WO2008025915A1 - Systeme de climatisation pour vehicule automobile avec circuit secondaire pour alimenter la batterie - Google Patents

Systeme de climatisation pour vehicule automobile avec circuit secondaire pour alimenter la batterie Download PDF

Info

Publication number
WO2008025915A1
WO2008025915A1 PCT/FR2007/051794 FR2007051794W WO2008025915A1 WO 2008025915 A1 WO2008025915 A1 WO 2008025915A1 FR 2007051794 W FR2007051794 W FR 2007051794W WO 2008025915 A1 WO2008025915 A1 WO 2008025915A1
Authority
WO
WIPO (PCT)
Prior art keywords
heater
hydraulic
engine
circuit
conditioning system
Prior art date
Application number
PCT/FR2007/051794
Other languages
English (en)
Inventor
Pierre Dumoulin
Original Assignee
Peugeot Citroën Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroën Automobiles SA filed Critical Peugeot Citroën Automobiles SA
Priority to EP07823700A priority Critical patent/EP2057025A1/fr
Publication of WO2008025915A1 publication Critical patent/WO2008025915A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00885Controlling the flow of heating or cooling liquid, e.g. valves or pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00492Heating, cooling or ventilating [HVAC] devices comprising regenerative heating or cooling means, e.g. heat accumulators
    • B60H1/00499Heat or cold storage without phase change including solid bodies, e.g. batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/003Component temperature regulation using an air flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00928Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising a secondary circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00949Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising additional heating/cooling sources, e.g. second evaporator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/34Cabin temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an air conditioning system for a motor vehicle having life conditions in which the heat engine is stopped during the driving phase.
  • an air conditioning system for cooling the passenger compartment of a motor vehicle comprises a heat exchanger system comprising an evaporator, a compressor, a condenser, an expander and a fluid that can change states: liquid / gas, as shown in the diagram of Figure 1.
  • the compressor Directly driven by the vehicle's engine using a belt and a pulley, it compresses refrigerant, delivering it under high pressure and at high temperature to the condenser.
  • the condenser Thanks to a forced ventilation, this heat exchanger causes the condensation of the gas which reaches the gaseous state at high pressure and high temperature. It liquefies it by lowering the temperature of the air passing through it.
  • Evaporator This is the last component of the air conditioning system. It is a heat exchanger, like the condenser that takes calories from the air that will be blown into the cabin (it cools the air and dries it). Moisture taken from the air flows on the fins of the evaporator and is gradually evacuated under the vehicle.
  • the regulator is a component that regulates the flow rate of gas entering the loop via a change of passage section depending on the temperature and the pressure at the evaporator.
  • the present invention relates to a system for managing the best intake of frigories or calories according to the "hot” or “cold” weather conditions for both the cockpit only for the battery and in particular to bring hot and cold to the battery via the engine water circuit in “cold” and “hot” climatic conditions. More specifically, the invention relates to an air conditioning system for a vehicle, in particular a hybrid motor vehicle, equipped with a heat engine, a direct or indirect heat exchange means with a battery, and a hydraulic circuit , said system comprising an evaporator, a heater and means for supplying air to the heater at the outlet of the evaporator, characterized in that it comprises:
  • a secondary hydraulic circuit for supplying the exchanger comprising the battery, connected to the hydraulic power supply circuit of the heater.
  • the hydraulic supply circuit of the heater and the secondary hydraulic circuit are connected via a three-way valve.
  • the air conditioning system further comprises means for dissociating the hydraulic supply circuit of the engine of the hydraulic supply circuit of the heater, these means may typically comprise two hydraulic ducts connected in parallel. .
  • the means for dissociating the hydraulic power supply circuit of the heat engine from the hydraulic circuit for supplying the heater comprises a three-way valve, making it possible to feed the hydraulic power supply circuit of the heater. closed circuit air heater.
  • the part of the hydraulic supply circuit of the heater comprises an electric pump.
  • the system comprises means for varying the supply air flow rate of the heater.
  • the part of the hydraulic circuit for supplying the heat engine comprises bypass means
  • FIGS. 3a and 3b schematize the evolutions of air temperature in the air-conditioning unit in the mode "cold supply possible engine stopped”. These temperatures are given in the summer phase, respectively when the engine is running (air heater storing cold and thus heating the air) and when it is stopped (air heater restoring cold air and therefore drying and cooling it);
  • FIGS. 4a, 4b, 4c, 4d and 4e illustrate a first variant of the invention concerning a system equipped with an engine bypass and are respectively relative to the architecture and the operations of this architecture according to different living conditions.
  • Figure 4b relating to a heating of the passenger compartment and the battery (common need in winter);
  • Figure 4c relating to a cooling of the passenger compartment and the battery (eg: common need in summer);
  • Figure 4d relating to a heating of the passenger compartment but not the battery (eg battery already hot in winter);
  • FIG. 4d relating to a cooling of the passenger compartment and not of the battery (eg: priority for cooling the passenger compartment with respect to the battery)
  • - Figure 5 illustrates a second variant of the invention for an application not equipped with a "bypass" engine.
  • the hydraulic cooling circuit of the thermal engine comprises, in a conventional manner, a radiator 1, associated with the heat engine 2 coupled to a hydraulic cooling circuit comprising a first part 21 comprising a water pump 22, a water box 23 and a thermostat 24 for controlling and controlling the circulation of the coolant at the output of the engine.
  • the hydraulic circuit also comprises a second portion 31 comprising an electric pump 32 for supplying a heater 3.
  • the air conditioning unit 4 including an evaporator 41, sends cooled air into the heater that heats it.
  • air at 5 ° C. at the outlet of the evaporator can emerge from the heater at a temperature of 7 ° C. and thus provide fresh air into the passenger compartment by conventional means for distributing the means of the heater. treated air comprising pipes, distributor flaps and ventilation nozzles.
  • the heater then stores cold when the engine is running in summer. Engine stopped, the air heats up and evaporates at the evaporator, but will be condensed at the heater. The operation of this type of system is described below in more detail and in FIGS. 3a and 3b.
  • the evaporator can typically cool a hot air at approximately 30 ° C. taken from the outside at a temperature of approximately 5 ° C. This cooled air is then sent to the air heater, which by thermal exchange with a circulation of water coming from the independent hydraulic circuit of the cooling circuit of the heat engine generates a cooling of the water (the air is then a little warmer at the output of the heater compared to its entry (7 0 C compared with 5 0 C).
  • the evaporator is no longer operational, the air entering at 30 ° C., comes out at 30 ° C., to enter the heater and benefit from the inertia of this unit. last to be a little cooled, passing in the example shown at a temperature of 12 ° C.
  • the air conditioning system of the known art may be adapted, optimized and coupled to a hydraulic circuit for supplying the battery or an exchanger comprising the battery which the vehicle is equipped with in order to take advantage of the storage of calories or frigories present in said system when the engine is running or stopped and the battery also needs to be heated or cooled.
  • the heat exchanger comprising the battery will be called battery but it could quite well be an exchanger located upstream of a battery and which cools the fluid flow through the latter.
  • an air conditioning system comprising a "bypass" pipe connected with the hydraulic supply circuit 31 of the heater 3 and a hydraulic circuit 51 of the power supply. 5. It should be noted that the latter, shown downstream of the supply circuit of the heater, could just as well be upstream in another variant of the invention.
  • the air conditioning system of the invention is illustrated schematically in Figure 4a in the context of a "bypass" engine application. More precisely in this configuration, the engine equipped with a bypass on the engine water circuit has the following specificity: when the engine thermostat is closed (that is to say when there is no flow in the radiator on the front of the vehicle), a large flow of water is maintained in the engine due to the passage of water both in the air heater branch but also by a low pressure drop tube.
  • the two hydraulic circuits 31 and 51 can advantageously be connected via a three-way valve 61.
  • the hydraulic circuit 21 for supplying the heat engine and the hydraulic circuit 31 for supply can moreover be dissociated by the presence of the two conduits 33 and 34 and a three-way valve 60; the duct 33 being the duct forming part of the heat engine.
  • Figure 4b schematizes the operation of this variant during a request for heating the passenger compartment and battery (common need in winter).
  • the duct 34 is represented in this case by a dashed line because it is not operational, the hydraulic supply circuit of the engine is not dissociated from the hydraulic supply circuit of the heater.
  • Figure 4c shows the operation of this variant during a request for cooling the passenger compartment and the battery (eg common need in summer).
  • the hydraulic supply circuits of the heat engine and of the heater unit are dissociated.
  • Figure 4d shows the operation of this variant during a request for heating the passenger compartment but not the battery (eg battery already hot in winter).
  • the hydraulic power supply circuits of the motor and the power supply of the heater are not dissociated, while the power supply of the battery and the power supply of the heater are.
  • Figure 4e schematizes the operation of this variant during a request for cooling the passenger compartment and not the battery (eg priority to cooling the passenger compartment relative to the battery).
  • the supply circuits of the motor and the heater are dissociated, the battery supply circuit being also dissociated from that of the heater.
  • the operation of the air conditioning system according to the invention can typically be as follows:
  • the air conditioning system according to the invention is also well suited to a configuration in which the engine is equipped with a "motor bypass", for which a thermostat in the closed position (that is to say when it does not). there is no flow in the radiator on the front of the vehicle) ensures a large flow of water in the engine due to the passage of water on the air heater branch and because of the use of a tube to low pressure loss, that for configurations in which the hydraulic circuit comprises for example an additional water circuit to overcome the "engine bypass".
  • Figure 5 illustrates a second variant of the invention in the context of a motor not equipped with a "bypass" engine. More precisely in this configuration, the engine without a bypass on the engine water circuit has the following specificity: when the engine thermostat is closed (that is to say when there is no flow in the radiator on the front of the vehicle), the entire flow of water passing through the motor flows in the air heater branch. The presence of a minimum water flow in the engine is necessary to ensure its proper operation.
  • Means such as a second water circulation pipe 34 in parallel with a pipe 35 and means for adjusting the water flow rate 62 in the hydraulic circuit of the heater, make it possible to recycle the water in the circuit hydraulic heater at a temperature different from that flowing in the engine. The heat exchanges can take place during the entire shutdown of the engine.
  • a flow of air at a given temperature passes through the heater to come out in the form of air flow at a temperature corresponding gradually to a stabilized temperature, defined to be the chosen air temperature to be diffused in the passenger compartment.
  • a stabilized temperature defined to be the chosen air temperature to be diffused in the passenger compartment.
  • the latter emerges at a lower temperature until converging to a predetermined temperature, to regulate the temperature of the air flow.

Abstract

L'invention concerne un système de climatisation pour véhicule, notamment un véhicule automobile hybride, équipé d'un moteur thermique (2), d'un moyen d'échange thermique direct ou indirect avec une batterie (5) et d'un circuit hydraulique, ledit système comportant un évaporateur (41), un aérotherme (3) et des moyens pour alimenter en air l'aérotherme en sortie de l'évaporateur, caractérisé en ce qu'il comporte : - un circuit hydraulique d'alimentation du moteur thermique (21) - un circuit hydraulique d'alimentation de l'aérotherme (31) et - un circuit hydraulique secondaire (51) d'alimentation de la batterie, connecté au circuit hydraulique d'alimentation de l'aérotherme.

Description

SYSTEME DE CLIMATISATION POUR VEHICULE AUTOMOBILE AVEC CIRCUIT SECONDAIRE POUR ALIMENTER LA BATTERIE
La présente invention concerne un système de climatisation pour véhicule automobile présentant des conditions de vie où le moteur thermique est arrêté en phase de roulage.
De manière générale, un système de climatisation destiné à refroidir l'habitacle d'un véhicule automobile, comprend un système échangeur comportant un évaporateur, un compresseur, un condenseur, un détendeur et un fluide susceptible de changer d'états : liquide / gaz, comme illustré sur le schéma de la figure 1 .
Le compresseur : Directement entraîné par le moteur du véhicule à l'aide d'une courroie et d'une poulie, celui-ci comprime du fluide frigorigène, le refoulant sous haute pression et à haute température vers le condenseur.
Le condenseur : Grâce à une ventilation forcée, cet échangeur thermique provoque la condensation du gaz qui arrive à l'état gazeux en haute pression et haute température. Il le liquéfie grâce à l'abaissement de température de l'air qui le traverse.
L'évaporateur : C'est le dernier composant de l'installation de climatisation. C'est un échangeur thermique, comme le condenseur qui prélève des calories à l'air qui sera soufflé dans l'habitacle (il refroidit l'air et l'assèche). L'humidité prélevée dans l'air ruisselle sur les ailettes de l'évaporateur et est progressivement évacuée sous le véhicule.
Le détendeur : Le détendeur est un composant qui permet de réguler le débit d'entrée du gaz dans la boucle via une modification de section de passage dépendant de la température et de la pression au niveau de l'évaporateur. Ainsi, l'air chaud venant de l'extérieur se refroidit en traversant l'évaporateur tout en s'asséchant également car l'humidité présente dans l'air extérieur se colle sur la surface froide de l'évaporateur.
Lorsque le moteur thermique est arrêté, le système de climatisation traditionnel n'est plus opérationnel. C'est notamment le cas pour des véhicules automobiles hybrides, qui sont conçus pour fonctionner en alternance sur moteur thermique et moteur électrique. Dans le cas d'un fonctionnement dit « FuII hybride », le moteur électrique peut se substituer au moteur thermique pour la traction du véhicule et ce, pendant des intervalles de temps relativement longs. Le problème de climatisation non alimentée par les moyens présents et actifs couplés au moteur thermique sont encore plus aigus que ceux qui peuvent être rencontrés dans des applications de moteur hybride de type « STT » dans lesquelles le moteur thermique n'est arrêté que pendant de courts instants.
Pour résoudre la problématique d'apport de froid à l'habitacle sur les applications hybrides, différentes solutions sont actuellement envisagées :
- maintien du circuit réfrigérant en fonctionnement durant la phase d'arrêt du moteur thermique (en ayant recours à un compresseur électrique et non plus à un compresseur alimenté par le moteur thermique comme exposé dans l'introduction de la présente demande)
- système de stockage de froid accumulant des frigories en phase de fonctionnement du moteur thermique et les libérant en phase d'arrêt du moteur thermique.
En parallèle, une autre problématique liée à la gestion thermique de la batterie de traction (apport de calories et de frigories) peut apparaître :
- si la batterie est trop froide (ex. : démarrage à froid en hiver) : la performance de la batterie est fortement limitée
- si la batterie est trop chaude (ex. : roulage en été) : la durée de vie de la batterie est fortement réduite.
Dans ce contexte d'application hybride et de gestion optimisée en terme de consommation, la présente invention a pour objet un système, permettant de gérer au mieux les apports en frigories ou en calories selon les conditions climatiques « chaudes » ou « froides » tant pour l'habitacle que pour la batterie et notamment d'apporter du chaud et du froid à la batterie via le circuit d'eau moteur en conditions climatiques « froides » et « chaudes ». Plus précisément, l'invention a pour objet un système de climatisation pour véhicule, notamment un véhicule automobile hybride, équipé d'un moteur thermique, d'un moyen d'échange thermique direct ou indirect avec une batterie, et d'un circuit hydraulique, ledit système comportant un évaporateur, un aérotherme et des moyens pour alimenter en air l'aérotherme en sortie de l'évaporateur, caractérisé en ce qu'il comporte :
- un circuit hydraulique d'alimentation du moteur thermique
- un circuit hydraulique d'alimentation de l'aérotherme et
- un circuit hydraulique secondaire d'alimentation de l'échangeur comportant la batterie, connecté au circuit hydraulique d'alimentation de l'aérotherme.
Selon une variante de l'invention, le circuit hydraulique d'alimentation de l'aérotherme et le circuit hydraulique secondaire sont connectés via une vanne trois voies.
Selon une variante de l'invention, le système de climatisation comprend en outre des moyens pour dissocier le circuit hydraulique d'alimentation du moteur thermique du circuit hydraulique d'alimentation de l'aérotherme, ces moyens peuvent typiquement comprendre deux conduits hydrauliques montés en parallèle.
Selon une variante de l'invention, les moyens pour dissocier le circuit hydraulique d'alimentation du moteur thermique du circuit hydraulique d'alimentation de l'aérotherme comprennent une vanne à trois voies, permettant d'alimenter le circuit hydraulique d'alimentation de l'aérotherme en circuit fermé.
Selon une variante de l'invention, la partie du circuit hydraulique d'alimentation de I' aérotherme comprend une pompe électrique.
Selon une variante de l'invention, le système comprend des moyens permettant de faire varier le débit d'air d'alimentation de l'aérotherme.
Selon une variante de l'invention, la partie du circuit hydraulique d'alimentation du moteur thermique comprend des moyens de dérivation L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description qui va suivre donnée à titre non limitatif et grâce aux figures annexées parmi lesquelles :
- la figure 1 , déjà décrite, illustre un dispositif de climatisation selon l'art connu ;
- la figure 2, déjà décrite, illustre un système de climatisation selon l'art connu ;
- les figures 3a et 3b schématisent les évolutions de température d'air dans le groupe de climatisation en mode « apport de froid possible moteur arrêté ». Ces températures sont données en phase estivale, respectivement lorsque le moteur thermique fonctionne (aérotherme stockant du froid et réchauffant donc l'air) et lorsqu'il est à l'arrêt (aérotherme restituant du froid à l'air et donc l'asséchant et le refroidissant) ;
- les figures 4a, 4b, 4c, 4d et 4e illustrent une première variante de l'invention concernant un système équipé d'un « bypass » moteur et sont respectivement relatives à l'architecture et aux fonctionnements de cette architecture selon différentes conditions de vie : la figure 4b étant relative à un chauffage de l'habitacle et de la batterie (besoin commun en hiver) ; la figure 4c étant relative à un refroidissement de l'habitacle et de la batterie (ex. : besoin commun en été) ; la figure 4d étant relative à un chauffage de l'habitacle mais pas de la batterie (ex. : batterie déjà chaude en hiver) ; la figure 4d étant relative à un refroidissement de l'habitacle et pas de la batterie (ex. : priorité au refroidissement de l'habitacle par rapport à la batterie) et - la figure 5 illustre une seconde variante de l'invention pour une application non équipée d'un « bypass » moteur.
De manière connue, il existe des systèmes de climatisation utilisant l'aérotherme présent au niveau du moteur thermique pour générer de l'air chaud dans l'habitacle ; l'aérotherme est un échangeur thermique dont la fonction est de réchauffer l'air puisé dans l'habitacle. Ce réchauffement est obtenu par un échange calorifique entre le liquide de la boucle chaude issue du circuit de refroidissement du moteur thermique et l'air puisé dans l'habitacle. Au-dessus d'une certaine température extérieure, l'aérotherme n'est plus supposé apporter de calories à l'habitacle. La figure 2 illustre cette configuration :
D'une part le circuit hydraulique de refroidissement du moteur thermique comprend de manière classique un radiateur 1 , associé au moteur thermique 2 couplé à un circuit hydraulique de refroidissement comportant une première partie 21 comportant une pompe à eau 22, un boîtier d'eau 23 et un thermostat 24 permettant de contrôler et de commander la circulation du liquide de refroidissement en sortie du moteur. Le circuit hydraulique comprend également une seconde partie 31 comportant une pompe électrique 32 pour alimenter un aérotherme 3. D'autre part, le groupe de climatisation 4 comportant notamment un évaporateur 41 , envoie de l'air refroidi dans l'aérotherme qui le réchauffe. Typiquement de l'air à 5° C en sortie d'évaporateur peut ressortir de l'aérotherme à une température de 70C et ainsi procurer de l'air frais dans l'habitacle par des moyens classiques de distribution des moyens de l'air traité comprenant des conduites, des volets de répartition et des buses d'aération.
L'aérotherme stocke alors du froid lorsque le moteur tourne en été. Moteur arrêté, l'air se réchauffe et s'évapore au niveau de l'évaporateur, mais sera condensé au niveau de l'aérotherme. Le fonctionnement de ce type de système est décrit ci-après plus en détails et grâce aux figures 3a et 3b .
Comme illustré en figure 3a, sous l'action du moteur thermique, l'évaporateur peut typiquement refroidir un air chaud à environ 30°C prélevé depuis l'extérieur à une température d'environ 50C. Cet air refroidi est alors envoyé dans l'aérotherme qui par échange thermique avec une circulation d'eau provenant du circuit hydraulique indépendant du circuit de refroidissement du moteur thermique génère un refroidissement de l'eau (l'air est alors un peu plus chaude en sortie de l'aérotherme comparé à son entrée (70C comparativement à 50C). Lorsque le moteur est coupé, comme illustré en figure 3b, l'évaporateur n'est plus opérationnel, l'air rentrant à 30°C, ressort à 300C, pour rentrer dans l'aérotherme et bénéficier de l'inertie de ce dernier pour être un peu refroidi, passant dans l'exemple illustré à une température de 12°C.
Selon l'invention, et avantageusement, le système de climatisation de l'art connu peut-être adapté, optimisé et couplé à un circuit hydraulique d'alimentation de la batterie ou d'un échangeur comportant la batterie dont est équipé le véhicule afin de mettre à profit le stockage de calories ou de frigories présent dans ledit système lorsque le moteur thermique est en marche ou arrêté et que la batterie a besoin également d'être chauffée ou refroidie.
Dans la suite de la description, l'échangeur comportant la batterie sera dénommé batterie mais il pourrait tout à fait également s'agir d'un échangeur situé en amont d'une batterie et qui refroidit le fluide mis en écoulement traversant cette dernière. Pour cela une première variante de l'invention et illustrée en figure 4a, propose un système de climatisation comprenant un tuyau « bypass » connecté avec le circuit hydraulique d'alimentation 31 de l'aérotherme 3 et un circuit hydraulique 51 d'alimentation de la batterie 5. Il est à noter que ce dernier, représenté en aval du circuit d'alimentation de l'aérotherme, pourrait tout aussi bien être en amont dans une autre variante de l'invention.
Le système de climatisation de l'invention est illustré schématiquement en figure 4a dans le cadre d'une application « bypass » moteur. Plus précisément dans cette configuration, le moteur équipé d'un bypass sur le circuit d'eau moteur présente la spécificité suivante : lorsque le thermostat moteur est fermé (c'est-à-dire lorsqu'il n'y a pas de débit dans le radiateur en face avant du véhicule), un gros débit d'eau est maintenu dans le moteur du fait du passage d'eau à la fois dans la branche aérotherme mais également par un tube à faible perte de charge. Les deux circuits hydrauliques 31 et 51 peuvent avantageusement être connectés via une vanne trois voies 61. Le circuit hydraulique 21 d'alimentation du moteur thermique et le circuit hydraulique 31 d'alimentation peuvent par ailleurs être dissociés par la présence des deux conduits 33 et 34 et d'une vanne trois voies 60 ; le conduit 33 étant le conduit faisant partie du moteur thermique.
La figure 4b schématise le fonctionnement de cette variante lors d'une demande de chauffage de l'habitacle et de la batterie (besoin commun en hiver). Le conduit 34 est représenté dans ce cas par une ligne discontinue car n'étant pas opérationnel, le circuit hydraulique d'alimentation du moteur n'étant pas dissocié du circuit hydraulique d'alimentation de l'aérotherme.
La figure 4c schématise le fonctionnement de cette variante lors d'une demande de refroidissement de l'habitacle et de la batterie (ex. : besoin commun en été). Dans ce cas, les circuits hydrauliques d'alimentation du moteur thermique et d'alimentation de l'aérotherme sont dissociés.
La figure 4d schématise le fonctionnement de cette variante lors d'une demande de chauffage de l'habitacle mais pas de la batterie (ex. : batterie déjà chaude en hiver) . Les circuits hydrauliques d'alimentation du moteur et celui d'alimentation de l'aérotherme ne sont pas dissociés, alors que celui d'alimentation de la batterie et celui d'alimentation de l'aérotherme le sont.
La figure 4e schématise le fonctionnement de cette variante lors d'une demande de refroidissement de l'habitacle et pas de la batterie (ex. : priorité au refroidissement de l'habitacle par rapport à la batterie). Les circuits d'alimentation du moteur et de l'aérotherme sont dissociés, le circuit d'alimentation de la batterie étant également dissocié de celui de l'aérotherme.
De manière générale, lors d'une demande de refroidissement de l'habitacle cumulée à une demande de refroidissement de la batterie, le fonctionnement du système de climatisation selon l'invention peut typiquement être le suivant :
En été, lorsque le moteur thermique fonctionne, il est possible de produire de l'eau froide via l'aérotherme (sous réserve que l'air sortant de l'évaporateur soit dirigé dans l'aérotherme). En parallèle, l'eau froide peut être redirigée vers la batterie afin de la refroidir. Lorsque le moteur est arrêté, la puissance froide stockée peut apporter du froid à l'habitacle, voire à la batterie (selon la gestion des priorités). Une telle configuration est également particulièrement bien adaptée pour répondre à une demande de désembuage (nécessitant un apport de chaud et de froid au niveau du groupe de climatisation). En effet, dans cette condition de vie, il est nécessaire que l'aérotherme apporte du chaud et que l'évaporateur apporte du froid.
Le système de climatisation selon l'invention est aussi bien adapté à une configuration dans laquelle le moteur thermique est équipé d'un « bypass moteur », pour lequel un thermostat en position fermée (c'est-à-dire lorsqu'il n'y a pas de débit dans le radiateur en face avant du véhicule) permet d'assurer un gros débit d'eau dans le moteur du fait du passage d'eau sur la branche aérotherme et du fait de l'utilisation d'un tube à faible perte de charge, que pour des configurations dans lesquelles le circuit hydraulique comprend par exemple un circuit d'eau supplémentaire pour pallier au « bypass moteur».
La figure 5 illustre une seconde variante de l'invention dans le cadre d'un moteur non équipé d'un « bypass » moteur. Plus précisément dans cette configuration, le moteur non équipé d'un bypass sur le circuit d'eau moteur présente la spécificité suivante : lorsque le thermostat moteur est fermé (c'est-à-dire lorsqu'il n'y a pas de débit dans le radiateur en face avant du véhicule), l'intégralité du débit d'eau traversant le moteur circule dans la branche aérotherme. La présence d'un débit d'eau minimum dans le moteur est nécessaire afin d'assurer son bon fonctionnement. Des moyens tels qu'un second tuyau de circulation d'eau 34 en parallèle d'un tuyau 35 et des moyens de réglage de débit d'eau 62 dans le circuit hydraulique de l'aérotherme, permettent de recycler l'eau dans le circuit hydraulique de l'aérotherme à une température différente de celle circulant dans le moteur. Les échanges thermiques peuvent avoir lieu pendant toute la durée d'arrêt du moteur thermique. Un flux d'air à une température donnée, traverse l'aérotherme pour ressortir sous forme de flux d'air à une température correspondant progressivement à une température stabilisée, définie pour être la température choisie d'air à diffuser dans l'habitacle. Typiquement à chaque passage de l'eau à une température donnée en amont de l'aérotherme, cette dernière ressort à une température moins élevée jusqu'à converger vers une température déterminée, permettant de réguler la température du flux d'air. Pour converger vers ce flux d'air à la température souhaitée, il est possible de piloter le pourcentage de débit d'eau traversant l'aérotherme selon le mode couplé ou non au circuit hydraulique du moteur, en réglant le débit d'eau par l'intermédiaire de la pompe électrique et de la vanne à trois voies plus un clapet anti-retour, 61.

Claims

REVENDICATIONS
1. Système de climatisation pour véhicule, notamment un véhicule automobile hybride, équipé d'un moteur thermique, d'un moyen d'échange thermique direct ou indirect avec une batterie (5) et d'un circuit hydraulique, ledit système comportant un évaporateur (41 ), un aérotherme (3) et des moyens pour alimenter en air l'aérotherme en sortie de l'évaporateur, caractérisé en ce qu'il comporte :
- un circuit hydraulique d'alimentation du moteur thermique (21 )
- un circuit hydraulique de l'aérotherme (31 ) et
- un circuit hydraulique secondaire (51 ) d'alimentation de l'échangeur comportant la batterie, connecté au circuit hydraulique d'alimentation de l'aérotherme.
Le circuit hydraulique de l'aérotherme (31 ) comprenant une pompe électrique adaptée pour régler le débit de l'eau traversant ledit aérotherme.
2. Système de climatisation selon la revendication 1 , caractérisé en ce que le circuit hydraulique d'alimentation de l'aérotherme et le circuit hydraulique secondaire sont connectés via une vanne à trois voies (61 )
3. Système de climatisation selon la revendication 2, caractérisé en ce que le circuit hydraulique d'alimentation de l'aérotherme et le circuit hydraulique d'alimentation du moteur thermique sont séparés par une vanne trois voies (60)
4. Système de climatisation selon l'une des revendications 1 à 3, caractérisé en ce qu'il comprend en outre des moyens pour dissocier le circuit hydraulique d'alimentation du moteur thermique du circuit hydraulique d'alimentation de l'aérotherme.
5. Système de climatisation selon la revendication 4, caractérisé en ce que les moyens pour dissocier le circuit hydraulique d'alimentation du moteur thermique du circuit hydraulique d'alimentation de l'aérotherme comprennent deux conduits hydrauliques montés en parallèle (33,34,35)
6. Système de climatisation selon la revendication 5, caractérisé en ce que les moyens pour dissocier le circuit hydraulique d'alimentation du moteur thermique du circuit hydraulique d'alimentation de l'aérotherme comprennent une vanne à trois voies, permettant d'alimenter le circuit hydraulique d'alimentation de l'aérotherme en circuit fermé.
7. Système de climatisation selon l'une des revendications 4 à 6, caractérisé en ce que les moyens pour dissocier le circuit hydraulique d'alimentation du moteur thermique du circuit hydraulique d'alimentation de l'aérotherme comprennent au moins un clapet anti-retour.
8. Système de climatisation selon l'une des revendications 1 à 7, caractérisé en ce qu'il comporte des moyens permettant de faire varier le débit d'air d'alimentation de l'aérotherme.
9. Système de climatisation selon l'une des revendications 1 à 8, caractérisé en ce que la partie du circuit hydraulique d'alimentation du moteur thermique comprend des moyens de dérivation.
PCT/FR2007/051794 2006-08-30 2007-08-07 Systeme de climatisation pour vehicule automobile avec circuit secondaire pour alimenter la batterie WO2008025915A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07823700A EP2057025A1 (fr) 2006-08-30 2007-08-07 Systeme de climatisation pour vehicule automobile avec circuit secondaire pour alimenter la batterie

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0607625A FR2905309B1 (fr) 2006-08-30 2006-08-30 Systeme de climatisation pour vehicule automobile avec circuit secondaire pour alimenter la batterie
FR0607625 2006-08-30

Publications (1)

Publication Number Publication Date
WO2008025915A1 true WO2008025915A1 (fr) 2008-03-06

Family

ID=37809397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2007/051794 WO2008025915A1 (fr) 2006-08-30 2007-08-07 Systeme de climatisation pour vehicule automobile avec circuit secondaire pour alimenter la batterie

Country Status (3)

Country Link
EP (1) EP2057025A1 (fr)
FR (1) FR2905309B1 (fr)
WO (1) WO2008025915A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009127292A1 (fr) * 2008-04-19 2009-10-22 Daimler Ag Ensemble de refroidissement et procédé de refroidissement d'un groupe sensible à la température sur un véhicule automobile

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010039028B4 (de) * 2010-08-06 2012-05-31 J. Eberspächer GmbH & Co. KG Heiz/-Kühl-System für ein elektromotorisch betriebenes Fahrzeug
CN113276631B (zh) * 2021-06-25 2022-07-08 东风汽车集团股份有限公司 一种整车热管理系统及汽车

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4424470A1 (de) * 1994-07-12 1996-01-18 Daimler Benz Ag Vorrichtung zur Innenraumbeheizung eines Elektrofahrzeuges
DE19542125A1 (de) * 1994-11-29 1996-05-30 Bayerische Motoren Werke Ag Heiz- und Kühlmittelkreislauf für ein Elektrofahrzeug
DE19730678A1 (de) * 1997-07-17 1999-01-21 Volkswagen Ag Hybridfahrzeug mit einer Vorrichtung zur Kühlung von Antriebsbauteilen und zur Innenraumheizung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4424470A1 (de) * 1994-07-12 1996-01-18 Daimler Benz Ag Vorrichtung zur Innenraumbeheizung eines Elektrofahrzeuges
DE19542125A1 (de) * 1994-11-29 1996-05-30 Bayerische Motoren Werke Ag Heiz- und Kühlmittelkreislauf für ein Elektrofahrzeug
DE19730678A1 (de) * 1997-07-17 1999-01-21 Volkswagen Ag Hybridfahrzeug mit einer Vorrichtung zur Kühlung von Antriebsbauteilen und zur Innenraumheizung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009127292A1 (fr) * 2008-04-19 2009-10-22 Daimler Ag Ensemble de refroidissement et procédé de refroidissement d'un groupe sensible à la température sur un véhicule automobile

Also Published As

Publication number Publication date
FR2905309B1 (fr) 2015-03-27
FR2905309A1 (fr) 2008-03-07
EP2057025A1 (fr) 2009-05-13

Similar Documents

Publication Publication Date Title
EP2643643B1 (fr) Dispositif de conditionnement thermique d'un habitacle de véhicule
EP2841288B1 (fr) Installation de chauffage, ventilation, et/ou climatisation comportant un dispositif de régulation thermique d'une batterie et procédé de mise en uvre correspondant
EP2582534B1 (fr) Système de conditionnement thermique d'un véhicule automobile
FR2851503A1 (fr) Appareil de ventilation, de chauffage et/ou de climatisation pour habitacle de vehicule automobile a refroidissement simultane d'air et d'un fluide caloporteur
FR2992260A1 (fr) Ensemble de conditionnement d'un habitacle et d'au moins une unite fonctionnelle d'un vehicule.
FR2834778A1 (fr) Dispositif de gestion thermique, notamment pour vehicule automobile equipe d'une pile a combustible
FR2993642A1 (fr) Procede de pilotage d'un systeme de conditionnement thermique pour vehicule automobile et systeme correspondant
EP3019364B1 (fr) Système de conditionnement thermique pour véhicule automobile, installation de chauffage, ventilation et/ou climatisation correspondante et procédé de pilotage correspondant
WO2012045975A1 (fr) Dispositif de régulation thermique de l'habitacle d'un véhicule automobile
WO2008025915A1 (fr) Systeme de climatisation pour vehicule automobile avec circuit secondaire pour alimenter la batterie
WO2008025916A1 (fr) Systeme de climatisation pour vehicule automobile
EP3458783A1 (fr) Circuit de fluide réfrigérant agencé pour contrôler thermiquement une source d'énergie
FR3022852A1 (fr) Dispositif de gestion thermique de vehicule automobile et procede de pilotage correspondant
EP3504075A1 (fr) Systeme thermique, notamment un systeme de climatisation de vehicule automobile
EP2057027B1 (fr) Systeme de climatisation pour vehicule automobile
FR3013265A1 (fr) Systeme de conditionnement thermique d'un flux d'air pour vehicule automobile et installation de chauffage, ventilation et/ou climatisation correspondante
WO2023083872A1 (fr) Procédé de contrôle d'un système de conditionnement thermique
FR3001413A1 (fr) Dispositif de conditionnement thermique pour vehicule automobile et installation de chauffage, ventilation et/ou climatisation correspondante
WO2021170948A1 (fr) Systeme de traitement thermique pour vehicule
WO2019048751A1 (fr) Systeme thermique, notament un systeme de climatisation de vehicule automobile
FR3129197A1 (fr) Système de conditionnement thermique
FR3040920A1 (fr) Procede de regulation d'un systeme de climatisation d'un vehicule automobile
FR2993960A1 (fr) Boucle de conditionnement thermique pour vehicule automobile et procede de pilotage associe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07823700

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007823700

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU