WO2008023647A1 - Base station and mobile station - Google Patents

Base station and mobile station Download PDF

Info

Publication number
WO2008023647A1
WO2008023647A1 PCT/JP2007/066052 JP2007066052W WO2008023647A1 WO 2008023647 A1 WO2008023647 A1 WO 2008023647A1 JP 2007066052 W JP2007066052 W JP 2007066052W WO 2008023647 A1 WO2008023647 A1 WO 2008023647A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
mobile station
base station
resource block
data
Prior art date
Application number
PCT/JP2007/066052
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshiaki Ofuji
Kenichi Higuchi
Mamoru Sawahashi
Original Assignee
Ntt Docomo, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntt Docomo, Inc. filed Critical Ntt Docomo, Inc.
Priority to KR1020117002992A priority Critical patent/KR101252575B1/en
Priority to EP07792668A priority patent/EP2056614A4/en
Priority to US12/438,290 priority patent/US8018898B2/en
Priority to CN2007800388960A priority patent/CN101529958B/en
Priority to BRPI0715372A priority patent/BRPI0715372B1/en
Priority to KR1020097005399A priority patent/KR101448014B1/en
Publication of WO2008023647A1 publication Critical patent/WO2008023647A1/en
Priority to US13/041,139 priority patent/US8000296B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/16Code allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present invention relates to an LTE (Long Term Evolution) system, and more particularly to a base station and a mobile station.
  • LTE Long Term Evolution
  • High-speed packet scheduling that assigns transmissions to users based on the reception channel state for each (Resource Block) can achieve high frequency utilization efficiency.
  • Non-Patent Document 1 Ericsson, R1— 060099, “Persistent Scheduling for E— UTRA”, TSG-RAN WG1 LTE AdHoc, Helsinki, Finland, choir y 23— 25, 2006
  • an object of the present invention is to provide a base station and a mobile station that can periodically allocate predetermined radio resources to traffic in which data is periodically generated.
  • a base station of the present invention includes:
  • a distributed resource block comprising a resource block in which the system bandwidth is divided into continuous frequency subcarrier blocks and frequency subcarriers that are discretely distributed within the system bandwidth, and the resource block is divided into a plurality of blocks. Assign one of these to each mobile station,
  • Scheduling means for allocating one of a resource block and a distributed resource block to the mobile station at a predetermined allocation period determined in advance based on a downlink reception channel state notified from the mobile station ;
  • One of the features is to have
  • radio resources can be fixedly allocated to mobile stations at a constant cycle.
  • Pilot channel transmission band allocating means for allocating the transmission band of the pilot channel for measuring the uplink reception channel state with a period longer than the data channel allocation period;
  • a data channel transmission band allocating means for allocating, as a data channel transmission band, a resource block obtained by dividing the system bandwidth into continuous frequency subcarrier blocks to each mobile station;
  • Control information generating means for generating a control signal for notifying each mobile station of the transmission bandwidth of the pilot channel and the transmission bandwidth of the data channel that have been determined to be allocated;
  • the data channel transmission band allocating means determines the pilot channel reception quality. One of the characteristics is to determine the allocation of the transmission bandwidth of the data channel based on
  • Pilot signal generating means for generating the pilot channel with a period longer than the data channel allocation period for the base station using the frequency band allocated by the base station;
  • Transmission data allocating means for allocating transmission data at a predetermined allocation cycle determined in advance to the resource block allocated to the base station based on the pilot channel! /;
  • a mobile station comprising:
  • the pilot channel is generated with a period longer than the data channel allocation period for the base station using the frequency band allocated by the base station,
  • transmission data can be allocated to a resource block allocated based on the pilot channel at a predetermined allocation period determined in advance.
  • FIG. 1 is an explanatory diagram showing a transmission method in the downlink according to one embodiment of the present invention.
  • FIG. 2 is an explanatory diagram showing a transmission method in the uplink according to an embodiment of the present invention.
  • FIG. 3 is an explanatory diagram showing a transmission method in the downlink according to one embodiment of the present invention.
  • FIG. 4 is an explanatory diagram showing a transmission method in the uplink according to one embodiment of the present invention.
  • FIG. 5 is an explanatory diagram showing the release of resource blocks in the downlink, which is an embodiment of the present invention.
  • FIG. 6A is an explanatory diagram showing the release of resource blocks in the uplink, which is an embodiment of the present invention.
  • FIG. 6B is an explanatory diagram showing the release of resource blocks in the uplink, according to one embodiment of the present invention.
  • FIG. 6C is an explanatory diagram showing the release of resource blocks in the uplink according to one embodiment of the present invention.
  • FIG. 7A is an explanatory diagram showing data transmission and control information transmission timing according to one embodiment of the present invention.
  • FIG. 7B is an explanatory diagram showing data transmission and control information transmission timing according to one embodiment of the present invention.
  • FIG. 8 is a partial block diagram showing a base station according to one embodiment of the present invention.
  • Fig. 9 is a partial block diagram showing a mobile station which is effective in one embodiment of the present invention.
  • FIG. 10 is a partial block diagram showing a base station according to one embodiment of the present invention.
  • Fig. 11 is a partial block diagram showing a mobile station which is effective in one embodiment of the present invention.
  • a mobile communication system that is advantageous in the present embodiment includes a base station 100 and a mobile station 200.
  • Base station 100 and mobile station 200 periodically allocate predetermined radio resources to mobile station 200 and base station 100 for traffic in which data is periodically generated.
  • the base station 100 moves based on the frequency selectivity of the reception channel state.
  • High-speed packet scheduling in the frequency domain that allocates resource blocks to the mobile station 200 increases L1 / L2 control signaling such as notification of allocation information of each resource block in the mobile station 200 and feedback of the reception channel state in the mobile station 200. .
  • persistent scheduling is a scheduling method in which predetermined radio resources are periodically allocated to traffic in which data is periodically generated.
  • OFDMA Orthogonal Frequency Division Multiple
  • OFDMA is a system that divides a frequency band into multiple narrow frequency bands (subcarriers) and transmits data on each frequency band.
  • the subcarriers interfere with each other even though they overlap in frequency. By arranging them closely, it is possible to realize high-speed transmission and increase frequency utilization efficiency.
  • a resource block level distributed transmission method for performing block division is performed. That is, as shown in FIG. 1, resource blocks that are made up of frequency subcarriers that are discretely distributed within the system bandwidth and that divide the system bandwidth into consecutive frequency subcarrier blocks are divided into a plurality of blocks (block division). Allocate distributed resource blocks configured to each user. Distributed resource blocks are allocated in a single transmission slot. A distributed resource block is assigned with a resource block level, that is, a resource block as a unit. Also, in the downlink, resource blocks obtained by dividing the system bandwidth that is not the distributed resource block described above into continuous frequency subcarrier blocks may be allocated to each user.
  • FIG. 1 shows an example in which a resource block is composed of two distributed resource blocks.
  • the same distributed resource block may be allocated in a predetermined allocation cycle, or the distributed resource block allocated in each allocation cycle may be changed.
  • the allocation cycle is a cycle in which distributed resource blocks are allocated to users, and depends on the type of data to be transmitted. For example, in the case of VoIP (Voice over Internet Protocol), it is 20 ms, which is the same as the packet transmission interval. Become.
  • adaptive modulation channel coding (AMC: adaptive modulation) that adaptively changes the modulation scheme and error correction coding rate according to changes in the propagation environment.
  • mobile station 200 only feeds back the reception channel state averaged in the frequency domain, when (and coding) is applied.
  • the base station 100 performs transmission so as to obtain a frequency diversity effect based only on the time variation of the reception channel state averaged over the entire band.
  • SC-FDMA Single-Carrier Frequency Division Multiple Access
  • SC-FDMA is a transmission method that can reduce interference between terminals by dividing the frequency band and transmitting using different frequency bands among multiple terminals.
  • a localized transmission method using frequency hopping is performed.
  • the resource block power obtained by dividing the system bandwidth into continuous frequency subcarrier blocks is allocated to the mobile station at a predetermined allocation period, and frequency hopping is applied to obtain a frequency diversity effect.
  • frequency hopping refers to switching resource blocks to be assigned for each transmission slot.
  • the allocation cycle is a cycle in which resource blocks are allocated to users, and depends on the type of data to be transmitted. For example, in the case of VoIP, it is 20 ms, which is the same as the packet transmission interval.
  • Asynchronous HARQ is a method of allocating retransmission opportunities at a certain time after the initial transmission timing, for example, at an arbitrary timing at least a certain time after Ack / Nack transmission on the receiving side.
  • synchronous HARQ is a method of assigning a retransmission opportunity after a certain time from the timing of initial transmission, for example, at least after a certain time from the Ack / Nack transmission on the receiving side.
  • HARQ is not applied, and a predetermined number of times of transmission is performed in order to use the time diversity effect.
  • the same data may be transmitted twice, or the data sequence after channel coding may be mapped over a plurality of subframes.
  • FIG. 3 shows a transmission method in the case of downlink.
  • the data sequence after channel coding is mapped across a plurality of, for example, two subframes.
  • the encoded data sequence is transmitted in two subframes.
  • each of the two transmissions uses a plurality of, for example, two distributed resource blocks. Therefore, one encoded data sequence is divided into four parts and assigned.
  • FIG. 4 shows a transmission method in the case of uplink.
  • the data sequence after channel coding is mapped across a plurality of, for example, two subframes.
  • the encoded data sequence is transmitted in two subframes.
  • the time diversity effect can be obtained and reception errors can be reduced.
  • decoding is not possible until it is received twice, but the assignment cycle is 20 ms and the same data transmission interval is 10 ms.
  • the delay is about 10ms, which is acceptable.
  • the MCS Modulation and Coding Scheme
  • the base station 100 determines, for each mobile station 200, the received quality measured by each mobile station 200, etc. If the combination of the transmission data modulation scheme and the error correction coding rate determined in (2) changes, the required radio resources, for example, the number of distributed resource blocks change at the same time. However, it is not necessary to change the resource block allocation by using transmission power control together! /.
  • long-period adaptive modulation channel coding control for example, combining a transmission power control for each allocation period with a period of an allocation period or more, for example, a period of several hundreds ms or more.
  • the upper layer signaling is used for notification of the change. This signaling occurs when the receiving state changes.
  • L1 / L2 control signaling may be used in the same manner as signaling for users other than the user to be subject to persistent scheduling. When this L1 / L2 control signaling is used, it is necessary to secure radio resources in advance.
  • persistent scheduling is also applied to the mobile station 200.
  • pilot signal transmission (uplink) cycle for receiving channel state measurement from 200 to base station 100 shall be equal to or greater than the assigned cycle. Specifically, the period is longer than the data channel allocation period.
  • the feedback information of the reception channel state is notified using the following transmission method. That is, the base station 100 is based on the feedback information of the reception channel state from the mobile station 200! G Perform scheduling.
  • the mobile station 200 feeds back the average reception state of the reception band using the uplink at a fixed period. The period is longer than the actual data channel assignment period.
  • the mobile station 200 transmits the reception channel state using a random access channel (RACH). In other words, it is transmitted by upper layer (L3) signaling.
  • RACH random access channel
  • L3 upper layer
  • the mobile station 200 may transmit using a radio resource that is periodically assigned in advance and determined by time and frequency. In this case, the radio resource used for transmission is specified and notified at the start of communication using persistent scheduling. This radio resource is redesignated when the MCS is switched.
  • the reception channel state measurement signal in the uplink persistent scheduling is performed by the following transmission method. That is, the mobile station 200 transmits an uplink reception channel state measurement pilot signal to the base station 100, and the base station 100 uses the uplink received channel state measurement neuron signal to which the mobile station 200 power is also transmitted. Then measure the uplink reception status.
  • the base station 100 uses the distributed transmission described above for the uplink reception state to transmit information indicating the transmission bandwidth of the data channel to the distributed resource block, that is, the bandwidth of the frequency bandwidth for performing frequency scheduling. Transmit with a transmission bandwidth equal to.
  • transmission may be performed in the allocated band by localized transmission.
  • the localized transmission is a transmission method in which a resource block obtained by dividing a system bandwidth into continuous frequency subcarrier blocks is assigned to each user. In this case, if it is necessary to transmit in a wide band far from the base station 100, the localize transmission may be performed multiple times, that is, divided into two or more times. That is, two or more transmission slots are allocated and transmitted.
  • base station 100 transmits the resource block or distributed resource block allocated by persistent scheduling to the user. If there is no data, release it and assign it to another user. That is, the base station 100 allocates a resource block or distributed frequency block when there is transmission data for the target user, and releases the resource block or distributed frequency block that was scheduled to be allocated when there is no transmission data. And assign it to other users.
  • the data transmitted from base station 100 includes a CRC on which a UE-ID is superimposed.
  • the mobile station 200 detects a CRC in which UE-ID is superimposed on transmission data. Therefore, when resource blocks or distributed resource blocks are allocated to other users, the UE ID that is superimposed on the CRC is different, so an error is detected by CRC check. For this reason, the mobile station 200 can know whether or not the data is for its own station.
  • the user terminal (mobile station 200) transmits NACK as a retransmission request, but the base station 100 ignores this.
  • the mobile station 200 notifies the base station 100 of the presence or absence of transmission data in order to release the resource blocks allocated by persistent scheduling.
  • the base station 100 when there is transmission data, the base station 100 is notified (Assign request base). For example, when there is transmission data in a predetermined cycle, for example, an allocation cycle, an allocation request for requesting allocation of resource blocks is transmitted.
  • a predetermined cycle for example, an allocation cycle
  • the base station 100 is notified when there is no transmission data (Release request base). For example, in a predetermined cycle, for example, an allocation cycle, when the transmission data is V, a release request for requesting release of the resource block is transmitted.
  • a predetermined cycle for example, an allocation cycle
  • the transmission data is V
  • a release request for requesting release of the resource block is transmitted.
  • the base station 100 is contacted (Combination of assign and release request). For example, when there is transmission data in a predetermined cycle, for example, the allocation cycle, an allocation request is sent to request that a resource block be assigned to a harmful IJ. Send a release request to release the resource block.
  • This notification signal is transmitted by RACH.
  • RACH is transmitted by upper layer (L3) signaling.
  • transmission may be performed using a radio resource that is allocated in advance and determined by time and frequency. In this case, by allocating exclusive radio resources, users can be orthogonalized and the reception quality can be improved.
  • multiplexing may be performed by a code division multiple access method with a small number of users who allocate radio resources that are fixedly allocated in advance.
  • uplink and downlink When considering a voice service, it is conceivable to perform fixed radio resource allocation in the uplink and downlink (hereinafter referred to as uplink and downlink). In such cases, control information can be efficiently communicated by optimizing the timing of fixed radio resource allocation in the uplink and downlink, including radio resource allocation for control information transmission. This is possible.
  • the downlink reception channel state, presence / absence of uplink transmission data, and radio resources for transmitting an ACK / NACK for downlink data transmission are allocated immediately before downlink transmission. In this way, the downlink reception channel state can be reflected in the downlink adaptation of the downlink transmission. Also, by notifying the presence / absence of uplink data, free uplink radio resources can be reassigned to other users. In this case, the result of reallocation is notified simultaneously with the downlink data transmission.
  • Radio resources for uplink data transmission are allocated after downlink data transmission. In this way, when the radio resources for uplink data transmission are released, it is possible to notify the allocated user of the reallocation result.
