JP6040558B2 - Bacteria inspection method - Google Patents

Bacteria inspection method Download PDF

Info

Publication number
JP6040558B2
JP6040558B2 JP2012092136A JP2012092136A JP6040558B2 JP 6040558 B2 JP6040558 B2 JP 6040558B2 JP 2012092136 A JP2012092136 A JP 2012092136A JP 2012092136 A JP2012092136 A JP 2012092136A JP 6040558 B2 JP6040558 B2 JP 6040558B2
Authority
JP
Japan
Prior art keywords
culture
culture solution
bacteria
salmonella
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012092136A
Other languages
Japanese (ja)
Other versions
JP2013220047A (en
Inventor
直樹 福井
直樹 福井
烏鷹 幸弘
幸弘 烏鷹
昭一 丹埜
昭一 丹埜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2012092136A priority Critical patent/JP6040558B2/en
Publication of JP2013220047A publication Critical patent/JP2013220047A/en
Application granted granted Critical
Publication of JP6040558B2 publication Critical patent/JP6040558B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Description

本発明は、電気的方法を用いた細菌の検査方法に関する。   The present invention relates to a method for examining bacteria using an electrical method.

サルモネラ属菌(サルモネラ)、腸炎ビブリオ菌、黄色ブドウ球菌、ボツリヌス菌、病原性大腸菌など種々の細菌が、食中毒の原因菌として知られている。我が国では食の安全を確保するため、販売又は提供される食品に対して、これらの原因菌の検査を義務付けており、基準を満たさない食品が市場に出回らないようにしている。食中毒の原因菌についての標準的な検査方法は、菌種ごとに定められており、公定法と呼ばれている。以下、図4を参照して、代表的な食中毒の原因菌である、サルモネラについての公定法を説明する。   Various bacteria such as Salmonella (Salmonella), Vibrio parahaemolyticus, Staphylococcus aureus, Clostridium botulinum, and pathogenic Escherichia coli are known as causative agents of food poisoning. In Japan, in order to ensure food safety, foods that are sold or provided are required to be tested for these causative bacteria, so that foods that do not meet the standards are not put on the market. Standard inspection methods for causative bacteria of food poisoning are defined for each bacterial species and are called official methods. Hereinafter, an official method for Salmonella, which is a typical causative agent of food poisoning, will be described with reference to FIG.

公定法では、まず検体となる食品を少なくとも25g(液体の場合は25mL)採量し、例えば当該食品に増菌培地を加えて10倍量となるようにし、ホモジナイザーで混合、乳化することで、試料を調整する(ステップSt1)。ここでは、増菌培地として225mLの緩衝ペプトン水(BPW)を用いることができる。   According to the official method, first, at least 25 g (25 mL in the case of a liquid) of the food to be used as a specimen is weighed, and for example, the enrichment medium is added to the food so that the amount becomes 10 times, and mixed and emulsified with a homogenizer. The sample is adjusted (step St1). Here, 225 mL of buffered peptone water (BPW) can be used as the enrichment medium.

次いで、前増菌培養を行う(ステップSt2)。ここでは、調整された試料をそのまま37℃、22時間インキュベートする。   Next, pre-enrichment culture is performed (step St2). Here, the prepared sample is incubated as it is at 37 ° C. for 22 hours.

続いて、サルモネラの選択増菌培養を行う(ステップSt201)。ここでは、前増菌培養で得られた試料を所定量採取し、サルモネラを選択的に増殖させることができる選択培地を用いて42℃、22時間の条件でサルモネラを選択的に増殖させる。   Subsequently, selective enrichment culture of Salmonella is performed (step St201). Here, a predetermined amount of a sample obtained by pre-enrichment culture is collected, and Salmonella is selectively grown under conditions of 42 ° C. and 22 hours using a selective medium capable of selectively growing Salmonella.

次に、サルモネラの選択分離培養を行う(ステップSt202)。ここでは、選択増菌培養後の試料を白金耳等を用いて選択分離用の寒天培地上にプレーティングし、当該試料を37℃、24〜48時間インキュベートする。   Next, selective separation culture of Salmonella is performed (step St202). Here, the sample after selective enrichment culture is plated on an agar medium for selective separation using a platinum loop or the like, and the sample is incubated at 37 ° C. for 24 to 48 hours.

次いで、試料中にサルモネラが存在するか否かの判定を行う(ステップSt203)。ここでは、寒天培地上のコロニーの色調等から試料中にサルモネラが存在するか否かを判定する。次いで、陽性であると判定された場合には、市販の確認培地や抗原抗体反応を用いた確定試験を行う(St7)。   Next, it is determined whether or not Salmonella is present in the sample (step St203). Here, it is determined whether or not Salmonella is present in the sample from the color tone of the colonies on the agar medium. Next, if it is determined to be positive, a definite test using a commercially available confirmation medium or antigen-antibody reaction is performed (St7).

特開2008−64648号公報JP 2008-64648 A

厚生労働省監修「食品衛生検査指針〈微生物編2004〉― 公定試験法・標準試験法詳解」、2004年6月発行、p.181-p.186Supervised by the Ministry of Health, Labor and Welfare, “Food Hygiene Inspection Guidelines <Microorganisms 2004>-Detailed Explanation of Official Test Methods / Standard Test Methods”, published in June 2004, p.181-p.186

しかしながら、上述の検査方法では、結果が得られるまでに3〜4日間もの時間を要する。このため、検査結果が得られるまでに汚染された食品が消費されてしまったり、食中毒の原因菌の特定が遅れることにより対策を講じるのが遅れたりするおそれがある。また、検査を行う技術者が未熟な場合、寒天培地上での菌の分離ができないこと等により検査が正確に行えないおそれもある。   However, in the inspection method described above, it takes 3 to 4 days to obtain a result. For this reason, there is a possibility that the contaminated food is consumed by the time the test result is obtained, or the action to be taken is delayed due to the delay in identifying the causative bacteria of food poisoning. Moreover, when the engineer who carries out the inspection is immature, there is a possibility that the inspection cannot be performed accurately because the bacteria cannot be separated on the agar medium.

本発明は、かかる点に鑑みてなされたものであり、迅速に結果が得られ且つ信頼性の高い細菌の検査方法を提供することにある。   This invention is made | formed in view of this point, and it is providing the test | inspection method of a bacterium with which a result can be obtained rapidly and highly reliable.

第1の発明は、菌の検査方法であって、試料に存在する菌を非選択培地中で培養するステップ(a)と、前記ステップ(a)で得られた培養液を希釈してから検査対象菌用の液体選択培地と混合し、前記検査対象菌を選択的に培養するステップ(b)と、前記ステップ(b)で培養中の前記培養液の溶存酸素量を酸素電極法により測定するステップ(c)と、前記ステップ(c)で得られた測定結果に基づいて、前記試料中での前記検査対象菌の有無を判定するステップ(d)とを備えていることを特徴とする。前記検査対象菌は、サルモネラである。 1st invention is a test | inspection method of a microbe, Comprising: The test | inspection after diluting the culture solution obtained by the step (a) which culture | cultivates the microbe which exists in a sample in a non-selective medium, and the said step (a) Step (b) of mixing with a liquid selection medium for the target bacteria and selectively culturing the test target bacteria, and measuring the amount of dissolved oxygen in the culture medium during culture by the oxygen electrode method in Step (b) The method includes a step (c) and a step (d) for determining the presence or absence of the test target bacteria in the sample based on the measurement result obtained in the step (c). The said test object microbe is Salmonella.

