WO2008029645A1 - Cell count determination method and cell count determination apparatus for thermoduric bacterium - Google Patents

Cell count determination method and cell count determination apparatus for thermoduric bacterium Download PDF

Info

Publication number
WO2008029645A1
WO2008029645A1 PCT/JP2007/066466 JP2007066466W WO2008029645A1 WO 2008029645 A1 WO2008029645 A1 WO 2008029645A1 JP 2007066466 W JP2007066466 W JP 2007066466W WO 2008029645 A1 WO2008029645 A1 WO 2008029645A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
measuring
bacteria
bacterium
liquid medium
Prior art date
Application number
PCT/JP2007/066466
Other languages
French (fr)
Japanese (ja)
Inventor
Chiaki Okumura
Hideki Yamanashi
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2008029645A1 publication Critical patent/WO2008029645A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor

Definitions

  • the present invention relates to a heat-resistant bacterial count measuring method and a bacterial count measuring apparatus.
  • Non-patent Document 1 Non-patent Document 1
  • a predetermined heat treatment is performed, for example, at 100 ° C for 15 minutes on an agar medium to which a specimen is added.
  • non-heat-resistant bacteria other than heat-resistant bacteria for example, Escherichia coli, etc.
  • the heat-resistant bacteria are cultured, and the number of colonies generated is visually counted to measure the number of heat-resistant bacteria.
  • Non-Patent Document 1 Supervised by Toshiki Morichi, “Food Microbiology Inspection Manual”, published by Eiken Equipment Co., Ltd., July 2002, ISBN4- 9901151-1-2
  • the method for measuring the number of heat-resistant bacteria by the agar culture method has a problem that it takes a long time to measure. Furthermore, in the method of measuring the number of thermotolerant bacteria by the agar culture method, there are problems that the work process becomes complicated and that variations due to the work of the operator occur.
  • an object of the present invention is to provide a thermostable bacteria count measuring method and a bacteria count measuring apparatus capable of measuring the thermostable bacteria count in a shorter time / measurement time. It is another object of the present invention to provide a heat-resistant bacterial count measuring method and bacterial count measuring apparatus that are simple work and have little variation in measurement results.
  • thermostable bacterial count measurement according to claim 1 of the present invention
  • the method is a thermostable count method for measuring the number of thermostable bacteria contained in a specimen, and (A) a predetermined heat treatment is performed on the specimen to sterilize the predetermined bacteria, (B) after the step (A), by adding the specimen to the liquid medium and measuring the change in the dissolved oxygen concentration of the liquid medium using an oxygen electrode, Measuring the number of heat-resistant bacteria.
  • the method for measuring the number of heat-resistant bacteria according to claim 2 is a method for measuring the number of heat-resistant bacteria contained in a sample, wherein (A) the liquid to which the sample is added A step of sterilizing a predetermined bacterium by subjecting the medium to a predetermined heat treatment to leave the heat-resistant bacterium in the liquid medium; and (B) after the step (A), using the oxygen electrode, the liquid And a step of measuring the number of heat-resistant bacteria by measuring a change in the dissolved oxygen concentration of the medium.
  • the method for measuring the number of heat-resistant bacteria according to claim 3 is the method for measuring the number of heat-resistant bacteria according to claim 1 or 2, wherein the heat-resistant bacteria are spore bacteria.
  • the method further includes the step of adding pyruvic acid to the liquid medium containing the spore bacterium before the spore bacterium is grown.
  • the bacterial count measuring apparatus is a bacterial count measuring apparatus capable of measuring the heat-resistant bacterial count by the oxygen electrode method, and is a liquid installed in the bacterial count measuring apparatus. Predetermined heat treatment is applied to the liquid medium to which the oxygen electrode that can be inserted into the medium and the specimen are added, and the change in dissolved oxygen concentration in the liquid medium is measured using the oxygen electrode after the predetermined heat treatment. And a control unit for measuring the number of heat-resistant bacteria.
  • the number of heat-resistant bacteria is measured by the oxygen electrode method. Therefore, the measurement time is short.
  • a predetermined heat treatment is performed on the sample or the liquid medium to which the sample is added. Therefore, non-heat-resistant bacteria such as E. coli As a result, the number of bacteria can be measured only for heat-resistant bacteria.
  • the invention according to claim 3 of the present invention further includes a step of adding pyruvic acid to a liquid medium containing the spore bacterium, before the spore bacterium is grown. Therefore
  • the measurement time can be further shortened and the reproducibility of the measurement results can be improved (that is, the variation in measurement can be reduced).
  • FIG. 1 is a diagram showing an example of a measurement result when the present invention is applied.
  • FIG. 2 is a diagram showing an example of measurement results when the present invention is applied.
  • FIG. 3 is a diagram when the present invention is applied to commercially available chocolate.
  • FIG. 4 is a measurement result diagram showing the effect of adding pyruvic acid.
  • the oxygen electrode method is a method of measuring the number of microorganisms by adding a specimen to a liquid medium, culturing microorganisms, and measuring changes in the dissolved oxygen concentration of the liquid medium using an oxygen electrode.
  • Heat-resistant bacteria such as spore bacteria have strong resistance to heating, and can survive even after a predetermined heat treatment.
  • a predetermined heat treatment is performed on the specimen.
  • predetermined bacteria non-heat-resistant bacteria such as colon bacteria
  • the specimen is added to the liquid medium.
  • the predetermined heat treatment is performed, for example, at a temperature of 100 ° C. for 15 minutes. Or apply 70 ° C for 20 minutes.
  • the prescribed heat treatment the official method is 100 ° C for 10 minutes, but for aerobic bacteria self-inspection is 70 ° C for 20 minutes, and for canned food self-inspection is 100 ° C for 15 minutes.
  • the prescribed heat treatment is the target food, processing Depending on the method, the heating temperature and the heating time can vary (for example, 121 ° C for 20 minutes in an autoclave).
  • the liquid medium is injected into a measurement cell having an oxygen electrode on the inner surface, and the measurement cell is set in a measurement device.
  • the dissolved oxygen concentration in the liquid medium is converted into an electric signal by the oxygen electrode of the measuring cell, and the measuring device measures the change in the dissolved oxygen concentration in the liquid medium based on the electric signal.
  • the measuring device can measure the initial number of heat-resistant bacteria contained in the liquid medium.
  • a current output from the oxygen electrode is used as the electrical signal, and the current increases as the dissolved oxygen concentration increases. Since dissolved oxygen in the liquid medium is consumed by respiration of thermotolerant bacteria, the current value decreases with time. At this time, the time required for the current value to decrease below the predetermined threshold value Ith close to zero differs depending on the initial number of bacteria, and becomes shorter as the initial number of bacteria increases. High number of heat-resistant bacteria in liquid medium
  • CFU is an abbreviation for Colony Forming Unit. For example, if 50 villages are detected from lm materials, 50 CFU / ml or 50 CFU / g is displayed.
  • FIGS. 1 and 2 As can be seen from Figs. 1 and 2, even when the present invention is applied, the number of heat-resistant bacteria (Figs. 1 and 2 was able to measure the number of spores. When measuring the number of thermotolerant bacteria by the agar culture method, a measurement time of 48 hours is usually required. However, as shown in FIGS. 1 and 2, when the present invention is applied, any hay The number of spore bacteria could be measured in less than 24 hours at the fungal spore concentration.
  • the measurement time does not change much even if the Bacillus subtilis spore concentration changes. From this, in the case of non-heat treatment, it can be understood that the influence involved in the measurement of non-heat-resistant bacteria such as Escherichia coli other than spore bacteria is large. On the other hand, as shown in Fig. 2, when the prescribed heat treatment is applied, the measurement time changes greatly when the concentration of Bacillus subtilis spores is changed. As a result, it can be understood that the non-thermostable bacteria such as E. coli are sterilized by the predetermined heat treatment (that is, by performing the predetermined heat treatment, it is possible to measure the number of spore bacteria alone. ).
  • sampling in this measurement refers to the work of measuring a 5g or 10g sample from a given amount of sample and adding a 9-fold amount of physiological saline or PBS (phosphate buffer). That is.
  • physiological saline is used.
  • a predetermined heat treatment at 70 ° C for 20 minutes that is, sterilization treatment of non-heat-resistant bacteria such as E. coli is performed and cooled.
  • the measurement result when the predetermined heat treatment is omitted among the above treatments is the plate count (6.2 ⁇ 10 3 CFU / g) in the case of “non-heating” in FIG.
  • a sample of commercially available chocolate is sampled at a predetermined temperature of 70 ° C for 20 minutes.
  • the heat-resistant bacteria count was measured by the oxygen electrode method.
  • the measurement result is the DOX detection time (462 ⁇ 5 minutes) in the case of “heating” in Fig. 3.
  • commercially available chocolate was sampled, and the number of heat-resistant bacteria was measured by the oxygen electrode method without performing a predetermined heat treatment.
  • the measurement result is the DOX detection time (447 ⁇ 27 minutes) in the case of “Non-heating” in Fig. 3.
  • a calibration curve by setting a threshold value (in this case, 300 nA), using the time when the current value exceeds the threshold value as the detection time, and dividing in advance, the number of bacteria or the number of bacteria measured separately. Convert the detection time to the number of bacteria.
  • a threshold value in this case, 300 nA
  • the number of thermostable bacteria contained in the specimen can be measured in a shorter period of time by measuring the number of thermostable bacteria using the oxygen electrode method (agar).
  • the oxygen electrode method agar
  • the culture method it is about 48 hours, but in the case of the oxygen electrode method, it is sufficiently shorter than the 48 hours).
  • troublesome operations such as dilution, pour, layering, and visual counting of bacteria can be omitted.
  • the oxygen electrode method is used, the above-described dilution, pour, layering, visual counting, and other artificial work can be omitted, so that variations in measurement can be suppressed.
  • non-thermophilic bacteria such as Escherichia coli
  • the oxygen electrode method can be applied to a liquid medium in which only heat-resistant bacteria survive, and only the number of heat-resistant bacteria can be measured.
  • the oxygen electrode method measures the number of bacteria by monitoring an electrical signal, and thus has an advantage that it is easy to automate measurement, create a database of measurement results, and network a measurement system.
  • the specimen after the predetermined heat treatment is added to the liquid medium, and the liquid medium is It was mentioned when measuring the number of heat-resistant bacteria by the oxygen electrode method.
  • the following procedure may be adopted.
  • Predetermined heat treatment is applied to the liquid medium to which the specimen has been added.
  • the non-heat-resistant bacteria can be sterilized, and the heat-resistant bacteria can remain in the liquid medium.
  • a change in dissolved oxygen concentration of the liquid medium subjected to the predetermined heat treatment is measured using an oxygen electrode.
  • the number of heat-resistant bacteria can be measured by measuring the change in the dissolved oxygen concentration. According to this procedure, as described above, the number of thermotolerant bacteria contained in the specimen can be measured in a shorter time, with simple work, and while suppressing variation in measurement.
  • the following bacteria count measuring apparatuses can be provided.
  • the bacterial count measuring apparatus can measure the number of heat-resistant bacteria by the oxygen electrode method described in, for example, the above-mentioned JP-A-2005-224117 and JP-A-2005-304418. It is a microbe count apparatus, Comprising: The following part is provided.
  • the bacterial count measuring apparatus includes an oxygen electrode and a control unit.
  • the oxygen electrode can be inserted into a liquid medium installed in the bacterial count measuring apparatus.
  • the control unit performs control to perform a predetermined heat treatment on the liquid medium to which the specimen is added.
  • the said control part performs the control which measures a heat resistant microbe count by measuring the change of the dissolved oxygen concentration of a liquid culture medium using the oxygen electrode after the said predetermined heat processing.
  • the user prepares a predetermined specimen and adds it to the liquid medium.
  • a predetermined heat treatment is automatically performed on the installed liquid medium under the control of the control unit.
  • the predetermined heat treatment is, for example, 70 ° C, 20 minutes, or 100 ° C, 15 minutes, and the predetermined heat treatment can sterilize non-heat-resistant bacteria such as E. coli (in other words, In this way, only heat-resistant bacteria can remain in the liquid medium).
  • the oxygen electrode method using an oxygen electrode is automatically applied to the liquid medium, and as a result, only the number of heat-resistant bacteria can be automatically measured.
  • the method may further comprise a step of adding pyruvic acid to a liquid medium containing the spore bacterium before the growth of the spore bacterium which is a thermostable bacterium (Japanese Patent Application No. 2004-127911). ).
  • a thermostable bacterium Japanese Patent Application No. 2004-127911
  • FIG. 4 shows the measurement results showing the DOX detection time (minutes) and the measurement variation CV (%) with and without the addition of pyruvic acid.
  • the DOX detection time is shortened and the measurement reproducibility is improved when pyruvic acid is added.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Toxicology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Disclosed is a cell count determination method for a thermoduric bacterium, which can determine the cell count of a thermoduric bacterium within a shorter measurement time. The method comprises the following steps (A) and (B): (A) subjecting a sample to a given thermal treatment to sterilize a predetermined bacterium (a non-thermoduric bacterium such as Escherichia coli) and allow cells of a thermoduric bacterium to remain in the sample; and (B), subsequent to the step (A), adding the sample to a liquid culture medium and measuring the change in concentration of dissolved oxygen in the liquid culture medium using an oxygen electrode to determine the cell count of the thermoduric bacterium.

Description

明 細 書  Specification
耐熱性菌数測定方法および菌数測定装置  Heat-resistant bacterial count measuring method and bacterial count measuring apparatus
技術分野  Technical field
[0001] この発明は、耐熱性菌数測定方法および菌数測定装置に係る発明である。  [0001] The present invention relates to a heat-resistant bacterial count measuring method and a bacterial count measuring apparatus.
背景技術  Background art
[0002] たとえば食品の衛生管理の観点から、食品に含まれる芽胞菌等の耐熱性菌の数を 測定することが要求されている。耐熱性菌数を測定する方法として、たとえば寒天培 養法が従来より知られている(非特許文献 1)。  For example, from the viewpoint of food hygiene management, it is required to measure the number of heat-resistant bacteria such as spore bacteria contained in food. As a method for measuring the number of heat-resistant bacteria, for example, an agar culture method has been conventionally known (Non-patent Document 1).
[0003] 寒天培養法は、検体が添加された寒天培地に対して、たとえば 100°C、 15分間の 所定の熱処理を施す。当該所定の熱処理により、耐熱性菌以外の非耐熱性菌(たと えば大腸菌等)を殺菌することができる。そして、当該所定の熱処理後、耐熱性菌を 培養し、発生したコロニーの数を目視でカウントすることにより耐熱性菌数を測定する ものである。  [0003] In the agar culture method, a predetermined heat treatment is performed, for example, at 100 ° C for 15 minutes on an agar medium to which a specimen is added. By the predetermined heat treatment, non-heat-resistant bacteria other than heat-resistant bacteria (for example, Escherichia coli, etc.) can be sterilized. Then, after the predetermined heat treatment, the heat-resistant bacteria are cultured, and the number of colonies generated is visually counted to measure the number of heat-resistant bacteria.
[0004] 非特許文献 1:森地敏樹監修、「食品微生物検査マニュアル」、栄研器材株式会社発 行、 2002年 7月、 ISBN4- 9901151 - 1 - 2  [0004] Non-Patent Document 1: Supervised by Toshiki Morichi, “Food Microbiology Inspection Manual”, published by Eiken Equipment Co., Ltd., July 2002, ISBN4- 9901151-1-2
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] しかし、上記寒天培養法により耐熱性菌数を測定する方法では、測定時間に長時 間を要するという問題が生じていた。さらに、上記寒天培養法により耐熱性菌数を測 定する方法では、作業工程が煩雑化し、かつ作業者の作業に起因するばらつきが生 じるという問題も生じていた。 [0005] However, the method for measuring the number of heat-resistant bacteria by the agar culture method has a problem that it takes a long time to measure. Furthermore, in the method of measuring the number of thermotolerant bacteria by the agar culture method, there are problems that the work process becomes complicated and that variations due to the work of the operator occur.
[0006] そこで、本発明は、より短!/、測定時間で耐熱性菌数を測定することができる耐熱性 菌数測定方法および菌数測定装置を提供することを目的とする。さらには、簡易な作 業で、かつ測定結果のばらつきが少な!/、耐熱性菌数測定方法および菌数測定装置 を提供することを目的とする。 [0006] Accordingly, an object of the present invention is to provide a thermostable bacteria count measuring method and a bacteria count measuring apparatus capable of measuring the thermostable bacteria count in a shorter time / measurement time. It is another object of the present invention to provide a heat-resistant bacterial count measuring method and bacterial count measuring apparatus that are simple work and have little variation in measurement results.
課題を解決するための手段  Means for solving the problem
[0007] 上記の目的を達成するために、本発明に係る請求項 1に記載の耐熱性菌数測定 方法は、検体に含まれる耐熱性菌の数を測定する耐熱性菌数測定方法であって、 ( A)前記検体に対して所定の熱処理を施すことにより所定の菌を殺菌し、前記検体に 前記耐熱性菌を残存させる工程と、(B)前記工程 (A)の後に、前記検体を液体培地 に添加し、酸素電極を用いて前記液体培地の溶存酸素濃度の変化を測定すること により、前記耐熱性菌数を測定する工程とを、備えている。 [0007] In order to achieve the above object, the thermostable bacterial count measurement according to claim 1 of the present invention The method is a thermostable count method for measuring the number of thermostable bacteria contained in a specimen, and (A) a predetermined heat treatment is performed on the specimen to sterilize the predetermined bacteria, (B) after the step (A), by adding the specimen to the liquid medium and measuring the change in the dissolved oxygen concentration of the liquid medium using an oxygen electrode, Measuring the number of heat-resistant bacteria.
[0008] また、請求項 2に記載の耐熱性菌数測定方法は、検体に含まれる耐熱性菌の数を 測定する耐熱性菌数測定方法であって、 (A)前記検体を添加した液体培地に対し て所定の熱処理を施すことにより所定の菌を殺菌し、前記液体培地に前記耐熱性菌 を残存させる工程と、(B)前記工程 (A)の後に、酸素電極を用いて前記液体培地の 溶存酸素濃度の変化を測定することにより、前記耐熱性菌数を測定する工程とを、備 えている。 [0008] The method for measuring the number of heat-resistant bacteria according to claim 2 is a method for measuring the number of heat-resistant bacteria contained in a sample, wherein (A) the liquid to which the sample is added A step of sterilizing a predetermined bacterium by subjecting the medium to a predetermined heat treatment to leave the heat-resistant bacterium in the liquid medium; and (B) after the step (A), using the oxygen electrode, the liquid And a step of measuring the number of heat-resistant bacteria by measuring a change in the dissolved oxygen concentration of the medium.
[0009] また、請求項 3に記載の耐熱性菌数測定方法は、請求項 1または請求項 2に記載 の耐熱性菌数測定方法であって、前記耐熱性菌は、芽胞菌であり、(C)前記芽胞菌 を増殖させる前の工程であって、前記芽胞菌を含む前記液体培地にピルビン酸を加 える工程を、さらに備えている。  [0009] Further, the method for measuring the number of heat-resistant bacteria according to claim 3 is the method for measuring the number of heat-resistant bacteria according to claim 1 or 2, wherein the heat-resistant bacteria are spore bacteria. (C) The method further includes the step of adding pyruvic acid to the liquid medium containing the spore bacterium before the spore bacterium is grown.
[0010] また、請求項 4に記載の菌数測定装置は、酸素電極法により耐熱性菌数の測定を 行うことができる菌数測定装置であって、前記菌数測定装置に設置される液体培地 内に揷入可能な酸素電極と、検体を添加した前記液体培地に対して所定の熱処理 を施し、当該所定の熱処理後に、前記酸素電極を用いて前記液体培地の溶存酸素 濃度の変化を測定することにより、前記耐熱性菌数を測定する制御部とを、備えてい 発明の効果  [0010] Further, the bacterial count measuring apparatus according to claim 4 is a bacterial count measuring apparatus capable of measuring the heat-resistant bacterial count by the oxygen electrode method, and is a liquid installed in the bacterial count measuring apparatus. Predetermined heat treatment is applied to the liquid medium to which the oxygen electrode that can be inserted into the medium and the specimen are added, and the change in dissolved oxygen concentration in the liquid medium is measured using the oxygen electrode after the predetermined heat treatment. And a control unit for measuring the number of heat-resistant bacteria.