  • An ACK / NACK for downlink data transmission may be transmitted together with uplink data transmission.
  • the user terminal receives at least one of feedback of downlink reception channel state, allocation request or release request, and ACK / NACK for downlink data transmission.
  • the above is transmitted (step S702).
  • an allocation request is transmitted.
  • the base station 100 performs link adaptation, that is, adaptive modulation channel coding based on the downlink reception channel state notified in the uplink, and based on the result of the link adaptation, Transmits downlink data. Also, when a release request is transmitted from the user terminal, the base station 100 transmits mapping information in a subframe of downlink data for users other than the user to which persistent scheduling is applied. Also, the base station 100 notifies uplink transmission allocation information. When a user's resource to which persistent tent scheduling is applied is released, a user other than the user to which persistent scheduling is applied to that resource
  • the user terminal transmits uplink data.
  • base station 100 transmits ACK / NACK for downlink data transmission (step S 706).
  • step S702 and step S704 are negated.
  • the user terminal transmits one or more of feedback of a downlink reception channel state and an allocation request or a release request (step S702).
  • the base station 100 performs link adaptation based on the downlink reception channel state notified in the uplink, and based on the link adaptation result, the downlink data is transmitted. Send.
  • base station 100 transmits mapping information in a subframe of downlink data for users other than users to which persistent scheduling is applied. Also
  • the base station 100 notifies uplink transmission allocation information.
  • a user's resource to which persistent scheduling is applied is released, a user other than the user to which persistent scheduling is applied is assigned to the resource (scheduled) Step S 704).
  • base station 100 and mobile station 200 that implement the mobile communication system described above will be described.
  • the functions of both the base station 100 and mobile station 200 to which persistent scheduling is applied in the downlink and the base station 100 and mobile station 200 to which persistent scheduling is applied in the uplink are described.
  • the base station 100 and the mobile station 200 may be configured to include
  • the base station 100 includes an RF receiving circuit 102, a demodulation / decoding unit 104 connected to the RF receiving circuit 102, a scheduler 106 connected to the demodulation 'decoding unit 104, a scheduler 106, and a demodulation' decoding unit Determining the preferentially allocated resource block connected to 104 ⁇ Management unit 108, header information acquisition unit 110, packet selection unit 114 connected to header information acquisition unit 110, header information acquisition unit 110, packet A buffer management unit 112 connected to the selection unit 114 and the scheduler 106, a PDU (Protocol Data Unit) generation unit 116 connected to the packet selection unit 114, a transmission buffer connected to the PDU generation unit 116 and the buffer management unit 112 118, selector 120 connected to transmission buffer 118 and scheduler 106, one or a plurality of encoding 'coding as modulation processing means' modulator 122 connected to selector 120, and encoding' modulation unit 122 Connected An RF transmission unit 124 as
  • a control signal including control information from each mobile station 200 is received by the RF receiving circuit 102, and the received control signal is input to the demodulation / decoding unit 104.
  • Demodulation 'Decoding section 104 performs control signal demodulation' decoding processing, and performs uplink control information (downlink reception channel state for each resource block) of each mobile station 200, for example, for each resource block of each user terminal.
  • Link CQI (Channel Quality Indicator) notification is sent to the scheduler 106.
  • the upper layer control signal is input to the priority allocation resource block determination-management unit 108.
  • Determination of priority allocation resource block Based on the control signal of the higher layer, the resource block to be preferentially assigned is determined and input to the scheduler.
  • the header information acquisition unit 110 acquires packet header information such as a destination address from the received IP packet, and uses the acquired packet header information.
  • the buffer management unit 112 is notified, and the IP packet is input to the packet sorting unit 114.
  • the nota management unit 112 designates the packet data storage destination for the packet selection unit 114. To do. Further, the nota management unit 112 inputs the destination address and the memory address of the queue corresponding to the address to the transmission buffer 118. Further, the buffer management unit 112 notifies the scheduler 106 of the status of each queue notified from the packet header information and the transmission buffer 118.
  • the packet sorting unit 114 sorts the input IP packet based on the packet data storage destination designated by the buffer management unit 112 and inputs the selected packet to the PDU generation unit 116.
  • the PDU generation unit 116 converts the input packet into a PDU and inputs it to the transmission buffer 118.
  • the transmission buffer 118 waits independently for each destination (mobile station 200) from the input PDU based on the destination address input by the nota management unit 112 and the memory address of the corresponding queue. A queue is formed, and the status of each queue is notified to the buffer management unit 112.
  • the selector 120 extracts data from the queue designated by the scheduler 106 and inputs the data to the encoding / modulation unit 122 for the designated resource block. This resource block is allocated by the scheduler 106.
  • Scheduler 106 determines the priority determined based on the uplink control information (downlink reception channel state for each frequency block) and / or higher layer control signal of each mobile station 200 that has been notified. Based on the resource block to be allocated, the packet header information, and the status of each queue, an index (priority) for the allocation of the resource block of each user is obtained, and the allocation of the resource block is determined based on this index. Specifically, resource blocks and systems that divide the system bandwidth into consecutive frequency subcarrier blocks. One of the distributed resource blocks is allocated, which is composed of frequency subcarriers dispersed discretely within a system bandwidth and configured by dividing the resource block into a plurality of parts.
  • the scheduler 106 adaptively changes the modulation scheme and the error correction coding rate according to the change in the propagation environment. Specifically, the combination of the MCS to be used, that is, the transmission data modulation scheme and error correction coding rate determined for each mobile station 200 is changed. Information indicating the combination of the changed transmission data modulation scheme and error correction coding rate is input to control signal generation section 126.
  • the control signal generation unit 126 generates a control signal indicating a combination of the modulation scheme and error correction coding rate of the input transmission data, and transmits the control signal via the RF transmission unit 124. Further, the scheduler 106 designates a predetermined fixed number of transmissions.
  • the input data is encoded / modulated in the encoding / modulation section 122 based on the MCS to be used, and the encoded / modulated data is transmitted by the RF transmission section 124.
  • the power is controlled and transmitted to each mobile station 200. For example, the MCS is changed at a period higher than the allocation period, and the transmission power is changed at the allocation period.
  • the mobile station 200 includes an RF receiving circuit 202, a subcarrier signal separation unit 204 connected to the RF reception circuit 202, a channel estimation unit 206 connected to the subcarrier signal separation unit 204, and a subcarrier signal.
  • Downlink CQI measurement unit 208 connected to demultiplexing unit 204 and channel estimation unit 206, feedback data generation unit 210 connected to downlink CQI measurement unit 208, and encoding / modulation unit connected to feedback data generation unit 210 212, RF transmission circuit 214 connected to encoding / modulation section 212, allocation resource block information holding section 216 connected to subcarrier signal separation section 204, subcarrier signal separation section 204, and allocation resource block Demodulation unit 218 connected to information holding unit 216, decoding unit 220 connected to demodulation unit 218, CRC detection unit 222 connected to decoding unit 220, and IP packet connected to CRC detection unit 222 And a base portion 224.
  • the pilot channel transmitted from base station 100 is received by RF receiving circuit 202.
  • RF receiving circuit 202 inputs the pilot channel to subcarrier signal separation section 204.
  • Subcarrier signal separation section 204 separates the pilot channel into signals for each subcarrier, and separates the signal for each subcarrier for each subcarrier. And input to the downlink CQI measurement unit 208.
  • Channel estimation section 206 obtains a channel estimation value of each subcarrier using pilot symbols, and inputs the channel estimation value to downlink CQI measurement section 208.
  • Downlink CQI measurement section 208 measures the average CQI of the transmission band of the pilot channel and inputs the measurement result to feedback data generation section 210.
  • feedback data generation section 210 Based on the input CQI, feedback data generation section 210 generates feedback information (control information) indicating a downlink reception channel state to be fed back to base station 100, and inputs the feedback information to encoding / modulation section 212. .
  • the encoding / modulation unit 212 performs encoding / modulation processing of feedback information, and the feedback information subjected to the encoding / modulation processing is transmitted to the base station 100 by the RF transmission circuit 214.
  • the radio resource for transmitting the downlink reception channel state is allocated immediately before the downward transmission.
  • a transmission signal from base station 100 is received by RF reception circuit 202.
  • the RF reception circuit 202 inputs the received signal to the subcarrier signal separation unit 204.
  • Subcarrier signal separation section 204 separates the received signal into signals for each subcarrier, and inputs the separated signals for each subcarrier to demodulation section 218 for each subcarrier.
  • Demodulation section 218 demodulates the input signal for each subcarrier based on the allocation resource block information stored in allocation resource block information holding section 216, and demodulates the demodulated signal for each demodulated signal.
  • the data is input to the decryption unit 220.
  • the allocated resource block information is included in a control channel notified by the base station 100, for example, an L1 / L2 control channel.
  • the allocated resource block information includes, for example, MCS information.
  • Decoding section 220 decodes the input signal and inputs the decoded signal to CRC detection section 222.
  • the CRC detection unit 222 detects a CRC on which UE-ID included in transmission data is superimposed, performs error detection, determines whether the transmission data is data for the own station, and If it is data, it is input to the IP packet restoration unit 224.
  • the IP packet restoration unit 224 restores the input signal.
  • base station 100 and mobile station 200 to which persistent scheduling is applied in the uplink will be described with reference to FIG. 10 and FIG.
  • the base station 100 includes an RF receiving circuit 102 and a demodulator connected to the RF receiving circuit 102 * decoding unit 1 04 and CQI measurement unit 128, demodulator 'determining unit 106 connected to decoding unit 104, scheduling unit 106 and CQI measuring unit 128 connected to priority allocation resource block determination ⁇ management unit 108 and scheduler 106 connected
  • the control signal generator 126 and the RF transmitter 124 connected to the control signal generator 126 are provided.
  • Scheduler 106 allocates a pilot channel transmission band for measuring uplink reception channel state to mobile station 200 at a period longer than the data channel allocation period. Information indicating this transmission band allocation is input to the control signal generation unit 126 and transmitted via the RF transmission unit 124.
  • Each mobile station 200 transmits a reception channel state measurement signal to base station 100 using the allocated transmission band of the pilot channel.
  • the reception channel state measurement signal is received by the RF receiving circuit 102, and the received reception channel state measurement pilot signal is input to the CQI measurement unit 128 to measure the reception quality, for example, CQI, and the reception channel state measurement.
  • the information of the reception quality measured together with the signal for use is input to the determination / management unit 108 of the priority allocation resource block.
  • Information indicating the presence / absence of transmission data in the mobile station 200 is received by the RF reception circuit 102 and is input to the priority allocation resource block determination / management unit 108 via the CQI measurement unit 128.
  • the presence / absence of transmission data in mobile station 200 may be notified by a control signal of an upper layer.
  • the upper layer control signal is input to the priority allocation resource block determination / management unit 108.
  • Determination / priority allocation resource block determination / management section 108 performs priority based on reception quality of a pilot signal for reception channel state measurement, higher layer control signal, and information indicating presence / absence of transmission data in mobile station 200.
  • the resource block to be assigned to the resource block that is, the resource block to which the persistent scheduling is applied, is determined and input to the scheduler 106.
  • the scheduler 106 determines a priority allocation resource block.
  • the scheduler 106 determines the allocation of the resource block based on the priority allocation resource block input by the management unit 108, and determines the allocation information of the determined resource block. Input to the control signal generator 126.
  • the control signal generation unit 126 generates resource blocks determined by the scheduler 106. Based on the allocation information, that is, the transmission bandwidth of the data channel, the allocation information of the uplink transmission band is generated and input to the RF transmission unit 124.
  • the RF transmitter 124 transmits the control signal input by the control signal generator 126 to each mobile station. As a result, the base station 100 notifies the mobile station 200 of uplink transmission allocation information.
  • radio resources for uplink data transmission are allocated after downlink data transmission.
  • scheduler 106 determines a combination of the transmission data modulation scheme and error correction coding rate for each mobile station in a cycle longer than the allocation cycle, and determines the determined transmission data modulation scheme and error correction coding rate. The combination of these is reported as control information.
  • transmission data from mobile station 200 is received by RF reception circuit 102 and input to demodulation / decoding section 104.
  • Demodulation'decoding processing section 104 performs demodulation processing and decoding processing of the input transmission data. Further, the demodulation / decoding section 104 notifies the scheduler of the uplink CQI for each resource block of each user terminal.
  • Scheduler 106 determines resource block reallocation based on the CQI input by demodulation and decoding section 104 at a predetermined allocation cycle, and uses the determined resource block allocation information as a control signal generation section Enter in 126.
  • the control signal generation unit 126 generates uplink transmission band allocation information based on the resource block allocation information determined by the scheduler 106 and inputs it to the RF transmission unit 124.
  • the RF transmission unit 124 transmits the control signal input by the control signal generation unit 126 to each mobile station. For example, the result of this reallocation is notified at the same time as downlink data transmission.
  • Mobile station 200 is connected to header information acquisition section 226, PDU generation section 228 connected to header information acquisition section 226, transmission buffer 230 connected to PDU generation section 228, and transmission buffer 230
  • Pilot signal generating section 240 is configured to transmit an uplink signal based on information indicating a transmission band of a pilot channel for measuring an uplink reception channel state notified from base station 100.
  • a pilot signal for measuring the reception channel state of the link is generated and transmitted via the RF transmission circuit 242.
  • the IP packet from the upper layer is input to the header information acquisition unit 226.
  • the header information acquisition unit 226 acquires packet header information such as a destination address from the received IP packet, notifies the acquired packet header information to the buffer management unit 234, and inputs the IP packet to the PDU generation unit 228.
  • the PDU generation unit 228 converts the input packet into a PDU and inputs the packet to the transmission buffer 230.
  • the transmission buffer 230 forms a queue for the destination (base station 100) from the input PDU based on the destination address input by the nota management unit 112 and the memory address of the corresponding queue, and waits for it.
  • the buffer status is notified to the buffer manager 234.
  • the transmission buffer 230 extracts data from the queue based on the uplink transmission allocation information specified by the nota management unit 234, that is, information indicating the allocated data channel transmission band, and encodes and modulates the data. Input to part 232
  • the encoding / modulation unit 232 performs encoding / modulation processing based on the combination of the transmission data modulation scheme and error correction coding rate determined for each mobile station, and inputs the result to the RF transmission circuit 242. In the RF transmission circuit 242, transmission power control is performed on transmission data and transmitted.
  • the noffer management unit 234 inputs the destination address and the memory address of the queue corresponding to the address to the transmission buffer 230. Further, the buffer management unit 234 notifies the feedback data generation unit 236 of the packet header information and the queue status notified from the transmission buffer 230. The feedback data generation unit 236 generates feedback information indicating the presence / absence of transmission data based on the input queue state, and inputs the feedback information to the encoding / modulation unit 238. The encoding / modulation unit 238 transmits the input feedback information to the base station 100 via the RF transmission circuit 242.
  • the base station and mobile station that are effective in the present invention can be applied to a radio communication system.

Abstract

A resource block in which a system bandwidth is divided into continuous frequency subcarrier blocks or a distributed resource block formed by frequency subcarriers discretely distributed in the system bandwidth and configured by dividing the resource block into a plurality of parts is allocated to each of mobile stations. A base station includes scheduling means for allocating one of the resource block and the distributed resource block to the mobile stations with a predetermined allocation cycle in accordance with the downlink reception channel state reported from the mobile station.

Description

明 細 書  Specification
基地局および移動局  Base station and mobile station
技術分野  Technical field
[0001] 本発明は、 LTE (Long Term Evolution)システムに関し、特に基地局および移 動局に関する。  [0001] The present invention relates to an LTE (Long Term Evolution) system, and more particularly to a base station and a mobile station.
背景技術  Background art
[0002] 送信スロット毎、もしくは送信スロットの周波数帯域を分割したリソースブロック (RB :  [0002] A resource block (RB:
Resource Block)毎に、受信チャネル状態に基づいて、ユーザに対して送信を 割り当てる高速パケットスケジューリングは、高い周波数利用効率を実現できる。  High-speed packet scheduling that assigns transmissions to users based on the reception channel state for each (Resource Block) can achieve high frequency utilization efficiency.
[0003] しかし、高速パケットスケジューリングを実現するには、基地局から各ユーザ端末へHowever, in order to realize high-speed packet scheduling, from the base station to each user terminal
、送信スロット毎、もしくはリソースブロック毎に割り当て情報を通知する必要があり、ま た各ユーザ端末から基地局へ伝搬路状態のフィードバックが必要になるなど、シグナ リングオーバヘッドの増大が問題となる。 In addition, it is necessary to notify the allocation information for each transmission slot or each resource block, and it is necessary to feed back the propagation path state from each user terminal to the base station.
非特許文献 1 : Ericsson, R1— 060099, "Persistent Scheduling for E— UTRA", TSG-RAN WG1 LTE AdHoc, Helsinki, Finland, Januar y 23— 25, 2006  Non-Patent Document 1: Ericsson, R1— 060099, “Persistent Scheduling for E— UTRA”, TSG-RAN WG1 LTE AdHoc, Helsinki, Finland, Januar y 23— 25, 2006
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 上述した高速パケットスケジューリングは、音声サービスのような、ほぼ固定のサイズ のパケットが一定周期で発生し、さらに遅延に対する要求条件が厳しいトラヒックに適 用するのは困難である。このようなトラヒックに対しては、例えば、受信状態が悪い場 合に送信データが発生しても受信状態がよくなるまで待機することは許されないため である。したがって、このようなトラヒックに対しては、受信状態などを考慮せず、一定 周期で固定的に無線リソースを割り当てたレ、とレ、う要求が生じる。  [0004] The above-described high-speed packet scheduling is difficult to apply to traffic in which packets of a substantially fixed size are generated at a constant cycle and the requirements for delay are severe, such as voice services. This is because for such traffic, for example, even if transmission data is generated when the reception state is bad, it is not allowed to wait until the reception state is improved. Therefore, for such traffic, there is a request for allocating radio resources fixedly at regular intervals without considering the reception state.
[0005] そこで、周期的にデータが発生する VoIPのようなトラヒックに対して、予め決められ た無線リソースを周期的に割り当てるパーシステント スケジューリング(Persistent scheduling)が提案されて!/、る(例えば、非特許文献 1参照)。 [0006] しかし、この提案は、コンセプトベースであり、具体的な基地局および移動局の構成 などにつ!/、ては提案されて!/、な!/、。 [0005] Therefore, persistent scheduling has been proposed in which predetermined radio resources are periodically allocated to traffic such as VoIP in which data is periodically generated (for example, Non-patent document 1). [0006] However, this proposal is based on a concept, and has been proposed for a specific base station and mobile station configuration! /!
[0007] そこで本発明は、周期的にデータが発生するトラヒックに対して、予め決められた無 線リソースを周期的に割り当てることができる基地局および移動局を提供することを 課題とする。 Therefore, an object of the present invention is to provide a base station and a mobile station that can periodically allocate predetermined radio resources to traffic in which data is periodically generated.
課題を解決するための手段  Means for solving the problem
[0008] 上記課題を解決するため、本発明の基地局は、 [0008] In order to solve the above problems, a base station of the present invention includes:
システム帯域幅を連続する周波数サブキャリアのブロックに分割したリソースブロッ クおよびシステム帯域幅内に離散的に分散した周波数サブキャリアからなり、前記リソ ースブロックを複数に分割して構成される分散型リソースブロックのうちの一方を各移 動局に割り当て、  A distributed resource block comprising a resource block in which the system bandwidth is divided into continuous frequency subcarrier blocks and frequency subcarriers that are discretely distributed within the system bandwidth, and the resource block is divided into a plurality of blocks. Assign one of these to each mobile station,
前記移動局から通知された下りリンクの受信チャネル状態に基づいて、予め決定さ れた所定の割り当て周期で、前記移動局に対して、リソースブロックおよび分散型リソ ースブロックのうちの一方を割り当てるスケジューリング手段;  Scheduling means for allocating one of a resource block and a distributed resource block to the mobile station at a predetermined allocation period determined in advance based on a downlink reception channel state notified from the mobile station ;
を備えることを特徴の 1つとする。  One of the features is to have
[0009] このように構成することにより、移動局に対して、一定周期で固定的に無線リソース を割り当てることができる。 With this configuration, radio resources can be fixedly allocated to mobile stations at a constant cycle.
[0010] 本発明の他の基地局は、 [0010] Another base station of the present invention,
データチャネルの割り当て周期よりも長い周期で、上りリンクの受信チャネル状態を 測定するためのパイロットチャネルの送信帯域を割り当てるパイロットチャネル送信帯 域割り当て手段;  Pilot channel transmission band allocating means for allocating the transmission band of the pilot channel for measuring the uplink reception channel state with a period longer than the data channel allocation period;
各移動局に、システム帯域幅を連続する周波数サブキャリアのブロックに分割したリ ソースブロックをデータチャネルの送信帯域として、割り当てるデータチャネル送信帯 域割り当て手段;  A data channel transmission band allocating means for allocating, as a data channel transmission band, a resource block obtained by dividing the system bandwidth into continuous frequency subcarrier blocks to each mobile station;
割り当てを決定した、前記パイロットチャネルの送信帯域幅、およびデータチャネル の送信帯域幅を各移動局に通知する制御信号を生成する制御情報生成手段; を備え、  Control information generating means for generating a control signal for notifying each mobile station of the transmission bandwidth of the pilot channel and the transmission bandwidth of the data channel that have been determined to be allocated;
前記データチャネル送信帯域割り当て手段は、前記パイロットチャネル受信品質に 基づいて、データチャネルの送信帯域の割り当てを決定することを特徴の 1つとする The data channel transmission band allocating means determines the pilot channel reception quality. One of the characteristics is to determine the allocation of the transmission bandwidth of the data channel based on
[0011] このように構成することにより、データチャネルの割り当て周期よりも長い周期で、上 りリンクの受信チャネル状態を測定するためのパイロットチャネルの送信帯域を割り当 てること力 Sでき、パイロットチャネル受信品質に基づいて、各移動局に、データチヤネ ルの送信帯域の割り当てを決定することができる。 With this configuration, it is possible to allocate the pilot channel transmission band for measuring the uplink reception channel state with a period longer than the data channel allocation period. Based on the reception quality, it is possible to determine the allocation of the data channel transmission band to each mobile station.
[0012] 本発明の移動局は、  [0012] The mobile station of the present invention
基地局により割り当てられた周波数帯域を用いて、該基地局に対して、データチヤ ネルの割り当て周期よりも長い周期で、前記パイロットチャネルを生成するパイロット 信号生成手段;  Pilot signal generating means for generating the pilot channel with a period longer than the data channel allocation period for the base station using the frequency band allocated by the base station;
前記基地局にぉレ、て、前記パイロットチャネルに基づ!/、て決定された割り当てるリソ ースブロックに、予め決定された所定の割り当て周期で、送信データを割り当てる送 信データ割り当て手段;  Transmission data allocating means for allocating transmission data at a predetermined allocation cycle determined in advance to the resource block allocated to the base station based on the pilot channel! /;
を備えることを特徴とする移動局。  A mobile station comprising:
[0013] このように構成することにより、基地局により割り当てられた周波数帯域を用いて、該 基地局に対して、データチャネルの割り当て周期よりも長い周期で、前記パイロットチ ャネルを生成し、前記基地局において、前記パイロットチャネルに基づいて決定され た割り当てるリソースブロックに、予め決定された所定の割り当て周期で、送信データ を割り当てることができる。 With this configuration, the pilot channel is generated with a period longer than the data channel allocation period for the base station using the frequency band allocated by the base station, In the base station, transmission data can be allocated to a resource block allocated based on the pilot channel at a predetermined allocation period determined in advance.
発明の効果  The invention's effect
[0014] 本発明の実施例によれば、周期的にデータが発生するトラヒックに対して、予め決 められた無線リソースを周期的に割り当てることができる基地局および移動局を実現 できる。  [0014] According to the embodiments of the present invention, it is possible to realize a base station and a mobile station that can periodically allocate predetermined radio resources to traffic in which data is periodically generated.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]本発明の一実施例に力、かる下りリンクにおける送信方法を示す説明図である。  FIG. 1 is an explanatory diagram showing a transmission method in the downlink according to one embodiment of the present invention.
[図 2]本発明の一実施例に力、かる上りリンクにおける送信方法を示す説明図である。  FIG. 2 is an explanatory diagram showing a transmission method in the uplink according to an embodiment of the present invention.
[図 3]本発明の一実施例に力、かる下りリンクにおける送信方法を示す説明図である。  FIG. 3 is an explanatory diagram showing a transmission method in the downlink according to one embodiment of the present invention.
[図 4]本発明の一実施例に力、かる上りリンクにおける送信方法を示す説明図である。 [図 5]本発明の一実施例に力、かる下りリンクにおけるリソースブロックの解放を示す説 明図である。 FIG. 4 is an explanatory diagram showing a transmission method in the uplink according to one embodiment of the present invention. FIG. 5 is an explanatory diagram showing the release of resource blocks in the downlink, which is an embodiment of the present invention.
[図 6A]本発明の一実施例に力、かる上りリンクにおけるリソースブロックの解放を示す 説明図である。  FIG. 6A is an explanatory diagram showing the release of resource blocks in the uplink, which is an embodiment of the present invention.
[図 6B]本発明の一実施例に力、かる上りリンクにおけるリソースブロックの解放を示す 説明図である。  FIG. 6B is an explanatory diagram showing the release of resource blocks in the uplink, according to one embodiment of the present invention.
[図 6C]本発明の一実施例に力、かる上りリンクにおけるリソースブロックの解放を示す 説明図である。  FIG. 6C is an explanatory diagram showing the release of resource blocks in the uplink according to one embodiment of the present invention.
[図 7A]本発明の一実施例にかかるデータ送信および制御情報の送信タイミングを示 す説明図である。  FIG. 7A is an explanatory diagram showing data transmission and control information transmission timing according to one embodiment of the present invention.
[図 7B]本発明の一実施例にかかるデータ送信および制御情報の送信タイミングを示 す説明図である。  FIG. 7B is an explanatory diagram showing data transmission and control information transmission timing according to one embodiment of the present invention.
[図 8]本発明の一実施例に力、かる基地局を示す部分ブロック図である。  FIG. 8 is a partial block diagram showing a base station according to one embodiment of the present invention.
[図 9]本発明の一実施例に力、かる移動局を示す部分ブロック図である。  [Fig. 9] Fig. 9 is a partial block diagram showing a mobile station which is effective in one embodiment of the present invention.
[図 10]本発明の一実施例に力、かる基地局を示す部分ブロック図である。  FIG. 10 is a partial block diagram showing a base station according to one embodiment of the present invention.
[図 11]本発明の一実施例に力、かる移動局を示す部分ブロック図である。  [Fig. 11] Fig. 11 is a partial block diagram showing a mobile station which is effective in one embodiment of the present invention.
符号の説明  Explanation of symbols
[0016] 100 基地局 [0016] 100 base station
200 移動局  200 mobile stations
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 次に、本発明を実施するための最良の形態を、以下の実施例に基づき図面を参照 しつつ説明する。 Next, the best mode for carrying out the present invention will be described based on the following embodiments with reference to the drawings.
なお、実施例を説明するための全図において、同一機能を有するものは同一符号 を用い、繰り返しの説明は省略する。  In all the drawings for explaining the embodiments, the same reference numerals are used for those having the same function, and repeated explanation is omitted.
[0018] 本実施例に力、かる移動通信システムは、基地局 100と、移動局 200とを備える。基 地局 100および移動局 200は、周期的にデータが発生するトラヒックに対して、予め 決められた無線リソースを、移動局 200および基地局 100に周期的に割り当てる。  [0018] A mobile communication system that is advantageous in the present embodiment includes a base station 100 and a mobile station 200. Base station 100 and mobile station 200 periodically allocate predetermined radio resources to mobile station 200 and base station 100 for traffic in which data is periodically generated.
[0019] 上述したように、基地局 100が受信チャネル状態の周波数選択性に基づいて、移 動局 200にリソースブロックを割り当てる周波数領域の高速パケットスケジューリング は、移動局 200における各リソースブロックの割り当て情報の通知、移動局 200にお ける受信チャネル状態のフィードバックなど、 L1/L2制御シグナリングが増大する。 [0019] As described above, the base station 100 moves based on the frequency selectivity of the reception channel state. High-speed packet scheduling in the frequency domain that allocates resource blocks to the mobile station 200 increases L1 / L2 control signaling such as notification of allocation information of each resource block in the mobile station 200 and feedback of the reception channel state in the mobile station 200. .
[0020] パーシステント スケジューリングの主目的は、 L1/L2制御シグナリングを削減す ることであるため、本実施例に力、かる移動通信システムに適用されるパーシステント スケジューリングには、周波数ダイバーシチ効果が期待される以下の送信法が適用 される。上述したように、パーシステント スケジューリングとは、周期的にデータが発 生するトラヒックに対して、予め決められた無線リソースを周期的に割り当てるスケジュ 一リング方法である。 [0020] Since the main purpose of persistent scheduling is to reduce L1 / L2 control signaling, the persistent scheduling applied to the mobile communication system, which is effective in this embodiment, is expected to have a frequency diversity effect. The following transmission methods are applied. As described above, persistent scheduling is a scheduling method in which predetermined radio resources are periodically allocated to traffic in which data is periodically generated.
[0021] 下りリンクについては OFDMA (Orthogonal Frequency Division Multiple  [0021] For the downlink, OFDMA (Orthogonal Frequency Division Multiple
Access)が適用される。 OFDMAは、周波数帯域を複数の狭い周波数帯域 (サブ キャリア)に分割し、各周波数帯上にデータを載せて伝送を行う方式であり、サブキヤ リアを周波数上に、一部重なりあいながらも互いに干渉することなく密に並べることで 、高速伝送を実現し、周波数の利用効率を上げることができる。  Access) is applied. OFDMA is a system that divides a frequency band into multiple narrow frequency bands (subcarriers) and transmits data on each frequency band. The subcarriers interfere with each other even though they overlap in frequency. By arranging them closely, it is possible to realize high-speed transmission and increase frequency utilization efficiency.
[0022] さらに、下りリンクでは、ブロック分割を行うリソースブロックレベルのディストリビュー テイド(Distributed)送信法を行う。すなわち、図 1に示すように、システム帯域幅内 に離散的に分散した周波数サブキャリアからなり、システム帯域幅を連続する周波数 サブキャリアのブロックに分割したリソースブロックを複数に分割(ブロック分割)して構 成される分散型リソースブロックを各ユーザに割り当てる。 1つの送信スロット中に分 散して分散型リソースブロックが割り当てられる。分散型リソースブロックは、リソースブ ロックレベル、すなわちリソースブロックを単位として割り当てられる。また、下りリンク では、上述した分散型リソースブロックではなぐシステム帯域幅を連続する周波数サ ブキャリアのブロックに分割したリソースブロックを各ユーザに割り当てるようにしてもよ い。  [0022] Further, in the downlink, a resource block level distributed transmission method for performing block division is performed. That is, as shown in FIG. 1, resource blocks that are made up of frequency subcarriers that are discretely distributed within the system bandwidth and that divide the system bandwidth into consecutive frequency subcarrier blocks are divided into a plurality of blocks (block division). Allocate distributed resource blocks configured to each user. Distributed resource blocks are allocated in a single transmission slot. A distributed resource block is assigned with a resource block level, that is, a resource block as a unit. Also, in the downlink, resource blocks obtained by dividing the system bandwidth that is not the distributed resource block described above into continuous frequency subcarrier blocks may be allocated to each user.
[0023] 図 1には、 2個の分散型リソースブロックにより、リソースブロックが構成される例を示 す。所定の割り当て周期において、同じ分散型リソースブロックを割り当てるようにし てもよレ、し、割り当て周期毎に割り当てる分散型リソースブロックを変更するようにして もよい。割り当て周期毎に割り当てる分散型リソースブロックを変更することにより、周 波数ダイバーシチ利得を得ることができる。ここで、割り当て周期とは、ユーザに分散 型リソースブロックを割り当てる周期であり、送信するデータの種別に依存し、例えば VoIP (Voice over Internet Protocol)の場合には、パケットの送信間隔と同様 20msとなる。 FIG. 1 shows an example in which a resource block is composed of two distributed resource blocks. The same distributed resource block may be allocated in a predetermined allocation cycle, or the distributed resource block allocated in each allocation cycle may be changed. By changing the distributed resource block allocated for each allocation period, A wave number diversity gain can be obtained. Here, the allocation cycle is a cycle in which distributed resource blocks are allocated to users, and depends on the type of data to be transmitted. For example, in the case of VoIP (Voice over Internet Protocol), it is 20 ms, which is the same as the packet transmission interval. Become.
[0024] このような送信法を適用することにより、下りリンクにおいて、伝搬環境の変動に応じ て、変調方式や誤り訂正符号化レートを適応的に変更する適応変調チャネル符号化 (AMC : adaptive modulation and coding)が適用される場合に、移動局 200 は周波数領域で平均化した受信チャネル状態のみをフィードバックすればょレ、。そ の結果、基地局 100では、帯域全体で平均化された受信チャネル状態の時間変動 のみに基づいて、周波数ダイバーシチ効果を得るような送信が行われる。  [0024] By applying such a transmission method, in the downlink, adaptive modulation channel coding (AMC: adaptive modulation) that adaptively changes the modulation scheme and error correction coding rate according to changes in the propagation environment. mobile station 200 only feeds back the reception channel state averaged in the frequency domain, when (and coding) is applied. As a result, the base station 100 performs transmission so as to obtain a frequency diversity effect based only on the time variation of the reception channel state averaged over the entire band.
[0025] 上りリンクについては SC— FDMA (Single— Carrier Frequency Division M ultiple Access)が適用される。 SC— FDMAとは、周波数帯域を分割し、複数の 端末間で異なる周波数帯域を用いて伝送することで、端末間の干渉を低減すること ができる伝送方式である。  [0025] For the uplink, SC-FDMA (Single-Carrier Frequency Division Multiple Access) is applied. SC-FDMA is a transmission method that can reduce interference between terminals by dividing the frequency band and transmitting using different frequency bands among multiple terminals.
[0026] さらに、上りリンクでは、図 2に示すように、周波数ホッピングを適用したローカラィズ ド送信法を行う。すなわち、移動局に対し、システム帯域幅を連続する周波数サブキ ャリアのブロックに分割したリソースブロック力 所定の割り当て周期で割り当てられ、 さらに周波数ホッピングが適用されることにより、周波数ダイバーシチ効果を得る。こ こで、周波数ホッピングとは、送信スロット毎に、割り当てるリソースブロックを切り替え ることをいう。ここで、割り当て周期とは、ユーザにリソースブロックを割り当てる周期で あり、送信するデータの種別に依存し、例えば VoIPの場合には、パケットの送信間 隔と同様 20msとなる。  Further, in the uplink, as shown in FIG. 2, a localized transmission method using frequency hopping is performed. In other words, the resource block power obtained by dividing the system bandwidth into continuous frequency subcarrier blocks is allocated to the mobile station at a predetermined allocation period, and frequency hopping is applied to obtain a frequency diversity effect. Here, frequency hopping refers to switching resource blocks to be assigned for each transmission slot. Here, the allocation cycle is a cycle in which resource blocks are allocated to users, and depends on the type of data to be transmitted. For example, in the case of VoIP, it is 20 ms, which is the same as the packet transmission interval.
[0027] 次に、時間ダイバーシチ効果を得る送信法について説明する。 [0027] Next, a transmission method for obtaining the time diversity effect will be described.
[0028] 再送制御(ARQ)と誤り訂正符号化処理とを組み合わせたハイブリッド ARQ (hybri d automatic repeat requestノを適用する場合、 HARwを ίτつ 7こめのシグフ ン グが必要であるため、シグナリングオーバヘッドが増大する。 [0028] When hybrid ARQ (hybrid automatic repeat request) combined with retransmission control (ARQ) and error correction coding processing is applied, signaling overhead is required because HARw is 7th signing. Will increase.
[0029] 例えば、非同期型 HARQを適用した場合、再送に対して、送信スロットもしくはリソ ースブロックの動的な割り当てが必要となり、割り当て情報の通知、再送を要求する ための ACK/NACKを通知するシグナリングが必要となる。非同期 HARQとは、初 送のタイミングの一定時間後、例えば少なくとも受信側の Ack/Nack送信から一定 時間後の任意のタイミングに再送機会を割り当てる方法である。 [0029] For example, when asynchronous HARQ is applied, dynamic allocation of transmission slots or resource blocks is required for retransmission, and notification of allocation information and retransmission are requested. Signaling to notify ACK / NACK is required. Asynchronous HARQ is a method of allocating retransmission opportunities at a certain time after the initial transmission timing, for example, at an arbitrary timing at least a certain time after Ack / Nack transmission on the receiving side.
[0030] また、例えば、同期型 HARQを適用した場合、再送に対する割り当ては固定的に 行われるため、割り当て情報のシグナリングは不要だ力 再送を要求するための AC K/NACKのシグナリングは必要となる。ここで、同期 HARQとは、初送のタイミング の一定時間後、例えば少なくとも受信側の Ack/Nack送信から一定時間後に再送 機会を割り当てる方法である。  [0030] Also, for example, when synchronous HARQ is applied, since allocation for retransmission is fixed, signaling of allocation information is not required. Signaling of AC K / NACK to request retransmission is necessary. . Here, synchronous HARQ is a method of assigning a retransmission opportunity after a certain time from the timing of initial transmission, for example, at least after a certain time from the Ack / Nack transmission on the receiving side.
[0031] そこで、本実施例に力、かる移動通信システムでは、 HARQは適用せず、時間ダイ バーシチ効果を利用するため、予め決められた固定回数の送信を行う。  [0031] Therefore, in the mobile communication system which is effective in the present embodiment, HARQ is not applied, and a predetermined number of times of transmission is performed in order to use the time diversity effect.
[0032] この場合、同じデータを 2回送信するようにしてもよいし、チャネル符号化後のデー タ系列を複数のサブフレームにまたがってマッピングするようにしてもよい。  [0032] In this case, the same data may be transmitted twice, or the data sequence after channel coding may be mapped over a plurality of subframes.
[0033] 図 3には、下りリンクの場合の送信方法が示される。ここでは、チャネル符号化後の データ系列が、複数、例えば 2個のサブフレームにまたがってマッピングされる。すな わち符号化されたデータ系列が 2個のサブフレームに分けて送信される。この場合、 2回の送信では、それぞれ、複数、例えば 2個の分散型リソースブロックが使用される 。したがって、 1つの符号化されたデータ系列が 4つに分割して割り当てられることに なる。  FIG. 3 shows a transmission method in the case of downlink. Here, the data sequence after channel coding is mapped across a plurality of, for example, two subframes. In other words, the encoded data sequence is transmitted in two subframes. In this case, each of the two transmissions uses a plurality of, for example, two distributed resource blocks. Therefore, one encoded data sequence is divided into four parts and assigned.
[0034] 符号化されたデータ系列を 2個のサブフレームに分けて送信することにより、時間ダ ィバーシチ効果を得ることができ、受信誤りを低減できる。 2回受信するまで復号でき ないという問題があるが、割り当て周期を 20msとし、同じデータの送信間隔を 10ms とした場合、その遅延は 10ms程度であり、この程度であれば許容できる。  [0034] By transmitting the encoded data sequence in two subframes, a time diversity effect can be obtained and reception errors can be reduced. There is a problem that decoding is not possible until it is received twice. However, if the allocation period is 20 ms and the transmission interval of the same data is 10 ms, the delay is about 10 ms, which is acceptable.
[0035] 図 4には、上りリンクの場合の送信方法が示される。ここでも、チャネル符号化後の データ系列が、複数、例えば 2個のサブフレームにまたがってマッピングされる。すな わち符号化されたデータ系列が 2個のサブフレームに分けて送信される。符号化され たデータ系列を 2個のサブフレームに分けて送信することにより、時間ダイバーシチ 効果を得ることができ、受信誤りを低減できる。 2回受信するまで復号できないという 問題があるが、割り当て周期を 20msとし、同じデータの送信間隔を 10msとした場合 、その遅延は 10ms程度であり、この程度であれば許容できる。 FIG. 4 shows a transmission method in the case of uplink. Again, the data sequence after channel coding is mapped across a plurality of, for example, two subframes. In other words, the encoded data sequence is transmitted in two subframes. By transmitting the encoded data sequence in two subframes, the time diversity effect can be obtained and reception errors can be reduced. There is a problem that decoding is not possible until it is received twice, but the assignment cycle is 20 ms and the same data transmission interval is 10 ms. The delay is about 10ms, which is acceptable.
[0036] また、本実施例に力、かる移動通信システムでは、所要のパケット誤り率(PER : Pa cket Error Rate)を満足するため、適応変調チャネル符号化および送信電力制 卸 (TPC : Transmission Power Control)が fiわれる。  [0036] In addition, in the mobile communication system that focuses on this embodiment, in order to satisfy a required packet error rate (PER), adaptive modulation channel coding and transmission power control (TPC) Control) is fi.
[0037] 適応変調チャネル符号化を適用することにより、使用する MCS (Modulation an d Coding Scheme)、すなわち、基地局 100が、各移動局 200が測定した受信品 質等に基づいて移動局 200毎に決定した送信データの変調方式および誤り訂正符 号化率の組み合わせが変わると、同時に必要な無線リソース、例えば分散型リソース ブロック数が変わる。しかし、送信電力制御を併用することにより、リソースブロックの 割り当てを変える必要がな!/、。  [0037] By applying adaptive modulation channel coding, the MCS (Modulation and Coding Scheme) to be used, that is, the base station 100 determines, for each mobile station 200, the received quality measured by each mobile station 200, etc. If the combination of the transmission data modulation scheme and the error correction coding rate determined in (2) changes, the required radio resources, for example, the number of distributed resource blocks change at the same time. However, it is not necessary to change the resource block allocation by using transmission power control together! /.
[0038] 例えば、長周期の適応変調チャネル符号化制御、例えば、割り当て周期以上、例 えば数 100ms以上の周期と割り当て周期ごとの送信電力制御を組み合わせる。この 場合、適応変調チャネル符号化およびリソースブロックの割り当ての変更の頻度は小 さいため、変更の通知は上位レイヤのシグナリングを用いる。このシグナリングは、受 信状態が変化した場合に発生する。また、パーシステント スケジューリングの対象と なるユーザ以外のユーザに対するシグナリングと同様に、 L1/L2制御シグナリング を用いてもよい。この L1/L2制御シグナリングが用いられる場合には、無線リソース を事前に確保する必要がある。  [0038] For example, long-period adaptive modulation channel coding control, for example, combining a transmission power control for each allocation period with a period of an allocation period or more, for example, a period of several hundreds ms or more. In this case, since the frequency of adaptive modulation channel coding and resource block allocation change is small, the upper layer signaling is used for notification of the change. This signaling occurs when the receiving state changes. In addition, L1 / L2 control signaling may be used in the same manner as signaling for users other than the user to be subject to persistent scheduling. When this L1 / L2 control signaling is used, it is necessary to secure radio resources in advance.
[0039] また、本実施例に力、かる移動通信システムでは、移動局 200においてもパーシステ ント スケジューリングが適用される。  [0039] Further, in the mobile communication system that focuses on the present embodiment, persistent scheduling is also applied to the mobile station 200.
[0040] この場合、基地局 100から移動局 200への受信チャネル状態のフィードバック、す なわち割り当てを決定した受信チャネル状態測定用のパイロットチャネルの送信帯域 幅を示す情報(下りリンク)、移動局 200から基地局 100への受信チャネル状態測定 用のパイロット信号の送信(上りリンク)の周期は,割り当て周期以上にする。具体的 には、データチャネルの割り当て周期よりも長レ、周期とする。  [0040] In this case, feedback of the reception channel state from base station 100 to mobile station 200, that is, information (downlink) indicating the transmission bandwidth of the pilot channel for measurement of the reception channel state for which allocation has been determined, mobile station The pilot signal transmission (uplink) cycle for receiving channel state measurement from 200 to base station 100 shall be equal to or greater than the assigned cycle. Specifically, the period is longer than the data channel allocation period.
[0041] 下りリンクのパーシステント スケジューリングにおける、受信チャネル状態のフィー ドバック情報の通知は以下のような送信法を用いて行う。すなわち、基地局 100は、 移動局 200からの受信チャネル状態のフィードバック情報に基づ!/、て、パーシステン ト スケジューリングを行う。移動局 200は、受信帯域の平均的な受信状態を一定周 期で上りリンクを使ってフィードバックする。その周期は、実際のデータチャネルの割 り当て周期よりも長くする。 [0041] In the downlink persistent scheduling, the feedback information of the reception channel state is notified using the following transmission method. That is, the base station 100 is based on the feedback information of the reception channel state from the mobile station 200! G Perform scheduling. The mobile station 200 feeds back the average reception state of the reception band using the uplink at a fixed period. The period is longer than the actual data channel assignment period.
[0042] 移動局 200は、受信チャネル状態を、ランダム アクセス チャネル(RACH : Ran dom Access Channel)により送信する。すなわち、上位レイヤ(L3)のシグナリン グにより送信する。また、移動局 200は、予め周期的に割り当てられた、時間および 周波数により決定される無線リソースを用いて送信するようにしてもよい。この場合、 送信に使用される無線リソースはパーシステント スケジューリングを適用した通信開 始時に指定され、通知される。この無線リソースは、 MCSが切り替えられる場合にも 再指定される。 [0042] The mobile station 200 transmits the reception channel state using a random access channel (RACH). In other words, it is transmitted by upper layer (L3) signaling. In addition, the mobile station 200 may transmit using a radio resource that is periodically assigned in advance and determined by time and frequency. In this case, the radio resource used for transmission is specified and notified at the start of communication using persistent scheduling. This radio resource is redesignated when the MCS is switched.
[0043] 上りリンクのパーシステント スケジューリングにおける、受信チャネル状態測定用信 号は、以下の送信法により行われる。すなわち、移動局 200は上りリンクの受信チヤ ネル状態測定用のパイロット信号を基地局 100に送信し、基地局 100は移動局 200 力も送信された上りリンクの受信チャネル状態測定用のノイロット信号を用いて、上り リンクの受信状態を測定する。  [0043] The reception channel state measurement signal in the uplink persistent scheduling is performed by the following transmission method. That is, the mobile station 200 transmits an uplink reception channel state measurement pilot signal to the base station 100, and the base station 100 uses the uplink received channel state measurement neuron signal to which the mobile station 200 power is also transmitted. Then measure the uplink reception status.
[0044] 基地局 100は、上りリンクの受信状態を上述したディストリビューテイド送信により、 データチャネルの送信帯域幅を示す情報を、分散型リソースブロック、すなわち周波 数スケジューリングを行う周波数帯域幅の帯域幅と等しい送信帯域幅で送信する。ま た、ローカラィズド送信により、割り当てられている帯域で送信するようにしてもよい。 ここで、ローカラィズド送信とは、各ユーザに対して、システム帯域幅を連続する周波 数サブキャリアのブロックに分割したリソースブロックを割り当てる送信方法である。こ の場合、移動局 200の位置力 基地局 100から遠くて、広い帯域で送信する必要が 生じた場合には、複数回、すなわち 2回以上に分けてローカラィズ送信を行うようにし てもよい。すなわち、 2以上の送信スロットを割り当てて送信する。  [0044] The base station 100 uses the distributed transmission described above for the uplink reception state to transmit information indicating the transmission bandwidth of the data channel to the distributed resource block, that is, the bandwidth of the frequency bandwidth for performing frequency scheduling. Transmit with a transmission bandwidth equal to. In addition, transmission may be performed in the allocated band by localized transmission. Here, the localized transmission is a transmission method in which a resource block obtained by dividing a system bandwidth into continuous frequency subcarrier blocks is assigned to each user. In this case, if it is necessary to transmit in a wide band far from the base station 100, the localize transmission may be performed multiple times, that is, divided into two or more times. That is, two or more transmission slots are allocated and transmitted.
[0045] 次に、下りリンクにおけるパーシステント スケジューリングにおけるリソースブロック の解放について説明する。  [0045] Next, resource block release in persistent scheduling in the downlink will be described.
[0046] 基地局 100は、図 5に示すように、パーシステント スケジューリングによって割り当 てられたリソースブロックまたは分散型リソースブロックを、そのユーザに対する送信 データがない場合には解放し、他のユーザに割り当てる。すなわち、基地局 100は、 ターゲットユーザ向けの送信データがある場合にリソースブロックまたは分散型周波 数ブロックを割り当て、無い場合には、その割り当てる予定であったリソースブロックま たは分散型周波数ブロックを解放し、他のユーザに割り当てる。 [0046] As shown in FIG. 5, base station 100 transmits the resource block or distributed resource block allocated by persistent scheduling to the user. If there is no data, release it and assign it to another user. That is, the base station 100 allocates a resource block or distributed frequency block when there is transmission data for the target user, and releases the resource block or distributed frequency block that was scheduled to be allocated when there is no transmission data. And assign it to other users.
[0047] 基地局 100から送信されるデータには、 UE— IDが重畳された CRCが含まれる。移 動局 200は、送信データに UE— IDが重畳された CRCを検出している。したがって、 他のユーザにリソースブロックまたは分散型リソースブロックが割り当てられた場合に は、 CRCに重畳される UE— IDが異なるため、 CRCチェックでエラーが検出される。 このため、移動局 200は、自局向けのデータであるか否かを知ることができる。ここで 、再送制御が行われている場合には、ユーザ端末 (移動局 200)は再送要求として N ACKを送信するが、基地局 100ではこれを無視する。  [0047] The data transmitted from base station 100 includes a CRC on which a UE-ID is superimposed. The mobile station 200 detects a CRC in which UE-ID is superimposed on transmission data. Therefore, when resource blocks or distributed resource blocks are allocated to other users, the UE ID that is superimposed on the CRC is different, so an error is detected by CRC check. For this reason, the mobile station 200 can know whether or not the data is for its own station. Here, when retransmission control is performed, the user terminal (mobile station 200) transmits NACK as a retransmission request, but the base station 100 ignores this.
[0048] 次に、上りリンクにおけるパーシステント スケジューリングにおけるリソースブロック の解放について説明する。  [0048] Next, release of resource blocks in persistent scheduling in the uplink will be described.
[0049] 上りリンクでは、上述した下りリンクとは異なり、パーシステント スケジューリングによ つて割り当てられたリソースブロックを解放するために、移動局 200は、送信データの 有無を基地局 100に通知する。  [0049] In the uplink, unlike the downlink described above, the mobile station 200 notifies the base station 100 of the presence or absence of transmission data in order to release the resource blocks allocated by persistent scheduling.
[0050] 送信データの有無を基地局 100に通知する方法として、以下の 3つの方法がある 力^、ずれの方法を適用してもょレ、。  [0050] There are the following three methods for notifying the base station 100 of the presence or absence of transmission data.
[0051] 図 6Aに示すように、送信データがあるときに基地局 100に通知する(Assign req uest base)。例えば、所定の周期、例えば割り当て周期で、送信データがある場合 に、リソースブロックを割り当てることを要求する割り当て要求を送信する。  [0051] As shown in FIG. 6A, when there is transmission data, the base station 100 is notified (Assign request base). For example, when there is transmission data in a predetermined cycle, for example, an allocation cycle, an allocation request for requesting allocation of resource blocks is transmitted.
[0052] また、図 6Bに示すように、送信データがないときに基地局 100に通知する(Releas e request base)。例えば、所定の周期、例えば割り当て周期で、送信データがな V、場合に、リソースブロックを解放することを要求する解放要求を送信する。  [0052] Also, as shown in FIG. 6B, the base station 100 is notified when there is no transmission data (Release request base). For example, in a predetermined cycle, for example, an allocation cycle, when the transmission data is V, a release request for requesting release of the resource block is transmitted.
[0053] 図 6Cに示すように、送信データが発生した場合および送信データが無くなった場 合に 地局 100に通失口する (Combination of assign and release request) 。例えば、所定の周期、例えば割り当て周期で、送信データがある場合に、リソース ブロックを害 IJり当てることを要求する割り当て要求を送信し、送信データがなレ、場合に 、リソースブロックを解放することを要求する解放要求を送信する。 [0053] As shown in FIG. 6C, when the transmission data is generated and when the transmission data is lost, the base station 100 is contacted (Combination of assign and release request). For example, when there is transmission data in a predetermined cycle, for example, the allocation cycle, an allocation request is sent to request that a resource block be assigned to a harmful IJ. Send a release request to release the resource block.
[0054] また、この通知信号は、 RACHにより送信する。すなわち、上位レイヤ(L3)のシグ ナリングにより送信する。また、予め周期的に割り当てられた,時間と周波数とにより 決定される無線リソースを用いて送信するようにしてもよい。この場合、排他的な無線 リソースを割り当てることにより、ユーザ間を直交させることができ、受信品質を向上さ せること力 Sできる。また、予め固定的に割り当てられた無線リソースを割り当てる力 少 数のユーザで符号分割多元接続方式により多重するようにしてもよい。 [0054] This notification signal is transmitted by RACH. In other words, it is transmitted by upper layer (L3) signaling. In addition, transmission may be performed using a radio resource that is allocated in advance and determined by time and frequency. In this case, by allocating exclusive radio resources, users can be orthogonalized and the reception quality can be improved. Alternatively, multiplexing may be performed by a code division multiple access method with a small number of users who allocate radio resources that are fixedly allocated in advance.
[0055] 次に、データ送信および制御情報の送信の割り当てタイミングについて説明する。  [0055] Next, allocation timing of data transmission and control information transmission will be described.
[0056] 音声サービスを考える場合、上りリンクと下りリンク(以下、上下リンクとよぶ)で、固定 的な無線リソースの割り当てを行うことが考えられる。このような場合、制御情報の送 信のための無線リソースの割り当ても含めて、上下リンクにおける固定的な無線リソー スの割り当てのタイミングを最適化することにより、効率的に制御情報の通信を行うこ とが可能となる。 [0056] When considering a voice service, it is conceivable to perform fixed radio resource allocation in the uplink and downlink (hereinafter referred to as uplink and downlink). In such cases, control information can be efficiently communicated by optimizing the timing of fixed radio resource allocation in the uplink and downlink, including radio resource allocation for control information transmission. This is possible.
[0057] 下りリンクの受信チャネル状態、上り送信データの有無、下りデータ送信に対する A CK/NACKを送信するための無線リソースは、下りの送信の直前に割り当てる。こ のようにすることにより、下りリンクの受信チャネル状態を下り送信のリンクァダプテー シヨンに反映可能となる。また、上りデータの有無を通知することにより、空いた上り無 線リソースを他のユーザに再割り当てできる。この場合、再割り当ての結果は下りデ ータ送信と同時に通知される。  [0057] The downlink reception channel state, presence / absence of uplink transmission data, and radio resources for transmitting an ACK / NACK for downlink data transmission are allocated immediately before downlink transmission. In this way, the downlink reception channel state can be reflected in the downlink adaptation of the downlink transmission. Also, by notifying the presence / absence of uplink data, free uplink radio resources can be reassigned to other users. In this case, the result of reallocation is notified simultaneously with the downlink data transmission.
[0058] 上りデータ送信のための無線リソースは、下りデータ送信の後に割り当てる。このよ うにすることにより、上りのデータ送信のための無線リソースが解放された場合に、再 割り当て結果を割り当てられたユーザに通知可能となる。上りデータ送信と共に下り データ送信に対する ACK/NACKを送信してもよい。  [0058] Radio resources for uplink data transmission are allocated after downlink data transmission. In this way, when the radio resources for uplink data transmission are released, it is possible to notify the allocated user of the reallocation result. An ACK / NACK for downlink data transmission may be transmitted together with uplink data transmission.
[0059] 具体的に、データ送信および制御情報の送信の割り当てタイミングについて、図 7 Aおよび図 7Bを参照して説明する。  [0059] Specifically, allocation timing of data transmission and control information transmission will be described with reference to FIG. 7A and FIG. 7B.
[0060] 上りデータが発生した場合につ!/、て説明する。  [0060] A case where uplink data is generated will be described.
[0061] ユーザ端末 (移動局 200)は、下り受信チャネル状態のフィードバック、割り当て要 求または解放要求、下りリンクのデータ送信に対する ACK/NACKの何れか 1っ以 上を送信する(ステップ S702)。ここでは、上りデータが発生しているので、割り当て 要求が送信される。 [0061] The user terminal (mobile station 200) receives at least one of feedback of downlink reception channel state, allocation request or release request, and ACK / NACK for downlink data transmission. The above is transmitted (step S702). Here, since uplink data is generated, an allocation request is transmitted.
[0062] 次に、基地局 100は、上りリンクで通知された下りの受信チャネル状態に基づいてリ ンクァダプテーシヨン、すなわち適応変調チャネル符号化を行い、該リンクァダプテ ーシヨンの結果に基づいて、下りデータの送信を行う。また、基地局 100は、解放要 求がユーザ端末から送信された場合には、パーシステント スケジューリングが適用さ れているユーザ以外のユーザに対する下りデータのサブフレーム内のマッピング情 報を送信する。また、基地局 100は、上り送信の割り当て情報を通知する。パーシス テント スケジューリングが適用されているユーザのリソースが解放された場合には, そのリソースにパーシステント スケジューリングが適用されるユーザ以外のユーザが  [0062] Next, the base station 100 performs link adaptation, that is, adaptive modulation channel coding based on the downlink reception channel state notified in the uplink, and based on the result of the link adaptation, Transmits downlink data. Also, when a release request is transmitted from the user terminal, the base station 100 transmits mapping information in a subframe of downlink data for users other than the user to which persistent scheduling is applied. Also, the base station 100 notifies uplink transmission allocation information. When a user's resource to which persistent tent scheduling is applied is released, a user other than the user to which persistent scheduling is applied to that resource
[0063] 次に、ユーザ端末は、上りデータの送信を行う。ここで、下りリンクのデータ送信に 対する ACK/NACKを同時に送ってもよ!/ヽ(ステップ S706)。 [0063] Next, the user terminal transmits uplink data. Here, you may send ACK / NACK for downlink data transmission at the same time! / ヽ (step S706).
[0064] 次に、基地局 100は、下りリンクのデータ送信に対する ACK/NACKを送信する( ステップ S 706)。  Next, base station 100 transmits ACK / NACK for downlink data transmission (step S 706).
[0065] 下りデータが発生した場合につ!/、て説明する。  [0065] A case where downlink data is generated will be described.
[0066] 下りデータが発生した場合には、上述したステップ S702とステップ S704の処理が ネ亍なわれる。  [0066] When downlink data is generated, the above-described processing of step S702 and step S704 is negated.
[0067] すなわち、ユーザ端末 (移動局 200)は、下り受信チャネル状態のフィードバックお よび割り当て要求または解放要求の何れか 1つ以上を送信する(ステップ S702)。  [0067] That is, the user terminal (mobile station 200) transmits one or more of feedback of a downlink reception channel state and an allocation request or a release request (step S702).
[0068] 次に、基地局 100は、上りリンクで通知された下りの受信チャネル状態に基づいてリ ンクァダプテーシヨンを行い、該リンクァダプテーシヨンの結果に基づいて、下りデー タの送信を行う。  [0068] Next, the base station 100 performs link adaptation based on the downlink reception channel state notified in the uplink, and based on the link adaptation result, the downlink data is transmitted. Send.
[0069] また、基地局 100は、パーシステント スケジューリングが適用されているユーザ以 外のユーザに対する下りデータのサブフレーム内のマッピング情報を送信する。また [0069] Also, base station 100 transmits mapping information in a subframe of downlink data for users other than users to which persistent scheduling is applied. Also
、基地局 100は、上り送信の割り当て情報を通知する。パーシステント スケジユーリ ングが適用されているユーザのリソースが解放された場合には,そのリソースにパー システント スケジューリングが適用されるユーザ以外のユーザが割り当てられる(ス テツプ S 704)。 The base station 100 notifies uplink transmission allocation information. When a user's resource to which persistent scheduling is applied is released, a user other than the user to which persistent scheduling is applied is assigned to the resource (scheduled) Step S 704).
[0070] 次に、上述した移動通信システムを実現する基地局 100および移動局 200の構成 について説明する。ここでは、下りリンクにおいてパーシステント スケジューリングが 適用される基地局 100および移動局 200と、上りリンクにおいてパーシステント スケ ジユーリングが適用される基地局 100および移動局 200とに分けて説明する力 両方 の機能を備えるように基地局 100および移動局 200を構成するようにしてもよい。  Next, the configurations of base station 100 and mobile station 200 that implement the mobile communication system described above will be described. Here, the functions of both the base station 100 and mobile station 200 to which persistent scheduling is applied in the downlink and the base station 100 and mobile station 200 to which persistent scheduling is applied in the uplink are described. The base station 100 and the mobile station 200 may be configured to include
[0071] 下りリンクにおいてパーシステント スケジューリングが適用される基地局 100および 移動局 200について、図 8および図 9を参照して説明する。  [0071] The base station 100 and the mobile station 200 to which persistent scheduling is applied in the downlink will be described with reference to FIG. 8 and FIG.
[0072] 基地局 100は、 RF受信回路 102と、 RF受信回路 102と接続された復調 *復号部 1 04と、復調 '復号部 104と接続されたスケジューラ 106と、スケジューラ 106及び復調 '復号部 104と接続された優先割り当てリソースブロックの決定 ·管理部 108と、へッ ダ情報取得部 110と、ヘッダ情報取得部 110と接続されたパケット選別部 114と、へ ッダ情報取得部 110、パケット選別部 114及びスケジューラ 106と接続されたバッファ 管理部 112と、パケット選別部 114と接続された PDU (Protocol Data Unit)生成 部 116と、 PDU生成部 116及びバッファ管理部 112と接続された送信バッファ 118と 、送信バッファ 118及びスケジューラ 106と接続されたセレクタ 120と、セレクタ 120と 接続された 1又は複数の符号化'変調処理手段としての符号化'変調部 122と、符号 化'変調部 122と接続された送信電力制御手段としての RF送信部 124と、 RF送信 部 124およびスケジューラ 106と接続された制御信号生成部 126とを備える。  [0072] The base station 100 includes an RF receiving circuit 102, a demodulation / decoding unit 104 connected to the RF receiving circuit 102, a scheduler 106 connected to the demodulation 'decoding unit 104, a scheduler 106, and a demodulation' decoding unit Determining the preferentially allocated resource block connected to 104 ・ Management unit 108, header information acquisition unit 110, packet selection unit 114 connected to header information acquisition unit 110, header information acquisition unit 110, packet A buffer management unit 112 connected to the selection unit 114 and the scheduler 106, a PDU (Protocol Data Unit) generation unit 116 connected to the packet selection unit 114, a transmission buffer connected to the PDU generation unit 116 and the buffer management unit 112 118, selector 120 connected to transmission buffer 118 and scheduler 106, one or a plurality of encoding 'coding as modulation processing means' modulator 122 connected to selector 120, and encoding' modulation unit 122 Connected An RF transmission unit 124 as a transmission power control means, and a control signal generation unit 126 connected to the RF transmission unit 124 and the scheduler 106.
[0073] 各移動局 200からの制御情報を含む制御信号は RF受信回路 102により受信され 、受信された制御信号は復調 '復号部 104に入力される。復調 '復号部 104では、制 御信号の復調 '復号処理が行われ、各移動局 200の上り制御情報(リソースブロック 毎の下りリンク受信チャネル状態)、例えば、各ユーザ端末のリソースブロック毎の下 りリンクの CQI (Channel Quality Indicator)の通知がスケジューラ 106に行われ  A control signal including control information from each mobile station 200 is received by the RF receiving circuit 102, and the received control signal is input to the demodulation / decoding unit 104. Demodulation 'Decoding section 104 performs control signal demodulation' decoding processing, and performs uplink control information (downlink reception channel state for each resource block) of each mobile station 200, for example, for each resource block of each user terminal. Link CQI (Channel Quality Indicator) notification is sent to the scheduler 106.
[0074] また、移動局 200が、上位レイヤのシグナリングにより受信チャネル状態をフィード ノ ックする場合には、該上位レイヤの制御信号が優先割り当てリソースブロックの決 定-管理部 108に入力される。優先割り当てリソースブロックの決定 ·管理部 108は、 上位レイヤの制御信号に基づいて、優先的に割り当てるリソースブロックを決定し、ス ケジユーラに入力する。 [0074] Also, when the mobile station 200 feeds back a reception channel state by upper layer signaling, the upper layer control signal is input to the priority allocation resource block determination-management unit 108. . Determination of priority allocation resource block Based on the control signal of the higher layer, the resource block to be preferentially assigned is determined and input to the scheduler.
[0075] 一方、ネットワークから送信された IPパケットが受信されると、ヘッダ情報取得部 11 0は、受信された IPパケットから宛先アドレス等のパケットヘッダ情報を取得し、取得し たパケットヘッダ情報をバッファ管理部 112に通知し、 IPパケットをパケット選別部 11 4に入力する。  [0075] On the other hand, when an IP packet transmitted from the network is received, the header information acquisition unit 110 acquires packet header information such as a destination address from the received IP packet, and uses the acquired packet header information. The buffer management unit 112 is notified, and the IP packet is input to the packet sorting unit 114.
[0076] ノ ッファ管理部 112は、通知されたパケットヘッダ情報及び後述する送信バッファ 1 18から通知される各待ち行列の状態に基づいて、パケット選別部 114に対してパケ ットデータの格納先を指定する。また、ノ ッファ管理部 112は、宛先アドレスとそのァ ドレスに対応する待ち行列のメモリアドレスとを送信バッファ 118に入力する。またバ ッファ管理部 112は、パケットヘッダ情報及び送信バッファ 118から通知される各待ち 行列の状態をスケジューラ 106に通知する。  [0076] Based on the notified packet header information and the status of each queue notified from the transmission buffer 118, which will be described later, the nota management unit 112 designates the packet data storage destination for the packet selection unit 114. To do. Further, the nota management unit 112 inputs the destination address and the memory address of the queue corresponding to the address to the transmission buffer 118. Further, the buffer management unit 112 notifies the scheduler 106 of the status of each queue notified from the packet header information and the transmission buffer 118.
[0077] パケット選別部 114は、バッファ管理部 112により指定されたパケットデータの格納 先に基づいて、入力された IPパケットを選別し、選別したパケット毎に PDU生成部 1 16に入力する。 PDU生成部 116は、入力されたパケットを PDU化し、送信バッファ 1 18に入力する。  The packet sorting unit 114 sorts the input IP packet based on the packet data storage destination designated by the buffer management unit 112 and inputs the selected packet to the PDU generation unit 116. The PDU generation unit 116 converts the input packet into a PDU and inputs it to the transmission buffer 118.
[0078] 送信バッファ 118は、ノ ッファ管理部 112により入力された宛先アドレスと、対応す る待ち行列のメモリアドレスとに基づいて、入力された PDUから宛先(移動局 200)毎 に独立の待ち行列を形成し、各待ち行列の状態をバッファ管理部 112に通知する。  [0078] The transmission buffer 118 waits independently for each destination (mobile station 200) from the input PDU based on the destination address input by the nota management unit 112 and the memory address of the corresponding queue. A queue is formed, and the status of each queue is notified to the buffer management unit 112.
[0079] セレクタ 120は、スケジューラ 106により指定された待ち行列からデータを取り出し、 指定されたリソースブロックに対する符号化 ·変調部 122に入力する。このリソースブ ロックは、スケジューラ 106により割り当てられる。  The selector 120 extracts data from the queue designated by the scheduler 106 and inputs the data to the encoding / modulation unit 122 for the designated resource block. This resource block is allocated by the scheduler 106.
[0080] スケジューラ 106は、通知された各移動局 200の上り制御情報(周波数ブロック毎 の下りリンク受信チャネル状態)および/または上位レイヤの制御信号に基づ!/、て決 定された優先的に割り当てるリソースブロック、パケットヘッダ情報及び各待ち行列の 状態に基づいて、各ユーザの、リソースブロックの割当に対する指標 (優先度)を求め 、この指標に基づいてリソースブロックの割当を決定する。具体的には、システム帯域 幅を連続する周波数サブキャリアのブロックに分割したリソースブロックおよびシステ ム帯域幅内に離散的に分散した周波数サブキャリアからなり、前記リソースブロックを 複数に分割して構成される分散型リソースブロックのうちの一方を割り当てる。 [0080] Scheduler 106 determines the priority determined based on the uplink control information (downlink reception channel state for each frequency block) and / or higher layer control signal of each mobile station 200 that has been notified. Based on the resource block to be allocated, the packet header information, and the status of each queue, an index (priority) for the allocation of the resource block of each user is obtained, and the allocation of the resource block is determined based on this index. Specifically, resource blocks and systems that divide the system bandwidth into consecutive frequency subcarrier blocks. One of the distributed resource blocks is allocated, which is composed of frequency subcarriers dispersed discretely within a system bandwidth and configured by dividing the resource block into a plurality of parts.
[0081] また、上述したように、スケジューラ 106は、伝搬環境の変動に応じて、変調方式や 誤り訂正符号化レートを適応的に変更する。具体的には、使用する MCS、すなわち 、移動局 200毎に決定される送信データの変調方式および誤り訂正符号化率の組 み合わせを変更する。この変更された送信データの変調方式および誤り訂正符号化 率の組み合わせを示す情報は、制御信号生成部 126に入力される。制御信号生成 部 126は、入力された送信データの変調方式および誤り訂正符号化率の組み合わ せを示す制御信号を生成し、 RF送信部 124を介して送信する。また、スケジューラ 1 06は、予め決められた固定回数の送信を指定する。  [0081] Further, as described above, the scheduler 106 adaptively changes the modulation scheme and the error correction coding rate according to the change in the propagation environment. Specifically, the combination of the MCS to be used, that is, the transmission data modulation scheme and error correction coding rate determined for each mobile station 200 is changed. Information indicating the combination of the changed transmission data modulation scheme and error correction coding rate is input to control signal generation section 126. The control signal generation unit 126 generates a control signal indicating a combination of the modulation scheme and error correction coding rate of the input transmission data, and transmits the control signal via the RF transmission unit 124. Further, the scheduler 106 designates a predetermined fixed number of transmissions.
[0082] 入力されたデータは符号化'変調部 122において、使用する MCSに基づいて、符 号化 ·変調処理が行われ、符号化 ·変調が行われたデータは RF送信部 124により送 信電力が制御され、各移動局 200へ送信される。たとえば、 MCSは割り当て周期以 上の周期で変更され、送信電力は割り当て周期で変更される。  [0082] The input data is encoded / modulated in the encoding / modulation section 122 based on the MCS to be used, and the encoded / modulated data is transmitted by the RF transmission section 124. The power is controlled and transmitted to each mobile station 200. For example, the MCS is changed at a period higher than the allocation period, and the transmission power is changed at the allocation period.
[0083] 移動局 200は、 RF受信回路 202と、 RF受信回路 202と接続されたサブキャリア信 号分離部 204と、サブキャリア信号分離部 204と接続されたチャネル推定部 206と、 サブキャリア信号分離部 204及びチャネル推定部 206と接続された下り CQI測定部 208と、下り CQI測定部 208と接続されたフィードバックデータ生成部 210と、フィード バックデータ生成部 210と接続された符号化 ·変調部 212と、符号化 ·変調部 212と 接続された RF送信回路 214と、サブキャリア信号分離部 204と接続された割り当てリ ソースブロック情報保持部 216と、サブキャリア信号分離部 204および割り当てリソー スブロック情報保持部 216と接続された復調部 218と、復調部 218と接続された復号 部 220と、復号部 220と接続された CRC検出部 222と、 CRC検出部 222と接続され た IPパケット復元部 224とを備える。  The mobile station 200 includes an RF receiving circuit 202, a subcarrier signal separation unit 204 connected to the RF reception circuit 202, a channel estimation unit 206 connected to the subcarrier signal separation unit 204, and a subcarrier signal. Downlink CQI measurement unit 208 connected to demultiplexing unit 204 and channel estimation unit 206, feedback data generation unit 210 connected to downlink CQI measurement unit 208, and encoding / modulation unit connected to feedback data generation unit 210 212, RF transmission circuit 214 connected to encoding / modulation section 212, allocation resource block information holding section 216 connected to subcarrier signal separation section 204, subcarrier signal separation section 204, and allocation resource block Demodulation unit 218 connected to information holding unit 216, decoding unit 220 connected to demodulation unit 218, CRC detection unit 222 connected to decoding unit 220, and IP packet connected to CRC detection unit 222 And a base portion 224.
[0084] 基地局 100から送信されたパイロットチャネルは、 RF受信回路 202において受信さ れる。 RF受信回路 202は、パイロットチャネルをサブキャリア信号分離部 204に入力 する。サブキャリア信号分離部 204は、パイロットチャネルをサブキャリア毎の信号に 分離し、分離されたサブキャリア毎の信号をサブキャリア毎にチャネル推定部 206お よび下り CQI測定部 208に入力する。 The pilot channel transmitted from base station 100 is received by RF receiving circuit 202. RF receiving circuit 202 inputs the pilot channel to subcarrier signal separation section 204. Subcarrier signal separation section 204 separates the pilot channel into signals for each subcarrier, and separates the signal for each subcarrier for each subcarrier. And input to the downlink CQI measurement unit 208.
[0085] チャネル推定部 206は、パイロットシンボルを用いて各サブキャリアのチャネル推定 値を求め、該チャネル推定値を下り CQI測定部 208に入力する。下り CQI測定部 20 8は、パイロットチャネルの送信帯域の平均の CQIを測定し、測定結果をフィードバッ クデータ生成部 210に入力する。フィードバックデータ生成部 210は、入力された C QIに基づいて、基地局 100にフィードバックする下りリンクの受信チャネル状態を示 すフィードバック情報 (制御情報)を生成し、符号化 ·変調部 212に入力する。符号化 •変調部 212は、フィードバック情報の符号化処理 ·変調処理を行い、符号化 '変調 処理が行われたフィードバック情報は RF送信回路 214により基地局 100へ送信され る。例えば、この下りリンクの受信チャネル状態を送信するための無線リソースは、下 りの送信の直前に割り当てられる。  [0085] Channel estimation section 206 obtains a channel estimation value of each subcarrier using pilot symbols, and inputs the channel estimation value to downlink CQI measurement section 208. Downlink CQI measurement section 208 measures the average CQI of the transmission band of the pilot channel and inputs the measurement result to feedback data generation section 210. Based on the input CQI, feedback data generation section 210 generates feedback information (control information) indicating a downlink reception channel state to be fed back to base station 100, and inputs the feedback information to encoding / modulation section 212. . The encoding / modulation unit 212 performs encoding / modulation processing of feedback information, and the feedback information subjected to the encoding / modulation processing is transmitted to the base station 100 by the RF transmission circuit 214. For example, the radio resource for transmitting the downlink reception channel state is allocated immediately before the downward transmission.
[0086] また、基地局 100からの送信信号は、 RF受信回路 202において受信される。 RF受 信回路 202は、受信信号をサブキャリア信号分離部 204に入力する。サブキャリア信 号分離部 204は、受信信号をサブキャリア毎の信号に分離し、分離されたサブキヤリ ァ毎の信号をサブキャリア毎に復調部 218に入力する。  Further, a transmission signal from base station 100 is received by RF reception circuit 202. The RF reception circuit 202 inputs the received signal to the subcarrier signal separation unit 204. Subcarrier signal separation section 204 separates the received signal into signals for each subcarrier, and inputs the separated signals for each subcarrier to demodulation section 218 for each subcarrier.
[0087] 復調部 218は、割り当てリソースブロック情報保持部 216に格納された割り当てリソ ースブロック情報に基づいて、入力されたサブキャリア毎の信号を復調し、復調され た信号を復調された信号毎に復号部 220に入力する。ここで、割り当てリソースブロッ ク情報は、基地局 100により通知される制御チャネル、例えば L1/L2制御チャネル に含まれる。割り当てリソースブロック情報には、例えば MCS情報などが含まれる。  Demodulation section 218 demodulates the input signal for each subcarrier based on the allocation resource block information stored in allocation resource block information holding section 216, and demodulates the demodulated signal for each demodulated signal. The data is input to the decryption unit 220. Here, the allocated resource block information is included in a control channel notified by the base station 100, for example, an L1 / L2 control channel. The allocated resource block information includes, for example, MCS information.
[0088] 復号部 220は、入力信号を復号し、復号された信号を CRC検出部 222に入力する 。 CRC検出部 222は、送信データ含まれる UE— IDが重畳された CRCを検出し、誤 り検出を行い、該送信データが自局向けのデータであるか否かを判断し、自局向け のデータである場合に、 IPパケット復元部 224に入力する。 IPパケット復元部 224は 、入力信号を復元する。  Decoding section 220 decodes the input signal and inputs the decoded signal to CRC detection section 222. The CRC detection unit 222 detects a CRC on which UE-ID included in transmission data is superimposed, performs error detection, determines whether the transmission data is data for the own station, and If it is data, it is input to the IP packet restoration unit 224. The IP packet restoration unit 224 restores the input signal.
[0089] 次に、上りリンクにおいてパーシステント スケジューリングが適用される基地局 100 および移動局 200について、図 10および図 11を参照して説明する。  Next, base station 100 and mobile station 200 to which persistent scheduling is applied in the uplink will be described with reference to FIG. 10 and FIG.
[0090] 基地局 100は、 RF受信回路 102と、 RF受信回路 102と接続された復調 *復号部 1 04および CQI測定部 128と、復調 '復号部 104と接続されたスケジューラ 106と、ス ケジユーラ 106と CQI測定部 128と接続された優先割り当てリソースブロックの決定 · 管理部 108と、スケジューラ 106と接続された制御信号生成部 126と、制御信号生成 部 126と接続された RF送信部 124とを備える。 [0090] The base station 100 includes an RF receiving circuit 102 and a demodulator connected to the RF receiving circuit 102 * decoding unit 1 04 and CQI measurement unit 128, demodulator 'determining unit 106 connected to decoding unit 104, scheduling unit 106 and CQI measuring unit 128 connected to priority allocation resource block determination · management unit 108 and scheduler 106 connected The control signal generator 126 and the RF transmitter 124 connected to the control signal generator 126 are provided.
[0091] スケジューラ 106は、データチャネルの割り当て周期よりも長い周期で、移動局 200 に対し、上りリンクの受信チャネル状態を測定するためのパイロットチャネルの送信帯 域を割り当てる。この送信帯域の割り当てを示す情報は、制御信号生成部 126に入 力され、 RF送信部 124を介して送信される。  [0091] Scheduler 106 allocates a pilot channel transmission band for measuring uplink reception channel state to mobile station 200 at a period longer than the data channel allocation period. Information indicating this transmission band allocation is input to the control signal generation unit 126 and transmitted via the RF transmission unit 124.
[0092] 各移動局 200は基地局 100へ、割り当てられたパイロットチャネルの送信帯域によ り受信チャネル状態測定用信号の送信を行う。受信チャネル状態測定用信号は RF 受信回路 102により受信され、受信された受信チャネル状態測定用のノ ィロット信号 は CQI測定部 128に入力され、受信品質、例えば CQIが測定され、受信チャネル状 態測定用信号とともに測定された受信品質の情報が優先割り当てリソースブロックの 決定 ·管理部 108に入力される。また、移動局 200における送信データの有無を示 す情報は、 RF受信回路 102により受信され、 CQI測定部 128を介して、優先割り当 てリソースブロックの決定.管理部 108に入力される。  Each mobile station 200 transmits a reception channel state measurement signal to base station 100 using the allocated transmission band of the pilot channel. The reception channel state measurement signal is received by the RF receiving circuit 102, and the received reception channel state measurement pilot signal is input to the CQI measurement unit 128 to measure the reception quality, for example, CQI, and the reception channel state measurement. The information of the reception quality measured together with the signal for use is input to the determination / management unit 108 of the priority allocation resource block. Information indicating the presence / absence of transmission data in the mobile station 200 is received by the RF reception circuit 102 and is input to the priority allocation resource block determination / management unit 108 via the CQI measurement unit 128.
[0093] また、上位レイヤの制御信号により、移動局 200における送信データの有無が通知 されるようにしてもよい。この場合、上位レイヤの制御信号は、優先割り当てリソースブ ロックの決定 ·管理部 108に入力される。  Further, the presence / absence of transmission data in mobile station 200 may be notified by a control signal of an upper layer. In this case, the upper layer control signal is input to the priority allocation resource block determination / management unit 108.
[0094] 優先割り当てリソースブロックの決定 ·管理部 108は、受信チャネル状態測定用の パイロット信号の受信品質、上位レイヤの制御信号、移動局 200における送信データ の有無を示す情報に基づいて、優先的に割り当てるリソースブロック、すなわちパー システント スケジューリングを適用するリソースブロックを決定し、スケジューラ 106に 入力する。  [0094] Determination / priority allocation resource block determination / management section 108 performs priority based on reception quality of a pilot signal for reception channel state measurement, higher layer control signal, and information indicating presence / absence of transmission data in mobile station 200. The resource block to be assigned to the resource block, that is, the resource block to which the persistent scheduling is applied, is determined and input to the scheduler 106.
[0095] スケジューラ 106は、優先割り当てリソースブロックの決定.管理部 108により入力さ れた優先的に割り当てるリソースブロックに基づいて、リソースブロックの割り当てを決 定し、決定されたリソースブロックの割り当て情報を制御信号生成部 126に入力する 。制御信号生成部 126は、スケジューラ 106において決定されたリソースブロックの 割り当て情報、すなわちデータチャネルの送信帯域幅に基づいて、上り送信帯域の 割り当て情報を生成し、 RF送信部 124に入力する。 RF送信部 124は、制御信号生 成部 126により入力された制御信号を各移動局に送信する。その結果、基地局 100 から、移動局 200へ上り送信の割り当て情報が通知される。 [0095] The scheduler 106 determines a priority allocation resource block. The scheduler 106 determines the allocation of the resource block based on the priority allocation resource block input by the management unit 108, and determines the allocation information of the determined resource block. Input to the control signal generator 126. The control signal generation unit 126 generates resource blocks determined by the scheduler 106. Based on the allocation information, that is, the transmission bandwidth of the data channel, the allocation information of the uplink transmission band is generated and input to the RF transmission unit 124. The RF transmitter 124 transmits the control signal input by the control signal generator 126 to each mobile station. As a result, the base station 100 notifies the mobile station 200 of uplink transmission allocation information.
[0096] 例えば、この上りデータ送信のための無線リソースは、下りデータ送信の後に割り当 てられる。ここで、スケジューラ 106は、移動局毎に送信データの変調方式および誤 り訂正符号化率の組み合わせを、割り当て周期より長い周期で決定し、決定した送 信データの変調方式および誤り訂正符号化率の組み合わせを制御情報として通知 するようにしてあよレヽ。 [0096] For example, radio resources for uplink data transmission are allocated after downlink data transmission. Here, scheduler 106 determines a combination of the transmission data modulation scheme and error correction coding rate for each mobile station in a cycle longer than the allocation cycle, and determines the determined transmission data modulation scheme and error correction coding rate. The combination of these is reported as control information.
[0097] また、移動局 200からの送信データは RF受信回路 102において受信され、復調- 復号部 104に入力される。復調 '復号処理部 104は、入力された送信データの復調 処理および復号処理を行う。また、復調 '復号部 104は、各ユーザ端末のリソースブ ロック毎の上りリンクの CQIをスケジューラに通知する。  Further, transmission data from mobile station 200 is received by RF reception circuit 102 and input to demodulation / decoding section 104. Demodulation'decoding processing section 104 performs demodulation processing and decoding processing of the input transmission data. Further, the demodulation / decoding section 104 notifies the scheduler of the uplink CQI for each resource block of each user terminal.
[0098] スケジューラ 106は、所定の割り当て周期で、復調 '復号部 104により入力された C QIに基づいて、リソースブロックの再割り当てを決定し、決定されたリソースブロックの 割り当て情報を制御信号生成部 126に入力する。制御信号生成部 126は、スケジュ ーラ 106において決定されたリソースブロックの割り当て情報に基づいて、上り送信 帯域の割り当て情報を生成し、 RF送信部 124に入力する。 RF送信部 124は、制御 信号生成部 126により入力された制御信号を各移動局に送信する。例えば、この再 割り当ての結果は下りデータ送信と同時に通知される。  [0098] Scheduler 106 determines resource block reallocation based on the CQI input by demodulation and decoding section 104 at a predetermined allocation cycle, and uses the determined resource block allocation information as a control signal generation section Enter in 126. The control signal generation unit 126 generates uplink transmission band allocation information based on the resource block allocation information determined by the scheduler 106 and inputs it to the RF transmission unit 124. The RF transmission unit 124 transmits the control signal input by the control signal generation unit 126 to each mobile station. For example, the result of this reallocation is notified at the same time as downlink data transmission.
[0099] 移動局 200は、ヘッダ情報取得部 226と、ヘッダ情報取得部 226と接続された PD U生成部 228と、 PDU生成部 228と接続された送信バッファ 230と、送信バッファ 23 0と接続されたバッファ管理部 234および符号化 ·変調部 232と、バッファ管理部 234 と接続されたフィードバックデータ生成部 236と、フィードバックデータ生成部 236と 接続された符号化 ·変調部 238と、パイロット信号生成部 240と、符号化 ·変調部 232 、 238およびパイロット信号生成部 240と接続された RF送信回路 242とを備える。  [0099] Mobile station 200 is connected to header information acquisition section 226, PDU generation section 228 connected to header information acquisition section 226, transmission buffer 230 connected to PDU generation section 228, and transmission buffer 230 The buffer management unit 234, the encoding / modulation unit 232, the feedback data generation unit 236 connected to the buffer management unit 234, the encoding / modulation unit 238 connected to the feedback data generation unit 236, and the pilot signal generation Unit 240, and RF transmitter circuit 242 connected to encoding / modulating units 232 and 238 and pilot signal generating unit 240.
[0100] パイロット信号生成部 240は、基地局 100から通知された上りリンクの受信チャネル 状態を測定するためのパイロットチャネルの送信帯域を示す情報に基づいて、上りリ ンクの受信チャネル状態測定用のパイロット信号を生成し、 RF送信回路 242を介し て送信する。 [0100] Pilot signal generating section 240 is configured to transmit an uplink signal based on information indicating a transmission band of a pilot channel for measuring an uplink reception channel state notified from base station 100. A pilot signal for measuring the reception channel state of the link is generated and transmitted via the RF transmission circuit 242.
[0101] 上位レイヤからの IPパケットは、ヘッダ情報取得部 226に入力される。ヘッダ情報 取得部 226は、受信された IPパケットから宛先アドレス等のパケットヘッダ情報を取得 し、取得したパケットヘッダ情報をバッファ管理部 234に通知し、 IPパケットを PDU生 成部 228に入力する。  [0101] The IP packet from the upper layer is input to the header information acquisition unit 226. The header information acquisition unit 226 acquires packet header information such as a destination address from the received IP packet, notifies the acquired packet header information to the buffer management unit 234, and inputs the IP packet to the PDU generation unit 228.
[0102] PDU生成部 228は、入力されたパケットを PDU化し、送信バッファ 230に入力する 。送信バッファ 230は、ノ ッファ管理部 112により入力された宛先アドレスと、対応す る待ち行列のメモリアドレスとに基づいて、入力された PDUから宛先(基地局 100)の 待ち行列を形成し、待ち行列の状態をバッファ管理部 234に通知する。  [0102] The PDU generation unit 228 converts the input packet into a PDU and inputs the packet to the transmission buffer 230. The transmission buffer 230 forms a queue for the destination (base station 100) from the input PDU based on the destination address input by the nota management unit 112 and the memory address of the corresponding queue, and waits for it. The buffer status is notified to the buffer manager 234.
[0103] ノ ッファ管理部 234には、基地局 100から、割り当てられたデータチャネル送信帯 域を示す情報が通知される。また、移動局毎に決定された送信データの変調方式お よび誤り訂正符号化率の組み合わせが通知される。  [0103] Information indicating the allocated data channel transmission band is notified from the base station 100 to the nota management unit 234. Also, the transmission data modulation scheme and error correction coding rate combination determined for each mobile station is notified.
[0104] 送信バッファ 230は、ノ ッファ管理部 234により指定された上り送信の割り当て情報 、すなわち割り当てられたデータチャネル送信帯域を示す情報に基づいて、待ち行 列からデータを取り出し、符号化 ·変調部 232に入力する。符号化 ·変調部 232は、 移動局毎に決定された送信データの変調方式および誤り訂正符号化率の組み合わ せに基づいて、符号化'変調処理を行い、 RF送信回路 242に入力する。 RF送信回 路 242では送信データに対して、送信電力制御が行われ、送信される。  [0104] The transmission buffer 230 extracts data from the queue based on the uplink transmission allocation information specified by the nota management unit 234, that is, information indicating the allocated data channel transmission band, and encodes and modulates the data. Input to part 232 The encoding / modulation unit 232 performs encoding / modulation processing based on the combination of the transmission data modulation scheme and error correction coding rate determined for each mobile station, and inputs the result to the RF transmission circuit 242. In the RF transmission circuit 242, transmission power control is performed on transmission data and transmitted.
[0105] ノ ッファ管理部 234は、宛先アドレスとそのアドレスに対応する待ち行列のメモリアド レスとを送信バッファ 230に入力する。また、バッファ管理部 234は、パケットヘッダ情 報及び送信バッファ 230から通知される待ち行列の状態をフィードバックデータ生成 部 236に通知する。フィードバックデータ生成部 236は、入力される待ち行列の状態 に基づいて、送信データの有無を示すフィードバック情報を生成し、符号化'変調部 238に入力する。符号化'変調部 238は、入力されたフィードバック情報を、 RF送信 回路 242を介して基地局 100へ送信する。  [0105] The noffer management unit 234 inputs the destination address and the memory address of the queue corresponding to the address to the transmission buffer 230. Further, the buffer management unit 234 notifies the feedback data generation unit 236 of the packet header information and the queue status notified from the transmission buffer 230. The feedback data generation unit 236 generates feedback information indicating the presence / absence of transmission data based on the input queue state, and inputs the feedback information to the encoding / modulation unit 238. The encoding / modulation unit 238 transmits the input feedback information to the base station 100 via the RF transmission circuit 242.
[0106] 説明の便宜上、本発明を幾つかの実施例に分けて説明したが、各実施例の区分け は本発明に本質的ではなぐ 2以上の実施例が必要に応じて使用されてよい。発明 の理解を促すため具体的な数値例を用いて説明した力 特に断りのない限り、それら の数値は単なる一例に過ぎず適切な如何なる値が使用されてよい。 [0106] For convenience of explanation, the present invention has been described in several embodiments. However, the classification of each embodiment is not essential to the present invention, and two or more embodiments may be used as necessary. invention Forces explained using specific numerical examples to promote understanding Unless otherwise noted, these numerical values are merely examples, and any appropriate value may be used.
[0107] 以上、本発明は特定の実施例を参照しながら説明されてきたが、各実施例は単な る例示に過ぎず、当業者は様々な変形例、修正例、代替例、置換例等を理解するで あろう。説明の便宜上、本発明の実施例に係る装置は機能的なブロック図を用いて 説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合 わせで実現されてもよい。本発明は上記実施例に限定されず、本発明の精神から逸 脱することなぐ様々な変形例、修正例、代替例、置換例等が包含される。  [0107] Although the present invention has been described above with reference to specific embodiments, each embodiment is merely an example, and those skilled in the art will appreciate various variations, modifications, alternatives, and substitutions. You will understand. For convenience of explanation, the device according to the embodiment of the present invention has been described using a functional block diagram. However, such a device may be realized by hardware, software, or a combination thereof. The present invention is not limited to the above-described embodiments, and includes various modifications, modifications, alternatives, substitutions and the like without departing from the spirit of the present invention.
[0108] 本国際出願は、 2006年 8月 22日に出願した日本国特許出願 2006— 225927号 に基づく優先権を主張するものであり、 2006— 225927号の全内容を本国際出願 に援用する。  [0108] This international application claims priority based on Japanese Patent Application No. 2006-225927 filed on August 22, 2006, and the entire contents of 2006-225927 are incorporated herein by reference. .
産業上の利用可能性  Industrial applicability
[0109] 本発明に力、かる基地局および移動局は、無線通信システムに適用できる。 [0109] The base station and mobile station that are effective in the present invention can be applied to a radio communication system.

Claims

請求の範囲 The scope of the claims
[1] システム帯域幅を連続する周波数サブキャリアのブロックに分割したリソースブロッ クおよびシステム帯域幅内に離散的に分散した周波数サブキャリアからなり、前記リソ ースブロックを複数に分割して構成される分散型リソースブロックのうちの一方を各移 動局に割り当て、  [1] A resource block that divides the system bandwidth into contiguous frequency subcarrier blocks and a frequency subcarrier that is discretely distributed within the system bandwidth. The resource block is divided into multiple parts. Assign one of the type resource blocks to each mobile station,
前記移動局から通知された下りリンクの受信チャネル状態に基づいて、予め決定さ れた所定の割り当て周期で、前記移動局に対して、リソースブロックおよび分散型リソ ースブロックのうちの一方を割り当てるスケジューリング手段;  Scheduling means for allocating one of a resource block and a distributed resource block to the mobile station at a predetermined allocation period determined in advance based on a downlink reception channel state notified from the mobile station ;
を備えることを特徴とする基地局。  A base station comprising:
[2] 請求項 1に記載の基地局において:  [2] In the base station according to claim 1:
前記スケジューリング手段は、前記割り当て周期毎に、異なるリソースブロックあるい は、分散型リソースブロックを割り当てることを特徴とする基地局。  The base station characterized in that the scheduling means allocates different resource blocks or distributed resource blocks for each allocation period.
[3] 請求項 1に記載の基地局において: [3] In the base station according to claim 1:
前記スケジューリング手段は、前記割り当て周期内で、予め決定された回数の送信 スロットを割り当てることを特徴とする基地局。  The base station characterized in that the scheduling means allocates a predetermined number of transmission slots within the allocation period.
[4] 請求項 1に記載の基地局において: [4] In the base station according to claim 1:
下りリンクの受信チャネル状態に基づいて、移動局毎に送信データの変調方式お よび誤り訂正符号化率の組み合わせを前記割り当て周期より長い周期で決定し、決 定した送信データの変調方式および誤り訂正符号化率の組み合わせに基づいて、 符号化処理および変調処理を行なう符号化 ·変調処理手段;  Based on the downlink reception channel state, a combination of a transmission data modulation scheme and an error correction coding rate is determined for each mobile station in a period longer than the allocation period, and the determined transmission data modulation scheme and error correction are determined. Coding and modulation processing means for performing coding processing and modulation processing based on a combination of coding rates;
前記割り当て周期で、送信電力の制御を行なう送信電力制御手段;  Transmission power control means for controlling transmission power in the allocation period;
を備えることを特徴とする基地局。  A base station comprising:
[5] 請求項 1に記載の基地局において: [5] In the base station according to claim 1:
前記スケジューリング手段は、リソースブロックまたは分散型リソースブロックを割り 当てられた移動局に対するデータが無い場合、該リソースブロックまたは分散型周波 数ブロックを他の移動局に割り当てることを特徴とする基地局。  The base station characterized in that, when there is no data for a mobile station to which a resource block or a distributed resource block is allocated, the scheduling means allocates the resource block or the distributed frequency block to another mobile station.
[6] データチャネルの割り当て周期よりも長い周期で、上りリンクの受信チャネル状態を 測定するためのパイロットチャネルの送信帯域を割り当てるパイロットチャネル送信帯 域割り当て手段; [6] Pilot channel transmission band that allocates the pilot channel transmission band for measuring the uplink reception channel state with a period longer than the data channel allocation period Area allocation means;
各移動局に、システム帯域幅を連続する周波数サブキャリアのブロックに分割したリ ソースブロックをデータチャネルの送信帯域として割り当てるデータチャネル送信帯 域割り当て手段;  A data channel transmission band allocating means for allocating a resource block obtained by dividing the system bandwidth into continuous frequency subcarrier blocks to each mobile station as a data channel transmission band;
割り当てを決定した、前記パイロットチャネルの送信帯域幅、およびデータチャネル の送信帯域幅を各移動局に通知する制御信号を生成する制御情報生成手段; を備え、  Control information generating means for generating a control signal for notifying each mobile station of the transmission bandwidth of the pilot channel and the transmission bandwidth of the data channel that have been determined to be allocated;
前記データチャネル送信帯域割り当て手段は、前記パイロットチャネル受信品質に 基づ!/、て、データチャネルの送信帯域の割り当てを決定することを特徴とする基地局  The data channel transmission band allocating means determines a data channel transmission band allocation based on the pilot channel reception quality! /
[7] 基地局により割り当てられた周波数帯域を用いて、該基地局に対して、データチヤ ネルの割り当て周期よりも長い周期で、前記パイロットチャネルを生成するパイロット 信号生成手段; [7] Pilot signal generating means for generating the pilot channel with a period longer than the data channel allocation period for the base station using the frequency band allocated by the base station;
前記基地局にぉレ、て、前記パイロットチャネルに基づ!/、て決定された割り当てるリソ ースブロックに、予め決定された所定の割り当て周期で、送信データを割り当てる送 信データ割り当て手段;  Transmission data allocating means for allocating transmission data at a predetermined allocation cycle determined in advance to the resource block allocated to the base station based on the pilot channel! /;
を備えることを特徴とする移動局。  A mobile station comprising:
[8] 請求項 7に記載の移動局において: [8] In the mobile station according to claim 7:
前記送信データ割り当て手段は、送信スロット毎に割り当てるリソースブロック切り替 えることを特徴とする移動局。  The mobile station characterized in that the transmission data allocating means switches resource blocks allocated for each transmission slot.
[9] 請求項 7に記載の移動局において: [9] In the mobile station according to claim 7:
前記送信データ割り当て手段は、前記割り当て周期毎に、異なるリソースブロックを 割り当てることを特徴とする移動局。  The transmission data allocating means allocates a different resource block for each allocation period.
[10] 請求項 7に記載の移動局において: [10] In the mobile station of claim 7:
前記送信データ割り当て手段は、前記割り当て周期内で、予め決定された回数の 送信スロットを割り当てることを特徴とする移動局。  The transmission data allocating means allocates a predetermined number of transmission slots within the allocation period.
[11] 請求項 7の!/、ずれか 1項に記載の移動局にお!/ヽて: [11] Claim 7! /, Or any of the mobile stations listed in Section 1! /
上りリンクの受信チャネル状態に基づいて、移動局毎に送信データの変調方式お よび誤り訂正符号化率の組み合わせを前記割り当て周期より長い周期で決定し、決 定した送信データの変調方式および誤り訂正符号化率の組み合わせが通知され、 通知された送信データの変調方式および誤り訂正符号化率の組み合わせに基づ V、て、符号化処理および変調処理を行なう符号化 ·変調処理手段; Based on the uplink reception channel condition, the transmission data modulation method and And the error correction coding rate combination are determined in a cycle longer than the allocation cycle, the determined transmission data modulation method and error correction coding rate combination are notified, and the notified transmission data modulation method and error correction are notified. Coding / modulation processing means for performing coding processing and modulation processing based on the combination of coding rates;
前記割り当て周期で、送信電力の制御を行なう送信電力制御手段;  Transmission power control means for controlling transmission power in the allocation period;
を備えることを特徴とする移動局。  A mobile station comprising:
請求項 7に記載の移動局において:  In the mobile station according to claim 7:
前記リソースブロックを割り当てた基地局に対し、送信データの有無を示す情報を 通知する通知手段;  A notification means for notifying the base station to which the resource block has been assigned information indicating the presence or absence of transmission data;
を備えることを特徴とする移動局。  A mobile station comprising:
PCT/JP2007/066052 2006-08-22 2007-08-17 Base station and mobile station WO2008023647A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020117002992A KR101252575B1 (en) 2006-08-22 2007-08-17 Base station and mobile station
EP07792668A EP2056614A4 (en) 2006-08-22 2007-08-17 Base station and mobile station
US12/438,290 US8018898B2 (en) 2006-08-22 2007-08-17 Base station and mobile station
CN2007800388960A CN101529958B (en) 2006-08-22 2007-08-17 Base station and mobile station
BRPI0715372A BRPI0715372B1 (en) 2006-08-22 2007-08-17 base station and mobile station
KR1020097005399A KR101448014B1 (en) 2006-08-22 2007-08-17 Base station and mobile station
US13/041,139 US8000296B2 (en) 2006-08-22 2011-03-04 Base station and mobile station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006225927A JP4519817B2 (en) 2006-08-22 2006-08-22 Base station and mobile station
JP2006-225927 2006-08-22

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/438,290 A-371-Of-International US8018898B2 (en) 2006-08-22 2007-08-17 Base station and mobile station
US13/041,139 Continuation US8000296B2 (en) 2006-08-22 2011-03-04 Base station and mobile station

Publications (1)

Publication Number Publication Date
WO2008023647A1 true WO2008023647A1 (en) 2008-02-28

Family

ID=39106732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066052 WO2008023647A1 (en) 2006-08-22 2007-08-17 Base station and mobile station

Country Status (9)

Country Link
US (2) US8018898B2 (en)
EP (2) EP2056614A4 (en)
JP (1) JP4519817B2 (en)
KR (2) KR101252575B1 (en)
CN (2) CN101529958B (en)
BR (2) BRPI0722406A2 (en)
RU (2) RU2444862C2 (en)
TW (2) TWI422183B (en)
WO (1) WO2008023647A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102187607A (en) * 2008-10-20 2011-09-14 松下电器产业株式会社 Wireless communication base station device and division number determination method
JP2013526128A (en) * 2010-04-30 2013-06-20 モトローラ モビリティ エルエルシー Method and apparatus for allocating resource blocks in a wireless communication network
TWI513216B (en) * 2009-04-28 2015-12-11 Intel Corp Uplink feedback channel reporting mechanism in wireless systems

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4519817B2 (en) 2006-08-22 2010-08-04 株式会社エヌ・ティ・ティ・ドコモ Base station and mobile station
JP2008166936A (en) * 2006-12-27 2008-07-17 Sanyo Electric Co Ltd Allocation method, and base station apparatus using it
JP5089431B2 (en) * 2008-02-25 2012-12-05 株式会社日立国際電気 Wireless base station equipment
JP5069147B2 (en) * 2008-02-29 2012-11-07 株式会社エヌ・ティ・ティ・ドコモ Mobile communication system, base station apparatus, user apparatus and method
JP4410837B2 (en) * 2008-03-28 2010-02-03 株式会社エヌ・ティ・ティ・ドコモ Radio resource selection method, mobile station and radio base station
JP4511622B2 (en) * 2008-04-22 2010-07-28 株式会社エヌ・ティ・ティ・ドコモ Mobile communication method, mobile station and radio base station
JP4511621B2 (en) * 2008-04-22 2010-07-28 株式会社エヌ・ティ・ティ・ドコモ Mobile communication method, mobile station and radio base station
WO2009157534A1 (en) * 2008-06-26 2009-12-30 株式会社エヌ・ティ・ティ・ドコモ Closed loop transmission power control method, base station device, and terminal device
CN101635595B (en) * 2008-07-24 2013-12-04 中兴通讯股份有限公司 Method for subchannelization and resource mapping of radio resources
CN104486054A (en) * 2009-03-17 2015-04-01 三菱电机株式会社 Communication system, communication apparatus, and frequency allocation method
EP2425559B1 (en) * 2009-04-27 2017-05-17 Telefonaktiebolaget LM Ericsson (publ) Methods and arrangements in a wireless communication system
US8780688B2 (en) 2009-04-27 2014-07-15 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus in a wireless communication system
WO2010140803A2 (en) * 2009-06-02 2010-12-09 엘지전자 주식회사 Apparatus and method for measuring status of a channel in a multi-carrier system
US8948028B2 (en) 2009-10-13 2015-02-03 Qualcomm Incorporated Reporting of timing information to support downlink data transmission
CN102045789B (en) * 2009-10-16 2013-05-08 中兴通讯股份有限公司 Frequency physics resource scheduling method and system based on frequency hopping
US9031599B2 (en) 2009-12-08 2015-05-12 Futurewei Technologies, Inc. System and method for power control
KR101549920B1 (en) * 2009-12-29 2015-09-03 텔레콤 이탈리아 소시에떼 퍼 아찌오니 Adaptive scheduling data transmission based on the transmission power and the number of physical resource blocks
US8515474B2 (en) 2010-01-20 2013-08-20 Futurewei Technologies, Inc. System and method for scheduling users on a wireless network
KR101958785B1 (en) * 2011-03-11 2019-03-15 엘지전자 주식회사 Method for receiving ack(acknowledgement)/nack(negative ack) information and method for transmitting same, user equipment and base station
JP5204870B2 (en) * 2011-04-25 2013-06-05 株式会社エヌ・ティ・ティ・ドコモ Base station and resource allocation method in mobile communication system
EP2704510A4 (en) * 2011-04-25 2014-11-05 Ntt Docomo Inc Base station in mobile communication system and resource allocation method
JP5523393B2 (en) * 2011-05-24 2014-06-18 京セラ株式会社 COMMUNICATION DEVICE, COMMUNICATION METHOD, AND PROGRAM
JP5847525B2 (en) * 2011-10-11 2016-01-27 株式会社Nttドコモ Wireless communication terminal, base station apparatus, wireless communication system, and wireless communication method
US8995388B2 (en) 2012-01-19 2015-03-31 Futurewei Technologies, Inc. Systems and methods for uplink resource allocation
WO2014007509A1 (en) * 2012-07-02 2014-01-09 한국전자통신연구원 Apparatus and method for allocating resource
JP5420039B2 (en) * 2012-09-11 2014-02-19 京セラ株式会社 Wireless communication system, base station, and wireless communication method
EP3051760B1 (en) * 2013-09-24 2019-09-18 Mitsubishi Electric Corporation Use of differential modulation in multicarrier scheme with null symbols for interference measurement
US9654191B2 (en) * 2013-10-31 2017-05-16 Telefonaktiebolaget Lm Ericsson (Publ) Assignment of radio resources to be used on uplink transmissions in a multi-user multiple input multiple output (MU-MIMO) communication system
US9445427B2 (en) * 2014-04-30 2016-09-13 Telefonaktiebolaget Lm Ericsson (Publ) Downlink resource allocation in OFDM networks
US9949260B2 (en) * 2015-10-23 2018-04-17 Futurewei Technologies Co., Ltd. Apparatus and method for transmit power control command transmission
KR102448173B1 (en) * 2015-11-19 2022-09-28 삼성전자 주식회사 Method and apparatus for transmitting data in wireless communication system supporting carrier aggregation
GB2547030B (en) * 2016-02-05 2018-04-18 Tcl Communication Ltd Uplink resource allocation
RU2742949C1 (en) * 2017-07-24 2021-02-12 Гуандун Оппо Мобайл Телекоммьюникейшнз Корп., Лтд. Data transmission method, terminal device and network device
US11792055B2 (en) * 2019-05-17 2023-10-17 Ntt Docomo, Inc. Terminal and base station in wireless communication system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004312291A (en) * 2003-04-04 2004-11-04 Matsushita Electric Ind Co Ltd Base station device and communication method
JP2006050545A (en) * 2004-06-28 2006-02-16 Ntt Docomo Inc Receiving station, transmitting station, mobile communication system, and frequency block allocation method
WO2006085353A1 (en) * 2005-02-08 2006-08-17 Fujitsu Limited Slot allocating method in cellular radio communication system, and base station used in the system
JP2006225927A (en) 2005-02-16 2006-08-31 Honda Motor Co Ltd Door holding clip and detaching tool for door holding clip

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5465396A (en) * 1993-01-12 1995-11-07 Usa Digital Radio Partners, L.P. In-band on-channel digital broadcasting
US6351458B2 (en) * 1997-09-22 2002-02-26 Matsushita Electric Industrial Co., Ltd. CDMA cellular wireless communication system
RU2216100C2 (en) * 1998-02-13 2003-11-10 Телефонактиеболагет Лм Эрикссон (Пабл) Method for planning readings of variable blocks with aid of status flag of ascending communication line in burst data transmission system
KR100434473B1 (en) * 2001-05-11 2004-06-05 삼성전자주식회사 Apparatus for decoding channel and method thereof in orthogonal frequency division multiplexing system
JP4119696B2 (en) * 2001-08-10 2008-07-16 松下電器産業株式会社 Transmitting apparatus, receiving apparatus, and wireless communication method
US7373105B2 (en) * 2001-11-07 2008-05-13 The Aerospace Corporation Method of determining communication link quality employing beacon signals
JP3851836B2 (en) * 2002-04-19 2006-11-29 富士通株式会社 Wavelength multiplexing transmission system and wavelength multiplexing transmission apparatus
US7551546B2 (en) * 2002-06-27 2009-06-23 Nortel Networks Limited Dual-mode shared OFDM methods/transmitters, receivers and systems
KR101042814B1 (en) * 2003-10-04 2011-06-21 삼성전자주식회사 System and method for controlling tti change in wcdma communication system supports enhanced uplink dedicated transport channel
US7047009B2 (en) * 2003-12-05 2006-05-16 Flarion Technologies, Inc. Base station based methods and apparatus for supporting break before make handoffs in a multi-carrier system
KR100620914B1 (en) * 2004-04-07 2006-09-13 삼성전자주식회사 Apparatus and method for switching between amc mode and diversity mode in broadband wireless communication system
JP2005311413A (en) * 2004-04-16 2005-11-04 Matsushita Electric Ind Co Ltd Communication apparatus and communication method
KR100744336B1 (en) * 2004-06-18 2007-07-30 삼성전자주식회사 Handover method for ofdm-based wireless communication system
US20050286482A1 (en) * 2004-06-28 2005-12-29 Samsung Electronics Co., Ltd. Apparatus and method for supporting OFDM operation in a CDMA2000 wireless network
JP4590969B2 (en) * 2004-07-28 2010-12-01 ソニー株式会社 Wireless communication system, wireless communication apparatus, wireless communication method, and computer program
JP2006101487A (en) * 2004-09-02 2006-04-13 Mitsubishi Materials Corp Data communication system, data transmitting apparatus, data receiving apparatus, data communication method and data communication program
WO2006046307A1 (en) * 2004-10-29 2006-05-04 Fujitsu Limited Communication device by multicarrier transmission method and communication system
US7573851B2 (en) * 2004-12-07 2009-08-11 Adaptix, Inc. Method and system for switching antenna and channel assignments in broadband wireless networks
KR100981514B1 (en) * 2004-12-30 2010-09-10 삼성전자주식회사 Method for allocation of adaptive subchannel and bits using partial channel feedback in orthogonal frequency division multiplexing access communication system
EP1838022A4 (en) * 2005-01-06 2012-12-12 Fujitsu Ltd Wireless communication system
JP4526977B2 (en) * 2005-03-02 2010-08-18 株式会社エヌ・ティ・ティ・ドコモ Transmitter and transmission control method
JP4527067B2 (en) * 2005-03-31 2010-08-18 株式会社エヌ・ティ・ティ・ドコモ Mobile station, transmission method, and mobile communication system
US7535972B2 (en) * 2005-06-24 2009-05-19 Broadcom Corporation Programmable transmitter
US20070004465A1 (en) * 2005-06-29 2007-01-04 Aris Papasakellariou Pilot Channel Design for Communication Systems
KR101137345B1 (en) * 2005-07-03 2012-04-23 엘지전자 주식회사 method for transmitting and receiving signal having spread training symbol in mobile communication system
KR20070027844A (en) * 2005-08-29 2007-03-12 삼성전자주식회사 Method and apparatus for transmitting channel quality information in a wireless communication system
KR101119281B1 (en) * 2005-08-29 2012-03-15 삼성전자주식회사 Apparatus and method of feedback channel quality information and scheduling apparatus and method using thereof in a wireless communication system
JP5063883B2 (en) * 2005-09-29 2012-10-31 富士通株式会社 Wireless communication apparatus, transmission method, transmission apparatus, data transmission system, and data transmission method
US20070076804A1 (en) * 2005-09-30 2007-04-05 Texas Instruments Inc. Image-rejecting channel estimator, method of image-rejection channel estimating and an OFDM receiver employing the same
KR100798849B1 (en) * 2005-10-21 2008-01-28 삼성전자주식회사 Apparatus and method for channel selection scheduling in mobile communication system using ofdma
CN101371528A (en) * 2006-01-11 2009-02-18 高通股份有限公司 Methods and apparatus for communicating device capability and/or setup information
US7848438B2 (en) * 2006-02-14 2010-12-07 Motorola Mobility, Inc. Method and apparatus for pilot signal transmission
EP2001166A4 (en) * 2006-03-29 2012-10-24 Hitachi Ltd Broadband wireless communication resource assigning method, base station apparatus and terminal apparatus
WO2007117468A2 (en) * 2006-03-30 2007-10-18 Beceem Communications, Inc. Method and system for uplink coordinated reception in orthogonal frequency division multiple access systems
US7860150B2 (en) * 2006-04-24 2010-12-28 Nokia Corporation Apparatus, method, and computer program product providing improved uplink pilot transmission schemes
US8139550B2 (en) * 2006-04-28 2012-03-20 Samsung Electronics Co., Ltd. Apparatus and method for transmitting ACK/NACK messages in a wireless communication system
WO2007141848A1 (en) * 2006-06-07 2007-12-13 Fujitsu Limited Base station and method for allocating frequency to pilot sequence
US8295262B2 (en) * 2006-08-15 2012-10-23 Texas Instruments Incorporated Uplink reference signal for time and frequency scheduling of transmissions
JP4295300B2 (en) * 2006-08-22 2009-07-15 株式会社エヌ・ティ・ティ・ドコモ Transmitting apparatus and transmitting method
JP4519817B2 (en) * 2006-08-22 2010-08-04 株式会社エヌ・ティ・ティ・ドコモ Base station and mobile station
JP4786467B2 (en) * 2006-08-22 2011-10-05 株式会社エヌ・ティ・ティ・ドコモ Transmitter
US7813701B2 (en) * 2006-08-29 2010-10-12 Piping Hot Networks Limited Interference optimized OFDM
US8095134B2 (en) * 2006-10-27 2012-01-10 Nokia Corporation Method and apparatus for handover measurement
JP5074007B2 (en) * 2006-11-01 2012-11-14 株式会社エヌ・ティ・ティ・ドコモ User terminal apparatus and base station apparatus
KR100980259B1 (en) * 2007-03-14 2010-09-06 삼성전자주식회사 Apparatus and method for transmitting an uplink pilot using a scanning interval in a mobile communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004312291A (en) * 2003-04-04 2004-11-04 Matsushita Electric Ind Co Ltd Base station device and communication method
JP2006050545A (en) * 2004-06-28 2006-02-16 Ntt Docomo Inc Receiving station, transmitting station, mobile communication system, and frequency block allocation method
WO2006085353A1 (en) * 2005-02-08 2006-08-17 Fujitsu Limited Slot allocating method in cellular radio communication system, and base station used in the system
JP2006225927A (en) 2005-02-16 2006-08-31 Honda Motor Co Ltd Door holding clip and detaching tool for door holding clip

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Persistent Scheduling for E-UTRA", TSG-RAN WG1 LTE ADHOC, 23 January 2003 (2003-01-23)
MOTOROLA: "EUTRA SC-FDMA Uplink Resource Block, Resource Allocation and Pilot/Reference signal Design & TP", 3GPP TSG RAN1 LTE AD HOC, vol. R1-060246, 26 January 2006 (2006-01-26), XP003020273 *
NAGATA S. ET AL.: "OFDMA o Mochiiru Evolved UTRA ni Okeru Kyoyu Data Channel ni Taisuru Block Bunkatsu o Mochiiru Resource Block Level no Distributed Soshin Hoho", TECHNICAL REPORT OF IEICE RCS2006-101, vol. 106, no. 168, July 2006 (2006-07-01), pages 251 - 256, XP003020274 *
See also references of EP2056614A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102187607A (en) * 2008-10-20 2011-09-14 松下电器产业株式会社 Wireless communication base station device and division number determination method
CN102187607B (en) * 2008-10-20 2015-05-13 松下电器(美国)知识产权公司 Wireless communication base station device and division number determination method
CN104702375A (en) * 2008-10-20 2015-06-10 松下电器(美国)知识产权公司 Base station device, terminal device, communication method and integrated circuit
TWI513216B (en) * 2009-04-28 2015-12-11 Intel Corp Uplink feedback channel reporting mechanism in wireless systems
JP2013526128A (en) * 2010-04-30 2013-06-20 モトローラ モビリティ エルエルシー Method and apparatus for allocating resource blocks in a wireless communication network

Also Published As

Publication number Publication date
EP2056614A4 (en) 2011-01-26
US20110149896A1 (en) 2011-06-23
CN101529958A (en) 2009-09-09
JP4519817B2 (en) 2010-08-04
RU2458475C1 (en) 2012-08-10
US8018898B2 (en) 2011-09-13
BRPI0722406A2 (en) 2015-06-09
TWI348296B (en) 2011-09-01
BRPI0715372A2 (en) 2011-05-03
EP2309814A1 (en) 2011-04-13
KR20090042968A (en) 2009-05-04
RU2444862C2 (en) 2012-03-10
US8000296B2 (en) 2011-08-16
TW201134133A (en) 2011-10-01
KR101448014B1 (en) 2014-10-08
US20100232374A1 (en) 2010-09-16
RU2009108794A (en) 2010-09-27
KR20110025879A (en) 2011-03-11
TWI422183B (en) 2014-01-01
KR101252575B1 (en) 2013-04-09
CN101529958B (en) 2011-12-07
EP2056614A1 (en) 2009-05-06
CN102123509B (en) 2012-10-10
CN102123509A (en) 2011-07-13
TW200822600A (en) 2008-05-16
JP2008053865A (en) 2008-03-06
BRPI0715372B1 (en) 2020-02-04

Similar Documents

Publication Publication Date Title
JP4519817B2 (en) Base station and mobile station
JP4728301B2 (en) User apparatus, transmission method, and communication system
CA2614506C (en) Method and apparatus for allocating communication resources using virtual circuit switching in a wireless communication system and method for transmitting and receiving data in a mobile station using the same
EP2391045B1 (en) Radio base station and radio resource allocation method
KR20080025132A (en) Channel allocating method, wireless communication system, and channel structure of wireless sections
JP2010148021A (en) Radio base station apparatus and wireless communication system
WO2006109438A1 (en) Base station, mobile station, mobile communication system and control signal transmission control method
KR100929077B1 (en) Methdo and apparatus for allocating communication resources using virtual circuit switching in a wireless communication system and method for transmitting/receiving data in a mobile station
JP5576433B2 (en) Radio base station and radio resource allocation method
WO2008065902A1 (en) Base station device and communication method
JP4592821B2 (en) Base station and mobile station
JP5226099B2 (en) User device, transmission method, communication system
JP2010110017A (en) Base station

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780038896.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792668

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 672/KOLNP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12009500346

Country of ref document: PH

Ref document number: 2007792668

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020097005399

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2009108794

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12438290

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020117002992

Country of ref document: KR

ENP Entry into the national phase

Ref document number: PI0715372

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090225