第1の発明では、酸素電極法を用いて選択増菌培養時に検査対象菌の増加による溶存酸素濃度の減少からその有無を判定しているので、公定法に比べて選択分離培養を行うことなく菌を検出できる。そのため、第1の発明によれば、公定法に比べて迅速に検査結果を得ることができる。さらに、非選択培地を用いた培養後、培養液を適切な倍率で希釈してから選択培養を行うことにより、高い検出感度を維持しつつ、夾雑菌による検査対象菌の誤検出を効果的に防ぐことができる。   In the first invention, since the presence or absence is determined from the decrease in the dissolved oxygen concentration due to the increase in the number of test target bacteria at the time of selective enrichment culture using the oxygen electrode method, the selective isolation culture is not performed as compared with the official method. Can detect bacteria. Therefore, according to the first invention, the inspection result can be obtained quickly as compared with the official method. Furthermore, after culturing using a non-selective medium, by diluting the culture medium at an appropriate magnification and then performing selective culture, it is possible to effectively prevent erroneous detection of the test target bacteria by contamination while maintaining high detection sensitivity. Can be prevented.

第1の発明はまた、前記前記ステップ(b)において、前記ステップ(a)で得られた前記培養液を1×103倍以上1×104倍以下に希釈して前記液体選択培地と混合することを特徴とする。 In the step (b), the first invention is a method wherein the culture solution obtained in the step (a) is diluted 1 × 10 3 times to 1 × 10 4 times and mixed with the liquid selection medium. It is characterized by doing.

第1の発明によれば、ステップ(b)で培養液を1×10倍以上に希釈してから培養しているので、夾雑菌の存在によって検出結果が偽陽性となるのが防がれている。また、ステップ(b)で培養液を1×104倍以下に希釈してから培養することで、試料中の検査対象菌の濃度が、極めて高い確率で測定セルに分注される程度に保証され、確実に菌の検出を行うことができる。 According to the first invention, since the culture is diluted after 1 × 10 3 times or more in step (b), the detection result is prevented from being false positive due to the presence of contaminants. ing. In addition, by diluting the culture solution to 1 × 10 4 times or less in step (b) and culturing, the concentration of the bacteria to be tested in the sample is guaranteed to be dispensed to the measurement cell with a very high probability. Therefore, the bacteria can be reliably detected.

第2の発明は、第1の発明の前記ステップ(b)において、前記ステップ(a)で得られた前記培養液の希釈直後の菌濃度が、いずれの菌種についても1×106cfu/mL以下となっていることを特徴とする。 According to a second invention, in the step (b) of the first invention, the bacterial concentration immediately after dilution of the culture solution obtained in the step (a) is 1 × 10 6 cfu / It is characterized by being below mL.

第2の発明によれば、酸素電極法を用いる場合に培養液に含まれる夾雑菌の濃度を、偽陽性が生じない範囲内にすることができるので、検査の信頼性を向上させることができる。   According to the second invention, when the oxygen electrode method is used, the concentration of contaminants contained in the culture solution can be within a range in which false positives do not occur, so that the reliability of the test can be improved. .

第3の発明は、前記ステップ(b)では、前記ステップ(a)で得られた前記培養液を希釈した後、希釈された前記培養液の一部と前記液体選択培地とを測定用のセル(10)内に注入し、前記ステップ(a)で得られた前記培養液に前記検査対象菌が含まれる場合、前記セル(10)内に注入される希釈された前記培養液中には少なくとも1個の前記検査対象菌が含まれることを特徴とする。   In the third invention, in the step (b), after diluting the culture solution obtained in the step (a), a part of the diluted culture solution and the liquid selective medium are measured. (10) When injected into the cell (10) and the culture medium obtained in the step (a) contains the microorganism to be examined, the diluted culture medium injected into the cell (10) contains at least One of the test bacteria is included.

の発明は、第1〜第の発明のうちいずれか1つにおいて、少なくとも前記ステップ(c)が測定部(20)と判定部(22)とを有する測定システム(18)により行われ、前記ステップ(c)での前記培養液の溶存酸素濃度の測定が前記測定部(20)により測定され、前記ステップ(d)では、前記判定部(22)が、前記測定部(20)から送られた測定結果に基づいて前記試料に前記検査対象菌が存在するか否かを判定することを特徴とする。 According to a fourth invention, in any one of the first to third inventions, at least the step (c) is performed by a measurement system (18) having a measurement unit (20) and a determination unit (22). The measurement of the dissolved oxygen concentration of the culture solution in the step (c) is measured by the measurement unit (20). In the step (d), the determination unit (22) is moved from the measurement unit (20). It is characterized by determining whether the said test object microbe exists in the said sample based on the sent measurement result.

本発明はよれば、酸素電極法を用いて検査対象菌の有無を判定しているので、公定法に比べて選択分離培養を行うことなく菌を検出できる。そのため、本発明によれば、公定法に比べて迅速に検査結果を得ることができる。さらに、非選択培地を用いた培養後、培養液を適切な倍率で希釈してから選択培養を行うことにより、高い検出感度を維持しつつ、夾雑菌による検査対象菌の誤検出を効果的に防ぐことができる。すなわち、本発明によれば、高精度に検査対象菌の検出を行うことが可能となる。   According to the present invention, since the presence or absence of a test target bacterium is determined using the oxygen electrode method, the bacterium can be detected without performing selective separation culture as compared with the official method. Therefore, according to the present invention, a test result can be obtained more quickly than in the official method. Furthermore, after culturing using a non-selective medium, by diluting the culture medium at an appropriate magnification and then performing selective culture, it is possible to effectively prevent erroneous detection of the test target bacteria by contamination while maintaining high detection sensitivity. Can be prevented. That is, according to the present invention, it is possible to detect the test target bacteria with high accuracy.