[0011] 本発明の請求項 1 , 2, 4に記載の発明では、酸素電極法により耐熱性菌数の測定 を実施している。したがって、測定時間は短時間で済む。また、寒天培養法の場合で 必要であった、希釈、混釈、重層、 目視による菌数カウント等の人為的作業を省略す ること力 Sできる。したがって、作業の簡易化を図ることができると共に、人為的作業に 起因した測定のバラツキを抑制することができる。さらに、検体または検体を添加した 液体培地に対して所定の熱処理を施している。したがって、大腸菌等の非耐熱性菌 を殺菌することができ、結果として耐熱性菌のみ菌数を測定することができる。 [0011] In the inventions according to claims 1, 2, and 4 of the present invention, the number of heat-resistant bacteria is measured by the oxygen electrode method. Therefore, the measurement time is short. In addition, it is possible to eliminate the human work required for the agar culture method, such as dilution, pour, layering, and visual count of bacteria. Therefore, the work can be simplified, and variations in measurement due to the manual work can be suppressed. Furthermore, a predetermined heat treatment is performed on the sample or the liquid medium to which the sample is added. Therefore, non-heat-resistant bacteria such as E. coli As a result, the number of bacteria can be measured only for heat-resistant bacteria.
[0012] また、本発明の請求項 3に記載の発明は、芽胞菌を増殖させる前の工程であって、 芽胞菌を含む液体培地にピルビン酸を加える工程を、さらに備えている。したがって[0012] Further, the invention according to claim 3 of the present invention further includes a step of adding pyruvic acid to a liquid medium containing the spore bacterium, before the spore bacterium is grown. Therefore
、測定時間のさらなる短縮化、および測定結果の再現性向上(つまり、測定のバラッ キの縮小化)を図ること力 Sできる。 In addition, the measurement time can be further shortened and the reproducibility of the measurement results can be improved (that is, the variation in measurement can be reduced).
[0013] この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによ つて、より明白となる。 [0013] Objects, features, aspects, and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
図面の簡単な説明  Brief Description of Drawings
[0014] [図 1]本発明を適用した場合の測定結果の一例を示す図である。  FIG. 1 is a diagram showing an example of a measurement result when the present invention is applied.
[図 2]本発明を適用した場合の測定結果の一例を示す図である。  FIG. 2 is a diagram showing an example of measurement results when the present invention is applied.
[図 3]市販のチョコレートに対して本発明を適用した場合の図である。  FIG. 3 is a diagram when the present invention is applied to commercially available chocolate.
[図 4]ピルビン酸添加による効果を示す測定結果図である。  FIG. 4 is a measurement result diagram showing the effect of adding pyruvic acid.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 以下、この発明をその実施の形態を示す図面に基づいて具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to the drawings illustrating embodiments thereof.
[0016] 以下、実施の形態として、本発明を適用した酸素電極法(DOX : dissolved oxygen electrode method)を利用した、所定の検体に含まれ得る耐熱性菌の菌数測定方法 について説明する。なお、一般的に耐熱性菌のほとんどが芽胞菌である。ここで、酸 素電極法は、検体を液体培地に添加して微生物を培養し、酸素電極を用いて当該 液体培地の溶存酸素濃度の変化を測定することにより微生物数を測定する方法のこ とである(たとえば、特開 2005— 224117号公報、特開 2005— 304418号公報)。 Hereinafter, as an embodiment, a method for measuring the number of thermostable bacteria that can be contained in a predetermined specimen using an oxygen electrode method (DOX: dissolved oxygen electrode method) to which the present invention is applied will be described. In general, most of the heat-resistant bacteria are spore bacteria. Here, the oxygen electrode method is a method of measuring the number of microorganisms by adding a specimen to a liquid medium, culturing microorganisms, and measuring changes in the dissolved oxygen concentration of the liquid medium using an oxygen electrode. (For example, JP-A-2005-224117, JP-A-2005-304418).
[0017] 芽胞菌等の耐熱性菌は、加熱に対して強い抵抗性を有しており、所定の熱処理を 施しても生存し得る。 [0017] Heat-resistant bacteria such as spore bacteria have strong resistance to heating, and can survive even after a predetermined heat treatment.
[0018] はじめに、検体に対して所定の熱処理を施す。当該熱処理により、所定の菌(大腸 菌等の非耐熱性菌)を殺菌し、検体に耐熱性菌のみを残存させる。その後、当該検 体を液体培地に添加する。ここで、当該所定の熱処理は、たとえば 100°Cの温度を 1 5分間施す。または、 70°Cの温度を 20分間施す。なお、当該所定の熱処理として、 公定法は 100°C 10分であるが、好気性菌自主検査向けは 70°C20分であり、缶詰等 自主検査向けは 100°C 15分である。当該所定の熱処理は、対象とする食品、加工 法によって、加熱温度、加熱時間は変化しうる(たとえば、オートクレーブでの 121°C 20分)。 First, a predetermined heat treatment is performed on the specimen. By the heat treatment, predetermined bacteria (non-heat-resistant bacteria such as colon bacteria) are sterilized, and only the heat-resistant bacteria remain in the specimen. Thereafter, the specimen is added to the liquid medium. Here, the predetermined heat treatment is performed, for example, at a temperature of 100 ° C. for 15 minutes. Or apply 70 ° C for 20 minutes. As for the prescribed heat treatment, the official method is 100 ° C for 10 minutes, but for aerobic bacteria self-inspection is 70 ° C for 20 minutes, and for canned food self-inspection is 100 ° C for 15 minutes. The prescribed heat treatment is the target food, processing Depending on the method, the heating temperature and the heating time can vary (for example, 121 ° C for 20 minutes in an autoclave).
[0019] そして、上記液体培地を、内面に酸素電極を有する測定用セルに注入し、該測定 用セルを測定装置にセットする。液体培地中の溶存酸素濃度は測定用セルの酸素 電極により電気信号へと変換され、測定装置は、当該電気信号に基づいて液体培地 中の溶存酸素濃度の変化を測定する。これにより、測定装置は、液体培地中に含ま れていた耐熱性菌の初期菌数を測定することができる。  Then, the liquid medium is injected into a measurement cell having an oxygen electrode on the inner surface, and the measurement cell is set in a measurement device. The dissolved oxygen concentration in the liquid medium is converted into an electric signal by the oxygen electrode of the measuring cell, and the measuring device measures the change in the dissolved oxygen concentration in the liquid medium based on the electric signal. As a result, the measuring device can measure the initial number of heat-resistant bacteria contained in the liquid medium.
[0020] 通常、この電気信号としては、酸素電極が出力する電流が用いられ、その電流 は 溶存酸素濃度が高くなるほど大きな値となる。液体培地中の溶存酸素は耐熱性菌の 呼吸によって消費されるので、該電流値は時間の経過と共に下がってくる。このとき、 該電流値がゼロに近い所定のしきい値 Ith以下に減少するまでの所要時間は、初期 菌数によって異なり、初期菌数が多いほど短くなる。液体培地中の耐熱性菌数が多 [0020] Normally, a current output from the oxygen electrode is used as the electrical signal, and the current increases as the dissolved oxygen concentration increases. Since dissolved oxygen in the liquid medium is consumed by respiration of thermotolerant bacteria, the current value decreases with time. At this time, the time required for the current value to decrease below the predetermined threshold value Ith close to zero differs depending on the initial number of bacteria, and becomes shorter as the initial number of bacteria increases. High number of heat-resistant bacteria in liquid medium
V、と、それだけ酸素の消費量が多レ、ので溶存酸素濃度が早く低下するためである。 従って、酸素電極法 (DOX)による耐熱性菌数測定では、酸素電極の出力電流がし きい値 Ithに達するまでの所要時間を測定し、その結果から液体培地中の初期菌数 を算出すること力できる。 V, and so much oxygen consumption, so the dissolved oxygen concentration drops quickly. Therefore, when measuring the number of heat-resistant bacteria by the oxygen electrode method (DOX), measure the time required until the output current of the oxygen electrode reaches the threshold value Ith, and calculate the initial number of bacteria in the liquid medium from the result. I can do it.
[0021] 以下、本発明を適用した場合の測定結果について説明する。 Hereinafter, measurement results when the present invention is applied will be described.
[0022] まず、検体として次のようなものを使用した。希釈液(生理食塩水)中に大腸菌 100 000 (10の5乗)じ?11/1111を浮遊させたものに、市販の枯草菌芽胞液を 10CFU/ ml、 lOOOCFU/ml, lOOOOOCFU/mlを各々添加したものを採用している。なお 、 CFUとは、 Colony Forming Unit (集落形成単位)の略である。たとえば、 lm ほたは lgの資料から 50個の集落が検出される場合には、 50CFU/ml、または 50 CFU/gと表示される。 [0022] First, the following samples were used. E. coli 100 000 (10 to the 5th power) in the diluent (saline)? A suspension of 11/1111 with 10CFU / ml, lOOOCFU / ml, and lOOOOOCFU / ml of a commercially available Bacillus subtilis spore solution is used. CFU is an abbreviation for Colony Forming Unit. For example, if 50 villages are detected from lm materials, 50 CFU / ml or 50 CFU / g is displayed.
[0023] 当該検体を用いて、上記所定の熱処理(70°C20分)を実施した後に酸素電極法に より芽胞菌数を測定するまでの時間と、上記所定の熱処理を実施せず(非加熱処理) に酸素電極法により芽胞菌数を測定するまでの時間とを、測定した。その結果が図 1 , 2である。ここで、図 1に表記された測定値をプロット化したものが図 2である。  [0023] Using the specimen, after performing the predetermined heat treatment (70 ° C for 20 minutes), the time until the number of spore bacteria is measured by the oxygen electrode method, and the predetermined heat treatment is not performed (non-heated) The time until the number of spore bacteria was measured by the oxygen electrode method was measured. The results are shown in Figs. Here, the measured values shown in Fig. 1 are plotted in Fig. 2.
[0024] 図 1 , 2から分かるように、本発明を適用した場合においても耐熱性菌数(図 1 , 2で は芽胞菌数)の測定を行うことができた。なお、寒天培養法により、耐熱性菌数を測 定する場合には、通常 48時間の測定時間を要するが、図 1 , 2に示すように、本発明 を適用した場合には、いずれの枯草菌芽胞液濃度においても、 24時間未満で芽胞 菌数を測定することができた。 [0024] As can be seen from Figs. 1 and 2, even when the present invention is applied, the number of heat-resistant bacteria (Figs. 1 and 2 Was able to measure the number of spores. When measuring the number of thermotolerant bacteria by the agar culture method, a measurement time of 48 hours is usually required. However, as shown in FIGS. 1 and 2, when the present invention is applied, any hay The number of spore bacteria could be measured in less than 24 hours at the fungal spore concentration.
[0025] また、図 2に示すように、非加熱処理の場合には、枯草菌芽胞液濃度が変化しても 測定時間はさほど変化しない。このことにより、非加熱処理の場合には、芽胞菌以外 の大腸菌等の非耐熱性菌の測定に関与する影響が大きいと把握できる。他方、図 2 に示すように、所定の熱処理を施した場合には、枯草菌芽胞液濃度を変化させると 測定時間も大きく変化する。このことにより、当該所定の熱処理により、大腸菌等の非 耐熱性菌が殺菌されていることが理解できる(つまり、所定の熱処理を施すことにより 、芽胞菌のみの菌数測定することが可能となる)。 In addition, as shown in FIG. 2, in the case of non-heating treatment, the measurement time does not change much even if the Bacillus subtilis spore concentration changes. From this, in the case of non-heat treatment, it can be understood that the influence involved in the measurement of non-heat-resistant bacteria such as Escherichia coli other than spore bacteria is large. On the other hand, as shown in Fig. 2, when the prescribed heat treatment is applied, the measurement time changes greatly when the concentration of Bacillus subtilis spores is changed. As a result, it can be understood that the non-thermostable bacteria such as E. coli are sterilized by the predetermined heat treatment (that is, by performing the predetermined heat treatment, it is possible to measure the number of spore bacteria alone. ).
[0026] 次に、市販のチョコレートを用いた耐熱性菌数の測定について説明する。 [0026] Next, measurement of the number of heat-resistant bacteria using commercially available chocolate will be described.
[0027] 市販のチョコレートをサンプリングする。ここで、今回の測定におけるサンプリングと は、所定の量の検体から、 5gまたは 10gの検体を測りとり、 9倍量の生理食塩水また は PBS (リン酸バッファ)等の希釈液を加える作業のことである。ここでは生理食塩水 を使用している。当該サンプリング後、 70°C20分間の所定の熱処理 (つまり、大腸菌 等の非耐熱菌の殺菌処理)を行い、冷却する。 [0027] A commercially available chocolate is sampled. Here, sampling in this measurement refers to the work of measuring a 5g or 10g sample from a given amount of sample and adding a 9-fold amount of physiological saline or PBS (phosphate buffer). That is. Here, physiological saline is used. After the sampling, a predetermined heat treatment at 70 ° C for 20 minutes (that is, sterilization treatment of non-heat-resistant bacteria such as E. coli) is performed and cooled.
[0028] 当該冷却後の検体から、希釈液 (ここでは生理食塩水)を用いて、耐熱性菌数が 3 0〜300CFU/mlとなる濃度を確実に含むと想定される 10倍の希釈系列を作る。  [0028] From the cooled specimen, using a diluent (here, physiological saline), a 10-fold dilution series that is assumed to surely contain a concentration of 30-300 CFU / ml of heat-resistant bacteria make.
[0029] その後、サンプリングの検体 (原液)、 10倍の希釈系列の検体を各々、各滅菌シャ ーレに lml分注する。各滅菌シャーレに、滅菌後 50°Cに保温した寒天培地 15mlを 加えてよく混合して冷却凝固後、寒天培地 4mlを薄く重層する。  [0029] Thereafter, 1 ml of each of the sampling specimen (stock solution) and the 10-fold dilution series specimen is dispensed into each sterile dish. Add 15 ml of agar medium kept at 50 ° C after sterilization to each sterilized petri dish, mix well, cool and solidify, and layer 4 ml of agar medium thinly.
[0030] そして、 48時間後に各シャーレ上のコロニーを目視でカウントし、希釈に基づいて 検体中の菌数を算出する。当該測定結果が、図 3の「加熱」の場合の平板菌数 (9. 1 X 103CFU/g)である。 [0030] After 48 hours, colonies on each petri dish are visually counted, and the number of bacteria in the sample is calculated based on the dilution. The measurement result is the plate count (9.1 × 10 3 CFU / g) in the case of “heating” in FIG.
[0031] 他方、上記各処理の内、所定の熱処理を省略した場合の測定結果が、図 3の「非 加熱」の場合の平板菌数(6. 2 X 103CFU/g)である。 On the other hand, the measurement result when the predetermined heat treatment is omitted among the above treatments is the plate count (6.2 × 10 3 CFU / g) in the case of “non-heating” in FIG.
[0032] これに対して、市販のチョコレートをサンプリングし、これに対して 70°C20分の所定 の熱処理を実施し、酸素電極法により耐熱性菌数を測定した。当該測定結果が、図 3の「加熱」の場合の DOX検出時間(462 ± 5分)である。他方、市販のチョコレートを サンプリングし、これに対して所定の熱処理を実施せずに、酸素電極法により耐熱性 菌数を測定した。当該測定結果が、図 3の「非加熱」の場合の DOX検出時間(447 ± 27分)である。 [0032] In contrast, a sample of commercially available chocolate is sampled at a predetermined temperature of 70 ° C for 20 minutes. The heat-resistant bacteria count was measured by the oxygen electrode method. The measurement result is the DOX detection time (462 ± 5 minutes) in the case of “heating” in Fig. 3. On the other hand, commercially available chocolate was sampled, and the number of heat-resistant bacteria was measured by the oxygen electrode method without performing a predetermined heat treatment. The measurement result is the DOX detection time (447 ± 27 minutes) in the case of “Non-heating” in Fig. 3.
[0033] 酸素電極法を用いた周知の方法により、図 3の DOX検出時間を菌数に換算した場 合、酸素電極法を用いて測定された耐熱性菌の菌数と、寒天培養法により測定され た耐熱性菌の菌数(平板菌数)とが、ほぼ同じ値となった (換算の結果、非熱処理の 場合: 7. l X 103CFU/g、所定の熱処理を施した場合: 4. 5 X 103CFU/g)。なお 、検出時間と菌数との関係については、特願 2005— 175998号公報、特願平 11— 99870号公報、特願 2002— 34159号公報で詳細に述べられている。閾値を設け( 今回の場合は、 300nA)、電流値が当該閾値を超える時間を検出時間とし、予め分 力、つている菌数ほたは別途測定した菌数)によって検量線を作成して、検出時間を 菌数に換算する。 [0033] When the DOX detection time in Fig. 3 is converted to the number of bacteria by a known method using the oxygen electrode method, the number of thermostable bacteria measured using the oxygen electrode method and the agar culture method are used. The measured number of heat-resistant bacteria (plate count) was almost the same value (when converted, non-heat-treated: 7. l X 10 3 CFU / g, given heat treatment) : 4.5 X 10 3 CFU / g). The relationship between the detection time and the number of bacteria is described in detail in Japanese Patent Application No. 2005-175998, Japanese Patent Application No. 11-99870, and Japanese Patent Application No. 2002-34159. Create a calibration curve by setting a threshold value (in this case, 300 nA), using the time when the current value exceeds the threshold value as the detection time, and dividing in advance, the number of bacteria or the number of bacteria measured separately. Convert the detection time to the number of bacteria.
[0034] 図 3の測定結果から分力、るように、本発明を用いた場合(つまり、酸素電極法により 耐熱性菌を測定した場合)であっても、寒天培養法と同様に、食料品に存する耐熱 性菌の菌数を測定することができる。さらに、図 3の結果からも分かるように、本発明 を採用した方が、測定時間の短縮化を図ることができる。  [0034] As shown by the component force from the measurement results in Fig. 3, even when the present invention is used (that is, when thermostable bacteria are measured by the oxygen electrode method), as in the agar culture method, The number of heat-resistant bacteria present in the product can be measured. Furthermore, as can be seen from the results in FIG. 3, the measurement time can be shortened by employing the present invention.
[0035] 以上の測定結果から分かるように、酸素電極法を用いて耐熱性菌数を測定すること により、検体に含まれていた耐熱性菌数をより短期間で測定することができる(寒天 培養法の場合が 48時間程度であるのに対して、酸素電極法の場合には、当該 48時 間より十分短い)。また、希釈、混釈、重層、菌数の目視カウント等の面倒な作業も省 略できる。また、酸素電極法を用いた場合には、前述の希釈、混釈、重層、 目視カウ ント等人為的な作業も省略できるので、測定のバラツキを抑制することができる。  [0035] As can be seen from the above measurement results, the number of thermostable bacteria contained in the specimen can be measured in a shorter period of time by measuring the number of thermostable bacteria using the oxygen electrode method (agar). In the case of the culture method, it is about 48 hours, but in the case of the oxygen electrode method, it is sufficiently shorter than the 48 hours). In addition, troublesome operations such as dilution, pour, layering, and visual counting of bacteria can be omitted. In addition, when the oxygen electrode method is used, the above-described dilution, pour, layering, visual counting, and other artificial work can be omitted, so that variations in measurement can be suppressed.
[0036] また図 1 , 2の結果力、らも分かるように、事前に、検体に対して所定の熱処理を施す ことにより、非耐熱性菌(大腸菌等)を殺菌することができる。したがって、耐熱性菌の みが生存する液体培地に対して酸素電極法を施すことができ、耐熱性菌の菌数のみ を測定すること力できる。 [0037] なお、酸素電極法では、電気信号をモニタすることで菌数の測定が行われるので、 測定の自動化、測定結果のデータベース化、測定システムのネットワーク化が容易で あるという利点もある。 [0036] As can be seen from the results shown in Figs. 1 and 2, non-thermophilic bacteria (such as Escherichia coli) can be sterilized by subjecting the specimen to a predetermined heat treatment in advance. Therefore, the oxygen electrode method can be applied to a liquid medium in which only heat-resistant bacteria survive, and only the number of heat-resistant bacteria can be measured. [0037] It should be noted that the oxygen electrode method measures the number of bacteria by monitoring an electrical signal, and thus has an advantage that it is easy to automate measurement, create a database of measurement results, and network a measurement system.
[0038] また、上記実施の形態では、検体に対して所定の熱処理を施すことにより非耐熱性 菌を殺菌した後に、当該所定の熱処理後の検体を液体培地に添加し、当該液体培 地を用いて酸素電極法により耐熱性菌数を測定する場合に言及した。  [0038] Further, in the above embodiment, after non-heat-resistant bacteria are sterilized by subjecting the specimen to a predetermined heat treatment, the specimen after the predetermined heat treatment is added to the liquid medium, and the liquid medium is It was mentioned when measuring the number of heat-resistant bacteria by the oxygen electrode method.
[0039] 上記で言及した耐熱性菌数の測定手順に加えて、次の手順を採用しても良い。検 体を添加した液体培地に対して所定の熱処理を施す。当該所定の熱処理により、非 耐熱性菌が殺菌され、液体培地に耐熱性菌を残存させることができる。その後、酸素 電極を用いて当該所定の熱処理を施した液体培地の溶存酸素濃度の変化を測定す る。当該溶存酸素濃度の変化の測定により、耐熱性菌数を測定することができる。当 該手順によっても、上述同様に、より短時間で、簡易な作業により、しかも測定のバラ ツキを抑制して、検体に含まれる耐熱性菌の数を測定することができる。また、当該 手順を実施する場合には、以下の菌数測定装置を提供できる。  [0039] In addition to the procedure for measuring the number of heat-resistant bacteria mentioned above, the following procedure may be adopted. Predetermined heat treatment is applied to the liquid medium to which the specimen has been added. By the predetermined heat treatment, the non-heat-resistant bacteria can be sterilized, and the heat-resistant bacteria can remain in the liquid medium. Thereafter, a change in dissolved oxygen concentration of the liquid medium subjected to the predetermined heat treatment is measured using an oxygen electrode. The number of heat-resistant bacteria can be measured by measuring the change in the dissolved oxygen concentration. According to this procedure, as described above, the number of thermotolerant bacteria contained in the specimen can be measured in a shorter time, with simple work, and while suppressing variation in measurement. Moreover, when implementing the said procedure, the following bacteria count measuring apparatuses can be provided.
[0040] つまり、当該菌数測定装置は、たとえば上述した特開 2005— 224117号公報、特 開 2005— 304418号公報に記載されている酸素電極法による耐熱性菌数の測定を 行うことができる菌数測定装置であって、次の部分を備える。当該菌数測定装置は、 酸素電極と制御部とを備えている。ここで、酸素電極は、当該菌数測定装置に設置さ れる液体培地内に揷入可能である。また、制御部は、検体を添加した液体培地に対 して所定の熱処理を施す制御を行う。また、当該制御部は、当該所定の熱処理後に 、酸素電極を用いて液体培地の溶存酸素濃度の変化を測定することにより、耐熱性 菌数を測定する制御を行う。  That is, the bacterial count measuring apparatus can measure the number of heat-resistant bacteria by the oxygen electrode method described in, for example, the above-mentioned JP-A-2005-224117 and JP-A-2005-304418. It is a microbe count apparatus, Comprising: The following part is provided. The bacterial count measuring apparatus includes an oxygen electrode and a control unit. Here, the oxygen electrode can be inserted into a liquid medium installed in the bacterial count measuring apparatus. Further, the control unit performs control to perform a predetermined heat treatment on the liquid medium to which the specimen is added. Moreover, the said control part performs the control which measures a heat resistant microbe count by measuring the change of the dissolved oxygen concentration of a liquid culture medium using the oxygen electrode after the said predetermined heat processing.
[0041] 当該菌数測定装置において、ユーザは、所定の検体を用意し、これを液体培地に 添加する。当該液体培地を当該菌数測定装置に設置すれば、自動的に、上記制御 部の制御の下、設置された液体培地に対して所定の熱処理が実施される。上述の通 り、当該所定の熱処理は、たとえば 70°C、 20分、若しくは 100°C、 15分であり、当該 所定の熱処理により、大腸菌等の非耐熱性菌を殺菌することができる(換言すれば、 液体培地に耐熱性菌のみを残存させることができる)。その後、制御部の制御の下、 自動的に、酸素電極を用いた酸素電極法を当該液体培地に施し、結果として、耐熱 性菌数のみの測定を自動的に行うことができる。 [0041] In the bacterial count measuring apparatus, the user prepares a predetermined specimen and adds it to the liquid medium. When the liquid medium is installed in the bacterial count measuring apparatus, a predetermined heat treatment is automatically performed on the installed liquid medium under the control of the control unit. As described above, the predetermined heat treatment is, for example, 70 ° C, 20 minutes, or 100 ° C, 15 minutes, and the predetermined heat treatment can sterilize non-heat-resistant bacteria such as E. coli (in other words, In this way, only heat-resistant bacteria can remain in the liquid medium). After that, under the control of the control unit The oxygen electrode method using an oxygen electrode is automatically applied to the liquid medium, and as a result, only the number of heat-resistant bacteria can be automatically measured.
[0042] なお、耐熱性菌である芽胞菌を増殖させる前の工程であって、芽胞菌を含む液体 培地にピルビン酸を加える工程を、さらに備えていても良い(特願 2004— 127911 号公報)。これにより、図 4の測定結果に示すように、測定時間のさらなる短縮と、測 定結果の再現性向上を図ることができる。ここで、図 4は、ピルビン酸を添加させた場 合と添加しなかった場合とにおける、 DOX検出時間(分)と測定のばらつき CV (%)と を示す測定結果である。図 4において、ピルビン酸添加の場合の方が、 DOX検出時 間が短縮されており、測定再現性も向上している。なお、図 4の測定では、大腸菌群 105CFU/mlと枯草菌芽胞液 10CFU/mlとを含む生理食塩水をサンプルとし、当 該サンプルに対して所定の熱処理(70°C20分)を施した。当該サンプルを複数用意 し、一部のサンプルにピルビン酸を添カロ、他のサンプルにはピルビン酸を添加しなか つた。 [0042] It should be noted that the method may further comprise a step of adding pyruvic acid to a liquid medium containing the spore bacterium before the growth of the spore bacterium which is a thermostable bacterium (Japanese Patent Application No. 2004-127911). ). As a result, as shown in the measurement results in FIG. 4, the measurement time can be further shortened and the reproducibility of the measurement results can be improved. Here, FIG. 4 shows the measurement results showing the DOX detection time (minutes) and the measurement variation CV (%) with and without the addition of pyruvic acid. In Figure 4, the DOX detection time is shortened and the measurement reproducibility is improved when pyruvic acid is added. In the measurement of FIG. 4, a physiological saline containing 10 5 CFU / ml of coliform bacteria and 10 CFU / ml of Bacillus subtilis spore solution was used as a sample, and the sample was subjected to a predetermined heat treatment (70 ° C. for 20 minutes). did. Several samples were prepared, and some samples were added with pyruvic acid and other samples were not added with pyruvic acid.
[0043] また、廃棄物に耐熱性菌が残って!/、な!/、かを調べる場合には、非耐熱性菌を殺菌 するために、 121°C20分の所定の熱処理を施せば良い。通常、当該所定の熱処理 の条件では、芽胞菌であっても死滅する可能性がある。しかし、大容量の液体の中 心部などでは、充分に温度が上がらない場合があり、その場合には芽胞菌が生き残 る可能十生がある。  [0043] In addition, when investigating whether heat-resistant bacteria remain in the waste! /, What! /, In order to sterilize non-heat-resistant bacteria, a predetermined heat treatment at 121 ° C for 20 minutes may be performed. . Usually, even under the prescribed heat treatment conditions, there is a possibility that even spore bacteria may be killed. However, in the center of a large volume of liquid, the temperature may not rise sufficiently, in which case the spores may survive.
[0044] なお、上記各測定において、芽胞菌 (芽胞液)として、標準芽胞液を使用した (http  [0044] In each of the above measurements, standard spore fluid was used as spore bacteria (spore fluid) (http
/ / www. eikenkizai. co. jp/ pro duct/ ko s oukm/ ko soukm . html、よた は、 http : //ja. wikipedia. org/wiki/ % E 8 % 8 A % BD % E 8 % 83 % 9E ,参 昭)  / / www. eikenkizai. co. jp / pro duct / ko s oukm / ko soukm .html, Yota, http://www.wikipedia.org/wiki/% E 8% 8 A% BD% E 8% 83% 9E, Sanaki)
[0045] この発明は詳細に説明された力 上記した説明は、すべての局面において、例示 であって、この発明がそれに限定されるものではない。例示されていない無数の変形 例力 S、この発明の範囲から外れることなく想定され得るものと解される。  [0045] The present invention has been described in detail. The above description is illustrative in all aspects, and the present invention is not limited thereto. It is understood that the myriad variations S that are not illustrated can be assumed without departing from the scope of the present invention.

Claims

請求の範囲 The scope of the claims
[1] 検体に含まれる耐熱性菌の数を測定する耐熱性菌数測定方法であって、  [1] A method for measuring the number of heat-resistant bacteria contained in a specimen,
(A)前記検体に対して所定の熱処理を施すことにより所定の菌を殺菌し、前記検 体に前記耐熱性菌を残存させる工程と、  (A) a step of sterilizing a predetermined bacterium by subjecting the specimen to a predetermined heat treatment, and leaving the thermostable bacterium in the sample;
(B)前記工程 (A)の後に、前記検体を液体培地に添加し、酸素電極を用いて前記 液体培地の溶存酸素濃度の変化を測定することにより、前記耐熱性菌数を測定する 工程とを、備えている、  (B) after the step (A), adding the specimen to a liquid medium, and measuring the number of heat-resistant bacteria by measuring a change in dissolved oxygen concentration of the liquid medium using an oxygen electrode; With
ことを特徴とする耐熱性菌数測定方法。  A method for measuring the number of heat-resistant bacteria.
[2] 検体に含まれる耐熱性菌の数を測定する耐熱性菌数測定方法であって、 [2] A method for measuring the number of heat-resistant bacteria contained in a specimen,
(A)前記検体を添加した液体培地に対して所定の熱処理を施すことにより所定の 菌を殺菌し、前記液体培地に前記耐熱性菌を残存させる工程と、  (A) a step of sterilizing a predetermined bacterium by applying a predetermined heat treatment to the liquid medium to which the specimen is added, and leaving the thermostable bacterium in the liquid medium;
(B)前記工程 (A)の後に、酸素電極を用いて前記液体培地の溶存酸素濃度の変 化を測定することにより、前記耐熱性菌数を測定する工程とを、備えている、 ことを特徴とする耐熱性菌数測定方法。  (B) After the step (A), the step of measuring the number of heat-resistant bacteria by measuring the change in the dissolved oxygen concentration of the liquid medium using an oxygen electrode, A heat-resistant bacterial count measurement method.
[3] 前記耐熱性菌は、芽胞菌であり、 [3] The heat-resistant bacterium is a spore bacterium,
(C)前記芽胞菌を増殖させる前の工程であって、前記芽胞菌を含む前記液体培地 にピルビン酸をカロえる工程を、さらに備えている、  (C) before the growth of the spore bacteria, further comprising the step of caloric pyruvic acid in the liquid medium containing the spore bacteria,
ことを特徴とする請求項 1または請求項 2に記載の耐熱性菌数測定方法。  The method for measuring the number of heat-resistant bacteria according to claim 1 or 2, wherein:
[4] 酸素電極法により耐熱性菌数の測定を行うことができる菌数測定装置であって、 前記菌数測定装置に設置される液体培地内に揷入可能な酸素電極と、 検体を添加した前記液体培地に対して所定の熱処理を施し、当該所定の熱処理 後に、前記酸素電極を用いて前記液体培地の溶存酸素濃度の変化を測定すること により、前記耐熱性菌数を測定する制御部とを、備えている、 [4] A bacterial count measuring apparatus capable of measuring the number of heat-resistant bacteria by the oxygen electrode method, wherein an oxygen electrode that can be inserted into a liquid medium installed in the bacterial count measuring apparatus and a sample are added A controller that measures the number of heat-resistant bacteria by performing a predetermined heat treatment on the liquid medium and measuring a change in the dissolved oxygen concentration of the liquid medium using the oxygen electrode after the predetermined heat treatment. With
ことを特徴とする菌数測定装置。  The bacterial count measuring apparatus characterized by the above-mentioned.
PCT/JP2007/066466 2006-09-08 2007-08-24 Cell count determination method and cell count determination apparatus for thermoduric bacterium WO2008029645A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-243786 2006-09-08
JP2006243786A JP2008064648A (en) 2006-09-08 2006-09-08 Heat-resistant bacterium number measuring method and bacterium number measuring apparatus

Publications (1)

Publication Number Publication Date
WO2008029645A1 true WO2008029645A1 (en) 2008-03-13

Family

ID=39157080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066466 WO2008029645A1 (en) 2006-09-08 2007-08-24 Cell count determination method and cell count determination apparatus for thermoduric bacterium

Country Status (3)

Country Link
JP (1) JP2008064648A (en)
TW (1) TW200819533A (en)
WO (1) WO2008029645A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101566632B (en) * 2009-06-10 2013-07-10 陕西师范大学 Method for ELISA rapid detection of thermoduric bacteria

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6040558B2 (en) * 2012-04-13 2016-12-07 ダイキン工業株式会社 Bacteria inspection method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10276795A (en) * 1997-04-08 1998-10-20 Daikin Ind Ltd Measurement of physiological activity and apparatus therefor
JPH10276762A (en) * 1997-04-10 1998-10-20 Daikin Ind Ltd Apparatus for measuring cell activity
JP2005304418A (en) * 2004-04-23 2005-11-04 Daikin Ind Ltd Method for treating spore bearing bacteria
JP2006061003A (en) * 2004-08-24 2006-03-09 Nisshin Flour Milling Inc Reductional disinfection method for soil

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10276795A (en) * 1997-04-08 1998-10-20 Daikin Ind Ltd Measurement of physiological activity and apparatus therefor
JPH10276762A (en) * 1997-04-10 1998-10-20 Daikin Ind Ltd Apparatus for measuring cell activity
JP2005304418A (en) * 2004-04-23 2005-11-04 Daikin Ind Ltd Method for treating spore bearing bacteria
JP2006061003A (en) * 2004-08-24 2006-03-09 Nisshin Flour Milling Inc Reductional disinfection method for soil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101566632B (en) * 2009-06-10 2013-07-10 陕西师范大学 Method for ELISA rapid detection of thermoduric bacteria

Also Published As

Publication number Publication date
TW200819533A (en) 2008-05-01
JP2008064648A (en) 2008-03-21

Similar Documents

Publication Publication Date Title
McMeekin et al. Shelf life prediction: status and future possibilities
Wouters et al. Membrane permeabilization in relation to inactivation kinetics of Lactobacillus species due to pulsed electric fields
Álvarez et al. Inactivation of Yersinia enterocolitica by pulsed electric fields
Walter et al. Kinetic models for pulsed electric field and thermal inactivation of Escherichia coli and Pseudomonas fluorescens in whole milk
Klijn et al. Heat inactivation data for Mycobacterium avium subsp. paratuberculosis: implications for interpretation
Gómez et al. Modelling inactivation of Listeria monocytogenes by pulsed electric fields in media of different pH
Gómez et al. A model describing the kinetics of inactivation of Lactobacillus plantarum in a buffer system of different pH and in orange and apple juice
Shabala et al. Responses of Listeria monocytogenes to acid stress and glucose availability revealed by a novel combination of fluorescence microscopy and microelectrode ion-selective techniques
JP6815317B2 (en) How to establish resistance properties of biological indicators
Hanifian Survival of Mycobacterium avium subsp. paratuberculosis in ultra‐filtered white cheese
Tian et al. Evaluation of structural changes and intracellular substance leakage of Escherichia coli O157: H7 induced by ohmic heating
Cho et al. Inactivation kinetics and membrane potential of pathogens in soybean curd subjected to pulsed ohmic heating depending on applied voltage and duty ratio
Wedel et al. Resistance of thermophilic spore formers isolated from milk and whey products towards cleaning-in-place conditions: Influence of pH, temperature and milk residues
Rowan et al. Evidence of lethal and sublethal injury in food‐borne bacterial pathogens exposed to high‐intensity pulsed‐plasma gas discharges
WO2008029645A1 (en) Cell count determination method and cell count determination apparatus for thermoduric bacterium
Belessi et al. Evaluation of growth/no growth interface of Listeria monocytogenes growing on stainless steel surfaces, detached from biofilms or in suspension, in response to pH and NaCl
Flint et al. Rapid detection of Bacillus stearothermophilus using impedance-splitting
Trevisani et al. Thermal inactivation kinetics of Shiga toxin-producing Escherichia coli in buffalo Mozzarella curd
CN105779564A (en) Rapid detection method of escherichia coli in food
WO2013129655A2 (en) Method for predicting proliferation of microbial count
EP3714897A1 (en) Artificial sputum, method of producing an artificial sputum
Chang et al. Series quartz crystal sensor for remote bacteria population monitoring in raw milk via the Internet
Horvath et al. Using automatic conductimetry for monitoring spoilage bacteria on chilled pork cutlets
Lasik et al. Impedimetric test for rapid determination of performic acid (PFA) biocidal activity toward Echerichia coli
Lee et al. Manufacture of ice cream with improved microbiological safety by using gamma irradiation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806052

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07806052

Country of ref document: EP

Kind code of ref document: A1