JPH10276795A - Measurement of physiological activity and apparatus therefor - Google Patents

Measurement of physiological activity and apparatus therefor

Info

Publication number
JPH10276795A
JPH10276795A JP8930597A JP8930597A JPH10276795A JP H10276795 A JPH10276795 A JP H10276795A JP 8930597 A JP8930597 A JP 8930597A JP 8930597 A JP8930597 A JP 8930597A JP H10276795 A JPH10276795 A JP H10276795A
Authority
JP
Japan
Prior art keywords
measured
substance
liquid medium
measuring
dissolved oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8930597A
Other languages
Japanese (ja)
Other versions
JP3240952B2 (en
Inventor
Junichiro Arai
潤一郎 新井
Chiaki Okumura
千晶 奥村
Nahomi Noda
なほみ 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP08930597A priority Critical patent/JP3240952B2/en
Publication of JPH10276795A publication Critical patent/JPH10276795A/en
Application granted granted Critical
Publication of JP3240952B2 publication Critical patent/JP3240952B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To surely measure its physiological activity of the substance to be measured regardless of the specimens of kinds. SOLUTION: When the physiological activity of a substance is measured by determining the dissolved oxygen in the liquid medium containing only the substance to be measured and the dissolved oxygen in the liquid medium containing the substance as well as a medicine with the oxygen electrode, the substance to be measured and the medicine are added to the liquid medium and they are aerobically cultured at a prescribed temperature for a prescribed time, then the liquid medium is tightly sealed to measure the dissolved oxygen with the oxygen electrode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は生理活性測定方法
およびその装置に関し、さらに詳細にいえば、測定対象
物質および薬剤を添加した液体培地中の溶存酸素量を酸
素電極を用いて測定することにより測定対象物質の生理
活性を測定する方法およびその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for measuring physiological activity, and more particularly, to measuring the amount of dissolved oxygen in a liquid medium to which a substance to be measured and a drug are added by using an oxygen electrode. The present invention relates to a method and an apparatus for measuring a physiological activity of a substance to be measured.

【0002】[0002]

【従来の技術】従来から、生理活性のうち、薬剤感受性
を測定する方法としてKBディスク法が知られている。
このKBディスク法は、予め薬剤を添加してあるろ紙の
周囲どのくらいまで菌の増殖を抑制するかを目視で判定
する方法である。しかし、このKBディスク法を採用し
た場合には、目視判定が可能な程度にまで菌の増殖を行
わせなければならないのであるから、所要時間が著しく
長くなってしまうという不都合がある。
2. Description of the Related Art Conventionally, the KB disk method has been known as a method for measuring drug sensitivity among physiological activities.
The KB disk method is a method for visually determining how much the growth of bacteria is suppressed around a filter paper to which a drug has been added in advance. However, when the KB disk method is adopted, the bacteria must be grown to such an extent that visual judgment can be made, and therefore, there is an inconvenience that the required time becomes extremely long.

【0003】このような不都合を解消するために、菌お
よび薬剤を液体培地に添加し、酸素電極を用いて液体培
地中の溶存酸素量を測定し、溶存酸素量の測定結果に基
づいて薬剤感受性を判定する方法が提案されている。こ
のようにして酸素電極により溶存酸素量の測定を行うに
当っては、大気中から液体培地中に溶解する酸素を遮断
するために液体培地を密閉するようにしている。そし
て、この方法を採用すれば、1時間程度の所要時間で薬
剤感受性の判定を行うことができると期待されている。
In order to solve such inconveniences, bacteria and drugs are added to a liquid medium, the amount of dissolved oxygen in the liquid medium is measured using an oxygen electrode, and the drug sensitivity is determined based on the measurement result of the dissolved oxygen amount. Has been proposed. When measuring the amount of dissolved oxygen using the oxygen electrode in this way, the liquid medium is sealed in order to block oxygen dissolved in the liquid medium from the atmosphere. If this method is adopted, it is expected that the drug sensitivity can be determined in a required time of about one hour.

【0004】[0004]

【発明が解決しようとする課題】しかし、前記のように
して酸素電極を用いて液体培地中の溶存酸素量を測定す
る場合には、抗生物質の種類によっては薬剤感受性を判
定することができないという不都合がある。さらに詳細
に説明する。
However, when measuring the amount of dissolved oxygen in a liquid medium using an oxygen electrode as described above, it is impossible to determine the drug sensitivity depending on the type of antibiotic. There are inconveniences. This will be described in more detail.