(a)、(b)は、酸素電極法を用いて液中の酸素濃度を測定する測定装置(測定システム)(18)の構成を概略的に示す図である。(A), (b) is a figure which shows roughly the structure of the measuring apparatus (measurement system) (18) which measures the oxygen concentration in a liquid using an oxygen electrode method. 酸素電極法を用いた菌の検査方法を示す図である。It is a figure which shows the test | inspection method of a microbe using the oxygen electrode method. 本発明の実施形態に係る菌の検査方法を示す図である。It is a figure which shows the test | inspection method of the microbe which concerns on embodiment of this invention. 本発明の実施形態に係る菌の検査方法の手順と公定法の手順との比較を示す図である。It is a figure which shows the comparison with the procedure of the test | inspection method of the microbe based on embodiment of this invention, and the procedure of an official method. (a)〜(c)は、サルモネラに汚染されていない食品サンプルより調整した前増菌培養後の培養液を100倍希釈、167倍希釈、1000倍希釈した場合における、培養液の溶存酸素量の測定結果をそれぞれ示す図である。(A)-(c) is the amount of dissolved oxygen in the culture solution when the culture solution after pre-enrichment culture prepared from a food sample not contaminated with Salmonella is diluted 100 times, 167 times, 1000 times It is a figure which shows each measurement result. (a)、(b)は、大腸菌と健常状態のサルモネラとを添加した場合、及び大腸菌と熱損傷状態のサルモネラとを添加した場合における、培養液の溶存酸素量の測定結果をそれぞれ示す図である。(A), (b) is a figure which shows the measurement result of the amount of dissolved oxygen of a culture solution, respectively, when Escherichia coli and healthy Salmonella are added, and when Escherichia coli and heat-damaged Salmonella are added. is there.

−検査方法についての検討−
本願発明者らは、迅速且つ信頼性の高い検査方法として、電気的方法を用いた方法に注目した。さらに、本願発明者らは、電気的方法の中でも、電極を用いて溶存酸素量を測定する酸素電極法(DOX(登録商標):dissolved oxygen electrode method)が食中毒の原因菌の検査に有用であると考えた。
-Examination of inspection method-
The inventors of the present application have paid attention to a method using an electrical method as a rapid and reliable inspection method. Furthermore, among the electrical methods, the inventors of the present application are useful for the examination of the causative bacteria of food poisoning by the dissolved oxygen electrode method (DOX (registered trademark)) which measures the amount of dissolved oxygen using an electrode. I thought.

図1(a)、(b)は、酸素電極法を用いて液中の酸素濃度を測定する測定装置(測定システム)(18)の構成を概略的に示す図である。同図に示す測定装置(18)には、対極(12)、作用極(14)及び参照極(16)をそれぞれ有するセルが多数セットされる。測定装置(18)は、セル(10)の各電極(12、14、16)に接続され、液中の溶存酸素量を測定する測定部(20)と、測定部(20)から送られた測定結果を用いて試料中の検査対象菌の有無を判定する判定部(22)と、判定部(22)での判定結果のデータを保持する記憶部(24)とを備えている。なお、判定部(22)及び記憶部(24)は、測定装置(18)に接続されたコンピュータ内に設けられていてもよい。   FIGS. 1A and 1B are diagrams schematically showing a configuration of a measuring apparatus (measuring system) (18) that measures the oxygen concentration in a liquid using the oxygen electrode method. In the measuring device (18) shown in the figure, a number of cells each having a counter electrode (12), a working electrode (14), and a reference electrode (16) are set. The measuring device (18) is connected to each electrode (12, 14, 16) of the cell (10) and sent from the measuring unit (20) for measuring the amount of dissolved oxygen in the liquid and the measuring unit (20). The determination part (22) which determines the presence or absence of the test object microbe in a sample using a measurement result, and the memory | storage part (24) which hold | maintains the data of the determination result in a determination part (22) are provided. The determination unit (22) and the storage unit (24) may be provided in a computer connected to the measurement device (18).

セル(10)内の溶液に酸素が溶存する場合、作用極(14)の表面でO+ 4H+ 4e → 2HOの反応が生じ、対極(12)と作用極(14)との間に溶存酸素量に対応する大きさの電流が流れる。このため、対極(12)と作用極(14)との間に流れる電流を測定することで、液中の溶存酸素量を知ることができる。 When oxygen is dissolved in the solution in the cell (10), a reaction of O 2 + 4H + + 4e → 2H 2 O occurs on the surface of the working electrode (14), and the counter electrode (12) and the working electrode (14) During this period, a current corresponding to the amount of dissolved oxygen flows. Therefore, the amount of dissolved oxygen in the liquid can be known by measuring the current flowing between the counter electrode (12) and the working electrode (14).

ここで、酸素呼吸する細菌が培養液中で増殖すると、培養液中の酸素濃度が低下する。このため、検査対象菌を選択的に増殖させる培養液を用いて培養を行い、当該培養液中での酸素濃度の変化を測定することによって、検査対象菌の有無を判定することができる。より具体的には、培養液の酸素濃度を測定しながら培養を続けた場合、対極(12)と作用極(14)との間に流れる電流量が急激に減少し、所定値を下回った場合に検査対象菌が試料中に存在すると判定でき、対極(12)と作用極(14)との間に流れる電流量が変化しない場合には試料中に検査対象菌が存在しないと判定できる。   Here, when bacteria that breathe oxygen grow in the culture solution, the oxygen concentration in the culture solution decreases. For this reason, it can culture | cultivate using the culture solution which selectively expands a test object microbe, and can determine the presence or absence of a test target microbe by measuring the change of the oxygen concentration in the said culture solution. More specifically, when the culture is continued while measuring the oxygen concentration of the culture solution, the amount of current flowing between the counter electrode (12) and the working electrode (14) decreases rapidly and falls below a predetermined value. If the amount of current flowing between the counter electrode (12) and the working electrode (14) does not change, it can be determined that the sample to be tested does not exist.

サルモネラは、通性嫌気性菌であり、好気条件下で酸素呼吸を行うので、上記の方法により試料中のサルモネラを検出できるとも考えられた。   Salmonella is a facultative anaerobic bacterium and performs oxygen respiration under aerobic conditions, so it was considered that Salmonella in a sample can be detected by the above method.

図2は、酸素電極法を用いた菌の検査方法を示す図である。この方法ではまず、検体となる食品25gとリン酸緩衝液(PBS)又は生理食塩水225mLとをホモジナイザーを用いて混合する(ステップSt101)。次いで、調整された試料のうち1mLを採取し、測定装置(18)のセル(10)内でサルモネラ用の液体選択培地と混合し、37℃、20時間程度インキュベートする(ステップSt102)。この培養は、測定装置(18)内で行うことが可能である。また、この選択培養を行いながら、酸素電極法により、培養液中のサルモネラの検出を行う(ステップSt103)。   FIG. 2 is a diagram showing a method for examining bacteria using the oxygen electrode method. In this method, first, 25 g of a food serving as a specimen and 225 mL of a phosphate buffer (PBS) or physiological saline are mixed using a homogenizer (step St101). Next, 1 mL of the adjusted sample is collected, mixed with a liquid selective medium for Salmonella in the cell (10) of the measuring device (18), and incubated at 37 ° C. for about 20 hours (step St102). This culture can be performed in the measuring device (18). In addition, while performing this selective culture, Salmonella in the culture solution is detected by the oxygen electrode method (step St103).

次いで、測定結果に基づいて、測定装置が検査対象菌の有無を判定する(ステップSt104)。以上の手順でサルモネラの検出が行われる。   Next, based on the measurement result, the measuring device determines the presence or absence of the test bacteria (step St104). Salmonella is detected by the above procedure.

しかし、サルモネラは食品中に少量しか存在しない場合が多い。1g中に10個以下、つまり上記ステップSt101で調整した試料中のサルモネラ濃度が例えば1cfu/mL未満であるとすると、上記ステップSt102で採取する1mLの試料中にはサルモネラが入らない可能性がある。このように、上記の方法では、食品中に少量しか含まれない細菌を、25g中に1個のサルモネラがいることを検査できる公定法と同じように確実に検出するのは困難であった。また、食品においては、冷凍等によって菌が損傷している場合が多いが、損傷菌は健常菌に比べて増殖するのに時間がかかる上、選択培地上では増殖しない場合がある。このため、上記の方法ではサルモネラの検出が所定の時間にできず偽陰性が発生し、健常菌を検出する場合に比べて検出感度も低下する。   However, Salmonella is often present only in small amounts in food. If 10 or less in 1 g, that is, if the Salmonella concentration in the sample adjusted in Step St101 is less than 1 cfu / mL, for example, Salmonella may not enter the 1 mL sample collected in Step St102. . Thus, in the above method, it has been difficult to reliably detect bacteria that are contained only in a small amount in food, as in the official method that can test that one Salmonella is present in 25 g. In food, bacteria are often damaged by freezing or the like, but damaged bacteria take longer to grow than healthy bacteria, and may not grow on a selective medium. For this reason, in the above method, Salmonella cannot be detected at a predetermined time, and a false negative occurs, so that the detection sensitivity is lowered as compared with the case of detecting healthy bacteria.

そこで、本願発明者らは、上記ステップSt101に代えて、試料と液体の非選択培地とを混合し、前増菌培養を行うことを考えた。前増菌培養により、損傷菌の回復を図ることができ、サルモネラの菌濃度を大幅に高くすることができる。   Therefore, the inventors of the present application considered that pre-enrichment culture was performed by mixing the sample and a liquid non-selective medium instead of step St101. By pre-enrichment culture, it is possible to recover damaged bacteria and significantly increase the concentration of Salmonella.

この前増菌培養では、サルモネラ以外の細菌も増殖する。しかし、初期菌数が多い菌や増殖速度が速い菌がサルモネラよりも速く増殖したとしても、増殖曲線で知られているとおり、1×10cfu/mL〜1×10cfu/mL程度の濃度で静止期を迎え、以後は死滅期において菌濃度がゆるやかに低下する。これに対し、サルモネラは、生理食塩水又は緩衝液によって希釈されたセル内の検査液中に存在すれば、22〜24時間程度培養した場合、1×10cfu/mL以上に増殖する。このため、前増菌培養後にサルモネラを選択的に培養することで、食品中に含まれるサルモネラを確実に検出できるのではないかと思われた。 In this pre-enrichment culture, bacteria other than Salmonella also grow. However, even if bacteria with a large initial number of bacteria or a fast growth rate grow faster than Salmonella, as is known from the growth curve, it is about 1 × 10 8 cfu / mL to about 1 × 10 9 cfu / mL. The stationary phase is reached at the concentration, and thereafter the bacterial concentration gradually decreases during the death phase. On the other hand, Salmonella grows to 1 × 10 5 cfu / mL or more when cultured for about 22 to 24 hours if it is present in the test solution diluted with physiological saline or buffer. For this reason, it was thought that Salmonella contained in food could be reliably detected by selectively cultivating Salmonella after pre-enrichment culture.

本願発明者らが前増菌培養後に選択培養を行い、培養液を酸素電極法により測定したところ、食品中にサルモネラが存在する場合には高い確率で陽性として判定できることが確かめられた。ところが、実験の結果、実際にはサルモネラが存在しない食品を検査した場合にも陽性になる例が見られた。この誤検出は、培養液に含まれる夾雑菌の菌数が多い場合、選択培地を用いて培養しても溶存酸素を減少させることができる濃度の夾雑菌が一気に死滅するわけでなく、夾雑菌が減る前に検出閾値まで溶存酸素濃度を減少させてしまうために生じるものと考えられた。   When the present inventors performed selective culture after pre-enrichment culture and measured the culture solution by the oxygen electrode method, it was confirmed that when Salmonella is present in the food, it can be determined as positive with high probability. However, as a result of the experiment, there were some cases that tested positive for foods that did not actually have Salmonella. This misdetection means that if the number of bacteria in the culture solution is large, the concentration of bacteria that can reduce dissolved oxygen even if cultured using a selective medium is not killed at once. It was thought that this occurred because the dissolved oxygen concentration was reduced to the detection threshold before the decrease.

そこで、本願発明者らはさらなる検討を重ね、前増菌培養後の培養液を適切な倍率で一旦希釈し、希釈後の培養液にサルモネラの選択培地を加えて培養することで、誤検出が生じる割合を大きく低減できることに想到した。以下、本発明の実施形態として、この方法を説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。   Therefore, the inventors of the present application repeated further studies, and once the culture solution after the pre-enrichment culture was diluted once at an appropriate magnification, and the Salmonella selection medium was added to the diluted culture solution and cultured, false detection was thereby achieved. It was conceived that the rate of occurrence could be greatly reduced. Hereinafter, this method will be described as an embodiment of the present invention. The following embodiments are essentially preferable examples, and are not intended to limit the scope of the present invention, its application, or its use.

《発明の実施形態》
図3は、本発明の実施形態に係る菌の検査方法を示す図である。同図に示すように、本実施形態に係る方法では、まず検体となる食品を少なくとも25g(液体の場合は25mL)採量し、例えば当該食品に225mLの増菌培地を加えて10倍量となるようにし、ホモジナイザーで混合するか、リンスすることで、試料を調整する(ステップSt1)。
<< Embodiment of the Invention >>
FIG. 3 is a diagram showing a method for examining bacteria according to an embodiment of the present invention. As shown in the figure, in the method according to the present embodiment, at least 25 g (25 mL in the case of a liquid) of food serving as a sample is first sampled and, for example, 225 mL of the enrichment medium is added to the food to obtain a 10-fold amount. The sample is adjusted by mixing with a homogenizer or rinsing (step St1).

本実施形態に係る方法では、検査対象となる食品の種類や形状、状態は特に限定されず、例えば牛、豚、鶏、馬肉及びこれらの加工品、冷凍食品、卵、魚肉、野菜、ジュース等を幅広く検査することができる。また、本ステップで用いられる増菌培地は、非選択培地であれば特に限定されないが、緩衝ペプトン水であれば安価であり、サルモネラ(検査対象菌)の損傷回復及び増殖を十分に図ることができるので、好ましい。なお、EEMブイヨン、ブレインハート インフュジョンブロス、トリプトソイ ブロス等を増菌培地として用いてもよい。   In the method according to the present embodiment, the type, shape, and state of the food to be inspected are not particularly limited. For example, cow, pig, chicken, horse meat and processed products thereof, frozen food, egg, fish meat, vegetable, juice, etc. Can be inspected widely. In addition, the enrichment medium used in this step is not particularly limited as long as it is a non-selective medium, but buffered peptone water is inexpensive, and can sufficiently recover and proliferate salmonella (test bacteria). This is preferable because it is possible. EEM bouillon, brain heart infusion broth, tryptic soy broth, etc. may be used as the enrichment medium.

次いで、前増菌培養を行う(ステップSt2)。ここでは、調整された試料をそのままインキュベートする。培養温度はサルモネラが生育可能な温度であればよく、培養時間は、サルモネラの菌濃度が1×10cfu/mL以上になる時間であればよい。ここでは、培養を迅速に行うために培養温度を37℃とし、培養時間を22時間とする。本ステップでは、試料となる食品に菌が含まれていた場合、培養液中の当該菌の濃度は、概ね1×10cfu/mL以上1×10cfu/mL以下の範囲で飽和する。 Next, pre-enrichment culture is performed (step St2). Here, the adjusted sample is incubated as it is. The culture temperature may be a temperature at which Salmonella can grow, and the culture time may be a time when the concentration of Salmonella is 1 × 10 7 cfu / mL or more. Here, in order to perform the culture quickly, the culture temperature is 37 ° C., and the culture time is 22 hours. In this step, when bacteria are contained in the sample food, the concentration of the bacteria in the culture solution is saturated in the range of approximately 1 × 10 7 cfu / mL to 1 × 10 9 cfu / mL.

続いて、前増菌培養で得られた培養液を所定の倍率で希釈する(ステップSt3)。本ステップでは、生理食塩水やリン酸緩衝生理食塩水等を用いて培養液を希釈する。この他に、リン酸緩衝希釈水、ペプトン加生理食塩水を培養液の希釈に用いてもよい。   Subsequently, the culture solution obtained by the pre-enrichment culture is diluted at a predetermined magnification (step St3). In this step, the culture solution is diluted with physiological saline, phosphate buffered saline, or the like. In addition, phosphate buffered diluted water and peptone-added physiological saline may be used for dilution of the culture solution.

ここで、培養液の希釈倍率の下限は菌の検出に用いる電気的方法の感度や、後の選択培養に用いる選択培地の選択性等の条件に応じて適宜設定すればよい。また、培養液の希釈倍率の上限は、培養液中にサルモネラが存在する場合、選択培養を行う際に採取する培養液中に当該サルモネラが確実に含まれるような値とする。   Here, the lower limit of the dilution rate of the culture solution may be appropriately set according to conditions such as the sensitivity of the electrical method used for detecting the bacteria and the selectivity of the selective medium used for the subsequent selective culture. In addition, the upper limit of the dilution rate of the culture solution is set to a value that ensures that the Salmonella is included in the culture solution collected when selective culture is performed when Salmonella is present in the culture solution.

菌の選択培養及び検出に酸素電極法を利用するDOXシステム(DOX-30F又はDOX-60F及びサルモネラ用選択培地;株式会社バイオ・シータ社製)を用いる場合、本ステップにおいて培養液を1×10倍以上1×10倍以下とすれば好ましい。 When using the DOX system (DOX-30F or DOX-60F and Salmonella selective medium; manufactured by Bio-Theta Co., Ltd.) using the oxygen electrode method for selective culture and detection of bacteria, the culture solution is 1 × 10 in this step. It is preferable if it is 3 times or more and 1 × 10 4 times or less.

DOXシステムにおいては、本願発明者らの検討結果から、セル(10)に注入される培養液の夾雑菌濃度が1×10cfu/mL以下であれば誤検出を効果的に防ぐことができることが分かっている。そこで、培養液を1×10倍以上希釈することで、いずれの菌種の菌数も1×10cfu/mL以下にすることができ、誤検出を効果的に防ぐことが可能となる。 In the DOX system, it is possible to effectively prevent false detection if the concentration of contaminants in the culture solution injected into the cell (10) is 1 × 10 6 cfu / mL or less, based on the examination results of the present inventors. I know. Therefore, by diluting the culture solution by 1 × 10 3 times or more, the number of bacteria of any bacterial species can be reduced to 1 × 10 6 cfu / mL or less, and erroneous detection can be effectively prevented. .

また、培養液の希釈倍率を1×10倍以下とすれば、培養液中のサルモネラ濃度のばらつきを考慮してもセル(10)内に注入される1mLの培養液中に確実にサルモネラを入れることができるので、検出感度を向上させることができる。なお、前増菌培養後のサルモネラは健常状態となっているので、セル(10)内に1個でもサルモネラが入れば検出可能となっている。 In addition, if the dilution rate of the culture solution is 1 × 10 4 or less, Salmonella is surely put into 1 mL of the culture solution injected into the cell (10) even if the variation of the Salmonella concentration in the culture solution is taken into consideration. Therefore, the detection sensitivity can be improved. Since Salmonella after the pre-enrichment culture is in a healthy state, it can be detected if even one Salmonella enters the cell (10).

次に、希釈された培養液をサルモネラ用の液体選択培地と混合し、混合された培養液を35℃〜37℃、12時間〜20時間程度インキュベートする(ステップSt4)。上述のDOXシステムを用いる場合、希釈された培養液1mLと2倍濃度の液体選択培地1mLとを図1(a)に示す電極付きセル(10)内で混合し、測定装置(18)内で培養を行う。一例として、培養温度は37℃、培養時間は20時間とする。ただし、培養に要する時間はセル(10)に添加されたサルモネラの菌数が多いほど短くすることができる。   Next, the diluted culture solution is mixed with a liquid selection medium for Salmonella, and the mixed culture solution is incubated at 35 ° C. to 37 ° C. for about 12 hours to 20 hours (step St4). When using the above-mentioned DOX system, 1 mL of diluted culture solution and 1 mL of double-concentration liquid selective medium are mixed in the cell (10) with electrodes shown in FIG. Incubate. As an example, the culture temperature is 37 ° C. and the culture time is 20 hours. However, the time required for culturing can be shortened as the number of Salmonella added to the cell (10) increases.

なお、選択培地としては、サルモネラの栄養となる基質、選択剤等を含んでいるものが用いられ、ここではDOXシステム用の専用培地を用いた。   In addition, as a selective culture medium, the thing containing the board | substrate used as a nutrient of Salmonella, a selective agent, etc. was used, and the exclusive culture medium for DOX systems was used here.

また、上述の選択培養(ステップSt4)を行っている間、測定部(20)が酸素電極法により培養液の溶存酸素濃度を経時的に測定する(ステップSt5)。次いで、ステップSt6で得られた測定結果に基づいて、試料中でのサルモネラの有無を判定部(22)が判定する(ステップSt5)。判定部(22)では、培養液の溶存酸素量が急激に減少し、所定のしきい値(例えば300nA)を下回った場合にサルモネラの陽性判定を行う。   Further, during the selective culture (step St4) described above, the measurement unit (20) measures the dissolved oxygen concentration of the culture solution over time by the oxygen electrode method (step St5). Next, the determination unit (22) determines the presence or absence of Salmonella in the sample based on the measurement result obtained in Step St6 (Step St5). The determination unit (22) performs positive determination of Salmonella when the amount of dissolved oxygen in the culture solution decreases rapidly and falls below a predetermined threshold value (for example, 300 nA).

