ethers such as 1,4 dioxane and tetrahydrofuran, dimethylformamide, Examples include amide solvents such as dimethylacetamide and N-methyl 2-pyrrolidone, water, and alcohols. One or more of these may be included. Of these, water is preferably mainly contained. This is because it is excellent in handling and economy.
[0125] 上記溶液または分散液の濃度の下限としては、濃度が低すぎると含浸工程を繰り 返す必要があり、生産性の観点から、 5質量%以上が好ましぐ 10質量%以上がより 好ましぐ 20質量%以上が最も好ましい。  [0125] As the lower limit of the concentration of the solution or dispersion, it is necessary to repeat the impregnation step if the concentration is too low. From the viewpoint of productivity, 5% by mass or more is preferable, and 10% by mass or more is more preferable. Most preferred is 20% by mass or more.
[0126] 上記電解質膜を製造した際、多孔質膜の表面に電解質ポリマー層が形成された場 合、これを取り除く方法としては、具体的には、例えば、樹脂繊維などからなるたわし 、ブラシなどにより擦る方法、スクレーパーなどで搔き取る方法などを例示することが できる。この際、上記方法は、水などにより湿らせた後、または、洗浄しながら行っても 良い。これら方法は 1種または 2種以上併用しても良い。  [0126] When an electrolyte polymer layer is formed on the surface of the porous membrane when the electrolyte membrane is manufactured, as a method for removing it, specifically, for example, a brush made of resin fiber or the like, a brush or the like Examples of the method include rubbing with a scraper and scraping with a scraper. At this time, the above method may be carried out after moistening with water or the like or while washing. These methods may be used alone or in combination of two or more.
[0127] (液状組成物の調製) 上述した通り、上記液状組成物は、触媒と触媒層内電解質とを少なくとも含んでい る。それ以外にも、揮発可能な適当な希釈剤を含むことが好ましい。上記希釈剤を含 んでいる場合には、液状組成物の噴霧による触媒層の形成時に、液状組成物から希 釈剤が揮発して堆積したり、また、被噴霧物を加熱しておくことで、瞬時に希釈剤を 揮発させたりすることができ、多孔体を作りやすくなる利点があるからである。 [0127] (Preparation of liquid composition) As described above, the liquid composition contains at least a catalyst and an electrolyte in the catalyst layer. In addition, it is preferable to include a suitable diluent capable of volatilization. When the above-mentioned diluent is included, the diluent is volatilized and deposited from the liquid composition when the catalyst layer is formed by spraying the liquid composition, or the sprayed object is heated. This is because the diluent can be volatilized instantaneously, which makes it easier to make a porous body.
[0128] この場合、上記希釈剤としては、具体的には、例えば、トルエン、キシレン、ベンゼ ンなどの芳香族系有機溶剤、へキサン、ヘプタンなどの脂肪族系有機溶剤、クロロホ ルム、ジクロロェタンなどの塩素系溶剤、ジェチルエーテルなどのエーテル類、メチ ノレェチルケトン、シクロへキサノン等のケトン類、酢酸ェチル、酢酸ブチル等のエステ ル類、 1 , 4 ジォキサン、テトラヒドロフランなどの環状エーテル類、ジメチルホルムァ ミド、ジメチルァセトアミド、 N メチルー 2—ピロリドンなどのアミド系溶剤、水、アルコ ール類などを例示することができる。これらは 1種または 2種以上含まれていても良い 。経済性、取扱い性、安全性などの観点から、水、アルコール類などを好適に用いる ことができる。また、適宜、分散剤などを添加しても良い。  In this case, specific examples of the diluent include aromatic organic solvents such as toluene, xylene and benzene, aliphatic organic solvents such as hexane and heptane, chloroform and dichloroethane. Chlorine solvents, ethers such as jetyl ether, ketones such as methylolethyl ketone and cyclohexanone, esters such as ethyl acetate and butyl acetate, cyclic ethers such as 1,4 dioxane and tetrahydrofuran, dimethylforma Examples include amide solvents such as amide, dimethylacetamide, N-methyl-2-pyrrolidone, water, alcohols, and the like. These may be included alone or in combination of two or more. From the viewpoints of economy, handleability, safety, etc., water, alcohols and the like can be preferably used. Moreover, you may add a dispersing agent etc. suitably.
[0129] また、上記液状組成物中の触媒濃度(固形分換算)の上限としては、 90質量%以 下が好ましぐ 80質量%以下がより好ましぐ 70質量%以下が最も好ましい。上記液 状組成物中の触媒濃度の下限としては、 10質量%以上が好ましぐ 20質量%以上 力はり好ましぐ 30質量%以上が最も好ましい。  [0129] The upper limit of the catalyst concentration (in terms of solid content) in the liquid composition is preferably 90% by mass or less, more preferably 80% by mass or less, and most preferably 70% by mass or less. The lower limit of the catalyst concentration in the liquid composition is preferably 20% by mass or more, preferably 10% by mass or more, and most preferably 30% by mass or more.
[0130] 上記液状組成物中の触媒層内電解質の濃度(固形分換算)の上限としては、触媒 などの分散状態を保ちやすくしたり、スプレーノズルなどの詰まりを防止したりするな どの観点から、 50質量%以下が好ましぐ 40質量%以下がより好ましぐ 30質量% 以下が最も好ましい。一方、上記液状組成物中の触媒層内電解質の濃度(固形分 換算)の下限としては、何度も繰り返すことなぐ触媒層の形成を効率良く行うなどの 観点から、 1質量%以上が好ましぐ 5質量%以上がより好ましぐ 10質量%以上が最 も好ましい。  [0130] The upper limit of the concentration of the electrolyte in the catalyst layer in the liquid composition (in terms of solid content) is from the viewpoint of easily maintaining the dispersed state of the catalyst and preventing clogging of the spray nozzle and the like. 50 mass% or less is preferred 40 mass% or less is more preferred 30 mass% or less is most preferred. On the other hand, the lower limit of the concentration of electrolyte in the catalyst layer in the liquid composition (in terms of solid content) is preferably 1% by mass or more from the viewpoint of efficiently forming the catalyst layer without repeating it many times. 5% by mass or more is more preferable. 10% by mass or more is most preferable.
[0131] また、上記液状組成物の粘度(25°C)の上限としては、 lOOOOmPa ' s以下が好まし く、 5000mPa ' s以下力 Sより好ましく、 2000mPa ' s以下が最も好ましい。一方、上記 液状組成物の粘度(25°C)の下限としては、 lOmPa ' s以上が好ましぐ 100mPa - s 以上がより好ましぐ 500mPa ' s以上が最も好ましい。 [0131] The upper limit of the viscosity (25 ° C) of the liquid composition is preferably lOOOOmPa's or less, more preferably 5000 mPa's or less, force S, and most preferably 2000 mPa's or less. On the other hand, the lower limit of the viscosity (25 ° C) of the above liquid composition is preferably 100 mPa-s, preferably lOmPa's or more. More preferable is 500 mPa's or more.
[0132] (電極の形成)  [0132] (Formation of electrodes)
本製造方法では、少なくとも一方、好ましくは両方の電極中の触媒層を形成するに あたり、上記液状組成物を噴霧する。上記液状組成物の噴霧は、拡散層の表面に対 して行っても良いし、電解質膜の表面に対して行っても良い。あるいは、電解質膜と は別のフィルム基材表面に一旦噴霧しておき、電極を構成する拡散層へ転写しても 良い。さらには、これらを組み合わせて行っても良い。  In this production method, the liquid composition is sprayed to form the catalyst layer in at least one, preferably both electrodes. Spraying of the liquid composition may be performed on the surface of the diffusion layer, or may be performed on the surface of the electrolyte membrane. Alternatively, it may be sprayed once on the surface of a film substrate different from the electrolyte membrane and transferred to a diffusion layer constituting the electrode. Further, these may be combined.
[0133] したがって、上記電解質膜の表面に上記電極を形成する方法としては、具体的に は、例えば、拡散層の表面に触媒層を噴霧形成した後、この触媒層側を電解質膜の 表面にして積層する方法、電解質膜の表面に触媒層を噴霧形成した後、この触媒層 の外表面に拡散層を積層する方法、電解質膜とは別のフィルム基材に一旦噴霧して おき、電極を構成する拡散層表面へ転写する方法などを例示することができる。これ ら方法は 1種または 2種以上併用しても良い。  Therefore, as a method of forming the electrode on the surface of the electrolyte membrane, specifically, for example, after a catalyst layer is spray-formed on the surface of the diffusion layer, the catalyst layer side is used as the surface of the electrolyte membrane. After the catalyst layer is spray-formed on the surface of the electrolyte membrane, a diffusion layer is laminated on the outer surface of the catalyst layer, and once sprayed on a film substrate different from the electrolyte membrane, the electrode is attached. Examples thereof include a method for transferring to the surface of the diffusion layer to be formed. These methods may be used alone or in combination of two or more.
[0134] 上記液状組成物の噴霧は、電解質膜の表面に対して行うことが好ましい。また、電 解質膜とは別のフィルム基材に上記液状組成物を一旦噴霧して触媒層を形成して おき、これを拡散層へ転写する方法も好ましい。当該組成物中に含まれる触媒層内 電解質が直接膜表面に広がる力、、一旦フィルム基材の面方向に広がった触媒層内 電解質がそのまま電解質膜表面に接触する、とりわけ、多孔質膜表面が露出した電 解質膜を用いた場合には、露出した多孔質膜表面にも触媒層内電解質が付着する ので、孔部内の電解質と触媒層内電解質とのイオン的な接続を向上させやすくなる 力 である。  [0134] The liquid composition is preferably sprayed on the surface of the electrolyte membrane. Also preferred is a method in which the liquid composition is once sprayed on a film substrate different from the electrolyte membrane to form a catalyst layer, which is then transferred to the diffusion layer. In the catalyst layer contained in the composition, the electrolyte spreads directly on the membrane surface, the catalyst layer once spread in the surface direction of the film substrate, and the electrolyte directly contacts the electrolyte membrane surface. When an exposed electrolyte membrane is used, the electrolyte in the catalyst layer also adheres to the exposed porous membrane surface, making it easier to improve the ionic connection between the electrolyte in the pores and the electrolyte in the catalyst layer. Power.
[0135] この際、上記液状組成物は、 1度で噴霧しても良いし、複数回に分けて(分割して) 噴霧しても良い。分割噴霧を行う場合には、噴霧毎に液状組成物の組成が同じであ つても良いし、組成が異なっていても良い。また、揮発可能な希釈剤を上記液状組成 物が含んでいる場合には、被噴霧物を加熱することが好ましい。希釈剤が速やかに 揮発し、 3次元的な空孔を発達させやす!/、からである。  [0135] At this time, the liquid composition may be sprayed at one time, or may be sprayed in a plurality of times (divided). When performing divided spraying, the composition of the liquid composition may be the same for each spray, or the composition may be different. When the liquid composition contains a volatilizable diluent, it is preferable to heat the material to be sprayed. This is because the diluent volatilizes quickly and easily develops three-dimensional vacancies!
[0136] また、液状組成物の噴霧条件は、用いる液状組成物の粘度、濃度などを考慮して 最適な条件を選択すれば良レ、。 [0137] また、上記方法において、噴霧形成した触媒層は、ホットプレスなどにより加熱加圧 するのが好ましい。噴霧形成した触媒層の浮き上がりなどがなくなり、拡散層や電解 質膜との密着性を向上させることができ、触媒層が剥離し難くなるからである。 [0136] The spraying conditions for the liquid composition are satisfactory if the optimum conditions are selected in consideration of the viscosity and concentration of the liquid composition to be used. [0137] In the above method, the sprayed catalyst layer is preferably heated and pressurized by hot pressing or the like. This is because the catalyst layer formed by spraying is not lifted, the adhesion to the diffusion layer or the electrolyte membrane can be improved, and the catalyst layer is difficult to peel off.
[0138] 上記加熱加圧により、噴霧形成した触媒層を、電解質膜の表面、とりわけ、露出し た多孔質膜の表面に融着させた場合には、触媒層が一層剥離し難くなるので、耐久 性に優れた膜電極接合体を得ることができる。  [0138] When the sprayed catalyst layer is fused to the surface of the electrolyte membrane, in particular, the exposed porous membrane, by heating and pressurization, the catalyst layer becomes more difficult to peel off. A membrane electrode assembly having excellent durability can be obtained.
[0139] また、電解質膜の表面に触媒層を噴霧形成した場合などには、触媒層の外表面に 拡散層を重ねることにより、触媒層とともに拡散層も同時に加熱加圧しても良い。この 場合には、拡散層も一体化することができることから、燃料電池組み込み時の取扱い 性に優れた膜電極接合体を得ることができる。  [0139] When the catalyst layer is spray-formed on the surface of the electrolyte membrane, the diffusion layer may be heated and pressurized simultaneously with the catalyst layer by overlaying the diffusion layer on the outer surface of the catalyst layer. In this case, since the diffusion layer can also be integrated, it is possible to obtain a membrane / electrode assembly excellent in handleability when the fuel cell is incorporated.
[0140] 上記加熱加圧時の加熱温度、加圧力は、多孔質膜の材質、触媒層内電解質の材 質などを考慮して、適宜選択すれば良い。  [0140] The heating temperature and the applied pressure during the heating and pressurization may be appropriately selected in consideration of the material of the porous membrane, the material of the electrolyte in the catalyst layer, and the like.
[0141] 一般に、加熱温度、加圧力が過度に高くなると、多孔質膜が変形したり、触媒層中 の空孔が少なくなる場合がある。一方、加熱温度、加圧力が過度に低くなると、その 効果が小さくなる傾向が見られる。したがって、触媒層を加熱加圧する際には、これ らに留意すると良い。  [0141] In general, when the heating temperature and the applied pressure are excessively high, the porous membrane may be deformed or the pores in the catalyst layer may be reduced. On the other hand, when the heating temperature and pressure are excessively low, the effect tends to decrease. Therefore, it is advisable to pay attention to these when heating and pressurizing the catalyst layer.
[0142] 噴霧形成した触媒層に用いた電解質がナフイオンのようなものである場合、加熱に よって不溶化し、水やメタノールに対する過度の膨潤ゃ溶解が防止できるため、触媒 層の加熱工程を実施するのが好ましい。その場合は、拡散層へ噴霧する方法、もしく は、電解質膜や電極とは別のフィルム基材表面に一旦噴霧しておき、電極へ転写す る方法を用い、膜電極接合体とする前に加熱すると、使用できる電解質膜の選択肢 が広がり、ポリオレフインなどからなる多孔性基材の一部を露出させた電解質膜と容 易に組み合わせることができるので好ましい。  [0142] If the electrolyte used for the spray-formed catalyst layer is naphth ion, it is insolubilized by heating, and excessive swelling in water and methanol can be prevented, so the catalyst layer is heated. Is preferred. In that case, use a method of spraying to the diffusion layer, or a method of spraying once on the surface of the film substrate different from the electrolyte membrane or electrode and transferring it to the electrode before forming a membrane electrode assembly. Heating is preferred because the choice of electrolyte membranes that can be used is widened and can be easily combined with an electrolyte membrane that exposes a part of a porous substrate made of polyolefin or the like.
[0143] 3.本 MEAの用途  [0143] 3. Use of this MEA
本 MEAは、固体高分子形燃料電池や、直接メタノール形燃料電池などの直接ァ ルコール形燃料電池などに好適に用いることができる。  This MEA can be suitably used for polymer electrolyte fuel cells, direct alcohol fuel cells such as direct methanol fuel cells, and the like.
実施例  Example
[0144] 以下、本発明を実施例を用いてより具体的に説明する。 [0145] 1.電解質膜の作製 [0144] Hereinafter, the present invention will be described more specifically with reference to Examples. [0145] 1. Preparation of electrolyte membrane
1. 1 電解質膜(1)  1. 1 Electrolyte membrane (1)
2 アクリルアミドー 2 メチルプロパンスルホン酸 (東亞合成 (株)製、「ATBS」)45 g、 N, N,—エチレンビスアクリルアミド 5g、ノニオン性界面活性剤 0. 005g、紫外線 ラジカル発生剤 0. 005g、水 50gを均一な溶液になるまで攪拌混合し、電解質ポリマ 一のポリマー前駆体溶液を調製した。  2 Acrylamide-2 Methylpropanesulfonic acid (Toagosei Co., Ltd., “ATBS”) 45 g, N, N, -ethylenebisacrylamide 5 g, nonionic surfactant 0.005 g, UV radical generator 0.005 g, 50 g of water was stirred and mixed until a uniform solution was obtained, thereby preparing a polymer precursor solution of an electrolyte polymer.
[0146] 次いで、このポリマー前駆体溶液に、架橋ポリエチレン製の多孔質膜 (厚さ 30 m 、空孔率 37%、平均孔部径約 0. Ι πι)を浸漬し、孔部内に当該溶液を含浸させた[0146] Next, a porous film made of a crosslinked polyethylene (thickness 30 m, porosity 37%, average pore diameter about 0. Ιπι) was immersed in the polymer precursor solution, and the solution was put in the pores. Impregnated
Yes
[0147] 次いで、この多孔質膜を、上記溶液から引き上げた後、気泡ができないように PET フィルム(厚さ 50 m、東レ (株)製、「ルミラー T50」)で挟持し、積層体とした。  [0147] Next, after pulling up the porous membrane from the above solution, the porous membrane was sandwiched between PET films (thickness 50 m, manufactured by Toray Industries, Inc., "Lumirror T50") so as to prevent bubbles, and a laminate was obtained. .
[0148] 次いで、高圧水銀ランプを用いて、上記積層体の両面に紫外線をそれぞれ 1000 mj/cm2照射し、孔部内のポリマー前駆体を重合させた。 [0148] Next, using a high-pressure mercury lamp, both surfaces of the laminate were irradiated with ultraviolet rays of 1000 mj / cm 2 to polymerize the polymer precursor in the pores.
[0149] 次!/、で、この積層体から PETフィルムを剥離除去し、膜表面を純水で濡らしながら 樹脂繊維不織布よりなるたわしで擦り、膜表面に付着した電解質ポリマーを取り除き[0149] Next, remove the PET film from this laminate, and rub it with a scourer made of a resin fiber nonwoven fabric while wetting the membrane surface with pure water to remove the electrolyte polymer adhering to the membrane surface.
、膜を自然乾燥させた。 The membrane was allowed to air dry.
[0150] これにより、架橋ポリエチレン製の多孔質膜の孔部内に、電解質ポリマーとして、 2  [0150] As a result, in the pores of the cross-linked polyethylene porous membrane, as an electrolyte polymer, 2
アクリルアミドー 2—メチルプロパンスルホン酸単量体単位を有するポリマーの架橋 体が充填された電解質膜(1)を得た。  An electrolyte membrane (1) filled with a cross-linked polymer having an acrylamide-2-methylpropanesulfonic acid monomer unit was obtained.
[0151] この電解質膜(1)表面に水滴を垂らしたところ、水を弾いた。そのため、電解質膜(  [0151] When water droplets were dropped on the surface of the electrolyte membrane (1), water was repelled. Therefore, the electrolyte membrane (
1)の表面には、架橋ポリエチレン製の多孔質膜が露出していることが分力、つた。  It was a component that the porous film made of cross-linked polyethylene was exposed on the surface of 1).
[0152] また、 25°Cの純水に 1時間浸して膨潤させた電解質膜(1)を、 2枚の白金板で挟持 した試料を用い、 25°Cで 100Hzから 40MHzまでの交流インピーダンス測定を実施 し、プロトン伝導度を測定した。その結果、電解質膜(1)のプロトン伝導度は 11. 3S / cm (あった。  [0152] AC impedance measurement from 100Hz to 40MHz at 25 ° C using a sample sandwiched between two platinum plates immersed in pure water at 25 ° C for 1 hour and swollen. The proton conductivity was measured. As a result, the proton conductivity of the electrolyte membrane (1) was 11.3 S / cm 2.
[0153] また、電解質膜(1)のメタノール透過性を、 25°Cにおける浸透実験により確認した。  [0153] The methanol permeability of the electrolyte membrane (1) was confirmed by a penetration experiment at 25 ° C.
[0154] 具体的には、電解質膜(1)をガラス製セルに挟み、一方のセルに 10質量%メタノ ール水溶液を入れ、もう一方のセルに純水を入れた。そして、純水側に浸透するメタ ノール量をガスクロマトグラフ分析により経時的に測定し、メタノールの透過係数およ び透過流束を測定した。 [0154] Specifically, the electrolyte membrane (1) was sandwiched between glass cells, 10% by mass aqueous methanol solution was placed in one cell, and pure water was placed in the other cell. And the metaphor that permeates the pure water side The amount of ol was measured over time by gas chromatographic analysis, and the permeation coefficient and permeation flux of methanol were measured.
[0155] その結果、電解質膜(1)のメタノール透過流束(電解質膜をメタノールが透過する 量を表す)は 0· 28kg/ (m2'h)であった。 As a result, the methanol permeation flux (representing the amount of methanol permeating through the electrolyte membrane) of the electrolyte membrane (1) was 0 · 28 kg / (m 2 ′ h).
[0156] 1. 2 電解質膜 (2) [0156] 1. 2 Electrolyte membrane (2)
上記電解質膜(1)の作製において、積層体から PETフィルムを剥離除去した後、 膜表面をたわしで擦らず、膜表面に付着した電解質ポリマー層を取り除かな力 た 以外は同様にして、電解質膜 (2)を得た。  In the preparation of the electrolyte membrane (1), after peeling off and removing the PET film from the laminate, the membrane surface was not rubbed and the electrolyte polymer layer adhering to the membrane surface was not removed. (2) was obtained.
[0157] この電解質膜(2)表面に水滴を垂らしたところ、水を弾かな力、つた。そのため、電解 質膜(2)の表面には、架橋ポリエチレン製の多孔質膜が露出していないことが分かつ た。 [0157] When water droplets were dropped on the surface of the electrolyte membrane (2), water was repelled. Therefore, it was found that the porous membrane made of crosslinked polyethylene was not exposed on the surface of the electrolyte membrane (2).
[0158] また、電解質膜(1)と同様にして測定した電解質膜(1)のプロトン伝導度は 11. 6S /cm2,メタノール透過流束は 0· 29kg/ (m2'h)であった。 [0158] The proton conductivity of the electrolyte membrane (1) measured in the same manner as the electrolyte membrane (1) was 11.6 S / cm 2 and the methanol permeation flux was 0 · 29 kg / (m 2 'h). It was.
[0159] 2.触媒層形成に用いる液状組成物の調製  [0159] 2. Preparation of liquid composition used for catalyst layer formation
2. 1 スプレー用液状組成物(1)  2. 1 Liquid composition for spray (1)
カーボンブラック上に白金を担持させた市販の触媒(田中貴金属工業 (株)製、「T EC10E50E」)60gと、フッ素系電解質ポリマー 5重量%溶液(デュポン製、「ナフィォ ン」)を固形分換算で 20gと、ポリテトラフルォロエチレン分散液を固形分換算で 5gと を配合し、ボールミルで攪拌混合した後、イソプロピルアルコール 235g、水 235gを 加えて希釈攪拌し、力ソード電極の触媒層形成に用いるスプレー用液状組成物(1) を調製した。  Solid content of 60 g of a commercially available catalyst with carbon black supported on platinum (Tanaka Kikinzoku Kogyo Co., Ltd., “T EC10E50E”) and 5% by weight fluorine electrolyte polymer solution (manufactured by DuPont, “Nafion”) 20g and 5g of polytetrafluoroethylene dispersion in terms of solid content were mixed and stirred and mixed with a ball mill, then 235g of isopropyl alcohol and 235g of water were added and stirred to form a catalyst layer for a force sword electrode A liquid composition for spraying (1) used in the above was prepared.
[0160] 2. 2 スプレー用液状組成物(2)  [0160] 2.2 Liquid composition for spray (2)
上記スプレー用液状組成物(1)の調製において、カーボンブラック上に白金を担持 させた市販の触媒に代えて、カーボンブラック上に白金およびルテニウムを担持した 市販の触媒(田中貴金属工業 (株)製、「TEC61E54」 )を用いた点以外は同様にし て、アノード電極の触媒層形成に用いるスプレー用液状組成物(2)を調製した。  In the preparation of the above liquid composition for spray (1), instead of a commercially available catalyst in which platinum is supported on carbon black, a commercially available catalyst in which platinum and ruthenium are supported on carbon black (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) A liquid composition for spraying (2) used for forming the catalyst layer of the anode electrode was prepared in the same manner except that “TEC61E54”) was used.
[0161] 2. 3 スクリーン印刷用組成物(1)  [0161] 2.3 Composition for screen printing (1)
上記スプレー用液状組成物(1)の調製において、ボールミルで攪拌混合した後、ィ ソプロピルアルコールおよび水を加えた希釈攪拌を行わなず、ペースト状にした点以 外は同様にして、力ソード電極の触媒層形成に用いるスクリーン印刷用組成物(1)を 調製した。 In the preparation of the above liquid composition for spray (1), after stirring and mixing with a ball mill, A screen printing composition (1) for use in forming a catalyst layer of a force sword electrode was prepared in the same manner except that the mixture was made into a paste without diluting and stirring with addition of sopropyl alcohol and water.
[0162] 2. 4 スクリーン印刷用組成物(2)  [0162] 2.4 Composition for screen printing (2)
上記スプレー用液状組成物(1 )の調製において、カーボンブラック上に白金を担持 させた市販の触媒に代えて、カーボンブラック上に白金およびルテニウムを担持した 市販の触媒(田中貴金属工業 (株)製、「TEC61E54」)を用いた点、ボールミルで攪 拌混合した後、イソプロピルアルコールおよび水を加えた希釈攪拌を行わなず、ぺー スト状にした点以外は同様にして、アノード電極の触媒層形成に用いるスクリーン印 刷用組成物(2)を調製した。  In the preparation of the above liquid composition for spray (1), instead of a commercially available catalyst in which platinum is supported on carbon black, a commercially available catalyst in which platinum and ruthenium are supported on carbon black (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) The catalyst layer of the anode electrode was formed in the same way except that it was paste-like without using TEC61E54), stirring and mixing with a ball mill, and then diluting with isopropyl alcohol and water. A screen printing composition (2) to be used for was prepared.
[0163] 3.実施例に係る膜電極接合体の作製  [0163] 3. Fabrication of membrane electrode assembly according to Example
[0164] (実施例 1)  [0164] (Example 1)
10cm角に切り出した電解質膜(1)を、ステンレス板上に粘着テープで固定し、これ を 120°Cに加熱したホットプレート上に設置した。そして、この電解質膜(1)上に、 1 辺 2. 23cmの正方形をくり貫いた PTFE樹脂製のマスクを載置した。  The electrolyte membrane (1) cut into a 10 cm square was fixed on a stainless steel plate with an adhesive tape, and placed on a hot plate heated to 120 ° C. On this electrolyte membrane (1), a PTFE resin mask that was cut through a 2.23 cm square was placed.
[0165] 次いで、電解質膜(1)表面より 20cm上方に先端を固定したコーン型ノズルから、 噴出圧 1. 4MPaで 3秒間スプレー用液状組成物(1)を噴霧し、 15秒間放置した。こ れを 1サイクルとし、噴霧形成された触媒層中に含まれる白金力 mg/cm2になるま でこのサイクルを繰り返した。 [0165] Next, the liquid composition for spraying (1) was sprayed for 3 seconds at an ejection pressure of 1.4 MPa from a cone type nozzle having a tip fixed 20 cm above the surface of the electrolyte membrane (1), and left for 15 seconds. This was defined as one cycle, and this cycle was repeated until the platinum power contained in the spray-formed catalyst layer was mg / cm 2 .
[0166] 次いで、電解質膜(1)を裏返し、スプレー用液状組成物(1)をスプレー用液状組成 物(2)に切り替え、上記と同様にして、噴霧形成された触媒層中に含まれる白金およ びルテニウムの総量が 3mg/cm2になるまで上記サイクルを繰り返した。 [0166] Next, the electrolyte membrane (1) is turned over, the spray liquid composition (1) is switched to the spray liquid composition (2), and platinum contained in the spray-formed catalyst layer in the same manner as described above. The above cycle was repeated until the total amount of ruthenium was 3 mg / cm 2 .
[0167] 次いで、上記触媒層を形成した膜の両面を、厚さ 0. 1mmの PTFE製フィルム 2枚 で挟持するとともに、さらに、この両面を、 1辺が 10cmで厚さが 3mmのステンレス板 2 枚で挟持した。  [0167] Next, both sides of the membrane on which the catalyst layer is formed are sandwiched between two 0.1 mm thick PTFE films, and further, both sides of the stainless steel plate are 10 cm on a side and 3 mm in thickness. Clamped with 2 sheets.
[0168] 次いで、この積層体を、熱板を 120°Cに加熱したシリンダー断面積が 50cm2の油 圧式ホットプレス機を用いて、ホットプレス機のゲージ圧力 IMPaで 5分間ホットプレス (加熱加圧)し、触媒層付き電解質膜を作製した。 [0169] 次いで、この触媒層付き電解質膜の力ソード側に、 PTFEにより撥水処理を施した 厚さ 0. 2mmのカーボンペーパーを、アノード側に、撥水処理を行っていない厚さ 0. 2mmのカーボンペーパーを接触させた。 [0168] Next, this laminate was hot-pressed using a hydraulic hot press machine with a hot plate heated to 120 ° C and a cylinder cross-sectional area of 50 cm 2 at a gauge pressure IMPa of the hot press machine for 5 minutes. And an electrolyte membrane with a catalyst layer was produced. [0169] Next, a 0.2 mm thick carbon paper treated with PTFE for water repellent treatment on the force sword side of the electrolyte membrane with a catalyst layer, and a thickness of 0. A 2 mm carbon paper was contacted.
[0170] これにより、実施例 1に係る膜電極接合体を得た。  [0170] Thus, a membrane electrode assembly according to Example 1 was obtained.
[0171] なお、上記膜電極接合体を 25°Cの水を入れたビーカー中に 24時間浸漬し、水中 での電極接着性を確認した。その結果、電極に剥がれがなぐ極めて良好な電極接 着性を示した。  [0171] The membrane-electrode assembly was immersed in a beaker containing 25 ° C water for 24 hours, and the electrode adhesion in water was confirmed. As a result, the electrode showed extremely good electrode adhesion without peeling off.
[0172] (実施例 2)  [Example 2]
実施例 1に係る膜電極接合体の作製において、ホットプレス工程にて、各触媒層に 合わせて各カーボンペーパーをさらに配置し、各触媒層と各カーボンペーパーとを 同時にホットプレスした以外は同様にして、各触媒層に各カーボンペーパーが接着 された状態の実施例 2に係る膜電極接合体を得た。  In the production of the membrane / electrode assembly according to Example 1, in the hot pressing step, each carbon paper was further arranged in accordance with each catalyst layer, and each catalyst layer and each carbon paper were hot pressed at the same time. Thus, a membrane / electrode assembly according to Example 2 in which each carbon paper was adhered to each catalyst layer was obtained.
[0173] なお、実施例 1と同様に、上記膜電極接合体の水中での電極接着性を確認した結 果、電極に剥がれがなぐ極めて良好な電極接着性を示した。  [0173] As in Example 1, as a result of confirming the electrode adhesion in water of the membrane electrode assembly, the electrode showed extremely good electrode adhesion with no peeling.
[0174] (実施例 3)  [0174] (Example 3)
PTFEにより撥水処理を施した厚さ 0. 2mmのカーボンペーパー上に、スプレー用 液状組成物(1)を、実施例 1と同様に噴霧し、噴霧形成された触媒層中に含まれる 白金重を lmg/ cmとした。  A liquid composition for spraying (1) is sprayed onto carbon paper having a thickness of 0.2 mm that has been subjected to water repellent treatment with PTFE in the same manner as in Example 1, and the platinum weight contained in the sprayed catalyst layer Was lmg / cm.
[0175] 次いで、撥水処理を行っていない厚さ 0. 2mmのカーボンペーパー上に、スプレー 用液状組成物(2)を、同様に噴霧し、噴霧形成された触媒層中に含まれる白金およ びルテニウムの総量を 3mg/cm2とした。 [0175] Next, the sprayed liquid composition (2) is sprayed in the same manner onto a carbon paper having a thickness of 0.2 mm that has not been subjected to water repellent treatment, and the platinum layer contained in the spray-formed catalyst layer. The total amount of ruthenium was 3 mg / cm 2 .
[0176] 次いで、触媒層を形成した各カーボンペーパーをそれぞれ 1辺 2. 23cmの正方形 に切り出した。 [0176] Next, each carbon paper on which the catalyst layer was formed was cut into squares each having a side of 2.23 cm.
[0177] 次いで、切り出した各カーボンペーパーの両面を、厚さ 0. 1mmの PTFE製フィル ム 2枚で挟持するとともに、さらに、この両面を、 1辺力 Ocmで厚さが 3mmのステンレ ス板 2枚で挟持した。  [0177] Next, both sides of each cut-out carbon paper were sandwiched between two 0.1 mm thick PTFE films, and further, both sides were stained with a stainless steel plate with a side force of Ocm and a thickness of 3 mm. Clamped with 2 sheets.
[0178] 次いで、これら各積層体を、熱板を 120°Cに加熱したシリンダー断面積が 50cm2の 油圧式ホットプレス機を用いて、ホットプレス機のゲージ圧力 IMPaで 5分間ホットプ レス(加熱加圧)し、一対の触媒層付きカーボンペーパー(力ソード電極、アノード電 極)を作製した。 [0178] Next, each of these laminates was hot-pushed for 5 minutes at a gauge pressure IMPa of the hot-press machine using a hydraulic hot-press machine with a cylinder cross-sectional area of 50 cm 2 heated to 120 ° C. A pair of carbon paper with a catalyst layer (forced sword electrode, anode electrode) was prepared.
[0179] 次いで、電解質膜(1)の両面を、上記一対の触媒層付きカーボンペーパーにて挟 持 (触媒層面が膜面側)するとともに、さらに、この両面を、 1辺が 10cmで厚さが 3m mのステンレス板 2枚で挟持した。  [0179] Next, both surfaces of the electrolyte membrane (1) were sandwiched between the pair of carbon papers with a catalyst layer (the catalyst layer surface was the membrane surface side), and the both surfaces were 10cm thick on one side. Was sandwiched between two 3 mm stainless plates.
[0180] 次いで、これを、上記ホットプレス機を用いて同条件にてホットプレス(加熱加圧)し た。  [0180] Next, this was hot-pressed (heated and pressurized) under the same conditions using the hot press machine.
[0181] これにより、実施例 3に係る膜電極接合体を得た。  [0181] Thus, a membrane electrode assembly according to Example 3 was obtained.
[0182] なお、実施例 1と同様に、上記膜電極接合体の水中での電極接着性を確認した結 果、電極に剥がれがなぐ極めて良好な電極接着性を示した。  [0182] As in Example 1, the electrode adhesion in water of the membrane electrode assembly was confirmed. As a result, the electrode showed extremely good electrode adhesion without peeling off.
[0183] (実施例 4) [0183] (Example 4)
実施例 1に係る膜電極接合体の作製において、触媒層を噴霧形成した後、ホットプ レスを行わなかった以外は同様にして、実施例 4に係る膜電極接合体を得た。  In the production of the membrane / electrode assembly according to Example 1, the membrane / electrode assembly according to Example 4 was obtained in the same manner except that the catalyst layer was sprayed and then hot pressing was not performed.
[0184] なお、実施例 1と同様に、上記膜電極接合体の水中での電極接着性を確認した結 果、触媒層の一部脱落が見られたが、許容範囲内の電極接着性を示した。  [0184] As in Example 1, as a result of confirming the electrode adhesion in water of the membrane electrode assembly, a part of the catalyst layer was observed to drop, but the electrode adhesion within an allowable range was observed. Indicated.
[0185] (実施例 5)  [Example 5]
実施例 1に係る膜電極接合体の作製において、電解質膜(1)に代えて電解質膜 (2 )を用いた点、ホットプレス工程にて、各触媒層に合わせて各カーボンペーパーをさ らに配置し、各触媒層と各カーボンペーパーとを同時にホットプレスした点以外は同 様にして、実施例 5に係る膜電極接合体を得た。  In the production of the membrane electrode assembly according to Example 1, the electrolyte membrane (2) was used instead of the electrolyte membrane (1), and each carbon paper was further added to each catalyst layer in the hot press process. A membrane electrode assembly according to Example 5 was obtained in the same manner except that the catalyst layers and the carbon papers were simultaneously hot pressed.
[0186] なお、実施例 1と同様に、上記膜電極接合体の水中での電極接着性を確認した結 果、触媒層の一部剥離が見られた。  [0186] As in Example 1, as a result of confirming the electrode adhesiveness of the membrane electrode assembly in water, partial peeling of the catalyst layer was observed.
[0187] (実施例 6)  [0187] (Example 6)
PTFEフィルムをステンレス板に固定し、これを 120°Cに加熱したホットプレート上に 設置した。次いで、実施例 1に記載の条件で PTFEフィルム上へ力ソード側触媒層を 形成した。その際、噴霧形成された触媒層中に含まれる白金量を lmg/cm2となる まで噴霧を実施した。これと同様に、実施例 1に記載のようにアノード側触媒層を形 成した。その際、噴霧形成された触媒層中に含まれる白金およびルテニウムの総量 を 3mg/cm2となるまで噴霧を実施した。 The PTFE film was fixed to a stainless steel plate and placed on a hot plate heated to 120 ° C. Next, a force sword side catalyst layer was formed on the PTFE film under the conditions described in Example 1. At that time, spraying was carried out until the amount of platinum contained in the sprayed catalyst layer was lmg / cm 2 . Similarly, an anode side catalyst layer was formed as described in Example 1. At that time, the total amount of platinum and ruthenium contained in the spray-formed catalyst layer Was sprayed to 3 mg / cm 2 .
[0188] 次いで、上記触媒層を形成した力ソード用、アノード用 PTFEフィルムをそれぞれ 1 辺が 2. 23cmになる正方形に切り出した。  [0188] Next, the force sword and anode PTFE films on which the catalyst layer was formed were cut into squares each having a side of 2.23 cm.
[0189] 次いで、上記の切り出したフィルムの触媒層をカーボンペーパー側にして、厚さ 0.  [0189] Next, the catalyst layer of the cut out film was turned to the carbon paper side, and the thickness was set to 0.
2mmのカーボンペーパー(力ソード側は PTFEよる撥水処理を行ったもの、アノード 側は撥水処理を行わないもの)にそれぞれ重ね合わせて、 150°Cに加熱したシリンダ 一断面積が 50cm2の油圧式ホットプレス機を用いてゲージ圧力 IMPaで 10分間ホッ トプレスし、 PTFEフィルムを慎重に剥がして 1対の触媒層付カーボンペーパー(カソ ード電極、アノード電極)を得た。 2mm of carbon paper (force cathode side having been subjected to the water repellent treatment with PTFE, the anode side that performs no water-repellent treatment) superimposed respectively, is 50 cm 2 cylinder Ichidan area heated to 0.99 ° C Using a hydraulic hot press machine, hot pressing was performed at a gauge pressure of IMPa for 10 minutes, and the PTFE film was carefully peeled off to obtain a pair of carbon paper with a catalyst layer (a cathode electrode and an anode electrode).
[0190] 次いで、 150°Cに加熱し窒素雰囲気としたオーブンにこれらの電極を投入し、 1時 間かけて加熱処理を行った。  [0190] Next, these electrodes were placed in an oven heated to 150 ° C and in a nitrogen atmosphere, and heat-treated for 1 hour.
[0191] 次いでこれらの 1対の電極の触媒層面を膜側に配置して電解質膜を挟み、実施例  [0191] Next, the catalyst layer surface of these pair of electrodes was placed on the membrane side, and the electrolyte membrane was sandwiched between them.
1と同様の条件でホットプレスし、膜電極接合体を得た。実施例 1と同様の水中での 電極接着性を確認した結果、電極の剥がれは無く良好な接着性を示した。  Hot pressing was performed under the same conditions as in 1 to obtain a membrane electrode assembly. As a result of confirming the electrode adhesion in water as in Example 1, the electrode did not peel off and showed good adhesion.
[0192] (比較例 1)  [0192] (Comparative Example 1)
1辺 2. 23cmの正方形の印刷形状を有するスクリーン版を用いて、電解質膜(1)の 一方面に、ペースト状のスクリーン印刷用組成物(1)をスクリーン印刷し、 60°Cのォ 一ブンで 5分乾燥した。これを 1サイクルとし、印刷形成された触媒層中に含まれる白 金量が lmg/cm2になるまでこのサイクルを繰り返した。 1 side 2. Using a screen plate having a square 23 cm printed shape, screen-print the paste-like composition for screen printing (1) on one side of the electrolyte membrane (1), Dried for 5 minutes. This was defined as one cycle, and this cycle was repeated until the amount of white metal contained in the printed catalyst layer reached 1 mg / cm 2 .
[0193] 次いで、電解質膜(1)を裏返し、ペースト状のスクリーン印刷用組成物(2)を、上記 と同様にして、印刷形成された触媒層中に含まれる白金およびルテニウムの総量が 3 mg/cm2になるまで上記サイクルを繰り返した。 [0193] Next, the electrolyte membrane (1) is turned over, and a paste-like composition for screen printing (2) is prepared in the same manner as described above, so that the total amount of platinum and ruthenium contained in the printed catalyst layer is 3 mg. It was repeated the cycle until the / cm 2.
[0194] 次いで、上記スクリーン印刷後、膜がカールしないように膜の 4辺を耐熱テープで固 定し 120°Cのオーブン中で 1時間乾燥させた。 [0194] Next, after screen printing, the four sides of the film were fixed with heat-resistant tape so that the film would not curl, and dried in an oven at 120 ° C for 1 hour.
[0195] 次いで、上記触媒層を形成した膜の両面を、厚さ 0. 1mmの PTFE製フィルム 2枚 で挟持するとともに、さらに、この両面を、 1辺が 10cmで厚さが 3mmのステンレス板 2 枚で挟持した。 [0195] Next, both sides of the membrane on which the catalyst layer was formed were sandwiched by two PTFE films having a thickness of 0.1 mm, and further, both sides of the stainless steel plate having a side of 10 cm and a thickness of 3 mm. Clamped with 2 sheets.
[0196] 次いで、この積層体を、熱板を 120°Cに加熱したシリンダー断面積が 50cm2の油 圧式ホットプレス機を用いて、ホットプレス機のゲージ圧力 IMPaで 5分間ホットプレス[0196] Next, the laminate was heated in an oil plate having a cylinder cross-sectional area of 50 cm 2 heated to 120 ° C. Using a pressure hot press machine, hot press for 5 minutes with the gauge pressure IMPa of the hot press machine
(加熱加圧)し、触媒層付き電解質膜を作製した。 (Heating and pressing) to prepare an electrolyte membrane with a catalyst layer.
[0197] 次いで、この触媒層付き電解質膜の力ソード側に、 PTFEにより撥水処理を施した 厚さ 0. 2mmのカーボンペーパーを、アノード側に、撥水処理を行っていない厚さ 0.[0197] Next, a 0.2 mm thick carbon paper treated with PTFE for water repellent treatment on the force sword side of the electrolyte membrane with the catalyst layer, and a thickness of 0.
2mmのカーボンペーパーを接触させた。 A 2 mm carbon paper was contacted.
[0198] これにより、比較例 1に係る膜電極接合体を得た。 [0198] Thus, a membrane electrode assembly according to Comparative Example 1 was obtained.
[0199] なお、実施例 1と同様に、上記膜電極接合体の水中での電極接着性を確認した結 果、電極に剥がれがなぐ極めて良好な電極接着性を示した。  [0199] As in Example 1, as a result of confirming the electrode adhesion in water of the membrane electrode assembly, the electrode showed extremely good electrode adhesion that did not peel off.
[0200] (比較例 2) [0200] (Comparative Example 2)
PTFEにより撥水処理を施した厚さ 0. 2mmのカーボンペーパー上に、スクリーン 印刷用組成物(1)を、比較例 1と同様に印刷し、印刷形成された触媒層中に含まれ る白金量を lmg cm 'とした。  Platinum contained in the catalyst layer formed by printing the screen printing composition (1) on carbon paper with a thickness of 0.2 mm treated with PTFE in the same manner as in Comparative Example 1. The amount was lmg cm '.
[0201] 次いで、撥水処理を行っていない厚さ 0. 2mmのカーボンペーパー上に、スクリー ン印刷用組成物(2)を、比較例 1と同様に噴霧し、印刷形成された触媒層中に含ま れる白金およびルテニウムの総量を 3mg/cm2とした。 [0201] Next, the screen printing composition (2) was sprayed on the carbon paper having a thickness of 0.2 mm that had not been subjected to the water-repellent treatment in the same manner as in Comparative Example 1, and the printed catalyst layer The total amount of platinum and ruthenium contained in was 3 mg / cm 2 .
[0202] 次いで、触媒層を形成した各カーボンペーパーをそれぞれ 1辺 2. 23cmの正方形 に切り出した。 [0202] Next, each carbon paper on which the catalyst layer was formed was cut into squares each having a side of 2.23 cm.
[0203] 次いで、切り出した各カーボンペーパーの両面を、厚さ 0. 1mmの PTFE製フィル ム 2枚で挟持するとともに、さらに、この両面を、 1辺力 Ocmで厚さが 3mmのステンレ ス板 2枚で挟持した。  [0203] Next, both sides of each cut out carbon paper were sandwiched between two PTFE films with a thickness of 0.1 mm, and further, both sides were stained with a stainless steel plate with a side force of Ocm and a thickness of 3 mm. Clamped with 2 sheets.
[0204] 次いで、これら各積層体を、熱板を 120°Cに加熱したシリンダー断面積が 50cm2の 油圧式ホットプレス機を用いて、ホットプレス機のゲージ圧力 IMPaで 5分間ホットプ レス(加熱加圧)し、一対の触媒層付きカーボンペーパー(力ソード電極、アノード電 極)を作製した。 [0204] Each of these laminates was then hot-pressed (heated) for 5 minutes at a gauge pressure IMPa of the hot-press machine using a hydraulic hot-press machine with a cylinder cross-section of 50 cm 2 heated to 120 ° C. And a pair of carbon paper with a catalyst layer (forced sword electrode, anode electrode) was produced.
[0205] 次いで、電解質膜(1)の両面を、上記一対の触媒層付きカーボンペーパーにて挟 持 (触媒層面が膜面側)するとともに、さらに、この両面を、 1辺が 10cmで厚さが 3m mのステンレス板 2枚で挟持した。  [0205] Next, both surfaces of the electrolyte membrane (1) are sandwiched between the pair of carbon papers with a catalyst layer (the catalyst layer surface is the membrane surface side), and the both surfaces are 10 cm thick on one side. Was sandwiched between two 3 mm stainless plates.
[0206] 次いで、これを、上記ホットプレス機を用いて同条件にてホットプレス(加熱加圧)し た。 [0206] Next, this was hot-pressed (heated and pressurized) under the same conditions using the hot-press machine. It was.
[0207] これにより、比較例 2に係る膜電極接合体を得た。  [0207] Thus, a membrane electrode assembly according to Comparative Example 2 was obtained.
[0208] なお、実施例 1と同様に、上記膜電極接合体の水中での電極接着性を確認した結 果、電極に剥がれがなぐ極めて良好な電極接着性を示した。  [0208] As in Example 1, the electrode adhesion in water of the membrane electrode assembly was confirmed. As a result, the electrode showed extremely good electrode adhesion that did not peel off.
[0209] 4.燃料電池評価  [0209] 4. Fuel cell evaluation
実施例および比較例に係る膜電極接合体の評価は、次のようにして行った。すわ なち、各膜電極接合体を、直接メタノール形燃料電池単セルに組み込み、電子負荷 器により負荷を変化させて、単セルの電流電圧特性を測定した。  Evaluation of the membrane electrode assemblies according to Examples and Comparative Examples was performed as follows. In other words, each membrane electrode assembly was directly incorporated into a single methanol fuel cell, and the current-voltage characteristics of the single cell were measured by changing the load with an electronic load.
[0210] そして、各単セルについて、電流密度 300mA/cm2の高負荷時における電圧を それぞれ相対比較した。また合わせて、電流密度 20mA/cm2の低負荷時における 電圧についてもそれぞれ相対比較した。 [0210] Then, for each single cell, the voltage at a high load of a current density of 300 mA / cm 2 was relatively compared. In addition, the voltage at low load with a current density of 20 mA / cm 2 was also relatively compared.
[0211] なお、燃料には 10重量%メタノール水溶液を、酸化剤としては空気を用い、セル温 度は 50°Cとした。  [0211] The fuel used was a 10 wt% aqueous methanol solution, air was used as the oxidant, and the cell temperature was 50 ° C.
[0212] 表 1に、作製した膜電極接合体の詳細と電池評価結果をまとめて示す。  [0212] Table 1 summarizes the details of the fabricated membrane electrode assembly and the battery evaluation results.
[0213] [表 1] [0213] [Table 1]
Figure imgf000031_0001
Figure imgf000031_0001
( * 1 ) PTFEフィルムへ触媒層を噴霧形成後、これを拡散層表面に転写 (* 1) After spray formation of the catalyst layer on the PTFE film, it is transferred to the surface of the diffusion layer
[0214] 上記表 1によれば、次のことが分かる。すなわち、スクリーン印刷により触媒層を形 成した比較例 1、 2の膜電極接合体と比較して、スプレーにより触媒層を噴霧形成し た実施例;!〜 6の膜電極接合体は、何れも、高負荷域(高電流密度域)における電圧 が高くなつてレ、ること力 S分力、る。 [0214] According to Table 1 above, the following can be understood. That is, in comparison with the membrane electrode assemblies of Comparative Examples 1 and 2 in which the catalyst layer was formed by screen printing, an example in which the catalyst layer was spray formed by spraying; all of the membrane electrode assemblies of! When the voltage in the high load range (high current density range) is high, the force is S component.
[0215] これは、実施例における触媒層は、比較例における触媒層と比較して、多くの空孔 を有しており、これら空孔の 3次元的な広がりも多ぐ空気やメタノールが触媒層の内 部まで浸透しやすかつたことと、電池反応により生じる水(力ソード側)や二酸化炭素( アノード側)などの生成物の排出が促進されたためであると推察される。  [0215] This is because the catalyst layer in the example has a larger number of pores than the catalyst layer in the comparative example, and air or methanol having a large three-dimensional spread of these pores is the catalyst. This is presumably due to the fact that it easily penetrated into the inside of the bed and the discharge of products such as water (power sword side) and carbon dioxide (anode side) generated by the cell reaction was promoted.
[0216] また、実施例同士を比較すると、以下のこのが分かる。  [0216] Further, when the examples are compared, the following can be understood.
[0217] 先ず、拡散層(この場合、カーボンペーパー)に触媒層を噴霧形成した実施例 3の 膜電極接合体よりも、電解質膜の表面に触媒層を噴霧形成した実施例 1、 2の膜電 極接合体や、別途準備した PETフィルム表面に噴霧形成した触媒層を拡散層へ転 写した実施例 6の膜電極接合体の方が、高負荷域から低負荷域に亘る電圧特性に 優れていた。  [0217] First, the membranes of Examples 1 and 2 in which the catalyst layer was spray-formed on the surface of the electrolyte membrane rather than the membrane-electrode assembly of Example 3 in which the catalyst layer was spray-formed on the diffusion layer (in this case, carbon paper) The electrode assembly and the membrane electrode assembly of Example 6 in which a catalyst layer spray-formed on the surface of a separately prepared PET film is transferred to the diffusion layer are superior in voltage characteristics from the high load range to the low load range. It was.
[0218] これは、電解質膜の表面にスプレー用液状組成物を噴霧するか、別途 PETフィル ム表面にスプレー用液状組成物を噴霧したことで、拡散層の空孔が塞がれずに空気 やメタノールが拡散層から触媒層へ浸透しやすかつたため、高負荷域の電圧特性が 向上したものと推察される。  [0218] This is because the liquid composition for spraying is sprayed on the surface of the electrolyte membrane or the liquid composition for spraying is separately sprayed on the surface of the PET film, so that the pores of the diffusion layer are not blocked. It is presumed that the voltage characteristics in the high load region were improved because methanol easily penetrated from the diffusion layer to the catalyst layer.
[0219] なお、拡散層に触媒層を印刷形成するよりも、拡散層に触媒層を噴霧形成する方 力 拡散層に吸い込まれる液状組成物の量が格段に少なくなり、この点でも噴霧によ り触媒層を形成する利点がある。  [0219] It should be noted that the amount of liquid composition sucked into the diffusion layer is much smaller than that in which the catalyst layer is printed on the diffusion layer. This has the advantage of forming a catalyst layer.
[0220] また、電解質膜の表面にスプレー用液状組成物を噴霧するか、別途準備した PET フィルム表面にスプレー用液状組成物を噴霧したことで、組成物中に含まれる電解 質ポリマーが膜表面に広がり、孔部内の電解質ポリマーとイオン的な接続が向上した ため、露出した多孔質膜の表面に接触した触媒が有効利用され、低負荷域の電圧 特性が向上したものと推察される。  [0220] In addition, by spraying the liquid composition for spraying on the surface of the electrolyte membrane, or spraying the liquid composition for spraying on the surface of a separately prepared PET film, the electrolyte polymer contained in the composition becomes the surface of the membrane. It is presumed that the ionic connection with the electrolyte polymer in the pores was improved, so that the catalyst in contact with the exposed porous membrane surface was effectively used and the voltage characteristics in the low load region were improved.
[0221] 次に、噴霧形成した触媒層を、電解質膜の表面にホットプレスしなかった実施例 4 の膜電極接合体よりも、ホットプレスした実施例 1、 2、 6の膜電極接合体の方が、水 浸漬後の電極接合性が良ぐ耐久性に優れていた。これは、触媒層が電解質膜表面 に融着されて両者の接合性が向上したためである。また、実施例 1、 2、 6の膜電極接 合体は、実施例 4の膜電極接合体よりも、触媒層形成時の取り扱い性に優れていた。 [0221] Next, the membrane electrode assembly of Examples 1, 2, and 6 in which the spray-formed catalyst layer was hot pressed rather than the membrane electrode assembly in Example 4 that was not hot pressed on the surface of the electrolyte membrane. The water The electrode bondability after immersion was excellent and the durability was excellent. This is because the catalyst layer is fused to the surface of the electrolyte membrane, thereby improving the bondability between the two. In addition, the membrane electrode assemblies of Examples 1, 2, and 6 were superior to the membrane electrode assembly of Example 4 in handleability when forming the catalyst layer.
[0222] 次に、孔部内の電解質ポリマーにより多孔質膜表面が覆われている電解質膜を用 いた実施例 5の膜電極電解質膜よりも、多孔質膜表面を露出させた電解質膜を用い た実施例 1、 2、 6の膜電極接合体の方が、水浸漬後の電極接合性が極めて良ぐ耐 久性に優れていた。 [0222] Next, an electrolyte membrane in which the porous membrane surface was exposed was used rather than the membrane electrode electrolyte membrane of Example 5 using the electrolyte membrane in which the porous membrane surface was covered with the electrolyte polymer in the pores. The membrane electrode assemblies of Examples 1, 2, and 6 were excellent in durability with excellent electrode bondability after immersion in water.
[0223] これは、電解質膜表面に付着した孔部内の電解質ポリマーが水分を吸収し、これ による強度低下が生じなかったためであると推察される。  [0223] This is presumably because the electrolyte polymer in the pores adhering to the electrolyte membrane surface absorbed moisture and did not cause a decrease in strength.
[0224] 次に、実施例 1、 2、 6の膜電極接合体は、何れも、高負荷域、低負荷域における電 圧特性が高ぐ電池性能に優れていた。とりわけ、実施例 2の膜電極接合体は、拡散 層も一体化されてレ、ることから、電池組み込み時の取り极レ、性に優れて!/、た。 [0224] Next, the membrane electrode assemblies of Examples 1, 2, and 6 were all excellent in battery performance with high voltage characteristics in a high load region and a low load region. In particular, since the membrane / electrode assembly of Example 2 was also integrated with the diffusion layer, it was excellent in the alignment and properties when assembled in the battery! /.
[0225] 以上、本実施形態、実施例に係る機能性膜の製造方法について説明したが、本発 明は、その趣旨を逸脱しない範囲内で種々の改変が可能である。 [0225] Although the functional film manufacturing method according to the present embodiment and examples has been described above, the present invention can be variously modified without departing from the spirit of the present invention.

Claims

請求の範囲 The scope of the claims
[1] 電解質膜の両面に、拡散層と触媒層とを備えた電極を有する膜電極接合体であつ て、  [1] A membrane electrode assembly having an electrode having a diffusion layer and a catalyst layer on both surfaces of an electrolyte membrane,
前記電解質膜は、多孔質膜の孔部内に電解質が充填されたものであり、 少なくとも一方の前記触媒層は、触媒と触媒層内電解質とを含む液状組成物の噴 霧により形成されたものであることを特徴とする膜電極接合体。  The electrolyte membrane is a porous membrane filled with an electrolyte, and at least one of the catalyst layers is formed by spraying a liquid composition containing a catalyst and an electrolyte in the catalyst layer. There is a membrane electrode assembly characterized in that there is.
[2] 前記電解質膜は、前記多孔質膜の表面が露出していることを特徴とする請求項 1 に記載の膜電極接合体。  [2] The membrane electrode assembly according to [1], wherein a surface of the porous membrane is exposed in the electrolyte membrane.
[3] 前記触媒層は、前記電解質膜表面に融着されていることを特徴とする請求項 1また は 2に記載の膜電極接合体。 [3] The membrane / electrode assembly according to [1] or [2], wherein the catalyst layer is fused to the surface of the electrolyte membrane.
[4] 前記多孔質膜は、ォレフィン系樹脂よりなり、 [4] The porous film is made of olefin resin,
前記孔部内に充填されてレ、る電解質は、 2—アクリルアミドー 2—メチルプロパンス ルホン酸単量体単位を有するポリマーまたはその架橋体であることを特徴とする請求 項 1から 3の何れかに記載の膜電極接合体。  4. The electrolyte according to claim 1, wherein the electrolyte filled in the pores is a polymer having 2-acrylamido-2-methylpropanesulfonic acid monomer units or a crosslinked product thereof. 2. The membrane electrode assembly according to 1.
[5] 電解質膜の両面に、拡散層と触媒層とを備えた電極を有する膜電極接合体の製造 方法であって、 [5] A method for producing a membrane / electrode assembly having electrodes each provided with a diffusion layer and a catalyst layer on both sides of an electrolyte membrane,
前記電解質膜は、多孔質膜の孔部内に電解質が充填されたものであり、 少なくとも一方の前記触媒層を、触媒と触媒層内電解質とを含む液状組成物の噴 霧により形成することを特徴とする膜電極接合体の製造方法。  The electrolyte membrane is a porous membrane filled with an electrolyte, and at least one of the catalyst layers is formed by spraying a liquid composition containing a catalyst and an electrolyte in the catalyst layer. A method for producing a membrane electrode assembly.
[6] 前記電解質膜の少なくとも一方面に、前記液状組成物を噴霧して前記触媒層を形 成することを特徴とする請求項 5に記載の膜電極接合体の製造方法。 6. The method for producing a membrane / electrode assembly according to claim 5, wherein the catalyst layer is formed by spraying the liquid composition on at least one surface of the electrolyte membrane.
[7] 以下の(1)〜(3)の工程を経て前記触媒層を形成することを特徴とする請求項 5に 記載の膜電極接合体の製造方法。 [7] The method for producing a membrane / electrode assembly according to [5], wherein the catalyst layer is formed through the following steps (1) to (3).
(1)別途準備したフィルム基材表面に、前記液状組成物を噴霧して触媒層を形成す る工程  (1) A step of spraying the liquid composition onto the surface of a separately prepared film base to form a catalyst layer
(2) (1)にて形成した触媒層を拡散層の一方の面へ転写し、触媒層を備えた電極を 作製する工程  (2) Step of transferring the catalyst layer formed in (1) to one surface of the diffusion layer to produce an electrode provided with the catalyst layer
(3) (2)にて作製した電極の触媒層表面と、前記電解質膜表面とを貼り合わせるェ 程 (3) The surface of the catalyst layer of the electrode prepared in (2) is bonded to the surface of the electrolyte membrane. About
[8] 前記(1)の工程と前記(2)の工程の間、および/または、前記(2)の工程と前記(3 )の工程との間に、前記電極を加熱し、触媒層内電解質を不溶化する工程を有する ことを特徴とする請求項 7に記載の膜電極接合体の製造方法。  [8] Between the step (1) and the step (2) and / or between the step (2) and the step (3), the electrode is heated to form a catalyst layer. The method for producing a membrane / electrode assembly according to claim 7, further comprising a step of insolubilizing the electrolyte.
[9] 噴霧形成された触媒層を、さらに前記電解質膜表面に融着させることを特徴とする 請求項 5から 8の何れかに記載の膜電極接合体の製造方法。  [9] The method for producing a membrane / electrode assembly according to any one of [5] to [8], wherein the catalyst layer formed by spraying is further fused to the surface of the electrolyte membrane.
[10] 前記電解質膜は、前記多孔質膜の表面が露出していることを特徴とする請求項 5 から 9の何れかに記載の膜電極接合体の製造方法。  [10] The method for producing a membrane / electrode assembly according to any one of [5] to [9], wherein a surface of the porous membrane is exposed in the electrolyte membrane.
[11] 前記液状組成物を複数回に分けて噴霧することを特徴とする請求項 5から 10の何 れかに記載の膜電極接合体の製造方法。  [11] The method for producing a membrane / electrode assembly according to any one of [5] to [10], wherein the liquid composition is sprayed in a plurality of times.
PCT/JP2007/067130 2006-09-13 2007-09-03 Membrane electrode assembly and method for producing the same WO2008032597A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008534293A JPWO2008032597A1 (en) 2006-09-13 2007-09-03 Membrane electrode assembly and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-247499 2006-09-13
JP2006247499 2006-09-13

Publications (1)

Publication Number Publication Date
WO2008032597A1 true WO2008032597A1 (en) 2008-03-20

Family

ID=39183658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067130 WO2008032597A1 (en) 2006-09-13 2007-09-03 Membrane electrode assembly and method for producing the same

Country Status (2)

Country Link
JP (1) JPWO2008032597A1 (en)
WO (1) WO2008032597A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015059848A1 (en) * 2013-10-25 2015-04-30 パナソニックIpマネジメント株式会社 Fuel cell electrolyte membrane, method for manufacturing same, membrane electrode-bonded body, and fuel cell
JP2017512226A (en) * 2014-02-20 2017-05-18 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Stable catalyst ink formulations, methods of using such inks in fiber formation, and articles containing such fibers
JP2021521322A (en) * 2018-05-02 2021-08-26 トーレ・アドバンスド・マテリアルズ・コリア・インコーポレーテッドToray Advanced Materials Korea Incorporated Pore-filled ion-exchange polyelectrolyte composite membrane from which surface ion-exchange polyelectrolyte has been removed and its manufacturing method

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06150937A (en) * 1992-11-09 1994-05-31 Asahi Chem Ind Co Ltd Solid high polymer type fuel cell
JPH07254419A (en) * 1994-03-15 1995-10-03 Tanaka Kikinzoku Kogyo Kk Electrode for polyelectrolyte type electrochemical cell and its manufacture
JPH11126615A (en) * 1997-10-23 1999-05-11 Toyota Motor Corp Electrode for fuel cell and manufacture of electrode for fuel cell
WO2001022514A1 (en) * 1999-09-21 2001-03-29 Matsushita Electric Industrial Co., Ltd. Polymer electrolytic fuel cell and method for producing the same
JP2002298860A (en) * 2001-01-25 2002-10-11 Toyota Motor Corp Method for forming electrode catalyst layer of fuel cell
JP2003045439A (en) * 2001-08-03 2003-02-14 Matsushita Electric Ind Co Ltd Manufacturing method of catalyst for polymer electrolyte fuel cell, electrolyte membrane/electrode assembly using it, and polymer electrolyte fuel cell
JP2004164866A (en) * 2002-11-08 2004-06-10 Dainippon Printing Co Ltd Catalyst layer formation sheet for fuel cell, catalyst layer-electrolyte membrane layered product, and manufacturing method for them
WO2005088749A1 (en) * 2004-03-12 2005-09-22 Nagaoka University Of Technology Membrane electrode assembly, method for producing the same, and solid state polymer fuel cell
WO2005091409A1 (en) * 2004-03-19 2005-09-29 Toagosei Co., Ltd. Electrolyte film and fuel cell
WO2005098875A1 (en) * 2004-04-08 2005-10-20 Toagosei Co., Ltd. Electrolyte membrane, method for producing membrane electrode assembly, and fuel cell
JP2006140030A (en) * 2004-11-12 2006-06-01 Konica Minolta Holdings Inc Electrode for fuel cell and fuel cell
JP2006196202A (en) * 2005-01-11 2006-07-27 Nitto Denko Corp Electrolyte film and solid polymer fuel cell
JP2006313706A (en) * 2005-05-09 2006-11-16 Nagaoka Univ Of Technology Electrode and its manufacturing method
JP2006344578A (en) * 2005-05-13 2006-12-21 Fujifilm Holdings Corp Solid electrolyte, electrode membrane assembly, and fuel cell

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06150937A (en) * 1992-11-09 1994-05-31 Asahi Chem Ind Co Ltd Solid high polymer type fuel cell
JPH07254419A (en) * 1994-03-15 1995-10-03 Tanaka Kikinzoku Kogyo Kk Electrode for polyelectrolyte type electrochemical cell and its manufacture
JPH11126615A (en) * 1997-10-23 1999-05-11 Toyota Motor Corp Electrode for fuel cell and manufacture of electrode for fuel cell
WO2001022514A1 (en) * 1999-09-21 2001-03-29 Matsushita Electric Industrial Co., Ltd. Polymer electrolytic fuel cell and method for producing the same
JP2002298860A (en) * 2001-01-25 2002-10-11 Toyota Motor Corp Method for forming electrode catalyst layer of fuel cell
JP2003045439A (en) * 2001-08-03 2003-02-14 Matsushita Electric Ind Co Ltd Manufacturing method of catalyst for polymer electrolyte fuel cell, electrolyte membrane/electrode assembly using it, and polymer electrolyte fuel cell
JP2004164866A (en) * 2002-11-08 2004-06-10 Dainippon Printing Co Ltd Catalyst layer formation sheet for fuel cell, catalyst layer-electrolyte membrane layered product, and manufacturing method for them
WO2005088749A1 (en) * 2004-03-12 2005-09-22 Nagaoka University Of Technology Membrane electrode assembly, method for producing the same, and solid state polymer fuel cell
WO2005091409A1 (en) * 2004-03-19 2005-09-29 Toagosei Co., Ltd. Electrolyte film and fuel cell
WO2005098875A1 (en) * 2004-04-08 2005-10-20 Toagosei Co., Ltd. Electrolyte membrane, method for producing membrane electrode assembly, and fuel cell
JP2006140030A (en) * 2004-11-12 2006-06-01 Konica Minolta Holdings Inc Electrode for fuel cell and fuel cell
JP2006196202A (en) * 2005-01-11 2006-07-27 Nitto Denko Corp Electrolyte film and solid polymer fuel cell
JP2006313706A (en) * 2005-05-09 2006-11-16 Nagaoka Univ Of Technology Electrode and its manufacturing method
JP2006344578A (en) * 2005-05-13 2006-12-21 Fujifilm Holdings Corp Solid electrolyte, electrode membrane assembly, and fuel cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015059848A1 (en) * 2013-10-25 2015-04-30 パナソニックIpマネジメント株式会社 Fuel cell electrolyte membrane, method for manufacturing same, membrane electrode-bonded body, and fuel cell
CN104854745A (en) * 2013-10-25 2015-08-19 松下知识产权经营株式会社 Fuel cell electrolyte membrane, method for manufacturing same, membrane electrode-bonded body, and fuel cell
JP5793666B1 (en) * 2013-10-25 2015-10-14 パナソニックIpマネジメント株式会社 ELECTROLYTE MEMBRANE FOR FUEL CELL, METHOD FOR PRODUCING THE SAME, MEMBRANE ELECTRODE ASSEMBLY AND FUEL CELL
US11005119B2 (en) 2013-10-25 2021-05-11 Panasonic Intellectual Property Management Co., Ltd. Electrolyte membrane for fuel cell, manufacturing method of electrolyte membrane, membrane electrode assembly, and fuel cell
JP2017512226A (en) * 2014-02-20 2017-05-18 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Stable catalyst ink formulations, methods of using such inks in fiber formation, and articles containing such fibers
US11261542B2 (en) 2014-02-20 2022-03-01 Merck Patent Gmbh Stable catalyst ink formulations, methods of using such inks in fiber formation, and articles comprising such fibers
JP2021521322A (en) * 2018-05-02 2021-08-26 トーレ・アドバンスド・マテリアルズ・コリア・インコーポレーテッドToray Advanced Materials Korea Incorporated Pore-filled ion-exchange polyelectrolyte composite membrane from which surface ion-exchange polyelectrolyte has been removed and its manufacturing method
JP7208362B2 (en) 2018-05-02 2023-01-18 トーレ・アドバンスド・マテリアルズ・コリア・インコーポレーテッド Pore-filled ion-exchange polymer electrolyte composite membrane from which surface ion-exchange polymer electrolyte is removed and method for producing the same
US11975296B2 (en) 2018-05-02 2024-05-07 Toray Advanced Materials Korea Inc. Pore-filled ion exchange polyelectrolyte composite membrane from which surface ion exchange polyelectrolyte has been removed and method for manufacturing same

Also Published As

Publication number Publication date
JPWO2008032597A1 (en) 2010-01-21

Similar Documents

Publication Publication Date Title
WO2006123529A1 (en) Membrane electrode assembly and direct liquid fuel type fuel cell
WO2008133255A1 (en) Process for producing membrane electrode assembly, membrane electrode assembly, apparatus for producing membrane electrode assembly, and fuel cell
KR20060134197A (en) Electrolyte membrane, method for producing membrane electrode assembly, and fuel cell
JPH08329962A (en) Polymer solid electrolyte film/electrode integrally molded body and manufacture thereof
JP2017515260A (en) Method of manufacturing a catalyst coated membrane seal assembly
KR20170116090A (en) Membrane Electrode Assembly Manufacturing Process
JP2008311180A (en) Membrane electrode assembly, its manufacturing method, and fuel cell using the membrane electrode assembly
JP2004247091A (en) Electrolyte membrane electrode junction body and direct methanol type fuel cell
JP2001068119A (en) Polymer electrolyte fuel cell and method of manufacturing its electrode
WO2008032597A1 (en) Membrane electrode assembly and method for producing the same
JP4576813B2 (en) Polymer electrolyte membrane and membrane electrode assembly
JP2005032535A (en) Junction element
US20090233143A1 (en) Membrane Electrode Assembly, Process for Producing Same, and Direct Methanol Fuel Cell
JP5283826B2 (en) Membrane electrode assembly and polymer electrolyte fuel cell
JP2007250468A (en) Electrolyte film
JP6775346B2 (en) Membrane-conductive porous sheet joints and polymer electrolyte fuel cells
JP2003059507A (en) Electrolyte film and electrode junction for fuel cell, its manufacturing method and polymer electrolyte fuel cell
US7910237B2 (en) Polymer electrolyte membrane and method for producing polymer electrolyte membrane
JP2003282093A (en) Electrolyte membrane-electrode junction for fuel cell and production process thereof
JP4379025B2 (en) Electrolyte membrane for direct methanol fuel cell and direct methanol fuel cell that can be used below freezing point
JPH08148167A (en) Jointed body of polymeric electrolytic film and electrode, and jointing method therefor
JP4262942B2 (en) Polymer solid electrolyte / electrode assembly for lithium battery and method for producing the same
JPH0285387A (en) Sheetlike electrode material containing ion exchange resin, composite material thereof and production thereof
JP4133789B2 (en) Method for producing fuel cell electrode-membrane assembly
JP2007012506A (en) Fuel cell and manufacturing method of fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806603

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008534293

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07806603

Country of ref document: EP

Kind code of ref document: A1