【0005】抗生物質の抗菌作用機序が「細胞壁合成妨
害」である場合には、細菌が分裂して初めて作用が発現
するのであるから、1時間程度の所要時間で十分な数の
細菌が分裂のフェーズに入らない可能性があり、このよ
うな場合には、薬剤感受性があるとの判定を行うことが
できない。また、腸内細菌群に属する細菌などの場合に
は、好気的な条件と嫌気的な条件とで呼吸の経路が異な
る。そして、上述のように、細菌を密閉状態で測定する
と、液体培地は比較的短時間で比較的嫌気的な状態にな
ってしまう。したがって、嫌気的な条件での呼吸が行わ
れることになってしまい、溶存酸素量の測定では薬剤感
受性の判定を行うことができなくなってしまう。
[0005] When the antibacterial action mechanism of an antibiotic is "interference of cell wall synthesis", the action is expressed only after the bacteria are divided, so that a sufficient number of bacteria can be divided in about one hour. In such a case, it may not be possible to determine that there is drug sensitivity. In the case of bacteria belonging to the intestinal bacteria group, the respiratory route is different between aerobic conditions and anaerobic conditions. As described above, when bacteria are measured in a closed state, the liquid medium becomes relatively anaerobic in a relatively short time. Therefore, breathing is performed under anaerobic conditions, and it becomes impossible to determine drug sensitivity by measuring the amount of dissolved oxygen.

【0006】[0006]

【発明の目的】この発明は上記の問題点に鑑みてなされ
たものであり、測定対象物質の種類に拘らず生理活性を
確実に測定することができる生理活性測定方法およびそ
の装置を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and provides a method and an apparatus for measuring a physiological activity capable of reliably measuring a physiological activity regardless of the type of a substance to be measured. It is an object.

【0007】[0007]

【課題を解決するための手段】請求項1の生理活性測定
方法は、測定対象物質のみを添加した液体培地中の溶存
酸素量と測定対象物質および薬剤を添加した液体培地中
の溶存酸素量とを酸素電極を用いて測定することにより
測定対象物質の生理活性を測定するに当って、液体培地
に測定対象物質および薬剤を添加して所定時間だけ所定
の培養温度で好気的に測定対象物質を培養し、次いで、
液体培地を密閉状態にして酸素電極を用いて溶存酸素量
を測定する方法である。
According to a first aspect of the present invention, there is provided a method for measuring a physiological activity, comprising the steps of: measuring a dissolved oxygen content in a liquid medium to which only a substance to be measured is added; In measuring the physiological activity of the substance to be measured by using an oxygen electrode, the substance to be measured and the drug are added to a liquid medium, and the substance to be measured is aerobically at a predetermined culture temperature for a predetermined time. And then
This is a method of measuring the amount of dissolved oxygen using an oxygen electrode while keeping the liquid medium in a closed state.

【0008】請求項2の生理活性測定装置は、測定対象
物質のみを添加した液体培地中の溶存酸素量と測定対象
物質および薬剤を添加した液体培地中の溶存酸素量とを
酸素電極を用いて測定することにより測定対象物質の生
理活性を測定する装置であって、液体培地に測定対象物
質および薬剤を添加して所定時間だけ所定の培養温度で
好気的に測定対象物質を培養する好気的培養手段と、好
気的培養後に、酸素電極を用いて溶存酸素量を測定する
ために、液体培地を密閉状態にする密閉手段とを含むも
のである。
According to a second aspect of the present invention, there is provided a physiological activity measuring apparatus for measuring the amount of dissolved oxygen in a liquid medium to which only a substance to be measured is added and the amount of dissolved oxygen in a liquid medium to which a substance to be measured and a drug are added by using an oxygen electrode. An apparatus for measuring a physiological activity of a substance to be measured by measuring, wherein the substance to be measured and a drug are added to a liquid medium and the substance to be measured is aerobically cultured at a predetermined culture temperature for a predetermined time. And a sealing means for closing the liquid medium in order to measure the amount of dissolved oxygen using an oxygen electrode after aerobic culturing.

【0009】[0009]

【作用】請求項1の生理活性測定方法であれば、測定対
象物質のみを添加した液体培地中の溶存酸素量と測定対
象物質および薬剤を添加した液体培地中の溶存酸素量と
を酸素電極を用いて測定することにより測定対象物質の
生理活性を測定するに当って、液体培地に測定対象物質
および薬剤を添加して所定時間だけ所定の培養温度で好
気的に測定対象物質を培養し、次いで、液体培地を密閉
状態にして酸素電極を用いて溶存酸素量を測定するので
あるから、抗生物質の抗菌作用機序が「細胞壁合成妨
害」である場合であっても十分な数の細菌が分裂のフェ
ーズに入り、腸内細菌群に属する細菌などであっても好
気的な条件での呼吸が行われることになり、両液体培地
中の溶存酸素量を測定することにより測定対象物質の生
理活性を測定することができる。
According to the physiological activity measuring method of the present invention, the amount of dissolved oxygen in the liquid medium to which only the substance to be measured is added and the amount of dissolved oxygen in the liquid medium to which the substance to be measured and the drug are added are determined by using an oxygen electrode. In measuring the physiological activity of the target substance by measuring using, the target substance and the drug are added to the liquid medium, and the target substance is cultured aerobically at a predetermined culture temperature for a predetermined time, Next, since the liquid medium is sealed and the amount of dissolved oxygen is measured using an oxygen electrode, a sufficient number of bacteria can be obtained even if the antibacterial action mechanism of the antibiotic is "interference with cell wall synthesis". Entering the division phase, even bacteria belonging to the intestinal bacteria group will be respired under aerobic conditions, and by measuring the amount of dissolved oxygen in both liquid culture media, Measuring bioactivity Can.

【0010】請求項2の生理活性測定装置であれば、測
定対象物質のみを添加した液体培地中の溶存酸素量と測
定対象物質および薬剤を添加した液体培地中の溶存酸素
量とを酸素電極を用いて測定することにより測定対象物
質の生理活性を測定する装置であって、液体培地に測定
対象物質および薬剤を添加して所定時間だけ所定の培養
温度で好気的に測定対象物質を培養する好気的培養手段
と、好気的培養後に、酸素電極を用いて溶存酸素量を測
定するために、液体培地を密閉状態にする密閉手段とを
含んでいるので、抗生物質の抗菌作用機序が「細胞壁合
成妨害」である場合であっても十分な数の細菌が分裂の
フェーズに入り、腸内細菌群に属する細菌などであって
も好気的な条件での呼吸が行われることになり、両液体
培地中の溶存酸素量を測定することにより測定対象物質
の生理活性を測定することができる。
According to the physiological activity measuring device of the present invention, the amount of dissolved oxygen in the liquid medium to which only the substance to be measured is added and the amount of dissolved oxygen in the liquid medium to which the substance to be measured and the drug are added are measured by the oxygen electrode. An apparatus for measuring the physiological activity of a substance to be measured by performing measurement by adding the substance to be measured and a drug to a liquid medium and aerobically culturing the substance to be measured at a predetermined culture temperature for a predetermined time. An aerobic culturing means and a sealing means for closing the liquid medium in order to measure the amount of dissolved oxygen using an oxygen electrode after the aerobic culturing, so that the antibacterial action mechanism of the antibiotic is included. Even if is `` cell wall synthesis interference '', a sufficient number of bacteria enter the division phase, and even bacteria belonging to the intestinal bacteria group are breathed under aerobic conditions Dissolved oxygen in both liquid media It can be measured physiological activity of analyte by measuring.

【0011】[0011]

【発明の実施の態様】以下、添付図面を参照しながらこ
の発明の実施の態様を詳細に説明する。図1はこの発明
の生理活性測定装置の一実施態様を示す該略図である。
ここで、生理活性とは、薬剤感受性、抗体、抗原、ケミ
カルメディエーターの放出などを総称する概念として使
用される。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a schematic view showing one embodiment of the physiological activity measuring device of the present invention.
Here, the term “bioactivity” is used as a general term for drug sensitivity, release of antibodies, antigens, chemical mediators, and the like.

【0012】この生理活性測定装置は、細菌、細胞など
の測定対象物質が添加された液体培地を収容する第1測
定セル11と、細菌、細胞などの測定対象物質および抗
生物質などの薬剤が添加された液体培地を収容する第2
測定セル12と、第1測定セル11、第2測定セル12
を開放状態(好気状態)と密閉状態(嫌気状態)とに制
御する第1、第2状態制御部(例えば、密閉蓋部材)2
1、22と、密閉状態の第1測定セル11、第2測定セ
ル12の液体培地中の溶存酸素量を測定する第1酸素電
極31、第2酸素電極32と、第1酸素電極31、第2
酸素電極32にそれぞれバイアス電圧を印可する第1、
第2ポテンショスタット41、42と、第1酸素電極3
1、第2酸素電極32から出力される電流信号(以下、
測定電流と称する)を電圧信号に変換する第1、第2電
流−電圧変換部51、52と、変換された電圧信号をデ
ィジタル電圧信号に変換するA/D変換部6と、変換さ
れたディジタル電圧信号を入力として所定の処理を行
い、生理活性測定結果を出力するデータ処理部7とを有
している。
This physiological activity measuring apparatus comprises a first measuring cell 11 containing a liquid medium to which a substance to be measured such as bacteria and cells is added, and a substance such as a substance to be measured such as bacteria and cells and a drug such as an antibiotic. Second containing liquid medium
Measurement cell 12, first measurement cell 11, second measurement cell 12
First and second state control units (for example, a closed lid member) 2 for controlling the state between an open state (aerobic state) and a closed state (anaerobic state)
1, 22 and a first oxygen electrode 31, a second oxygen electrode 32, and a first oxygen electrode 31, which measure the amount of dissolved oxygen in the liquid medium of the first measurement cell 11 and the second measurement cell 12 in a closed state. 2
First, a bias voltage is applied to the oxygen electrode 32,
The second potentiostats 41 and 42 and the first oxygen electrode 3
1. A current signal output from the second oxygen electrode 32 (hereinafter, referred to as
First and second current-voltage converters 51 and 52 for converting the measured current into a voltage signal, an A / D converter 6 for converting the converted voltage signal into a digital voltage signal, A data processing unit 7 that performs a predetermined process with the voltage signal as an input and outputs a physiological activity measurement result.

【0013】各酸素電極は、例えば、絶縁基板上に作用
極と対向極、または作用極、参照極と対向極が印刷焼成
により形成されたものであり、対応するポテンショスタ
ットにより、対向極に対して所定のバイアス電圧(例え
ば、−0.45V)が作用極に印加されている。また、
各極としては、従来公知の材質、例えば、貴金属、銀な
どからなるものが採用される。
Each of the oxygen electrodes is, for example, a working electrode and a counter electrode, or a working electrode and a reference electrode and a counter electrode formed on an insulating substrate by printing and firing. A predetermined bias voltage (for example, -0.45 V) is applied to the working electrode. Also,
As each electrode, a material made of a conventionally known material, for example, a noble metal, silver, or the like is employed.

【0014】データ処理部7は、第1酸素電極31、第
2酸素電極32から出力される測定電流に対応するディ
ジタル電圧信号を入力として、所定の処理を行うことに
より生理活性の測定を達成し、生理活性測定結果を出力
するものである。ここで、所定の処理としては、例え
ば、各ディジタル電圧信号について時間微分信号を算出
し、両時間微分信号に有意な差が存在するか否かを判定
する処理が例示できる。また、第2測定セル11を複数
個準備し、各第2測定セル11の液体培地に添加される
薬剤の濃度を互いに異ならせておくことにより、生理活
性の定量的な測定を行うことも可能である。
The data processing section 7 receives a digital voltage signal corresponding to the measurement current output from the first oxygen electrode 31 and the second oxygen electrode 32 and performs a predetermined process to achieve the measurement of the physiological activity. , For outputting the results of physiological activity measurement. Here, as the predetermined process, for example, a process of calculating a time differential signal for each digital voltage signal and determining whether a significant difference exists between the two time differential signals can be exemplified. In addition, by preparing a plurality of second measurement cells 11 and making the concentrations of the drugs added to the liquid medium of each second measurement cell 11 different from each other, it is also possible to perform a quantitative measurement of the physiological activity. It is.

【0015】上記の構成の生理活性測定装置の作用を、
図2のフローチャートを参照しながら説明する。ステッ
プSP1において、第1状態制御部21、第2状態制御部
22により第1測定セル11、第2測定セル12を開放
状態に設定して、測定対象物質を好気状態で増殖させ
る。なお、好気状態で増殖させるための時間は、所定時
間(例えば、30分から2時間)であればよく、また、
液体培地の温度は、室温であってもよいが、測定対象物
質の増殖に適した温度であることが好ましい。さらに、
好気状態を得る方法としては、セルを開放状態に設定す
る代わりに、ワーク電極として白金からなるものを採用
し、ワーク電極に適当な電圧(通常2V以上:水の電気
分解に必要な電位であって、測定に利用する電位{−
0.2V〜−0.8V}に比べ十分に高い電位)を印可
することが可能であり、この場合には、セル内に酸素を
発生させ、好気状態を得ることができる。
The operation of the physiological activity measuring device having the above configuration is
This will be described with reference to the flowchart of FIG. In step SP1, the first state control unit 21 and the second state control unit 22 set the first measurement cell 11 and the second measurement cell 12 to the open state, and the substance to be measured grows in an aerobic state. In addition, the time for growing in the aerobic state may be a predetermined time (for example, 30 minutes to 2 hours).
The temperature of the liquid medium may be room temperature, but is preferably a temperature suitable for growing the substance to be measured. further,
As a method for obtaining an aerobic state, instead of setting the cell to an open state, a work electrode made of platinum is employed, and a proper voltage (usually 2 V or more: a potential required for electrolysis of water) is applied to the work electrode. And the potential used for measurement {−
(A potential sufficiently higher than 0.2 V to -0.8 V) can be applied. In this case, oxygen can be generated in the cell, and an aerobic state can be obtained.