また、測定結果は、データベースの一部として記憶部(24)に保存される。なお、DOXシステムでは、実際には判定部(22)及び記憶部(24)は測定装置(18)の外部に設けられている。   The measurement result is stored in the storage unit (24) as part of the database. In the DOX system, the determination unit (22) and the storage unit (24) are actually provided outside the measuring device (18).

次いで、ステップSt6でサルモネラ陽性と判定された場合には、確定試験を行って試料中にサルモネラが存在するのか否かを確定する(図4に示すステップSt7)。   Next, when it is determined in step St6 that Salmonella is positive, a confirmation test is performed to determine whether Salmonella is present in the sample (step St7 shown in FIG. 4).

本願発明者らは、以上の方法を用いて種々の食品(鶏挽肉、ローストビーフ、冷凍フライドチキン、マヨネーズ、マグロ刺身、カットキャベツ、カットメロン、冷凍ピラフ等)に対するサルモネラ検査を行い、各試料の確定試験を含む公定法(図4参照)での検査結果と比較した。その結果、本実施形態に係る検査方法を用いた場合には、高い割合で公定法による結果と一致することが確かめられた。   The inventors of the present application conduct salmonella inspection on various foods (ground chicken, roast beef, frozen fried chicken, mayonnaise, tuna sashimi, cut cabbage, cut melon, frozen pilaf, etc.) using the above method, and determine each sample. The test results were compared with the test results by the official method including the test (see FIG. 4). As a result, it was confirmed that when the inspection method according to the present embodiment was used, the results agreed with the official method at a high rate.

図4は、本実施形態に係る検査方法と上述の公定法との手順を比較した図である。同図に示すように、本実施形態の検査方法は試料の調整(ステップSt1)及び前増菌培養(ステップSt2)までは公定法と同じであるが、公定法と比べて選択分離培養(ステップSt202)を行う必要がない。一方で、本実施形態の検査方法では、公定法に比べて選択増菌培養(St4、St201)の前に培養液を希釈するステップが追加されているが、当該ステップに要する時間は選択分離培養に比べて非常に短い。従って、本実施形態の検査方法によれば、公定法よりも1〜2日程度短い期間で検査結果を得ることができる。   FIG. 4 is a diagram comparing procedures of the inspection method according to the present embodiment and the official method described above. As shown in the figure, the test method of this embodiment is the same as the official method until the preparation of the sample (step St1) and the pre-enrichment culture (step St2), but the selective separation culture (step) is compared with the official method. It is not necessary to perform St202). On the other hand, in the inspection method of this embodiment, a step of diluting the culture solution is added before the selective enrichment culture (St4, St201) as compared with the official method, but the time required for this step is the selective separation culture. Is very short compared to Therefore, according to the inspection method of the present embodiment, the inspection result can be obtained in a period shorter by about 1 to 2 days than the official method.

その結果、本実施形態に係る検査方法を用いれば、食品のサルモネラによる汚染を迅速に発見でき、食品の販売停止や廃棄などの食中毒対策を早期に取ることができるようになる。また、選択培養(ステップSt4)、溶存酸素量の測定、及びサルモネラの有無の判定を全て測定システムにより行うことができるので、作業者の熟練度に依存することなく安定した検査結果を得ることができる。   As a result, if the inspection method according to the present embodiment is used, it is possible to quickly find out the contamination of food by Salmonella and take early measures against food poisoning such as the suspension or disposal of food. Moreover, since selective culture (step St4), measurement of dissolved oxygen amount, and determination of the presence or absence of salmonella can all be performed by the measurement system, stable test results can be obtained without depending on the skill level of the operator. it can.

さらに、本実施形態の検査方法では、選択培養の前に培養液を1×10倍以上に希釈しているので、夾雑菌の存在によって偽陽性となるのが防がれている。このため、本実施形態の検査方法では、図2に示す方法に比べて高精度の菌検出が可能となり、検査結果の信頼性が大幅に高くなっている。 Furthermore, in the test method of this embodiment, since the culture solution is diluted 1 × 10 3 times or more before selective culture, false positives due to the presence of contaminating bacteria are prevented. For this reason, in the inspection method of the present embodiment, it is possible to detect bacteria with higher accuracy than the method shown in FIG.

また、選択培養の前に培養液を希釈する際の倍率を1×10倍以下としていることにより、食品中に存在するサルモネラを確実に検出することが可能となっている。なお、ステップSt3における培養液の希釈倍率は上述のように1×10倍以上1×10倍以下であれば好ましい。中でも、液体選択培地に加える培養液のサルモネラ濃度が高い程、判定に必要な培養時間が短くなるので、培養液の希釈倍率は1×10倍であることがより好ましい。 Moreover, it is possible to reliably detect Salmonella present in the food by setting the magnification at the time of diluting the culture solution before selective culture to 1 × 10 4 times or less. The dilution rate of the culture solution in step St3 is preferably 1 × 10 3 times or more and 1 × 10 4 times or less as described above. Among them, the higher the Salmonella concentration in the culture solution to be added to a liquid selection medium, since the culture time required for determination becomes shorter, it is more preferable dilution ratio of the culture solution is 1 × 10 3 times.

なお、以上で説明した培養条件、培養液の希釈倍率その他の条件は本発明の趣旨を逸脱しない範囲で適宜変更可能である。また、本実施形態の検査方法の検査対象は、サルモネラに限られず、リステリア等であってもよい。特に、試料に含まれる菌数が少ない細菌、あるいは増殖速度が比較的遅い細菌に対して本実施形態の方法で検査を行えば、大きな効果を得ることができる。   The culture conditions, the dilution rate of the culture medium, and other conditions described above can be changed as appropriate without departing from the spirit of the present invention. In addition, the inspection target of the inspection method of the present embodiment is not limited to Salmonella, but may be Listeria or the like. In particular, if a test with a method of this embodiment is performed on a bacterium with a small number of bacteria contained in a sample or a bacterium with a relatively slow growth rate, a great effect can be obtained.

また、本実施形態の検査方法では検査対象菌を酸素電極法により検出したが、他の電気的方法によって検出してもよい。   Further, in the inspection method of the present embodiment, the test target bacteria are detected by the oxygen electrode method, but may be detected by other electrical methods.

−確認試験1−
本実施形態に係る検査方法によって誤判定を防ぐことができることを確認するため、本願発明者らは、図3に示す手順に沿って生食用馬肉の検査を行った。ただし、試料の調整ステップ(ステップSt1)においては、生食用馬肉25gに1×10cfuレベルの大腸菌を添加したものを検体として用いた。前増菌培養(ステップSt2)は37℃で22時間行い、培地としては市販のBPWを225mL用いた。
-Confirmation test 1-
In order to confirm that the erroneous determination can be prevented by the inspection method according to the present embodiment, the inventors of the present application inspected raw edible horse meat according to the procedure shown in FIG. However, in the sample preparation step (step St1), a sample prepared by adding 1 × 10 3 cfu of E. coli to 25 g of raw horse meat was used as a specimen. Pre-enrichment culture (step St2) was performed at 37 ° C. for 22 hours, and 225 mL of commercially available BPW was used as the medium.

培養液の希釈ステップ(ステップSt3)では、生理食塩水を用いて培養液をそれぞれ(a)100倍希釈、(b)167倍希釈、(c)1000倍希釈し、それぞれの希釈培養液1mLとサルモネラ用液体選択培地1mL(株式会社バイオ・シータ社製)とをセルに注入し、測定装置(DOX-60F;株式会社バイオ・シータ社製)にセットした。そして、37℃で培養しながら、当該測定装置により培養液中の溶存酸素量を測定し、サルモネラの有無の判定を行った。ここで、セルの電極間に流れる電流値が安定する一定時間(例えば60分)後、300nAを下回った場合に陽性と判定した。これと同時に、この前増菌培養液を用いて、公定法によっても検査を行い、サルモネラがいないことを確認した。   In the dilution step of the culture solution (step St3), the culture solution is diluted with physiological saline (a) 100-fold dilution, (b) 167-fold dilution, (c) 1000-fold dilution, and each diluted culture solution 1 mL 1 mL of liquid selective medium for Salmonella (manufactured by Bio-Theta Co., Ltd.) was injected into the cell and set in a measuring device (DOX-60F; manufactured by Bio-Theta Co., Ltd.). And the amount of dissolved oxygen in a culture solution was measured with the said measuring apparatus, culturing at 37 degreeC, and the presence or absence of Salmonella was determined. Here, it was determined to be positive when the value of the current flowing between the electrodes of the cell was less than 300 nA after a certain time (for example, 60 minutes) during which the current flows. At the same time, this pre-enrichment culture was used to test by the official method to confirm the absence of Salmonella.

図5(a)〜(c)は、前増菌培養後の培養液を100倍希釈、167倍希釈、1000倍希釈した場合における、培養液の溶存酸素量の測定結果をそれぞれ示す図である(例数n=3)。図5(a)、(b)に示すように、培養液を100倍希釈及び167倍希釈した場合には実際には存在しないサルモネラについて陽性判定、すなわち誤判定された。これに対し、図5(c)に示すように、前増菌培養後の培養液を1000倍希釈した場合には、測定装置に検出される電流値は時間が経過してもほぼ変わらず、サルモネラについて陰性判定、すなわち正常判定された。   5 (a) to 5 (c) are diagrams showing measurement results of the dissolved oxygen content of the culture solution when the culture solution after pre-enrichment culture is diluted 100-fold, 167-fold, and 1000-fold, respectively. (Number of examples n = 3). As shown in FIGS. 5A and 5B, when the culture solution was diluted 100-fold and 167-fold, Salmonella that did not actually exist was positively determined, that is, erroneously determined. On the other hand, as shown in FIG. 5 (c), when the culture solution after the pre-enrichment culture was diluted 1000 times, the current value detected by the measuring device did not change substantially even with time, Salmonella was negative, that is, normal.

以上の結果から、酸素電極法を用いてサルモネラを検出する場合、前増菌培養後の培養液を1000倍希釈することで、実際にはサルモネラ陰性の試料を陽性と誤判定するのを防ぐことができることが確かめられた。   From the above results, when detecting Salmonella using the oxygen electrode method, the culture solution after pre-enrichment culture is diluted 1000 times to prevent the Salmonella negative sample from being erroneously determined as positive in practice. It was confirmed that it was possible.

−確認試験2−
次に、夾雑菌の存在下で、本実施形態に係る検査方法によってサルモネラが検出できることを確認するため、本願発明者らは、図3に示す手順に沿って生食用馬肉の検査を行った。使用する試薬、培養液、測定装置、培養条件、判定基準等は確認試験1と同じとした。ただし、試料の調整ステップ(ステップSt1)において、無菌状態にした生食用馬肉25gにそれぞれ(a)1×10cfuレベルの大腸菌と1×10cfuレベルの健常状態のサルモネラとを添加した場合と、(b)1×10cfuレベルの大腸菌と1×10cfuレベルの熱損傷状態のサルモネラとを添加した場合とについて試験を行った。
-Confirmation test 2-
Next, in order to confirm that Salmonella can be detected by the inspection method according to the present embodiment in the presence of contaminating bacteria, the inventors of the present application inspected raw edible horse meat according to the procedure shown in FIG. The reagents, culture solution, measuring apparatus, culture conditions, judgment criteria, etc. used were the same as those in Confirmation Test 1. However, in the sample preparation step (Step St1), (a) 1 × 10 3 cfu level Escherichia coli and 1 × 10 1 cfu level healthy Salmonella were respectively added to 25 g of raw edible horse meat And (b) 1 × 10 3 cfu level E. coli and 1 × 10 1 cfu level heat-damaged Salmonella were added.

図6(a)、(b)は、大腸菌と健常状態のサルモネラとを添加した場合、及び大腸菌と熱損傷状態のサルモネラとを添加した場合の培養液の溶存酸素量の測定結果をそれぞれ示す図である(例数n=3)。なお、両方の場合とも前増菌培養後の培養液を1000倍希釈した。   FIGS. 6 (a) and 6 (b) are diagrams respectively showing measurement results of the dissolved oxygen amount in the culture solution when E. coli and healthy Salmonella are added and when E. coli and heat-damaged Salmonella are added. (Number of examples n = 3). In both cases, the culture solution after the pre-enrichment culture was diluted 1000 times.

図6(a)、(b)に示す結果により、試料に夾雑菌とサルモネラが混在していても、前増菌培養後の培養液を1000倍希釈することで、サルモネラの検出を正常に行えることが確認された。また、健常菌の検出に比べて熱損傷菌の検出には時間がかかるものの、いずれの状態のサルモネラが試料に存在する場合であっても、正常に検出できることが確認された。   According to the results shown in FIGS. 6 (a) and 6 (b), Salmonella can be normally detected by diluting the culture solution after the pre-enrichment culture 1000 times even if the sample contains both contaminating bacteria and Salmonella. It was confirmed. Moreover, although it took time for detection of heat-damaged bacteria compared to detection of healthy bacteria, it was confirmed that normal detection was possible regardless of which state of Salmonella was present in the sample.

以上説明したように、本発明に係る菌の検査方法は、食品等の安全性の向上に有用である。   As described above, the method for testing bacteria according to the present invention is useful for improving the safety of foods and the like.

10 セル
12 対極
14 作用極
16 参照極
18 測定装置
20 測定部
22 判定部
24 記憶部
10 cell 12 counter electrode 14 working electrode 16 reference electrode 18 measuring device 20 measuring unit 22 determining unit 24 storage unit

Claims (4)

試料に存在する菌を非選択培地中で培養するステップ(a)と、
前記ステップ(a)で得られた培養液を希釈してから検査対象菌用の液体選択培地と混合し、前記検査対象菌を選択的に培養するステップ(b)と、
前記ステップ(b)で培養中の前記培養液の溶存酸素量を酸素電極法により測定するステップ(c)と、
前記ステップ(c)で得られた測定結果に基づいて、前記試料中での前記検査対象菌の有無を判定するステップ(d)とを備え、
前記検査対象菌はサルモネラであり、
前記ステップ(b)では、前記ステップ(a)で得られた前記培養液を1×103倍以上1×104倍以下に希釈して前記液体選択培地と混合することを特徴とする菌の検査方法。
Culturing the bacteria present in the sample in a non-selective medium;
Diluting the culture solution obtained in step (a) and then mixing with the liquid selection medium for the test microorganism, and selectively culturing the test bacteria;
Measuring the amount of dissolved oxygen in the culture medium during culture in the step (b) by an oxygen electrode method; and
And (d) determining the presence or absence of the test bacteria in the sample based on the measurement result obtained in the step (c),
The test microorganism is Salmonella,
In the step (b), the culture solution obtained in the step (a) is diluted to 1 × 10 3 times or more and 1 × 10 4 times or less and mixed with the liquid selection medium. Inspection method.
請求項1において、
前記ステップ(a)で得られた前記培養液の希釈直後の菌濃度は、いずれの菌種についても1×106cfu/mL以下となっていることを特徴とする菌の検査方法。
In claim 1,
The method for examining bacteria, wherein the bacterial concentration immediately after dilution of the culture solution obtained in step (a) is 1 × 10 6 cfu / mL or less for any bacterial species.
請求項1又は2において、
前記ステップ(b)では、前記ステップ(a)で得られた前記培養液を希釈した後、希釈された前記培養液の一部と前記液体選択培地とを測定用のセル(10)内に注入し、
前記ステップ(a)で得られた前記培養液に前記検査対象菌が含まれる場合、前記セル(10)内に注入される希釈された前記培養液中には少なくとも1個の前記検査対象菌が含まれることを特徴とする菌の検査方法。
In claim 1 or 2,
In the step (b), after diluting the culture solution obtained in the step (a), a part of the diluted culture solution and the liquid selective medium are injected into the measurement cell (10). And
When the culture medium to be tested is contained in the culture solution obtained in the step (a), at least one test bacteria to be tested is contained in the diluted culture solution injected into the cell (10). A test method for bacteria characterized by being included.
請求項1〜のうちいずれか1つにおいて、
少なくとも前記ステップ(c)は測定部(20)と判定部(22)とを有する測定システム(18)により行われ、
前記ステップ(c)での前記培養液の溶存酸素濃度の測定は前記測定部(20)により測定され、
前記ステップ(d)では、前記判定部(22)が、前記測定部(20)から送られた測定結果に基づいて前記試料に前記検査対象菌が存在するか否かを判定することを特徴とする菌の検査方法。
In any one of Claims 1-3 ,
At least the step (c) is performed by a measurement system (18) having a measurement unit (20) and a determination unit (22),
The measurement of the dissolved oxygen concentration of the culture solution in the step (c) is measured by the measurement unit (20),
In the step (d), the determination unit (22) determines whether or not the test bacteria are present in the sample based on the measurement result sent from the measurement unit (20). How to check for bacteria.
JP2012092136A 2012-04-13 2012-04-13 Bacteria inspection method Expired - Fee Related JP6040558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012092136A JP6040558B2 (en) 2012-04-13 2012-04-13 Bacteria inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012092136A JP6040558B2 (en) 2012-04-13 2012-04-13 Bacteria inspection method

Publications (2)

Publication Number Publication Date
JP2013220047A JP2013220047A (en) 2013-10-28
JP6040558B2 true JP6040558B2 (en) 2016-12-07

Family

ID=49591496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012092136A Expired - Fee Related JP6040558B2 (en) 2012-04-13 2012-04-13 Bacteria inspection method

Country Status (1)

Country Link
JP (1) JP6040558B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4375836B2 (en) * 1999-04-07 2009-12-02 ダイキン工業株式会社 Bacterial count measuring method and apparatus
US7238496B2 (en) * 2002-08-06 2007-07-03 The Board Of Trustees Of The University Of Arkansas Rapid and automated electrochemical method for detection of viable microbial pathogens
JP2008064648A (en) * 2006-09-08 2008-03-21 Daikin Ind Ltd Heat-resistant bacterium number measuring method and bacterium number measuring apparatus

Also Published As

Publication number Publication date
JP2013220047A (en) 2013-10-28

Similar Documents

Publication Publication Date Title
Van Kessel et al. Prevalence of Salmonella enterica, Listeria monocytogenes, and Escherichia coli virulence factors in bulk tank milk and in-line filters from US dairies
Lee et al. Campylobacter in poultry: filling an ecological niche
Beaufort et al. Prevalence and growth of Listeria monocytogenes in naturally contaminated cold‐smoked salmon
Rivoal et al. Detection of Listeria monocytogenes in raw and pasteurized liquid whole eggs and characterization by PFGE
Jeppesen Media for Aeromonas spp., Plesiomonas shigelloides and Pseudomonas spp. from food and environment
Che et al. Rapid detection of Salmonella typhimurium in chicken carcass wash water using an immunoelectrochemical method
Amoroso et al. Validation of a Real-time PCR assay for fast and sensitive quantification of Brucella spp. in water buffalo milk
Bernardi et al. Hemolymph parameters as physiological biomarkers in American lobster (Homarus americanus) for monitoring the effects of two commercial maintenance methods
Brichta‐Harhay et al. Enumeration of Salmonella from poultry carcass rinses via direct plating methods
Habib et al. Performance characteristics and estimation of measurement uncertainty of three plating procedures for Campylobacter enumeration in chicken meat
Hutchison et al. An assessment of sampling methods and microbiological hygiene indicators for process verification in poultry slaughterhouses
JP6040558B2 (en) Bacteria inspection method
JP2017108721A (en) Long-term storable culture medium for culturing obligate anaerobes or microaerophilic bacteria in aerobic environment, and detection method of obligate anaerobes or microaerophilic bacteria using the same culture medium
JP4794627B2 (en) Detection of Salmonella lactose +
Birk et al. A comparative study of two food model systems to test the survival of Campylobacter jejuni at− 18 C
Lee et al. Development of an improved selective medium for the detection of Shigella spp.
Huang et al. Growth and No-Growth boundary of Listeria monocytogenes in beef–A logistic modeling
EP2723903A1 (en) Detection and quantification of lactic acid producing bacteria in food products
Martelli et al. Development and testing of external quality assessment samples for Salmonella detection in poultry samples
Priego et al. Bactometer system versus traditional methods for monitoring bacteria populations in salchichon during its ripening process
Bolten et al. Population dynamics of Listeria spp., Salmonella spp., and Escherichia coli on fresh produce: A scoping review
CN113215038B (en) Geobacillus stearothermophilus and method for rapidly detecting antibiotics in sample by using Geobacillus stearothermophilus
Cunha et al. ATP-Bioluminescence as a method to evaluated microbiological quality of UHT milk
Kačániová et al. Incidence of Listeria monocytogenes in meat product samples by real time PCR
Soria et al. Culture based methods to detect Salmonella from different poultry products

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161024

R151 Written notification of patent or utility model registration

Ref document number: 6040558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees