WO2008031913A1 - Pala de aerogenerador optimizada - Google Patents

Pala de aerogenerador optimizada Download PDF

Info

Publication number
WO2008031913A1
WO2008031913A1 PCT/ES2007/070160 ES2007070160W WO2008031913A1 WO 2008031913 A1 WO2008031913 A1 WO 2008031913A1 ES 2007070160 W ES2007070160 W ES 2007070160W WO 2008031913 A1 WO2008031913 A1 WO 2008031913A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind turbine
turbine blade
component
blade according
trailing edge
Prior art date
Application number
PCT/ES2007/070160
Other languages
English (en)
French (fr)
Inventor
Mark Olaf Slot
Alvaro Matesanz Gil
Michael Friederich
Anders Rebsdorf
Original Assignee
Gamesa Innovation & Technology, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gamesa Innovation & Technology, S.L. filed Critical Gamesa Innovation & Technology, S.L.
Priority to CN2007800342276A priority Critical patent/CN101517227B/zh
Priority to US12/440,370 priority patent/US20100047070A1/en
Priority to EP07823054A priority patent/EP2063106A1/en
Publication of WO2008031913A1 publication Critical patent/WO2008031913A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/30Lightning protection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/301Cross-section characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/304Details of the trailing edge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to an aerodynamically optimized wind turbine blade, and in particular to a wind turbine blade whose design reduces the noise of a blunt trailing edge.
  • the noise of a wind turbine is produced by mechanical and aerodynamic causes.
  • Aerodynamic noise can be classified according to the different mechanisms that produce it: - Thickness noise. It originates from a shovel that displaces air by moving it through it. The frequency is discrete and is related to the pitch frequency of the blade, (typically around 1 Hz. + Harmonics up to about 30 Hz.
  • Unstable load noise It is caused by pressure fluctuations due to an unstable aerodynamic load of the blade (from the wind, a rotor misalignment, a deviation from the tower, etc.).
  • the frequency is discrete and is related to the pitch frequency of the blade, (typically around 1 Hz + harmonics up to about 30 Hz.
  • Turbulent input flow noise also known as leading edge noise. It originates at the leading edge and is caused by atmospheric turbulence that induces pressure fluctuations upon contact with the leading edge.
  • the frequency is broadband and is related to the frequency spectrum of atmospheric turbulence in relation to the speed of the blade tip (typically from 0 Hz to about 5000 Hz, more present at low and medium frequencies).
  • the frequency is broadband and is related to parameters of the boundary layer (typically from 100 Hz to 10,000 Hz, more present at medium frequencies around 1000 Hz).
  • the frequency is broadband and is related to the diameter of the vortex of the tip (typically between 1000 Hz and 8000 Hz).
  • the frequency is broadband and is related to the extent of the loss input area (typically between 20 Hz and 1000 Hz).
  • Vortex noise of the laminar boundary layer It is caused by instabilities on the pressure side of the boundary layer causing the formation of vortices.
  • the frequency is tonal and is related to the thickness of the boundary layer on the pressure side (typically between 1000 Hz and 4000 Hz).
  • - Noise of a blunt exit edge It originates in the small area of flow separation behind a blunt exit edge that causes the formation of vortices (well known as the vortex formation of von Karman).
  • the frequency is tonal and is related to the thickness of the trailing edge (typically between 1000 Hz and 4000 Hz).
  • the frequency is tonal and is related to the dimension of the flow distorting elements (typically between 1000 and 10000 Hz).
  • the prior art teaches the use of jagged exit edges to reduce the different types of noise from the exit edge.
  • EP 1 314 885 describes an exit edge device consisting of a serrated panel to be coupled to the exit edge of the blade.
  • EP 1 338 793 describes a one piece blade made of metal with a teeth formed in the part of the trailing edge and a two piece blade consisting of a main metal body and a rear part made of a different metal with teeth formed in The part of the trailing edge. None of these proposals produces completely satisfactory results and therefore there is a continuing need for wind turbine blades with a low noise level from a blunt trailing edge.
  • An object of the present invention is to provide a wind turbine blade that reduces the noise of a blunt trailing edge.
  • Another object of the present invention is to provide a wind turbine blade easy to manufacture, handle and transport.
  • Another object of the present invention is to provide a wind turbine blade with a trailing edge easy to repair when it is damaged.
  • a wind turbine blade comprising a first component that has an aerodynamic profile with an entry edge, a blunt exit edge of thickness greater than 2 mm, and pressure and suction sides between the entrance edge and the exit edge and a second component that has a constant section in the direction of the radius of the blade that is rigidly attached to the blunt exit edge of the first component in at least part of the wind turbine blade by means of joining that allow its replacement.
  • Figure 1 shows the main noise mechanism of the blunt exit edge.
  • Figure 2 is a schematic view of the profile of the first component of the wind turbine blade according to the present invention. - TO -
  • Figures 3 and 4 are schematic views of the profile of a wind turbine blade according to the present invention with two embodiments of the second component attached to the first component.
  • Figure 5 is a schematic view of the trailing edge of a wind turbine blade according to the present invention showing an embodiment of the separator plate with perpendicular walls.
  • Figure 6 is a schematic plan view of a wind turbine blade according to the present invention.
  • Figure 7 is an enlarged view of the outer part of the wind turbine blade shown in Figure 6 and which includes the means to protect the blade from atmospheric discharges.
  • Figures 8a to 8d are schematic sectional views of various embodiments of a separator plate according to the present invention incorporating the means to protect the blade from atmospheric discharges.
  • Figure 1 shows the tonal noise 21 radiated by an aerodynamic profile with a leading edge 11, a blunt trailing edge 13 and suction sides 17 and pressure 19.
  • the first component 7 of the wind turbine blade according to the present invention shown in Figure 2, has an aerodynamic profile with an edge of attack 1 1, a blunt trailing edge 13 of thickness T and suction sides 17 and pressure 19.
  • the second component 9 of the wind turbine blade according to the present invention is a strip attached to the blunt exit edge 13 of the first component in at least part of the blade.
  • the noise produced by the blunt leading edge mechanism (a completely different mechanism from that produced by the turbulent boundary layer noise at the trailing edge) is proportional to the thickness T of the trailing edge.
  • the noise produced by the mechanism of the turbulent boundary layer is proportional to cosq 3 , where q is the flow angle between the direction of the flow on the trailing edge and a line perpendicular to the trailing edge. For a normal wind turbine shovel without significant flow in the direction of its radius, this angle is usually small (between 0 ° and 10 °) and the magnitude of the cosine is about 1. In the case of a jagged exit edge this angle is much greater (depending on the angle of the teeth), it can be between 70 ° and 80 ° for example and the magnitude of the cosine is close to 0.
  • the strip 9 of the trailing edge has a sharp profile with its outer and lower surfaces configured as extensions of the pressure and suction sides of said first component, terminated on a sharp edge.
  • the strip 9 of the trailing edge has a constant cross-section in the direction of the radius of the blade while the jagged trailing edge of the aforementioned prior art proposals has a non-constant cross-section in the direction of the radius of the blade.
  • the upper and lower surfaces of the strip 9 attached to the trailing edge may have a flat or slightly curved geometry.
  • the joining of the strip 9 of the leading edge to the first component can be carried out in any way that is convenient.
  • the strip 9 of the trailing edge includes a plate 10 that extends between the two shells of the first component 7 and is glued together with them.
  • the strip 9 of the exit edge is connected to the first component 7 by means of a clipping device (not shown).
  • the second component 12 of the wind turbine blade according to the present invention is a small separating plate, mounted on the blunt outlet edge 13 between the upper and lower shells of the blade, which has a section constant transverse in the direction of the blade radius and a thickness T2 less than the thickness T of the blunt trailing edge 13.
  • the thickness T2 of the separator plate 12 is less than 1 mm.
  • the width W2 of the separator plate 12 extending from the blunt outlet edge 13 is greater than twice the width T of the blunt outlet edge 13.
  • the separating plate 12 prevents the formation of alternating vortices periodically from the upper and lower edges of the blunt exit edge 13 that produce the tonal noise.
  • the separating plate dramatically reduces the formation of said vortices and can practically eliminate the tonal part of the noise of the blunt exit edge. There may be some formation of periodic vortices from the end of the separator plate 12 but if the thickness T2 of this separator plate is small, the amplitude of the tonal noise will also be
  • the frequency will be high (possibly outside the range of frequencies audible by the human ear). If the blunt exit edge 13 is damaged, it will be easy to repair it by simply replacing a piece of the separator plate 12.
  • the separator plate 12 is joined between the two shells by gluing, a clipping device or by other means. Accurate placement of the separator plate is not critical as it is effective at different angles with respect to the edge of blunt exit 13 and in different lengths extending from the blunt exit edge.
  • the separating plate includes one or several perpendicular walls 14 of a length L1 less than the thickness T of the trailing edge 13.
  • the thickness T of the blunt trailing edge 13 is greater than 2 mm, which is the minimum thickness of standard wind turbine blades produced in series using standard manufacturing procedures.
  • the thickness T of the blunt trailing edge 13 is greater than 5 mm.
  • the thickness T of the blunt trailing edge 13 is greater than 10 mm.
  • Blades with trailing edges of greater thickness T than that of current standard blades, in the range of 2-3 mm may be easier to manufacture and finish and more robust for transport.
  • the strip 9 of the trailing edge or the separating plate 12 may be located on the outside of the blade, in a length between 2% and 35% of the radius of the blade.
  • the strip 9 of the trailing edge or the separating plate 12 may be located on the outside of the blade, in a length between 2% and 35% of the radius of the blade.
  • the strip 9 of the trailing edge or the separating plate 12 can be made of plastic or any other cheap and easy to form material with the desired geometry in predetermined lengths L of, e.g. ex. 1 m to facilitate its attachment to the first component 7.
  • a porous material or a solid material with holes
  • a flexible material is used to reduce the acoustic impedance of the surface and consequently reduce the noise caused by other sources of noise.
  • the strip 9 of the trailing edge or the separating plate 12 according to the present invention can be joined to blades preferably made of GFRP although they can also be attached to blades made of other materials such as wood, metal, CFRP or other fibrous materials.
  • the separator plate 12 can also be used as a complementary means of protecting the blade against atmospheric discharges.
  • Figure 5 shows the protection system against electric shocks of an electric turbine, which generally includes the atmospheric discharge receivers 43 located on the surface of the blade that capture the flashes of atmospheric discharges, and a lightning rod 41 inside the connected blade to other conductors in the gondola and the tower, it allows the atmospheric discharge to be discharged to a ground potential.
  • the separator plate 12 includes a base plate 31 made of a non-conductive material and a layer 33 of conductive material connected to the atmospheric discharge protection system that covers at least a section of a of the surfaces of the base plate 31.
  • the installation of the layer 33 to the base plate 31 must be carried out in a manner similar to that of the conductive layer on an electronic printed circuit board (PCE).
  • PCE electronic printed circuit board
  • the layer 33 cannot be a "rigid” conductive element, but “flexible”, able to resist these efforts. Consequently, the layer 33 is not expected to have a good conductivity for a normal constant current, but for a sphere of ionized air with high electrical potential.
  • the layer 33 must be conceived as an "attraction conductor" capable of guiding the energy towards the lightning rod 41, heavier and designed to transmit the high frequency current with high current altitude, and generate potential heat towards a stable ground potential.
  • the layer 33 must be connected with interval to the lightning rod 41.
  • This connection must be made in a way that allows a good guide of this Extreme power transmission without “disruptive discharge” or with limited “disruptive discharge” that could damage the outside of the atmospheric discharge protection system.
  • the physical interval between these connections could vary from 0.5m to 5m.
  • the separator plate 12 includes conductive layers 33 in the outer part 5 of the blade along an extension in the range of 2% to 35% of the radius of the blade.
  • the separator plate 12 includes a base plate 31 made of a non-conductive material and one or more layers 33 of a conductive material that covers different sections of the base plate 31.
  • two layers 33 of conductive material cover the upper and lower surfaces of section 37 of the base plate 31.
  • two layers 33 of a conductive material cover the upper and lower surfaces of the section 37 of the base plate 31 of smaller width than the section 35 that is not covered by any layer of conductive material , and the width of section 37 in addition to the width of the two layers 33 is approximately the same as the width of section 35.
  • the layers 33 of conductive material do not have a uniform width as in the previous embodiments, but a variable width along the base plate 31.
  • inventions shown in Figures 8b to 8d are examples of separator plates 12 that incorporate means to protect the blade against atmospheric discharges or other electric discharges, in which the shape of said means is chosen so as to provide some aerodynamic property. particular to the separator plate 12.
  • the main advantage of having complementary means of protection of the blade against atmospheric discharges in the separator plate 12, is that they reduce the damages that the discharge produces in the blade. In addition, the damages that occur in the separator plate 12 are easy to repair.

Abstract

Pala de aerogenerador optimizada que comprende un primer componente (7) que tiene un perfil aerodinámico con un borde de ataque (11 ), un borde de salida romo (13) de espesor T mayor de 2 mm, y lados de succión y presión (17, 19) entre el borde de ataque (11 ) y el borde de salida romo (13) y un segundo componente (9, 12) para reducir el ruido del borde salida romo de sección transversal constante en Ia dirección del radio de Ia pala, que está unido rígidamente al borde de salida romo (13) de dicho primer componente (7) en al menos parte de Ia pala de aerogenerador con medios de unión que permiten su reemplazamiento.

Description

PALA DE AEROGENERADOR OPTIMIZADA
CAMPO DE LA INVENCIÓN
La invención se refiere a una pala de aerogenerador aerodinámicamente optimizada, y en particular a un pala de aerogenerador cuyo diseño reduce el ruido de un borde de salida romo.
ANTECEDENTES
El ruido de un aerogenerador se produce por causas mecánicas y aerodinámicas.
El ruido aerodinámico puede ser clasificado de acuerdo con los diferentes mecanismos que Io producen: - Ruido de espesor. Se origina por una pala que desplaza aire moviéndolo a través del mismo. La frecuencia es discreta y está relacionada con Ia frecuencia de paso de Ia pala, (típicamente en torno a 1 Hz. + armónicos hasta alrededor de 30 Hz.
- Ruido de carga inestable. Se origina por las fluctuaciones de presión debidas a una carga aerodinámica inestable de Ia pala (procedente del viento, una desalineación del rotor, una desviación de Ia torre, etc.). La frecuencia es discreta y está relacionada con Ia frecuencia de paso de Ia pala, (típicamente en torno a 1 Hz + armónicos hasta alrededor de 30 Hz.
- Ruido de flujo de entrada turbulento, también conocido como ruido del borde de ataque. Se origina en el borde de ataque y es causado por las turbulencias atmosféricas que inducen fluctuaciones de presión al contactar con el borde de ataque. La frecuencia es de banda ancha y está relacionada con el espectro de frecuencia de las turbulencias atmosféricas en relación con Ia velocidad de Ia punta de Ia pala (típicamente de 0 Hz a alrededor de 5000 Hz, más presente a frecuencias bajas y medias).
- Ruido de una capa límite turbulenta en el borde de salida. Se origina por un déficit fluctuante de presión entre el lado de presión y el lado de succión cuando el flujo llega al borde de salida. La frecuencia es de banda ancha y está relacionada con parámetros de Ia capa límite (típicamente de 100 Hz a 10000 Hz, más presente a frecuencias medias alrededor de 1000 Hz).
- Ruido de punta. Se origina por Ia turbulencia en el vórtice de Ia punta. La frecuencia es de banda ancha y está relacionada con el diámetro del vórtice de Ia punta (típicamente entre 1000 Hz y 8000 Hz).
- Ruido de entrada en pérdida. Se origina por las fluctuaciones de presión en las áreas de separación de flujo, presentes a menudo a altos ángulos de ataque. La frecuencia es de banda ancha y está relacionada con Ia extensión del área de entrada en pérdida (típicamente entre 20 Hz y 1000 Hz).
- Ruido de los vórtices de Ia capa límite laminar. Se origina por las inestabilidades en el lado de presión de Ia capa límite causando Ia formación de vórtices. La frecuencia es tonal y está relacionada con el espesor de Ia capa límite en el lado de presión (típicamente entre 1000 Hz y 4000 Hz). - Ruido de un borde de salida romo. Se origina en Ia pequeña zona de separación de flujo detrás de un borde de salida romo que causa Ia formación de vórtices (bien conocida como Ia formación de vórtices de von Karman). La frecuencia es tonal y está relacionada con el espesor del borde de salida (típicamente entre 1000 Hz y 4000 Hz). - Ruido de flujo sobre orificios, cortes, intrusiones. Se origina por flujos inestables y por Ia formación de vórtices. La frecuencia es tonal y está relacionada con Ia dimensión de los elementos distorsionadores del flujo (típicamente entre 1000 y 10000 Hz).
La técnica anterior enseña el uso de bordes de salida dentados para reducir los distintos tipos de ruido del borde de salida.
EP 1 314 885 describe un dispositivo de borde de salida consistente en un panel dentado para ser acoplado al borde de salida de Ia pala.
EP 1 338 793 describe una pala de una pieza hecha de metal con un dentados formados en Ia parte del borde de salida y una pala de dos piezas consistente en un cuerpo principal de metal y una parte trasera hecha de un metal diferente con dentados formados en Ia parte del borde de salida. Ninguna de estas propuestas produce resultados completamente satisfactorios y por tanto existe una continua necesidad de palas de aerogeneradores con un bajo nivel de ruido de un borde de salida romo.
SUMARIO DE LA INVENCIÓN
Un objeto de Ia presente invención es proporcionar una pala de aerogenerador que reduce el ruido de un borde de salida romo.
Otro objeto de Ia presente invención es proporcionar una pala de aerogenerador fácil de fabricar, manejar y transportar.
Otro objeto de Ia presente invención es proporcionar una pala de aerogenerador con un borde de salida fácil de reparar cuando se daña.
Estos y otros objetos de Ia presente invención se consiguen proporcionando una pala de aerogenerador comprendiendo un primer componente que tiene un perfil aerodinámico con un borde de entrada, un borde de salida romo de espesor mayor de 2 mm, y lados de presión y succión entre el borde de entrada y el borde de salida y un segundo componente que tiene una sección constante en Ia dirección del radio de Ia pala que está unido rígidamente al borde de salida romo del primer componente en al menos parte de Ia pala de aerogenerador mediante medios de unión que permiten su reemplazamiento.
Otras características y ventajas de Ia presente invención se desprenderán de Ia descripción detallada que sigue en relación con las figuras que se acompañan.
BREVE DESCRIPCIÓN DE LAS FIGURAS
La Figura 1 muestra el mecanismo principal del ruido del borde de salida romo.
La Figura 2 es una vista esquemática del perfil del primer componente de Ia pala de aerogenerador según Ia presente invención. - A -
Las Figuras 3 y 4 son vistas esquemáticas del perfil de una pala de aerogenerador según Ia presente invención con dos realizaciones del segundo componente unidas al primer componente.
La Figura 5 es una vista esquemática del borde de salida de una pala de aerogenerador según Ia presente invención mostrando una realización de Ia placa separadora con paredes perpendiculares.
La Figura 6 es una vista en planta esquemática de un alabe de una turbina eólica de acuerdo con el invento actual.
La Figura 7 es una vista ampliada de Ia parte exterior del alabe de Ia turbina eólica que se muestra en Ia Figura 6 y que incluye los medios para proteger el alabe contra las descargas atmosféricas.
Las Figuras 8a a 8d son vistas en corte esquemáticas de varias realizaciones de una placa separadora de acuerdo con el presente invento que incorpora los medios para proteger el alabe contra las descargas atmosféricas.
DESCRIPCIÓN DETALLADA DE LAS REALIZACIONES PREFERIDAS
La Figura 1 muestra el ruido tonal 21 irradiado por un perfil aerodinámico con un borde de ataque 11 , un borde de salida romo 13 y lados de succión 17 y presión 19.
Dependiendo del espesor y Ia forma del borde de salida 13 y del número de Reynolds Ia formación de vórtices 23 puede tener lugar en Ia forma de una calle de vórtices de tipo von Karman. Los vórtices alternantes en Ia estela producen altas fluctuaciones superficiales de Ia presión cerca del borde de salida 13. Si el parámetro T/δ, siendo T es el espesor del borde de salida 13 y δ Ia anchura del desplazamiento de Ia capa límite 25 es suficientemente grande, pueden tener lugar fluctuaciones de presión que den lugar a un ruido dipolar de carácter tonal. El primer componente 7 de Ia pala de aerogenerador según Ia presente invención, mostrado en Ia Figura 2, tiene un perfil aerodinámico con un borde de ataque 1 1 , un borde de salida romo 13 de espesor T y lados de succión 17 y presión 19.
En Ia realización mostrada en Ia Figura 3, el segundo componente 9 de Ia pala de aerogenerador según Ia presente invención es una tira unida al borde de salida romo 13 del primer componente en al menos parte de Ia pala.
El ruido producido por el mecanismo del borde de salida romo (un mecanismo completamente diferente del que produce el ruido de capa límite turbulenta en el borde de salida) es proporcional al espesor T del borde de salida. El ruido producido por el mecanismo de Ia capa límite turbulenta es proporcional al cosq3, donde q es el ángulo de flujo entre Ia dirección del flujo sobre el borde de salida y una línea perpendicular al borde de salida. Para un una pala de aerogenerador normal sin flujo significativo en Ia dirección de su radio, este ángulo es normalmente pequeño (entre 0o y 10°) y Ia magnitud de su coseno es aproximadamente 1 . En el caso de un borde de salida dentado este ángulo es mucho mayor (dependiendo del ángulo del dentado), puede estar entre ejemplo entre 70° y 80° y Ia magnitud del coseno está próxima a 0. Esto reduce dramáticamente el ruido en teoría, pero en Ia práctica los resultados no siempre son tan buenos como los esperados. La tira 9 del borde de salida tiene un perfil agudo con sus superficies exterior e inferior configuradas como extensiones de los lados de presión y succión de dicho primer componente, terminado en un borde agudo.
Usando una tira 9 del borde de salida más o menos puntiaguda Ia anchura del borde de salida resulta ser próxima a 0 y por tanto se elimina el mecanismo del borde de salida romo.
La tira 9 del borde de salida tiene una sección transversal constante en Ia dirección del radio de Ia pala mientras que el borde de salida dentado de las propuestas de Ia técnica anterior mencionadas tienen una sección transversal no constante en Ia dirección del radio de Ia pala. Las superficies superior e inferior del Ia tira 9 unida al borde de salida pueden tener una geometría plana o ligeramente curvada. La unión de Ia tira 9 del borde de salida al primer componente puede llevarse a cabo de cualquier manera que resulte conveniente.
En una realización preferente, Ia tira 9 del borde de salida incluye una placa 10 que se extiende entre las dos conchas del primer componente 7 y está pegada conjuntamente con ellas.
En otra realización preferida, Ia tira 9 del borde de salida está unida al primer componente 7 por medio de un dispositivo de clipaje (no mostrado).
En Ia realización mostrada en Ia Figura 4, el segundo componente 12 de Ia pala de aerogenerador según Ia presente invención es una pequeña placa separadora, montada en el borde de salida romo 13 entre las conchas superior e inferior de Ia pala, que tiene una sección transversal constante en Ia dirección del radio de Ia pala y un espesor T2 menor que el espesor T del borde de salida romo 13.
En una realización preferida el espesor T2 de Ia placa separadora 12 es menor de 1 mm.
En otra realización preferida Ia anchura W2 de Ia placa separadora 12 que se extiende desde el borde de salida romo 13 es mayor que el doble de Ia anchura T del borde de salida romo 13.
La placa separadora 12 previene Ia formación de los vórtices alternantes periódicamente desde los bordes superior e inferior del borde de salida romo 13 que producen el ruido tonal. La placa separadora reduce drásticamente Ia formación de dichos vórtices y puede eliminar prácticamente Ia parte tonal del ruido del borde de salida romo. Puede haber alguna formación de vórtices periódicos a partir del final de Ia placa separadora 12 pero si el espesor T2 de Ia esta placa separadora es pequeño, Ia amplitud del ruido tonal también Io será
(posiblemente tapado por otras fuentes de ruido) y Ia frecuencia será alta (posiblemente fuera del rango de frecuencias audible por el oído humano). Si el borde de salida romo 13 se daña, será fácil repararlo sustituyendo simplemente una pieza de Ia placa separadora 12. La placa separadora 12 se une entre las dos conchas por pegado, un dispositivo de clipaje o por otros medios. No es crítica una colocación precisa de Ia placa separadora pues es efectiva en ángulos diferentes respecto al borde de salida romo 13 y en diferentes longitudes extendiéndose desde el borde de salida romo.
En una realización preferente, Ia placa separadora incluye una o varias paredes perpendiculares 14 de una longitud L1 menor que el espesor T del borde de salida 13.
El espesor T del borde de salida romo 13 es mayor de 2 mm, que es el mínimo espesor de las palas estándar de aerogeneradores producidas en serie usando procedimientos de fabricación estándar.
En otra realización preferente, el espesor T del borde de salida romo 13 es mayor de 5 mm.
En otra realización preferente, el espesor T del borde de salida romo 13 es mayor de 10 mm.
Palas con bordes de salida de mayor espesor T que el de las actuales palas estándar, en el rango de 2-3 mm pueden resultar más fáciles de fabricar y terminar y más robustas para su transporte.
En una realización preferente, Ia tira 9 del borde de salida o Ia placa separadora 12 pueden estar situadas en Ia parte exterior de Ia pala, en una longitud entre el 2% y el 35% del radio de Ia pala. En Ia parte central de Ia pala y en Ia parte cercana al buje no resulta interesante disponer del segundo componente puesto que el ruido producido en ellas es menor que en Ia parte exterior. Adicionalmente, hay otras razones que hacen deseable tener un borde de salida de mayor espesor en Ia parte de Ia pala cercana al buje.
La tira 9 del borde de salida ó Ia placa separadora 12 pueden estar hechas de plástico o cualquier otro material barato y fácil de conformar con Ia geometría deseada en longitudes L predeterminadas de, p. ej. 1 m para facilitar su unión al primer componente 7.
En una realización preferente, se usa un material poroso (o un material sólido con orificios) ó un material flexible para reducir Ia impedancia acústica de Ia superficie y consecuentemente reducir el ruido causado por otras fuentes de ruido.
La tira 9 del borde de salida o Ia placa separadora 12 de acuerdo con Ia presente invención puede unirse a palas hechas preferentemente de GFRP aunque también pueden unirse a palas hechas de otros materiales tales como madera, metal, CFRP ú otros materiales fibrosos.
Además de ser un dispositivo cuya función es reducir el ruido del borde de salida embotado, Ia placa separadora 12 también puede utilizarse como medio complementario de protección del alabe contra las descargas atmosféricas.
En Ia Figura 5 se muestra el sistema de protección contra descargas eléctricas de una turbina eléctrica, que generalmente incluye los receptores de descargas atmosféricas 43 situados en Ia superficie del alabe que capturan los destellos de descargas atmosféricas, y un pararrayos 41 dentro del alabe que conectado a otros conductores en Ia góndola y Ia torre, permite que Ia descarga atmosférica sea descargada a un potencial de tierra.
Para poder efectuar esta protección contra descargas atmosféricas complementaria, Ia placa separadora 12 incluye una placa base 31 fabricada en un material no conductor y una capa 33 de material conductor conectado al sistema de protección de descargas atmosféricas que cubre, al menos, una sección de una de las superficies de Ia placa base 31.
En Ia realización preferente, Ia instalación de Ia capa 33 a Ia placa base 31 debe realizarse de manera similar a Ia de Ia capa conductora sobre una placa de circuito impreso electrónica (PCE).
Teniendo en cuenta que las cargas de lado hacen típicamente que el borde de salida 13 constituya una de las zonas del alabe de mayor tensión en el que los esfuerzos extremos pueden alcanzar 10.000 μ, Ia capa 33 no puede ser un elemento conductor "rígido", sino "flexible", capaz de resistir estos esfuerzos. En consecuencia, no se espera que Ia capa 33 tenga una conductibilidad buena para una corriente constante normal, sino para una esfera de aire ionizado con alto potencial eléctrico. La capa 33 debe concebirse como un "conductor de atracción" capaz de guiar Ia energía hacia el pararrayos 41 , más pesado y diseñado para transmitir Ia corriente de alta frecuencia con altitud de corriente intensa, y generar calor potencial hacia un potencial de tierra estable.
Por Io tanto, Ia capa 33 debe conectarse con intervalo al pararrayos 41. Esta conexión debe realizarse de manera que permita una buena guía de esta transmisión extrema de energía sin "descarga disruptiva" o con "descarga disruptiva" limitada que pueda dañar el exterior del sistema de protección de descargas atmosféricas. El intervalo físico entre estas conexiones podría variar de 0,5m a 5m. Estas conexiones pueden realizarse por medio de conductores flexibles
45 dentro del alabe y/o cintas conductoras 47 colocadas sobre Ia superficie del alabe entre Ia capa 33 y los receptores de descargas atmosféricas 43.
El área típica de impacto de Ia descarga atmosférica en el alabe de una turbina eólica está situado en Ia parte exterior 5 del alabe. Debido a esto, Ia placa separadora 12 incluye capas conductoras 33 en Ia parte exterior 5 del alabe a Io largo de una extensión en el rango de 2% a 35% del radio del alabe.
En las realizaciones preferidas que se muestran en las Figuras 8a a 8c, Ia placa separadora 12 incluye una placa base 31 fabricada en un material no conductor y una o más capas 33 de un material conductor que cubre secciones diferentes de Ia placa base 31.
En Ia realización que se muestra en Ia Figura 8a, dos capas 33 de material conductor cubren las superficies superior e inferior de Ia sección 37 de Ia placa base 31.
En Ia realización que se muestra en Ia Figure 8b, dos capas 33 de un material conductor cubren las superficies superior e inferior de Ia sección 37 de Ia placa base 31 de menor anchura que Ia sección 35 que no está cubierta por ninguna capa de material conductor, y Ia anchura de Ia sección 37 además de Ia anchura de las dos capas 33 es aproximadamente Ia misma que Ia anchura de Ia sección 35. En las realizaciones que se muestran en las Figuras 8c y 8d, las capas 33 de material conductor no tiene una anchura uniforme como en las realizaciones anteriores, sino una anchura variable a Io largo de Ia placa base 31.
Las realizaciones que se muestran en las Figuras 8b a 8d son ejemplos de placas separadoras 12 que incorporan medios para proteger el alabe contra las descargas atmosféricas u otras descargas eléctricas, en las que Ia forma de dichos medios se elige de manera que proporcionen alguna propiedad aerodinámica particular a Ia placa separadora 12. La principal ventaja de contar con medios complementarios de protección del alabe contra las descargas atmosféricas en Ia placa separadora 12, es que reducen los daños que Ia descarga produce en el alabe. Además, los daños que se producen en Ia placa separadora 12 son fáciles de reparar.
Aunque Ia presente invención se ha descrito enteramente en conexión con realizaciones preferidas, es evidente que se pueden introducir aquellas modificaciones dentro del alcance de, no considerando éste como limitado por las anteriores realizaciones, las reivindicaciones siguientes.

Claims

REIVINDICACIONES
1 .- Una pala de aerogenerador comprendiendo un primer componente (7) que tiene un perfil aerodinámico con un borde de ataque (11 ), un borde de salida romo (13) de espesor T mayor de 2 mm, y lados de succión y presión (17, 19) entre el borde de ataque (1 1 ) y el borde de salida romo (13) y un segundo componente unido al borde de salida romo (13) del primer componente (7) en al menos parte de Ia pala de aerogenerador para reducir el ruido del borde de salida romo, caracterizada porque: a) dicho segundo componente (9, 12) tiene una sección transversal constante en Ia dirección del radio de Ia pala; b) dicho segundo componente (9, 12) está rígidamente unido a dicho primer componente con medios de unión que permiten su reemplazamiento.
2.- Una pala de aerogenerador según Ia reivindicación 1 , caracterizada porque el segundo componente (9) tiene un perfil agudo con sus superficies superior e inferior conformadas como extensiones de los lados de succión y presión (17, 19) de dicho primer componente (7) terminando en un borde agudo.
3.- Una pala de aerogenerador según Ia reivindicación 1 , caracterizada porque el segundo componente es una placa separadora (12), montada entre las partes superior e inferior de Ia pala, de un espesor T2 menor que el espesor T del borde de salida romo (13).
A - Una pala de aerogenerador según Ia reivindicación 3, caracterizada porque el espesor T2 del segundo componente (12) es menor de 1 mm.
5.- Una pala de aerogenerador según cualquiera de las reivindicaciones 3-4, caracterizada porque Ia anchura W2 del segundo componente (12) que se extiende desde el borde de salida romo (13) es mayor que el doble de Ia anchura T del borde de salida romo (13).
6.- Una pala de aerogenerador según cualquiera de las reivindicaciones 3-5, caracterizada porque el segundo componente incluye al menos una pared perpendicular (14) a Ia placa separadora (12) de una longitud L1 menor que el espesor T del borde de salida romo (13).
7.- Una pala de aerogenerador según cualquiera de las reivindicaciones 1-6, caracterizada porque dicho segundo componente (9, 12) está unido a dicho primer componente (7) en Ia parte exterior de Ia pala en una longitud en el rango del 1 % al 35% del radio de Ia pala.
8.- Una pala de aerogenerador según cualquiera de las reivindicaciones 1-7, caracterizada porque dicho segundo componente (9, 12) se proporciona en unidades de una longitud predeterminada L.
9.- Una pala de aerogenerador según cualquiera de las reivindicaciones
1-8, caracterizada porque el espesor T del borde de salida romo es mayor de 5 mm.
10.- Una pala de aerogenerador según cualquiera de las reivindicaciones 1-8, caracterizada porque el espesor T del borde de salida romo es mayor de 10 mm.
11.- Una pala de aerogenerador según cualquiera de las reivindicaciones 1-10, caracterizada porque dicho segundo componente (9, 12) está realizado en un material flexible.
12.- Una pala de aerogenerador según cualquiera de las reivindicaciones 1-10, caracterizada porque dicho segundo componente (9, 12) está realizado en un material poroso.
13.- Un alabe de turbina eólica según las reivindicaciones 7-9 que tenga medios de protección de descargas atmosféricas en el primer componente (7), incluyendo receptores de descargas atmosféricas (43) en Ia superficie y un pararrayos (41 ), caracterizado porque Ia placa separadora (12) incluye medios adicionales conectados a los medios de protección de descargas atmosféricas del primer componente, para proteger el alabe contra las descargas atmosféricas u otras descargas eléctricas (7).
14.- Un alabe de turbina eólica según Ia reivindicación 13, caracterizado porque Ia placa separadora (12) incluye una placa base (31 ) fabricada en un material no conductor y una capa (33) de un material conductor que cubre, al menos, una sección de una de las superficies de Ia placa base (31 ).
15.- Un alabe de turbina eólica según Ia reivindicación 14, caracterizado porque Ia placa base (31 ) está cubierta por dicha capa (33) en Ia parte exterior (5) del alabe en una extensión dentro del rango de 2% a 35% del radio del alabe.
16. Un alabe de turbina eólica según Ia reivindicación 15, caracterizado porque Ia capa (33) está conectada a los receptores de descargas atmosféricas (43) y/o al dicho pararrayos (41) a intervalos de 0,5 a 5m.
17. Un alabe de turbina eólica según Ia reivindicación 16, caracterizado porque las conexiones entre dicha capa (33) y los receptores de descargas atmosféricas (43) se han realizado por medio de una cinta conductora (47) y las conexiones entre dicha capa (33) y dicho pararrayos (41 ) se han realizado por medio de conductores flexibles (45).
18.- Un alabe de turbina eólica según las reivindicaciones 14-17, caracterizado porque Ia capa (33) cubre una sección (37) de Ia superficie superior de Ia placa base (31 ).
19.- Un alabe de turbina eólica según las reivindicaciones 14-18, caracterizado porque Ia capa (33) cubre una sección (37) de las superficies superior e inferior de Ia placa base (31 ).
20.- Un alabe de turbina eólica según las reivindicaciones 18-19, caracterizado porque Ia placa base (31 ) tiene un grosor uniforme.
21.- Un alabe de turbina eólica según Ia reivindicación 20, caracterizado porque Ia placa base (33) tiene un grosor uniforme.
22.- Un alabe de turbina eólica según Ia reivindicación 20, caracterizado porque Ia placa base (33) tiene un grosor variable.
23.- Un alabe de turbina eólica según las reivindicaciones 18-19, caracterizado porque Ia placa separadora (12) tiene un grosor uniforme.
PCT/ES2007/070160 2006-09-15 2007-09-14 Pala de aerogenerador optimizada WO2008031913A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2007800342276A CN101517227B (zh) 2006-09-15 2007-09-14 优化的风轮机叶片
US12/440,370 US20100047070A1 (en) 2006-09-15 2007-09-14 Optimised wind turbine blade
EP07823054A EP2063106A1 (en) 2006-09-15 2007-09-14 Optimised wind turbine blade

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200602347 2006-09-15
ES200602347A ES2310958B1 (es) 2006-09-15 2006-09-15 Pala de aerogenerador optimizada.

Publications (1)

Publication Number Publication Date
WO2008031913A1 true WO2008031913A1 (es) 2008-03-20

Family

ID=39183410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2007/070160 WO2008031913A1 (es) 2006-09-15 2007-09-14 Pala de aerogenerador optimizada

Country Status (5)

Country Link
US (1) US20100047070A1 (es)
EP (1) EP2063106A1 (es)
CN (1) CN101517227B (es)
ES (1) ES2310958B1 (es)
WO (1) WO2008031913A1 (es)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8043066B2 (en) 2010-06-08 2011-10-25 General Electric Company Trailing edge bonding cap for wind turbine rotor blades
US20110268557A1 (en) * 2010-09-29 2011-11-03 General Electric Company System and method for attenuating the noise of airfoils
DE102008003411B4 (de) 2007-01-09 2021-09-02 General Electric Company Windturbinenflügelprofilfamilie
US20220145850A1 (en) * 2019-03-12 2022-05-12 Lm Wind Power A/S Wind turbine blade and method for producing a wind turbine blade

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011157849A2 (en) * 2010-06-18 2011-12-22 Suzlon Blade Technology B.V. Rotor blade for a wind turbine
US9644613B2 (en) * 2010-10-27 2017-05-09 Vestas Wind Systems A/S Wind turbine lighting protection system and wind turbine blade
CA2818201C (en) * 2010-11-30 2014-11-18 Lihua Liu Noise reducer for rotor blade in wind turbine
CN102003333B (zh) * 2010-12-21 2012-01-11 中国科学院工程热物理研究所 一种具有降噪功能的风力机叶片
US8834117B2 (en) * 2011-09-09 2014-09-16 General Electric Company Integrated lightning receptor system and trailing edge noise reducer for a wind turbine rotor blade
ES2584036T3 (es) * 2011-09-19 2016-09-23 Nordex Energy Gmbh Pala de rotor de una instalación de energía eólica con un borde trasero de perfil grueso
JP5297558B1 (ja) * 2011-10-12 2013-09-25 三菱重工業株式会社 風車翼及びこれを備えた風力発電装置ならびに風車翼の設計方法
CN103147930A (zh) * 2011-12-06 2013-06-12 上海电气风能有限公司 一种风机叶片大后缘结构
US9151270B2 (en) * 2012-04-03 2015-10-06 Siemens Aktiengesellschaft Flatback slat for wind turbine
US9440737B1 (en) * 2012-05-11 2016-09-13 The Boeing Company Apparatus to adjust airfoils of rotor blades
US9458821B2 (en) * 2012-09-11 2016-10-04 General Electric Company Attachment system for a wind turbine rotor blade accessory
GB201217212D0 (en) 2012-09-26 2012-11-07 Blade Dynamics Ltd Windturbine blade
WO2014064195A1 (en) * 2012-10-26 2014-05-01 Lm Wp Patent Holding A/S A system and method for trailing edge noise reduction of a wind turbine blade
US9610739B2 (en) * 2013-04-17 2017-04-04 Lm Wp Patent Holding A/S Wind turbine blade repair method
US9638164B2 (en) 2013-10-31 2017-05-02 General Electric Company Chord extenders for a wind turbine rotor blade assembly
CN103711655B (zh) * 2013-12-26 2016-04-06 中国科学院工程热物理研究所 一种大厚度钝尾缘风力机叶片
US9205920B2 (en) 2013-12-30 2015-12-08 Google Inc. Wiring harness for an aerial vehicle
CN106460800A (zh) * 2014-06-18 2017-02-22 西门子公司 具有降噪装置的转子叶片
US9945354B2 (en) 2014-10-27 2018-04-17 General Electric Company System and method for controlling bonding material in a wind turbine blade
EP3130800B8 (de) * 2015-08-10 2018-04-18 Nordex Energy GmbH Windenergieanlagenrotorblatt mit einer funkenstrecke
ES2715511T3 (es) * 2016-02-12 2019-06-04 Lm Wp Patent Holding As Panel de borde de salida dentado para una pala de turbina eólica
US11118571B2 (en) * 2017-01-24 2021-09-14 Siemens Gamesa Renewable Energy A/S Lightning protection arrangement
US10830206B2 (en) 2017-02-03 2020-11-10 General Electric Company Methods for manufacturing wind turbine rotor blades and components thereof
US11098691B2 (en) 2017-02-03 2021-08-24 General Electric Company Methods for manufacturing wind turbine rotor blades and components thereof
US20190024631A1 (en) * 2017-07-20 2019-01-24 General Electric Company Airflow configuration for a wind turbine rotor blade
US10821652B2 (en) 2017-11-21 2020-11-03 General Electric Company Vacuum forming mold assembly and method for creating a vacuum forming mold assembly
US10920745B2 (en) 2017-11-21 2021-02-16 General Electric Company Wind turbine rotor blade components and methods of manufacturing the same
US11390013B2 (en) 2017-11-21 2022-07-19 General Electric Company Vacuum forming mold assembly and associated methods
US11668275B2 (en) 2017-11-21 2023-06-06 General Electric Company Methods for manufacturing an outer skin of a rotor blade
US11040503B2 (en) 2017-11-21 2021-06-22 General Electric Company Apparatus for manufacturing composite airfoils
US10865769B2 (en) * 2017-11-21 2020-12-15 General Electric Company Methods for manufacturing wind turbine rotor blade panels having printed grid structures
US11248582B2 (en) 2017-11-21 2022-02-15 General Electric Company Multiple material combinations for printed reinforcement structures of rotor blades
US10773464B2 (en) 2017-11-21 2020-09-15 General Electric Company Method for manufacturing composite airfoils
US10913216B2 (en) 2017-11-21 2021-02-09 General Electric Company Methods for manufacturing wind turbine rotor blade panels having printed grid structures
DE102018103678A1 (de) * 2018-02-19 2019-08-22 Wobben Properties Gmbh Rotorblatt einer Windenergieanlage mit einer Splitterplatte
US10821696B2 (en) 2018-03-26 2020-11-03 General Electric Company Methods for manufacturing flatback airfoils for wind turbine rotor blades
US11035339B2 (en) 2018-03-26 2021-06-15 General Electric Company Shear web assembly interconnected with additive manufactured components
US20190293049A1 (en) * 2018-03-26 2019-09-26 General Electric Company Methods for Joining Blade Components of Rotor Blades Using Printed Grid Structures
EP3587799A1 (en) 2018-06-27 2020-01-01 Siemens Gamesa Renewable Energy A/S Aerodynamic structure
ES2843742T3 (es) * 2018-06-27 2021-07-20 Siemens Gamesa Renewable Energy As Estructura aerodinámica
DE102019113080A1 (de) * 2019-05-17 2020-11-19 Wobben Properties Gmbh Rotorblatt und Windenergieanlage
GB202002557D0 (en) * 2020-02-24 2020-04-08 Kudhail Jagjeet Singh Noise reduction element and a wind turbine blade comprising a noise reduction element
JP7406454B2 (ja) * 2020-06-01 2023-12-27 三菱重工業株式会社 風車翼、及び、風車
CN112879229B (zh) * 2021-01-27 2022-06-10 南京东固建设科技有限公司 一种可降低分流板载荷力的风力发电辅助智能设备
US20240102444A1 (en) * 2022-09-23 2024-03-28 SJK Energy Solutions, LLC Turbine blade with auxiliary deflector

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0652367A1 (en) * 1993-11-04 1995-05-10 Stork Product Engineering B.V. Noise reduction for wind turbine
WO1995019500A1 (en) * 1994-01-12 1995-07-20 Lm Glasfiber A/S Windmill
ES2155527T3 (es) * 1994-09-07 2001-05-16 Bonus Energy As Pararrayos para palas de molino de viento.
ES2161196A1 (es) * 2000-05-09 2001-11-16 Torres Disenos Ind S A M Instalacion de pararrayos para aerogeneradores.
EP1314885A1 (en) * 2001-11-26 2003-05-28 Bonus Energy A/S Flexible serrated trailing edge for wind turbine rotor blade
US20030175121A1 (en) * 2002-02-22 2003-09-18 Masaaki Shibata Wind turbine provided with nacelle
US20040130842A1 (en) * 2000-04-10 2004-07-08 Johansen Oluf Peter Kaad Lightning protection system for, e.g. a wind turbine, wind turbine blade having a lightning protection system, method of creating a lightning protection system and use thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5439207A (en) * 1977-09-02 1979-03-26 Hitachi Ltd A propeller fan and process for making the same
US4618313A (en) * 1980-02-06 1986-10-21 Cofimco S.R.L. Axial propeller with increased effective displacement of air whose blades are not twisted
EP0615903B1 (en) * 1993-03-13 1999-09-15 GKN Westland Helicopters Limited Rotary blades
DK173460B2 (da) * 1998-09-09 2004-08-30 Lm Glasfiber As Vindmöllevinge med lynafleder
DE10300284A1 (de) * 2003-01-02 2004-07-15 Aloys Wobben Rotorblatt für eine Windenergieanlage
DE60333952D1 (de) * 2003-10-31 2010-10-07 Vestas Wind Sys As Potentialausgleichsglied
US7637721B2 (en) * 2005-07-29 2009-12-29 General Electric Company Methods and apparatus for producing wind energy with reduced wind turbine noise
US7458777B2 (en) * 2005-09-22 2008-12-02 General Electric Company Wind turbine rotor assembly and blade having acoustic flap

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0652367A1 (en) * 1993-11-04 1995-05-10 Stork Product Engineering B.V. Noise reduction for wind turbine
WO1995019500A1 (en) * 1994-01-12 1995-07-20 Lm Glasfiber A/S Windmill
ES2155527T3 (es) * 1994-09-07 2001-05-16 Bonus Energy As Pararrayos para palas de molino de viento.
US20040130842A1 (en) * 2000-04-10 2004-07-08 Johansen Oluf Peter Kaad Lightning protection system for, e.g. a wind turbine, wind turbine blade having a lightning protection system, method of creating a lightning protection system and use thereof
ES2161196A1 (es) * 2000-05-09 2001-11-16 Torres Disenos Ind S A M Instalacion de pararrayos para aerogeneradores.
EP1314885A1 (en) * 2001-11-26 2003-05-28 Bonus Energy A/S Flexible serrated trailing edge for wind turbine rotor blade
US20030175121A1 (en) * 2002-02-22 2003-09-18 Masaaki Shibata Wind turbine provided with nacelle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008003411B4 (de) 2007-01-09 2021-09-02 General Electric Company Windturbinenflügelprofilfamilie
US8043066B2 (en) 2010-06-08 2011-10-25 General Electric Company Trailing edge bonding cap for wind turbine rotor blades
DK178725B1 (en) * 2010-06-08 2016-12-05 Gen Electric Rear binder cap for wind turbine rotor blades
US20110268557A1 (en) * 2010-09-29 2011-11-03 General Electric Company System and method for attenuating the noise of airfoils
US20220145850A1 (en) * 2019-03-12 2022-05-12 Lm Wind Power A/S Wind turbine blade and method for producing a wind turbine blade

Also Published As

Publication number Publication date
CN101517227A (zh) 2009-08-26
ES2310958B1 (es) 2009-11-10
EP2063106A1 (en) 2009-05-27
ES2310958A1 (es) 2009-01-16
CN101517227B (zh) 2011-12-07
US20100047070A1 (en) 2010-02-25

Similar Documents

Publication Publication Date Title
WO2008031913A1 (es) Pala de aerogenerador optimizada
ES2635338T3 (es) Sistema de protección contra rayos para una paleta de turbina eólica
AU2003296688B2 (en) Rotor blade for a wind power plant
ES2641541T3 (es) Unión de punta de pala eólica
EP3098438B1 (en) Wind turbine blade and wind turbine power generating apparatus, and method of producing or retrofitting wind turbine blade
ES2848858T3 (es) Pala de rotor de turbinas eólicas
ES2556012T3 (es) Conjunto de modificación de flujo de aire para una pala de rotor de una turbina eólica
US8113788B2 (en) Rotor blade
WO2011110492A3 (en) Wind turbine blade with lightning protection system
BRPI0621730A2 (pt) pá de turbina eólica, e turbina eólica de passo controlado
US11619205B2 (en) Wind turbine blade and wind turbine power generating apparatus
JP2016142205A (ja) 風力発電装置
WO2006122547A1 (en) A pitch controlled wind turbine blade, a wind turbine and use hereof
US10443563B2 (en) Vortex generator, wind turbine blade, and wind turbine power generating apparatus
EP3026261A1 (en) Wind farm, wind power generation system
US20190383272A1 (en) Wind turbine blade protection structure and method of forming same
WO2020084052A1 (en) Lightning protection for a wind turbine blade
CN108223306B (zh) 一种外覆于风电机组叶片表面的防雷接闪装置
US11536245B2 (en) Rotor blade assembly and a wind turbine having the rotor blade assembly
US11118571B2 (en) Lightning protection arrangement
AU2011252767A1 (en) A turbine blade assembly
ES2692153T3 (es) Estructura pararrayos para una pala de generador eólico
JP2016070085A (ja) ウィンドファーム
JP6732436B2 (ja) 受雷部への雷の誘導
BR102017021329A2 (pt) Sistema de transmissão de correntes de raio para aerogeradores

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780034227.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07823054

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007823054

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12440370

Country of ref document: US