【0016】所定時間が経過した後は、ステップSP2に
おいて、第1状態制御部21、第2状態制御部22によ
り第1測定セル11、第2測定セル12を密閉状態に設
定し、ステップSP3において、第1測定セル11、第2
測定セル12の液体培地中の溶存酸素量を所定時間(例
えば、1時間)にわたって測定し、ステップSP4におい
て、測定された溶存酸素量に基づいて所定の処理を行う
ことにより生理活性の測定を行い、生理活性測定結果を
出力する。
After the predetermined time has elapsed, in step SP2, the first measurement cell 11 and the second measurement cell 12 are set to the closed state by the first state control unit 21 and the second state control unit 22, and in step SP3 , The first measuring cell 11, the second
The amount of dissolved oxygen in the liquid medium of the measurement cell 12 is measured for a predetermined time (for example, 1 hour), and in step SP4, the physiological activity is measured by performing a predetermined process based on the measured amount of dissolved oxygen. And outputs the physiological activity measurement result.

【0017】上記の一連の処理を行えば、密閉状態で溶
存酸素量の測定を行う前に、好気状態で所定時間だけ増
殖を行わせるのであるから、例えば、薬剤としての抗生
物質の抗菌作用機序が「細胞壁合成妨害」である場合で
あっても十分な数の細菌(測定対象物質)が分裂のフェ
ーズに入り、測定対象物質が腸内細菌群に属する細菌な
どであっても好気的な条件での呼吸が行われることにな
り、第1測定セル11、第2測定セル12の液体培地中
の溶存酸素量に有意な差を生じさせることが可能にな
る。したがって、その後、密閉状態で両液体培地中の溶
存酸素量を測定することにより測定対象物質の生理活性
を測定することができる。
By performing the above-described series of processes, before measuring the amount of dissolved oxygen in a closed state, the cells are allowed to grow in an aerobic state for a predetermined period of time. Even if the mechanism is “interference of cell wall synthesis”, a sufficient number of bacteria (substances to be measured) enter the division phase, and even if the substances to be measured are bacteria belonging to the intestinal bacteria group, they are aerobic. As a result, respiration under a typical condition is performed, and it is possible to cause a significant difference in the amount of dissolved oxygen in the liquid culture medium of the first measurement cell 11 and the second measurement cell 12. Therefore, thereafter, the physiological activity of the substance to be measured can be measured by measuring the amount of dissolved oxygen in both liquid media in a closed state.

【0018】図3は大腸菌(E.coli)にピペラシ
リン(PIPC)を作用させ、かつ測定開始前に好気的
な条件下で30分間培養を行い、その後溶存酸素量の経
時変化を測定した結果を示す図である。図4は大腸菌
(E.coli)にピペラシリン(PIPC)を作用さ
せ、直ちに溶存酸素量の経時変化を測定した結果を示す
図である。
FIG. 3 shows the results obtained by causing piperacillin (PIPC) to act on Escherichia coli (E. coli), culturing for 30 minutes under aerobic conditions before starting the measurement, and then measuring the change over time in the amount of dissolved oxygen. FIG. FIG. 4 is a graph showing the results of measuring the change over time in the amount of dissolved oxygen immediately after piperacillin (PIPC) was allowed to act on E. coli.

【0019】なお、両図においてRは耐性株を示し、S
は感受性株を示している。また、R、Sに続く数字はピ
ペラシリンの添加量を示している。両図を対比すれば、
測定開始前に好気的な条件下で30分間培養を行うこと
により、ピペラシリンの添加量を256μg/ml、6
4μg/mlに設定した場合と他の場合とを明確に識別
できることが分かる。
In both figures, R indicates a resistant strain and S
Indicates a susceptible strain. The numbers following R and S indicate the amount of piperacillin added. If you compare both figures,
By culturing for 30 minutes under aerobic conditions before the start of measurement, the amount of piperacillin to be added is 256 μg / ml, 6 μg / ml.
It can be seen that the case of setting 4 μg / ml can be clearly distinguished from the other cases.

【0020】図5は大腸菌(IFO15034)にゲン
タマイシン(GM)を作用させ、かつ測定開始前に好気
的な条件下で30分間培養を行い、その後溶存酸素量の
経時変化を測定した結果を示す図である。なお、図にお
いて数字はゲンタマイシンの添加量を示している。ここ
で、ゲンタマイシンの抗菌作用機序は「タンパク合成阻
害」であり、好気的培養を行わない条件下でも、同様な
測定結果が得られる。つまり、図5の測定結果から、測
定開始前に好気的な条件下で培養を行うことは、このよ
うな培養を行わなくても結果が得られる抗生物質と細菌
との組み合わせについて行っても、何らその測定結果に
影響を及ぼすものではないことが分かる。すなわち、こ
の実施態様においては、添加する抗生物質によって好気
的な状況下で培養が必要か否かを考慮する必要がなく、
抗菌作用機序が「細胞壁合成妨害」の抗生物質以外にお
いても測定を行うことができる。
FIG. 5 shows the results obtained by allowing gentamicin (GM) to act on Escherichia coli (IFO15034) and culturing for 30 minutes under aerobic conditions before the start of the measurement, and then measuring the change over time in the amount of dissolved oxygen. FIG. In the figures, the numbers indicate the amount of gentamicin added. Here, the antibacterial action mechanism of gentamicin is “protein synthesis inhibition”, and similar measurement results can be obtained even under conditions where aerobic culture is not performed. In other words, from the measurement results in FIG. 5, culturing under aerobic conditions before the start of measurement can be performed on a combination of an antibiotic and a bacterium that can obtain a result without performing such culturing. It does not affect the measurement result. That is, in this embodiment, it is not necessary to consider whether culturing is required under an aerobic condition by the added antibiotic,
Measurements can be made for antibiotics other than those whose antibacterial action mechanism is “interference in cell wall synthesis”.

【0021】さらに、以上の実施態様において、生理活
性のうち、抗体、抗原、ケミカルメディエーターなどの
放出の測定を行う場合には、測定対象物とアフィニティ
ーのある物質(例えば、抗原に対しては抗体)を酸素電
極上に固定化しておけばよく、測定対象物が選択的に固
定化された物質に吸着することで酸素電極の出力が定量
的に減少するので、複数の酸素電極の出力どうしを比較
することで測定対象物の量を検出することができる。
Further, in the above embodiments, when measuring the release of antibodies, antigens, chemical mediators and the like among the physiological activities, the substance having an affinity with the substance to be measured (for example, antibody against antigen) ) May be immobilized on the oxygen electrode, and the output of the oxygen electrode is quantitatively reduced by selectively adsorbing the object to be measured on the immobilized substance. By comparing, the amount of the measurement target can be detected.

【0022】[0022]

【発明の効果】請求項1の発明は、抗生物質の抗菌作用
機序が「細胞壁合成妨害」である場合であっても十分な
数の細菌が分裂のフェーズに入り、腸内細菌群に属する
細菌などであっても好気的な条件での呼吸が行われるこ
とになり、両液体培地中の溶存酸素量を測定することに
より、種類を問わず測定対象物質の生理活性を測定する
ことができるという特有の効果を奏する。
According to the first aspect of the present invention, even if the antibacterial action mechanism of the antibiotic is "interference of cell wall synthesis", a sufficient number of bacteria enter the division phase and belong to the intestinal bacteria group. Even bacteria, etc., will breathe under aerobic conditions, and by measuring the amount of dissolved oxygen in both liquid media, it is possible to measure the physiological activity of the target substance regardless of the type. It has the unique effect of being able to.

【0023】請求項2の発明は、抗生物質の抗菌作用機
序が「細胞壁合成妨害」である場合であっても十分な数
の細菌が分裂のフェーズに入り、腸内細菌群に属する細
菌などであっても好気的な条件での呼吸が行われること
になり、両液体培地中の溶存酸素量を測定することによ
り、種類を問わず測定対象物質の生理活性を測定するこ
とができるという特有の効果を奏する。
[0023] The invention of claim 2 is that even if the antibacterial action mechanism of the antibiotic is "interference of cell wall synthesis", a sufficient number of bacteria enter the division phase and bacteria belonging to the group of intestinal bacteria, etc. Even in this case, respiration is performed under aerobic conditions, and by measuring the amount of dissolved oxygen in both liquid culture media, it is possible to measure the physiological activity of the target substance regardless of the type Has a unique effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の生理活性測定装置の一実施態様を示
す該略図である。
FIG. 1 is a schematic view showing one embodiment of the physiological activity measuring device of the present invention.

【図2】この発明の生理活性方法の一実施態様を説明す
るフローチャートである。
FIG. 2 is a flowchart illustrating one embodiment of the physiological activity method of the present invention.

【図3】大腸菌(E.coli)にピペラシリン(PI
PC)を作用させ、かつ測定開始前に好気的な条件下で
30分間培養を行い、その後溶存酸素量の経時変化を測
定した結果を示す図である。
FIG. 3. Piperacillin (PI) in E. coli.
FIG. 6 is a diagram showing the results of measuring the change over time in the amount of dissolved oxygen after culturing for 30 minutes under aerobic conditions before the start of measurement and after the start of measurement.

【図4】大腸菌(E.coli)にピペラシリン(PI
PC)を作用させ、直ちに溶存酸素量の経時変化を測定
した結果を示す図である。
FIG. 4. Piperacillin (PI) in E. coli
FIG. 6 is a diagram showing the results of immediately measuring the change over time in the amount of dissolved oxygen with PC).

【図5】大腸菌(IFO15034)にゲンタマイシン
(GM)を作用させ、かつ測定開始前に好気的な条件下
で30分間培養を行い、その後溶存酸素量の経時変化を
測定した結果を示す図である。
FIG. 5 is a graph showing the results obtained by allowing gentamicin (GM) to act on Escherichia coli (IFO15034) and culturing for 30 minutes under aerobic conditions before the start of measurement, and then measuring the change over time in the amount of dissolved oxygen. is there.

【符号の説明】[Explanation of symbols]

11 第1測定セル 12 第2測定セル 21 第1状態制御部 22 第2状態制御部 31 第1酸素電極 32 第2酸素電極 DESCRIPTION OF SYMBOLS 11 1st measurement cell 12 2nd measurement cell 21 1st state control part 22 2nd state control part 31 1st oxygen electrode 32 2nd oxygen electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野田 なほみ 東京都新宿区西新宿2丁目6番1号 新宿 住友ビル ダイキン工業株式会社東京支店 内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Naho Noda 2-6-1 Nishi Shinjuku, Shinjuku-ku, Tokyo Shinjuku Sumitomo Bldg. Daikin Industries, Ltd. Tokyo Branch

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 測定対象物質のみを添加した液体培地中
の溶存酸素量と測定対象物質および薬剤を添加した液体
培地中の溶存酸素量とを酸素電極(31)(32)を用
いて測定することにより測定対象物質の生理活性を測定
する方法であって、 液体培地に測定対象物質および薬剤を添加して所定時間
だけ所定の培養温度で好気的に測定対象物質を培養し、
次いで、液体培地を密閉状態にして酸素電極(31)
(32)を用いて溶存酸素量を測定することを特徴とす
る生理活性測定方法。
1. The amount of dissolved oxygen in a liquid medium to which only a substance to be measured is added and the amount of dissolved oxygen in a liquid medium to which a substance to be measured and a drug are added are measured using oxygen electrodes (31) and (32). A method of measuring the physiological activity of the measurement target substance by adding the measurement target substance and a drug to a liquid medium and culturing the measurement target substance aerobically at a predetermined culture temperature for a predetermined time,
Then, the liquid medium is sealed and the oxygen electrode (31)
A method for measuring physiological activity, comprising measuring the amount of dissolved oxygen using (32).
【請求項2】 測定対象物質のみを添加した液体培地中
の溶存酸素量と測定対象物質および薬剤を添加した液体
培地中の溶存酸素量とを酸素電極(31)(32)を用
いて測定することにより測定対象物質の生理活性を測定
する装置であって、 液体培地に測定対象物質および薬剤を添加して所定時間
だけ所定の培養温度で好気的に測定対象物質を培養する
好気的培養手段(11)(12)(21)(22)と、
好気的培養後に、酸素電極(31)(32)を用いて溶
存酸素量を測定するために、液体培地を密閉状態にする
密閉手段(11)(12)(21)(22)とを含むこ
とを特徴とする生理活性測定装置。
2. The amount of dissolved oxygen in a liquid medium to which only a substance to be measured is added and the amount of dissolved oxygen in a liquid medium to which a substance to be measured and a drug are added are measured using oxygen electrodes (31) and (32). An apparatus for measuring the physiological activity of a substance to be measured by adding the substance to be measured to a liquid medium and aerobically culturing the substance to be measured aerobically at a predetermined culture temperature for a predetermined time. Means (11) (12) (21) (22);
In order to measure the amount of dissolved oxygen using the oxygen electrodes (31) and (32) after the aerobic culture, sealing means (11), (12), (21) and (22) for closing the liquid medium are included. A physiological activity measuring device, characterized in that:
JP08930597A 1997-04-08 1997-04-08 Physiological activity measuring method and device therefor Expired - Fee Related JP3240952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08930597A JP3240952B2 (en) 1997-04-08 1997-04-08 Physiological activity measuring method and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08930597A JP3240952B2 (en) 1997-04-08 1997-04-08 Physiological activity measuring method and device therefor

Publications (2)

Publication Number Publication Date
JPH10276795A true JPH10276795A (en) 1998-10-20
JP3240952B2 JP3240952B2 (en) 2001-12-25

Family

ID=13966963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08930597A Expired - Fee Related JP3240952B2 (en) 1997-04-08 1997-04-08 Physiological activity measuring method and device therefor

Country Status (1)

Country Link
JP (1) JP3240952B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001068906A1 (en) * 2000-03-17 2001-09-20 Jikei University School Of Medecine Drug sensitivity measuring method and device therefor
WO2001068905A1 (en) * 2000-03-17 2001-09-20 Jikei University School Of Medicine Drug sensitivity measuring method
WO2008029645A1 (en) * 2006-09-08 2008-03-13 Daikin Industries, Ltd. Cell count determination method and cell count determination apparatus for thermoduric bacterium

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001068906A1 (en) * 2000-03-17 2001-09-20 Jikei University School Of Medecine Drug sensitivity measuring method and device therefor
WO2001068905A1 (en) * 2000-03-17 2001-09-20 Jikei University School Of Medicine Drug sensitivity measuring method
US7081353B2 (en) 2000-03-17 2006-07-25 Jikei University School Of Medicine Drug susceptibility measurement method and apparatus thereof
US7198906B2 (en) 2000-03-17 2007-04-03 Jikei University School Of Medicine Drug sensitivity measuring method
WO2008029645A1 (en) * 2006-09-08 2008-03-13 Daikin Industries, Ltd. Cell count determination method and cell count determination apparatus for thermoduric bacterium

Also Published As

Publication number Publication date
JP3240952B2 (en) 2001-12-25

Similar Documents

Publication Publication Date Title
Chen et al. Glucose microbiosensor based on alumina sol–gel matrix/electropolymerized composite membrane
Kobos et al. Regenerable bacterial membrane electrode for L-aspartate
US20010003045A1 (en) Microfabricated aperture-based sensor
Mascini et al. Glucose electrochemical probe with extended linearity for whole blood
Campanella et al. A new organic phase enzyme electrode for the analysis of organophosphorus pesticides and carbamates
Wang et al. A polishable amperometric biosensor for bilirubin
US4780191A (en) L-glutamine sensor
Tombach et al. Amperometric creatinine biosensor for hemodialysis patients
White et al. Lactate, glutamate and glutamine biosensors based on rhodinised carbon electrodes
Wollenberger et al. A specific enzyme electrode for L-glutamate-development and application
Neubauer et al. A multistep enzyme sensor for sucrose based on S-layer microparticles as immobilization matrix
Nilsson et al. An enzyme electrode for measurement of penicillin in fermentation broth: a step toward the application of enzyme electrodes in fermentation control
JP3240952B2 (en) Physiological activity measuring method and device therefor
Durand et al. An enzyme electrode for acetylcholine
Renneberg et al. Microbial sensor for aspartame
Reddy et al. Amperometric enzyme electrode for the determination of urine oxalate
Meyer et al. Growth control in microbial cultures
Kobos Microbe-based electrochemical sensing systems
Yao et al. Simultaneous flow-injection assay of creatinine and creatine in serum by the combined use of a 16-way switching valve, some specific enzyme reactors and a highly selective hydrogen peroxide electrode
Tamiya et al. Micro-biosensors for clinical analyses
Riedel et al. Inhibitor-treated microbial sensor for the selective determination of glutamic acid
Brand et al. Bio-field-effect transistors as detectors in flow-injection analysis
Galindo et al. Microbial sensor for penicillins using a recombinant strain of Escherichia coli
US4073694A (en) Microbiological assay of aminoglycoside antibiotics
Wingard Jr et al. Immobilized enzyme electrodes for the potentiometric measurement of glucose concentration: immobilization techniques and materials

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees