WO2008023311A2 - Efficient cqi signaling in multi-beam mimo systems - Google Patents

Efficient cqi signaling in multi-beam mimo systems Download PDF

Info

Publication number
WO2008023311A2
WO2008023311A2 PCT/IB2007/053284 IB2007053284W WO2008023311A2 WO 2008023311 A2 WO2008023311 A2 WO 2008023311A2 IB 2007053284 W IB2007053284 W IB 2007053284W WO 2008023311 A2 WO2008023311 A2 WO 2008023311A2
Authority
WO
WIPO (PCT)
Prior art keywords
channel quality
quality information
beams
different
exploiting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/IB2007/053284
Other languages
English (en)
French (fr)
Other versions
WO2008023311A3 (en
Inventor
Matthew P. J. Baker
Timothy J. Moulsley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Priority to EP07805435.0A priority Critical patent/EP2057768B1/en
Priority to CN2007800312783A priority patent/CN101507166B/zh
Priority to KR20097003259A priority patent/KR101484464B1/ko
Priority to US12/438,158 priority patent/US8588116B2/en
Priority to JP2009525147A priority patent/JP5475446B2/ja
Publication of WO2008023311A2 publication Critical patent/WO2008023311A2/en
Publication of WO2008023311A3 publication Critical patent/WO2008023311A3/en
Anticipated expiration legal-status Critical
Priority to US14/055,975 priority patent/US9154200B2/en
Priority to US14/875,095 priority patent/US9859968B2/en
Priority to US15/857,908 priority patent/US10673509B2/en
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0641Differential feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0027Scheduling of signalling, e.g. occurrence thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0029Reduction of the amount of signalling, e.g. retention of useful signalling or differential signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate

Definitions

  • the present invention relates to a method for signaling channel quality information in a multi-beam transmission system, in particular a multi-beam MIMO (multiple-in/multiple-out) system. Moreover, the present invention relates to a computer program product for carrying out the method. Further, the present invention relates to a multi- beam transmission system, in particular a multi-beam MIMO system, wherein a plurality of beams are simultaneously transmitted and a plurality of sets of channel quality information (CQI) are transmitted for controlling independently the transmission rate on the different beams.
  • CQI channel quality information
  • the present invention relates to a network element, in particular a node, in a multi-beam transmission system, in particular a multi-beam MIMO system, wherein a plurality of beams are simultaneously transmitted and a plurality of sets of channel quality information are transmitted for controlling independently the transmission rate on the different beams.
  • a user equipment in particular a mobile station, in a multi-beam transmission system, in particular a multi-beam MIMO system, wherein a plurality of beams are simultaneously transmitted and a plurality of sets of channel quality information are transmitted for controlling independently the transmission rate on the different beams.
  • the present invention relates to a signal for indicating channel quality information in a multi-beam transmission system, in particular a multi-beam MIMO system, wherein a plurality of beams are simultaneously transmitted and a plurality of sets of channel quality information are transmitted for controlling independently the transmission rate on the different beams.
  • the present invention can be applied in multi-antenna communication systems.
  • a potential application of the present invention is in the MIMO feature currently being standardized for UMTS (universal mobile telecommunication system) Release 7.
  • D-TxAA In the third generation partnership project (3 GPP) a proposal called D-TxAA is under discussion for UMTS as a way of increasing the peak bit rate. This is derived from an existing closed loop transmit diversity scheme (TxAA mode 1) where the mobile terminal signals to the network complex weights which should be applied to the signals from each of two transmitting antennas. In D-TxAA two different data streams are transmitted using orthogonal weight vectors, wherein a first weight vector is based on those transmitted from the mobile terminal, and a second vector is derived deterministically from the first vector.
  • Orthogonal pilot channels are transmitted from an antenna of each Node B (which is a logical node responsible for radio transmission and reception in one or more cells to and from an user equipment (UE).
  • No dedicated (i.e. beam formed) pilots are available (assuming that the fractional dedicated physical channel (F-DPCH) is used, which does not carry pilot bits).
  • F-DPCH fractional dedicated physical channel
  • Feedback information (FBI) for the first beam is derived by the user equipment (UE) and transmitted to Node B, indicating the desired beamforming vector.
  • the first beam is transmitted using a restricted codebook of weight vectors (for example the codebook currently used for TxAA mode 1).
  • the identity of the antenna weight vector for a first beam is signaled to the UE on the High-Speed Shared Control Channel (HS-SCCH).
  • HS-SCCH High-Speed Shared Control Channel
  • the second beam is transmitted using a deterministic phase vector, which is orthonormal to the vector for the first beam.
  • Channel quality information CQI is signaled by the UE to the Node B, enabling the Node B to derive a different rate for each of the two beams.
  • the CQI indicates the rate (or packet size) which can be transmitted successfully (or with a given probability of success) using a reference power level and code resource (the reference values being known by both the network and the mobile terminal).
  • the transmissions on the two beams are comprised of separate codewords with potentially different rates.
  • each beam can support a correspondingly different rate.
  • SINR signal-to-noise ratio where the noise includes both thermal noise and interference
  • each beam can support a correspondingly different rate.
  • multiple CQI information is required to be signaled to the Node B by each UE.
  • UMTS Release 5 a single CQI value is comprised of 5 information bits, coded into 20 physical channel bits. For a multiple-beam system, this number of bits would be multiplied by the number of beams if a separate CQI value is indicated for every beam. This can result in a high signaling load.
  • An object of the present invention is to reduce the CQI signaling load in multi- beam systems.
  • a method for signaling channel quality information in a multi-beam transmission system in particular a multi-beam MIMO system, wherein a plurality of beams are simultaneously transmitted and a plurality of sets of channel quality information are transmitted for controlling independently the transmission rate on the different beams, comprising the steps of determining beams with different quality, and exploiting said different qualities for reducing a signaling overhead of the channel quality information for the beams.
  • a multi-beam transmission system in particular a multi-beam MIMO system, wherein a plurality of beams are simultaneously transmitted and a plurality of sets of channel quality information are transmitted for controlling independently the transmission rate on the different beams, comprising a determining device for determining beams with different quality, and an exploiting device for exploiting said different qualities for reducing a signaling overhead of the channel quality information for the beams.
  • a network element in particular a node, in a multi-beam transmission system, in particular a multi-beam MIMO system, wherein a plurality of beams are simultaneously transmitted and a plurality of sets of channel quality information are transmitted for controlling independently the transmission rate on the different beams, comprising a determining device for determining beams with different quality, and an exploiting device for exploiting said different qualities for reducing a signaling overhead of the channel quality information for the beams.
  • a user equipment in particular a mobile station, in a multi-beam transmission system, in particular a multi-beam MIMO system, wherein a plurality of beams are simultaneously transmitted and a plurality of sets of channel quality information are transmitted for controlling independently the transmission rate on the different beams, comprising a determining device for determining beams with different quality, and an exploiting device for exploiting said different qualities for reducing a signaling overhead of the channel quality information for the beams.
  • a signal for indicating channel quality information in a multi-beam transmission system in particular a multi-beam MIMO system, wherein a plurality of beams are simultaneously transmitted and a plurality of sets of channel quality information are transmitted for controlling independently the transmission rate on the different beams, the signal comprising a reduced overhead of channel quality information for the beams, based on exploiting differences in qualities of the beams.
  • the present invention leads to a reduction of the CQI signaling load in multi- beam transmission systems. This advantage is achieved in particular by that according to the present invention the different effects of errors in the CQI transmissions for the different beams which effects result from different quality of the beams are exploited for using signaling overhead of CQI for the multiple beams.
  • said determining device is adapted to determine beams with different quality resulting in different effects of errors in the transmissions of the channel quality information for the beams, and in particular said determining device is adapted to determine a primary beam with a higher quality and at least one secondary beam with a lower quality in the plurality of beams resulting in different effects of errors in the channel quality information transmissions for the secondary beam(s).
  • differential signaling device for providing a differential signaling for indicating the channel quality information value for the secondary beam(s).
  • the differential signaling device may be adapted to signal an absolute value of the channel quality information for the primary beam, and the channel quality information values for the secondary beam(s) by means of an offset relative to the value for the primary beam. Further, the differential signaling device may be adapted to derive the offset from an average difference in quality between the respective secondary beam and the primary beam.
  • the exploiting device may be adapted to provide different update rates for the channel quality information for different beams, wherein the differential signaling device may be adapted to signal the offset at a lower update rate than the absolute channel quality information value for the primary beam. Further, the exploiting device may be adapted to provide a lower update rate for the channel quality information transmissions relating to the secondary beam(s) compared to the update rate for the channel quality information transmissions relating to the primary beam.
  • the update rates may be signaled from a network element, in particular a node, to a user equipment, and may be predetermined.
  • the exploiting device is adapted to provide different cut-off thresholds, below which a reporting of channel quality information is not required, for different beams, and in particular the exploiting device is adapted to provide a higher cut-off threshold for the secondary beam(s) than for the primary beam.
  • the cut-off thresholds may be signaled from a network element, in particular a node, to a user equipment, and may be predetermined. Further, scheduled time instants are provided for the user equipment to transmit channel quality information to the network element, and when user equipment estimates that the channel quality for a beam is below the respective cut-off threshold for that beam, the user equipment does not transmit channel quality information at the scheduled time instants until the channel quality is above the respective cut-off threshold.
  • the exploiting device is adapted to provide different channel quality information quantization granularities for different beams.
  • the exploiting device may be adapted to provide a coarser channel quality information quantization granularity for the secondary beam(s) compared to the channel quality information quantization granularity applied to the channel quality information reports for the primary beam.
  • the exploiting device may be adapted to apply the coarser channel quality information quantization granularity for the secondary beam(s) only to a lower part of the channel quality information range.
  • a network element, in particular a node may be provided to instruct a user equipment to use different channel quality information quantization granularities for different beams.
  • the channel quality information quantization granularities may be predetermined.
  • an encoding device for jointly encoding the channel quality information values transmitted for more than one beam into a single codeword for transmission from a user equipment to a network element, in particular a node.
  • a first beam is typically always of better quality than a second beam as the beam forming weights for the first beam are specifically designed to optimize the signal-to-interference ratio (SIR) of the first beam, while the beam forming weights for the second beam are derived deterministically from the first beam.
  • SIR signal-to-interference ratio
  • multi-beam transmission systems can be considered to be comprised of a primary beam with an optimized SIR and one or more secondary beams with a lower SIR. Consequently, the effect of errors in the CQI signaling for the secondary beam(s) is considered to be less significant than the effect of errors in the CQI signaling for the primary beam, when considering the total achievable transmission rate over all the beams. This results in a different effect of errors in the CQI transmissions for the secondary beam(s). Therefore, at first, a primary beam and one or more secondary beams are determined among the multiple beams.
  • the exploiting of the different effects can include one or more of the following three measures or steps: 1.
  • a different (typically lower) update rate is provided for the CQI transmissions relating to at least one secondary beam compared to the update rate for the CQI transmissions relating to the primary beam.
  • These update rates are signaled to the UE by the Node B.
  • a rate of CQI reporting is signaled for the primary beam
  • one or more further (advantageously lower) update rates are signaled for one or more secondary beams.
  • the one or more further update rates may be signaled by means of a divisor of the rate signaled for the primary beam.
  • the update rate for CQI transmissions is optionally selected depending upon the rate of change of the channel on each beam. 2.
  • a different (typically higher) cut-off threshold is provided for one or more beams, below which the UE should not report CQI values for the respective beams.
  • an "out-of-range" CQI value is provided for transmission by the UE when the SIR is too low for the UE successfully to decode any of the available transmission formats.
  • transmission of such a value continues to contribute to an uplink signaling overhead, even when no data can be received on the downlink.
  • the Node B signals to the UE a cut-off CQI level for one or more beams, below which the UE ceases to report CQI for that beam, and the Node B makes no further transmissions on such beams until it receives from the UE another CQI value.
  • the proportion of the fixed number of uplink bits available for CQI reports is varied according to beam quality, such that when one or more beams have an "out of range" CQI and hence no CQI report is sent, more CQI bits for the "in range” beam(s) may be sent instead to improve their quantization and/or reliability.
  • a different (typically coarser) CQI quantization granularity is provided for at least one secondary beam compared to the CQI quantization granularity applied to the CQI reports for the primary beam.
  • the rate of the secondary beam(s) is lower and therefore the total rate is less sensitive to errors in the CQI for the secondary beam(s), it is more efficient to coarsen the granularity of the CQI reporting for those beams whereby the number of required signaling bits is reduced.
  • the Node B might use signaling to instruct the UE to use a coarser granularity (e.g. 2dB) for one or more secondary beams.
  • the granularities could be predetermined in the specification.
  • the coarser granularity for a secondary beam could apply only to a lower part of the CQI range.
  • the range of CQI values to be transmitted for the secondary beam(s) may be different from the range of CQI values to be transmitted for the primary beam; the granularity for each beam may optionally then be the same.
  • the total range of possible CQI values could be split into a number of sub-ranges, and a UE would signal only a CQI value within a beam's current sub-range.
  • special CQI values could be reserved to indicate switching up or down to the next sub-range of CQI values. Subranges might further be designed to overlap, or be extended or reduced or otherwise adapted by further signaling in order to optimize them for the current beams and channel conditions.
  • the CQI values transmitted for more than one beam can be jointly encoded into a single codeword for transmission to the Node B.
  • Differential signaling may be used to indicate the CQI value for one or more secondary beams.
  • an absolute value of CQI may be signaled for the primary beam
  • the CQI values for one or more secondary beams may be signaled by means of an offset relative to the value for the primary beam.
  • the offset can be signaled at a lower update rate than the absolute CQI value for the primary beam.
  • the offset can be derived from an average difference in quality between the respective secondary beam and the primary beam, wherein the averaging period can be e.g.
  • Such a difference in CQI may be in terms of a transmission power offset which is required between a secondary beam and the primary beam, assuming that both beams would be transmitted with the same modulation and coding scheme.
  • the difference in CQI may be in terms of a transmission power offset required under the assumption that the secondary beam is transmitted with a fixed difference (or ratio) in the data rate relative to the primary beam.
  • Differential signaling for CQI is typically advantageous if the CQI values of different beams are correlated to a certain extent.
  • the UE therefore measures and subtracts the correlated part of the CQI values of the different beams and transmits only a value relating to the non-correlated part of the CQI for secondary beam(s) relative to a primary beam.
  • the period over which the correlation is measured can be selected in a similar way to the averaging period.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)
PCT/IB2007/053284 2006-08-21 2007-08-17 Efficient cqi signaling in multi-beam mimo systems Ceased WO2008023311A2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP07805435.0A EP2057768B1 (en) 2006-08-21 2007-08-17 Efficient cqi signaling in multi-beam mimo systems
CN2007800312783A CN101507166B (zh) 2006-08-21 2007-08-17 多波束mimo系统中的高效cqi信令
KR20097003259A KR101484464B1 (ko) 2006-08-21 2007-08-17 다중-빔 mimo 시스템에서의 효율적 cqi 신호 발신
US12/438,158 US8588116B2 (en) 2006-08-21 2007-08-17 Efficient CQI signaling in multi-beam MIMO systems
JP2009525147A JP5475446B2 (ja) 2006-08-21 2007-08-17 マルチビームmimoシステムにおける効率的なcqi伝達
US14/055,975 US9154200B2 (en) 2006-08-21 2013-10-17 Efficient CQI signaling in multi-beam MIMO systems
US14/875,095 US9859968B2 (en) 2006-08-21 2015-10-05 Efficient CQI signaling in multi-beam MIMO systems
US15/857,908 US10673509B2 (en) 2006-08-21 2017-12-29 Efficient CQI signaling in multi-beam MIMO systems

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP06119254.8 2006-08-21
EP06119254 2006-08-21
EP06119326.4 2006-08-22
EP06119326 2006-08-22

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/438,158 A-371-Of-International US8588116B2 (en) 2006-08-21 2007-08-17 Efficient CQI signaling in multi-beam MIMO systems
US14/055,975 Continuation US9154200B2 (en) 2006-08-21 2013-10-17 Efficient CQI signaling in multi-beam MIMO systems

Publications (2)

Publication Number Publication Date
WO2008023311A2 true WO2008023311A2 (en) 2008-02-28
WO2008023311A3 WO2008023311A3 (en) 2008-05-02

Family

ID=38961878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2007/053284 Ceased WO2008023311A2 (en) 2006-08-21 2007-08-17 Efficient cqi signaling in multi-beam mimo systems

Country Status (7)

Country Link
US (4) US8588116B2 (enExample)
EP (1) EP2057768B1 (enExample)
JP (1) JP5475446B2 (enExample)
KR (1) KR101484464B1 (enExample)
CN (1) CN101507166B (enExample)
TW (1) TWI429218B (enExample)
WO (1) WO2008023311A2 (enExample)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009117436A3 (en) * 2008-03-17 2010-01-21 Qualcomm Incorporated Multi-resolution beamforming based on codebooks in mimo systems
JP2012503386A (ja) * 2008-09-19 2012-02-02 アルカテル−ルーセント Mimoシステムにおいて移動局のセットを構築する方法、対応する移動局、基地局、運用及び保守センター、並びに無線通信ネットワーク

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009082335A1 (en) 2007-12-21 2009-07-02 Telefonaktiebolaget L M Ericsson (Publ) A method apparatus and network node for applying conditional cqi reporting
US8917598B2 (en) * 2007-12-21 2014-12-23 Qualcomm Incorporated Downlink flow control
KR101430981B1 (ko) * 2008-10-13 2014-08-18 삼성전자주식회사 Mimo 시스템에서 동적 채널 정보 전송 장치 및 방법
CN101873647B (zh) * 2009-04-22 2012-07-18 中兴通讯股份有限公司 一种非周期信道质量信息发送方法
US8781005B2 (en) * 2009-10-01 2014-07-15 Qualcomm Incorporated Scalable quantization of channel state information for MIMO transmission
US9059760B2 (en) * 2010-02-05 2015-06-16 Qualcomm Incorporated Apparatus and method for enabling uplink beamforming transit diversity
US8681809B2 (en) * 2011-01-10 2014-03-25 Qualcomm Incorporated Dynamic enabling and disabling of CLTD operation via HS SCCH orders
US9735940B1 (en) 2012-04-12 2017-08-15 Tarana Wireless, Inc. System architecture for optimizing the capacity of adaptive array systems
US9252908B1 (en) 2012-04-12 2016-02-02 Tarana Wireless, Inc. Non-line of sight wireless communication system and method
CN104041105A (zh) * 2012-12-25 2014-09-10 华为技术有限公司 信道质量上报方法、装置和系统
US10110270B2 (en) 2013-03-14 2018-10-23 Tarana Wireless, Inc. Precision array processing using semi-coherent transceivers
US10499456B1 (en) 2013-03-15 2019-12-03 Tarana Wireless, Inc. Distributed capacity base station architecture for broadband access with enhanced in-band GPS co-existence
CN104639217B (zh) * 2013-11-08 2018-03-27 华为技术有限公司 天线系统、天线和基站
US10348394B1 (en) 2014-03-14 2019-07-09 Tarana Wireless, Inc. System architecture and method for enhancing wireless networks with mini-satellites and pseudollites and adaptive antenna processing
US9681341B2 (en) * 2014-06-18 2017-06-13 Qualcomm Incorporated Channel enhancement in millimeter wavelength wireless access networks
CN109076371B (zh) * 2016-06-01 2023-03-24 苹果公司 用于灵活传输模式切换的cqi上报
US10050688B2 (en) 2017-01-16 2018-08-14 At&T Intellectual Property I, L.P. Single codeword, multi-layer serial interference cancellation (SIC) for spatial multiplexing
US10512075B2 (en) 2017-02-02 2019-12-17 Qualcomm Incorporated Multi-link new radio physical uplink control channel beam selection and reporting based at least in part on physical downlink control channel or physical downlink shared channel reference signals
US10575307B2 (en) * 2017-02-24 2020-02-25 Qualcomm Incorporated Restricted set indication in multi-beam operation
CN109842930B (zh) * 2017-11-24 2021-08-20 华为技术有限公司 通信方法及装置
CN111418222B (zh) * 2018-08-30 2023-09-29 联发科技(新加坡)私人有限公司 降低通信装置功耗的方法及通信装置
US11770293B2 (en) * 2019-10-21 2023-09-26 Samsung Electronics Co., Ltd. Transmission of NTN type and NTN type based configuration of operational parameters

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002015432A1 (en) 2000-08-15 2002-02-21 Fujitsu Limited Adaptive beam forming using a feedback signal
WO2003023995A1 (en) 2001-09-05 2003-03-20 Nokia Corporation A closed-loop signaling method for controlling multiple transmit beams and correspondingy adapted transceiver device
WO2005091541A2 (en) 2004-03-15 2005-09-29 Telefonaktiebolaget Lm Ericsson (Publ) Reduced channel quality feedback

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3686493B2 (ja) * 1996-03-07 2005-08-24 富士通株式会社 Atm交換機におけるフィードバック制御方法および装置
JP4744725B2 (ja) * 2001-05-25 2011-08-10 三菱電機株式会社 干渉キャンセラ
KR100837351B1 (ko) * 2002-04-06 2008-06-12 엘지전자 주식회사 이동통신 시스템의 무선링크 파라미터 갱신 방법
ATE406010T1 (de) * 2003-03-21 2008-09-15 Ericsson Telefon Ab L M Verfahren und vorrichtung zur verbindungsanpassung
CN100596213C (zh) * 2003-04-23 2010-03-24 高通股份有限公司 增强无线通信系统性能的方法和设备
US7437166B2 (en) * 2003-09-24 2008-10-14 Telefonaktiebolaget Lm Ericsson (Publ) Reducing shared downlink radio channel interference by transmitting to multiple mobiles using multiple antenna beams
US7583745B2 (en) 2003-12-03 2009-09-01 Nokia Corporation Exploiting selection diversity in communications systems with non-orthonormal matrix and vector modulation
US7773950B2 (en) * 2004-06-16 2010-08-10 Telefonaktiebolaget Lm Ericsson (Publ) Benign interference suppression for received signal quality estimation
US9025638B2 (en) * 2004-06-16 2015-05-05 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus to compensate for receiver frequency error in noise estimation processing
US7876848B2 (en) * 2004-07-27 2011-01-25 Samsung Electronics Co., Ltd. Apparatus and method for transmitting a data stream in a wireless communication system with multiple antennas
TWI379560B (en) * 2004-08-12 2012-12-11 Interdigital Tech Corp Method and apparatus for implementing space frequency block coding in an orthogonal frequency division multiplexing wireless communication system
EP1786129A1 (en) * 2004-09-10 2007-05-16 Matsushita Electric Industrial Co., Ltd. Wireless communication apparatus and wireless communication method
EP3098978B1 (en) * 2005-01-28 2020-03-04 Godo Kaisha IP Bridge 1 Communication device and communication method
US9246560B2 (en) * 2005-03-10 2016-01-26 Qualcomm Incorporated Systems and methods for beamforming and rate control in a multi-input multi-output communication systems
US9408220B2 (en) * 2005-04-19 2016-08-02 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US7940851B2 (en) * 2006-04-21 2011-05-10 Panasonic Corporation Radio communication apparatus and radio communication method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002015432A1 (en) 2000-08-15 2002-02-21 Fujitsu Limited Adaptive beam forming using a feedback signal
WO2003023995A1 (en) 2001-09-05 2003-03-20 Nokia Corporation A closed-loop signaling method for controlling multiple transmit beams and correspondingy adapted transceiver device
WO2005091541A2 (en) 2004-03-15 2005-09-29 Telefonaktiebolaget Lm Ericsson (Publ) Reduced channel quality feedback

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009117436A3 (en) * 2008-03-17 2010-01-21 Qualcomm Incorporated Multi-resolution beamforming based on codebooks in mimo systems
JP2011519502A (ja) * 2008-03-17 2011-07-07 クゥアルコム・インコーポレイテッド Mimoシステム内のコードブックに基づく多重解像度ビーム形成
KR101125999B1 (ko) * 2008-03-17 2012-03-20 콸콤 인코포레이티드 Mimo 시스템들에서 코드북들에 기반한 멀티-레졸루션 빔형성을 이용하는 통신 방법 및 장치
US8351521B2 (en) 2008-03-17 2013-01-08 Qualcomm Incorporated Multi-resolution beamforming based on codebooks in MIMO systems
US9100068B2 (en) 2008-03-17 2015-08-04 Qualcomm, Incorporated Multi-resolution beamforming in MIMO systems
JP2012503386A (ja) * 2008-09-19 2012-02-02 アルカテル−ルーセント Mimoシステムにおいて移動局のセットを構築する方法、対応する移動局、基地局、運用及び保守センター、並びに無線通信ネットワーク

Also Published As

Publication number Publication date
JP5475446B2 (ja) 2014-04-16
US20180123672A1 (en) 2018-05-03
US9859968B2 (en) 2018-01-02
CN101507166B (zh) 2013-11-20
JP2010502079A (ja) 2010-01-21
TW200818747A (en) 2008-04-16
US20090310693A1 (en) 2009-12-17
US8588116B2 (en) 2013-11-19
US20160028465A1 (en) 2016-01-28
US10673509B2 (en) 2020-06-02
KR20090042921A (ko) 2009-05-04
TWI429218B (zh) 2014-03-01
CN101507166A (zh) 2009-08-12
US9154200B2 (en) 2015-10-06
KR101484464B1 (ko) 2015-01-20
US20140044210A1 (en) 2014-02-13
EP2057768B1 (en) 2015-01-07
WO2008023311A3 (en) 2008-05-02
EP2057768A2 (en) 2009-05-13

Similar Documents

Publication Publication Date Title
US8588116B2 (en) Efficient CQI signaling in multi-beam MIMO systems
EP1386421B1 (en) Radio communication system
EP2188912B1 (en) A method for transmitting channel quality information in a multiple input multiple output system
KR100909973B1 (ko) 무선 통신 시스템
EP1695456B1 (en) Method and apparatus in a mimo based communication system
US20070070939A1 (en) Data transmission in communication system
US8908747B2 (en) Method and apparatus for controlling adaptive rank multi antenna communication
US9673876B2 (en) Communication device and communication method
US20140146774A1 (en) Methods for transmitting data in a mobile system and radio stations therefor
US8542757B2 (en) Efficient CQI signaling in MIMO systems with variable numbers of beams

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780031278.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07805435

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2007805435

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009525147

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020097003259

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 928/CHENP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12438158

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU