WO2008019532A1 - Procédé de coulage en solution - Google Patents

Procédé de coulage en solution Download PDF

Info

Publication number
WO2008019532A1
WO2008019532A1 PCT/CN2006/002033 CN2006002033W WO2008019532A1 WO 2008019532 A1 WO2008019532 A1 WO 2008019532A1 CN 2006002033 W CN2006002033 W CN 2006002033W WO 2008019532 A1 WO2008019532 A1 WO 2008019532A1
Authority
WO
WIPO (PCT)
Prior art keywords
casting
solution
heating
cooling
solvent
Prior art date
Application number
PCT/CN2006/002033
Other languages
English (en)
French (fr)
Inventor
Zhongde Zheng
Original Assignee
Golden Energy Fuel Cell Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Golden Energy Fuel Cell Co., Ltd. filed Critical Golden Energy Fuel Cell Co., Ltd.
Priority to EP06775351A priority Critical patent/EP2050779B1/en
Priority to ES06775351T priority patent/ES2391572T3/es
Priority to CN2006800442072A priority patent/CN101316880B/zh
Priority to US12/376,554 priority patent/US8070999B2/en
Priority to PCT/CN2006/002033 priority patent/WO2008019532A1/zh
Priority to JP2009523131A priority patent/JP4906922B2/ja
Publication of WO2008019532A1 publication Critical patent/WO2008019532A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0013Casting processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • B01D2323/081Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • B01D2323/082Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/42Details of membrane preparation apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a statically closed solution casting film method.
  • the conventional film forming methods are generally a dynamic open stretching method, a film extrusion method, and a casting method, but the process is complicated, the equipment is expensive, the film forming cost is high, and the finished film has defects such as low crystallinity and anisotropy.
  • Disclosure of the Invention An object of the present invention is to provide a statically closed solution casting film method which is simple in process, inexpensive in equipment, low in film forming cost, and high in crystallinity and isotropy of the finished film.
  • a solution casting method characterized in that: the method is a statically closed solution casting method, comprising the following specific steps:
  • a solute is dissolved in a solvent to prepare a casting solution.
  • the casting solution When the depth of the casting solution is less than 0.1 cm, the casting solution is not easily spread over the casting film due to the surface tension, resulting in uneven thickness of the finished film.
  • the depth of the casting solution is more than 2 cm, the evaporation time of the solvent is too long, and the casting efficiency is low.
  • the heating device may bake and bake the finished film to reduce the quality of the finished film.
  • the cooling side plate is placed at a distance d2 around the casting disk, and the cooling floor is arranged at a distance d3 below the casting disk, and 0.2S 1 2 d2 0.4S 1/2 , 0.2S 1/2 d3 0.4S 1 /2 , the cooling interlayer is connected to the cooling interlayer and the cooling interlayer.
  • the initial temperature of the coolant is 1 ⁇ 50°C
  • the height of the coolant in the cooling side plate is h
  • the thickness is v
  • the heating device is started to heat the casting liquid in the casting tray, and the heating temperature is controlled to be lower than the boiling point of the solvent by 10 to 30 ° C, and the heating time is 1 to 10.5 hours to evaporate all the solvent in the casting solution.
  • the heating temperature is less than 10 ° C below the boiling point of the solvent, since the solvent evaporates too quickly, the solute molecules are not able to move into the crystal lattice, resulting in a low crystallinity of the finished film.
  • the heating temperature is lower than the boiling point of the solvent by 30 ° C or more, not only the solvent evaporates too slowly, the casting efficiency is too low, but also because the solute molecules have a low temperature, there is insufficient thermal motion energy to move into the crystal lattice, resulting in the crystallinity of the finished film. low.
  • the heating time is less than 1 hour, it is difficult for the solvent to evaporate completely, and the solute is difficult to crystallize into a film.
  • the film When the heating time exceeds 10.5 hours, not only the casting efficiency is too low, but also due to long-time high-temperature baking, the film may be baked and baked, and the quality of the finished film may be lowered.
  • the heating time is proportional to the depth of the casting solution in the cast film pan.
  • the heating time is about 1 hour, which includes a heating time of about 0.5 hours and an evaporation time of about 0.5 hours.
  • the heating time is increased by about 0.5 hour.
  • the heating time was about 10.5 hours.
  • the heating time is less than 10 minutes, and the solute molecules are not able to move into the crystal lattice, resulting in a low crystallinity of the finished film.
  • the heating time is kept proportional to the depth of the casting solution in the cast film pan.
  • the heating time is about 10 minutes
  • the casting liquid depth is increased by 0.1cm
  • the heating time is increased by about 10 minutes.
  • the casting liquid depth is increased to 2cm
  • the heating time is increased. It is about 200 minutes.
  • the concentration of the casting solution is ⁇ 1%, the evaporation amount of the solvent is too large, and the casting film efficiency is too low.
  • the concentration of the casting solution is >5%, not only the solute is difficult to be completely dissolved, but also the casting solution is liable to be jelly-like, and it is not easy to spread evenly in the cast film disc, which tends to cause uneven thickness of the finished film.
  • a level is placed in the cast film disc, and by adjusting the height of the support fulcrum, the level of the level is soaked in the two mutually perpendicular directions in the plane of the cast film, so that the cast film is horizontal.
  • the heating device is composed of a plurality of far-infrared quartz heating tubes arranged in parallel.
  • the far-infrared quartz heating tube has the advantages of strong corrosion resistance, stable radiation efficiency, high heat conversion efficiency, fast thermal response, small thermal inertia, and promotion of crystallization of solute molecules.
  • the heating temperature of the heating device is automatically controlled by the temperature controller, and the temperature probe of the temperature controller is placed on the edge of the casting disk to detect the heating temperature.
  • the static closed solution casting method has simple process, low equipment, low film forming cost, and the finished film has the advantages of high crystallinity and isotropy.
  • the invention adopts a method for slowly evaporating and crystallizing a casting solution at a heating temperature lower than a boiling point of the solvent of 10 to 30 ° C.
  • the casting film disk and the casting liquid therein are in a static closed space.
  • the evaporated solvent vapor is evaporated to the periphery Diffusion and enveloping the casting solution, the solvent-saturated vapor that diffuses farther reaches the cooling side plate, cools and condenses into a liquid solvent on the surface of the cooling side plate, and converges on the cooling floor.
  • the solvent slowly evaporates in the casting solution, the concentration of the solute in the casting solution slowly increases, and the film is slowly crystallized, and after the solvent is evaporated, the heating is continued for a while, the solute The molecules have sufficient time to move into the crystal lattice, so that the finished film has high crystallinity.
  • the traditional dynamic open stretching method, the extrusion method and the casting method have the mechanical direction MD and the transverse direction.
  • the solute crystallization process is interfered by the external mechanical force, resulting in the anisotropy of the finished film.
  • the invention is a static closed solution casting film method, wherein the casting film disk and the casting film liquid are in a static state in a static closed space, and the solute crystallization process is not interfered by the external mechanical force, and there is no special direction orientation.
  • the finished film is isotropic.
  • the far-infrared radiant heating device with appropriate power density is arranged above the casting film disk, and the cooling side plate ring is arranged around the periphery of the casting film disk, although the casting liquid in the middle portion of the casting film disk
  • the temperature is higher, the vapor pressure is higher, and the vapor molecular density is larger, but the solvent vapor molecules evaporated from the solvent are not only hindered by the solvent vapor molecules above the edge region of the cast disk, but also relatively long.
  • the stroke can be diffused to the surface of the cooling side plate around the casting disk for condensation; although the temperature of the casting solution in the edge region of the casting disk is lower, the vapor pressure is lower, and the vapor molecular density is smaller, the solvent vapor evaporated therefrom
  • the molecules only need to travel through a relatively short stroke to unimpededly diffuse to the surrounding cooling side plate surface for condensation.
  • BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic view showing the structure of the apparatus used in the solution casting method.
  • Figure 2 is a schematic view showing the outline of the apparatus used in Figure 1 after assembly.
  • Figure 3 is a cross-sectional view of Figure 2.
  • Figure 4 is a cross-sectional view taken along the line Y-Y of Figure 3;
  • Figure 5 is a rear elevational view of the heating device of Figure 1.
  • Figure 6 is an enlarged view of the bracket of Figure 1.
  • Figure 7 is a cross-sectional view of Figure 6.
  • Embodiment 1 of the embodiment of the present invention is a cross-sectional view of Figure 6.
  • This embodiment is made of a 40 cm x 40 cm x 0.0005 cm perfluoroproton exchange membrane. Please refer to Figure 1, Figure 2, Figure 3, Figure 4, Figure 5, Figure 6, and Figure 7.
  • the method includes the following specific steps:
  • each bracket 2 is composed of a screw 201, a nut 202, and a threaded sleeve 203.
  • the nut 202 is screwed to the lower portion of the screw 201.
  • the screw sleeve 203 is screwed to the upper portion of the screw 201, and the top of the screw sleeve 203 is attached.
  • There is a fulcrum 204 the fulcrum 204 is used to support the cast film disc 1, and the screw sleeve 203 is rotated to adjust the height of the fulcrum 204.
  • the nut 202 is used to lock the screw sleeve 203.
  • (C) Pour 160g (about 168mL) of the casting solution with a concentration of 1wt% into the cast film disc 1. Due to the surface tension, the natural casting of the casting solution is not easy to spread the cast film disc 1 evenly, especially In the corner area of the cast film disc 1, the casting solution can be uniformly spread over the cast film disc 1 by slightly tilting the cast disc 1 in each direction, and the depth of the casting liquid is about 0.105 cm.
  • the far-infrared quartz heating tube 301 having a length of 50 cm is arranged in parallel at intervals of 5.3 cm.
  • the heating temperature of the heating device 3 is automatically controlled by the temperature controller, and the temperature measuring probe of the temperature controller is placed on the edge of the casting disk to detect the heating temperature.
  • the cooling side plates 4, 5, 6, and 7 function to condense the solvent vapor evaporated from the casting film disk 1.
  • the function of the cooling floor 8 is to keep the condensed solvent in a liquid state and not to evaporate.
  • a liquid addition port 9 is attached to the upper portion of the cooling side plate 4, and the coolant 10 is supplied through the liquid addition port 9.
  • a liquid outlet 11 is installed in the lower portion of the cooling side plate 4 to adjust the liquid level of the coolant.
  • a liquid discharge port 12 is installed in the lower portion of the cooling side plate 6 so as to discharge the liquid solvent which is cooled and solidified by the cooling side plate.
  • the insulating materials 13, 14, 15, 16, 17, 18 are glass wool or asbestos.
  • the evaporated solvent vapor diffuses to the periphery, and is cooled by the cooling side plates 4, 5, 6, 7 to form a liquid solvent.
  • the concentration of the solute in the casting solution is gradually increased, and the film is crystallized.
  • This embodiment is made of a 60 cm x 60 cm x 0.015 cm perfluoroproton exchange membrane. Please refer to Figure 1, Figure 2, Figure 3, Figure 4, Figure 5, Figure 6, and Figure 7.
  • the method includes the following specific steps:
  • the dissolution time was 5 hours, and the perfluorosulfonic acid proton exchange resin was dissolved in dimethylformamide to prepare about 10 L of a casting solution having a concentration of 3 wt%.
  • each bracket 2 is composed of a screw 201, a nut 202, and a threaded sleeve 203.
  • the nut 202 is screwed to the lower portion of the screw 201.
  • the screw sleeve 203 is screwed to the upper portion of the screw 201, and the top of the screw sleeve 203 is attached.
  • There is a fulcrum 204 the fulcrum 204 is used to support the cast film disc 1, and the screw sleeve 203 is rotated to adjust the height of the fulcrum 204.
  • the nut 202 is used to lock the screw sleeve 203 for positioning.
  • the far-infrared quartz heating tubes 301 having a length of 100 cm are arranged in parallel at intervals of about 3.4 cm, as shown in FIG.
  • the heating temperature of the heating device 3 is automatically controlled by the temperature controller, and the temperature measuring probe of the temperature controller is placed on the edge of the casting disk to detect the heating temperature.
  • (E) at the distance d2 18 cm around the cast film disc 1 to cool the side panels 4, 5, 6, and 7 in the cast film
  • the cooling side plates 4, 5, 6, and 7 function to condense the solvent vapor evaporated from the casting film disk 1.
  • the function of the cooling floor 8 is to keep the condensed solvent in a liquid state and not to evaporate.
  • a liquid addition port 9 is attached to the upper portion of the cooling side plate 4, and the coolant 10 is supplied through the liquid addition port 9.
  • a liquid outlet 11 is installed in the lower portion of the cooling side plate 4 to adjust the liquid level of the coolant.
  • a liquid discharge port 12 is installed in the lower portion of the cooling side plate 6 to discharge the liquid solvent which is cooled and solidified by the cooling side plate.
  • the heating device 3 is activated to heat the casting liquid in the cast film tray 1, and the heating temperature is controlled at 133 ° C, lower than the boiling point of the solvent by 20 ° C, and the heating time is 5.5 hours, so that all the solvent in the casting solution is evaporated. .
  • the evaporated solvent vapor diffuses to the periphery, and is cooled by the cooling side plates 4, 5, 6, 7 to form a liquid solvent.
  • the concentration of the solute in the casting solution is gradually increased, and the film is crystallized.
  • This embodiment is made of a 100 cm x 100 cm x 0.0475 cm perfluoroproton exchange membrane. Please refer to Figure 1, Figure 2, Figure 3, Figure 4, Figure 5, Figure 6, and Figure 7.
  • the method includes the following specific steps:
  • each bracket 2 is composed of a screw 201, a nut 202, and a threaded sleeve 203.
  • the nut 202 is screwed to the lower portion of the screw 201.
  • the screw sleeve 203 is screwed to the upper portion of the screw 201, and the top of the screw sleeve 203 is attached.
  • There is a fulcrum 204 the fulcrum 204 is used to support the cast film disc 1, and the screw sleeve 203 is rotated to adjust the height of the fulcrum 204.
  • the nut 202 is used to lock the screw sleeve 203.
  • the far-infrared quartz heating tube 301 having a length of 200 cm is arranged in parallel at intervals of 2 cm.
  • the heating temperature of the heating device 3 is automatically controlled by the temperature controller, and the temperature measuring probe of the temperature controller is placed on the edge of the casting disk to detect the heating temperature.
  • the cooling side plates 4, 5, 6, and 7 function to condense the solvent vapor evaporated from the casting film disk 1.
  • the function of the cooling floor 8 is to keep the condensed solvent in a liquid state and not to evaporate.
  • a liquid addition port 9 is attached to the upper portion of the cooling side plate 4, and the coolant 10 is supplied through the liquid addition port 9.
  • a liquid outlet 11 is installed in the lower portion of the cooling side plate 4 to adjust the liquid level of the coolant.
  • a liquid discharge port 12 is installed in the lower portion of the cooling side plate 6 to discharge the liquid solvent which is cooled and solidified by the cooling side plate.
  • the evaporated solvent vapor diffuses to the periphery, and is cooled by the cooling side plates 4, 5, 6, 7 to form a liquid solvent.
  • the concentration of the solute in the casting solution is gradually increased, and the film is crystallized.
  • the far-infrared radiant heating device with appropriate power density is arranged above the casting film disk, and the cooling side plate ring is arranged around the periphery of the casting film disk, although the casting liquid in the middle portion of the casting film disk.
  • the temperature is higher, the vapor pressure is higher, and the vapor molecular density is larger, but the solvent vapor molecules evaporated from the solvent are not only hindered by the solvent vapor molecules above the edge region of the cast disk, but also relatively long.
  • the stroke can be spread to the surface of the cooling side plate around the casting disk.
  • N2006/002033 line condensation; although the temperature of the casting solution in the edge region of the cast disk is lower, the vapor pressure is lower, and the vapor molecular density is smaller, the solvent vapor molecules evaporated from it only need a relatively short stroke. Unobstructed diffusion onto the peripheral cooling side plate surface for condensation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Moulding By Coating Moulds (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

溶液铸膜法 技术领域 本发明涉及一种静态封闭的溶液铸膜法。 背景技术 现有制膜方法通常为动态开放的拉伸法、 挤膜法和流延法, ,但其工艺复 杂, 设备昂贵, 制膜成本高, 成品膜存在结晶度低、 各向异性等缺陷。 发明内容 本发明的目的是提供一种静态封闭的溶液铸膜法, 该方法工艺简单, 设 备便宜, 制膜成本低, 成品膜具有结晶度高, 各向同性等优点。
本发明的目的是这样实现的:
一种溶液铸膜法, 其特征在于: 该方法为静态封闭的溶液铸膜法, 包括 以下具体步骤:
(A)将溶质溶解于溶剂制备铸膜液。
(B)将面积为 S的铸膜盘放置在支架上, 调节支架使铸膜盘处于水平, 否则会造成铸膜盘内铸膜液深度不均匀, 从而导致成品膜厚度不均匀。
(C)将铸膜液倒入铸膜盘内, 让铸膜液均匀铺展布满铸膜盘, 铸膜液的 深度为 0.1~2cm。
当铸膜液的深度小于 0.1cm时, 由于表面张力的作用, 铸膜液不易均匀 铺展布满铸膜盘, 导致成品膜厚度不均匀。
当铸膜液的深度大于 2cm时, 溶剂蒸发时间过长, 铸膜效率低。
(D)在铸膜盘上方距离 dl处布置面积为 a的加热装置,加热装置的功率 密度为 0.1〜0.5W/cm2, 且 0.2S1 2 dl 0.4S1/2, 1.2S1/2^a1/2^2S
当加热装置的功率密度小于 O.lW/cm2时, 铸膜盘中铸膜液升温太慢。 当加热装置的功率密度大于 0.5W/cm2时, 铸膜盘中铸膜液升温太快, 溶剂蒸发太快, 溶质分子来不及运动排列到晶格中, 导致成品膜结晶度低。 由于热惯性大, 铸膜液容易局部沸腾导致蜂窝状次品膜。 由于功率密度大, 加热装置可能会烤糊、 烤黄成品膜, 降低成品膜质量。
当 dl <0.2S1/2时, 铸膜盘距离加热装置过近, 溶剂蒸发扩散空间过窄, 会造成溶剂蒸发缓慢。
当 dl >0.4S1/2时, 铸膜盘距离加热装置过远, 加热空间过大, 会造成铸 膜液升温缓慢。
当 a1/2< 1.2S1/2时,加热装置面积过小,会造成铸膜盘边缘区域的铸膜液 受热不足, 温度低, 蒸发缓慢, 影响铸膜。
当 a1 2>2S1 2时, 加热装置面积过大, 会造成溶剂蒸气冷凝困难。
(E)在铸膜盘周边距离 d2处环布冷却侧板, 在铸膜盘下方距离 d3处布 置冷却底板, 且 0.2S1 2 d2 0.4S1/2, 0.2S1/2 d3 0.4S1/2, 冷却侧板与冷却 底板的连通夹层中装有冷却液,冷却液的起始温度为 1~50°C, 冷却侧板夹层 中冷却液的高度为 h,厚度为 v,且 0.2S1 2 h 0.4S1/2, 0.05S1/2 v 0.15S1/2
当 d2<0.2S1/2时, 冷却侧板距离铸膜盘过近, 会显著降低铸膜盘边缘区 域铸膜液的温度, 铸膜盘边缘区域的铸膜液蒸发缓慢, 影响铸膜。
当 d2>0.4S1 2时, 由于加热空间过大, 导致铸膜盘中铸膜液升温缓慢。 当 d3<0.2S1/2时, 冷却底板距离铸膜盘过近, 会降低铸膜盘的温度, 导 致铸膜盘中铸膜液升温缓慢; 而且由于冷却底板距离加热装置过近, 会使冷 凝聚积在冷却底板上的溶剂重新蒸发。
当 d3 >0.4S1 2时, 由于加热空间过大, 导致铸膜盘中铸膜液升温缓慢。 当1 <0.281/2时, 冷却液过低, 会造成溶剂蒸气冷凝困难。
当 h〉0.4S1 2时, 冷却液过高, 会造成铸膜盘中铸膜液升温缓慢。
当 v<0.05S1/2时, 冷却液过薄, 会造成溶剂蒸气冷凝困难。
当 v>0.15S1/2时, 冷却液过厚, 没有必要。
(F)将铸膜盘、 支架、 加热装置、 冷却侧板、 冷却底板封闭在由保温材 料构成的保温壳体内, 否则由于热量损失快, 会造成铸膜液升温困难。
(G) 启动加热装置对铸膜盘中的铸膜液加热, 控制加热温度低于溶剂沸 点 10〜30°C, 加热时间为 1〜10.5小时, 使铸膜液中的溶剂全部蒸发。
当加热温度低于溶剂沸点不到 10°C时, 由于溶剂蒸发太快, 溶质分子来 不及运动排列到晶格中, 导致成品膜结晶度低。
当加热温度低于溶剂沸点 30°C以上时, 不仅溶剂蒸发太慢, 铸膜效率太 低, 而且由于溶质分子温度低, 缺乏足够的热运动能量运动排列到晶格中, 导致成品膜结晶度低。
加热时间不到 1小时, 溶剂难以全部蒸发, 溶质难以结晶成膜。
加热时间超过 10.5小时, 不仅铸膜效率太低, 而且因长时间高温烘烤, 可能会烤糊、 烤黄成品膜, 降低成品膜质量。
加热时间与铸膜盘中铸膜液的深度成比例。当铸膜液的深度为 0.1cm时, 加热时间约为 1小时, 其中包括约 0.5小时的升温时间和约 0.5小时的蒸发 时间,铸膜液深度每增加 O.lcm, 加热时间相应增加约 0.5小时。 当铸膜液深 度增加到 2cm时, 加热时间约为 10.5小时。 (H) 当铸膜液中溶剂蒸发完毕后,继续加热 10〜200分钟,使更多的溶质 分子运动排列到晶格中, 进一步提高成品膜的结晶度。
继续加热时间不到 10分钟,溶质分子来不及运动排列到晶格中,导致成 品膜结晶度不高。
继续加热时间超过 200分钟, 因长时间高温烘烤, 可能会烤糊、 烤黄成 品膜, 降低成品膜质量。
继续加热时间与铸膜盘中铸膜液的深度成比例。 当铸膜液的深度为 0.1cm时, 继续加热时间约为 10分钟, 铸膜液深度每增加 0.1cm, 继续加热 时间相应增加约为 10分钟,当铸膜液深度增加到 2cm时,加热时间约为 200 分钟。
(I) 停止加热, 将冷却底板上的冷凝溶剂排走, 待铸膜盘冷却后, 从铸 膜盘上揭下成品膜。
所述步骤 (A)中铸膜液的溶质为全氟磺酸质子交换树脂(密度 2.0g/cm3), 其当量重量 EW=900〜1100g/eq, 溶剂为二甲基甲酰胺 (沸点 153 °C, 密度 0.95g/cm3), 铸膜液的浓度为 l〜5wt%, 铸膜液的制备使用封闭的反应釜, 溶 解温度为 200〜220 °C, 溶解时间为 4〜6小时。
当 EW<900g/eq时, 成品膜的机械强度太低。
当 EW〉1100g/eq时, 成品膜的质子电导率太低。
当铸膜液的浓度< 1^%时, 溶剂蒸发量太大, 铸膜效率太低。
当铸膜液的浓度>5^%时, 不仅溶质很难完全溶解,而且铸膜液易成胶 冻状, 不易在铸膜盘中均匀铺展, 容易导致成品膜厚度不均勾。
在所述铸膜盘中放置水平仪, 通过调节支架支点的高度, 使水平仪的水 准泡在铸膜盘平面内两个相互垂直的方向上都处于零位, 从而使铸膜盘处于 水平。
所述加热装置由多根远红外石英加热管平行排列构成。
远红外石英加热管具有抗腐蚀能力强、 辐射效率稳定、 热转换效率高、 热响应速度快、 热惯性小以及促进溶质分子运动结晶等优点。
所述步骤(G)中, 加热装置的加热温度由温控仪自动控制, 温控仪的测 温探头放置在铸膜盘的边沿上, 以检测加热温度。
本发明有以下积极有益效果:
该静态封闭的溶液铸膜法, 工艺简单, 设备便宜, 制膜成本低, 成品膜 具有结晶度高, 各向同性等优点。
本发明通过铸膜液在低于溶剂沸点 10~30°C的加热温度下缓慢蒸发结晶 的方法进行铸膜, 在溶质结晶过程中, 铸膜盘及其中的铸膜液处于一个静态 封闭的空间, 在顶部加热装置的辐射加热下, 蒸发出的溶剂饱和蒸气向周边 扩散并笼罩铸膜液, 扩散较远的溶剂饱和蒸气遇到冷却侧板, 在冷却侧板表 面冷却凝结成液态溶剂, 汇聚到冷却底板上。 由于铸膜液与溶剂蒸气处于接 近动态平衡状态, 铸膜液中溶剂缓慢蒸发减少, 铸膜液中溶质的浓度缓慢增 大, 进而缓慢结晶成膜, 加之溶剂蒸发完毕后继续加热一段时间, 溶质分子 有充分时间运动排列到晶格中, 因而成品膜结晶度高。
传统动态开放的拉伸法、 挤膜法和流延法具有机械运动方向 MD (Machine Direction)和横向 TD (Transverse Direction), 溶质结晶过程受外 界机械力的作用干扰, 从而导致成品膜各向异性。 本发明是一种静态封闭的 溶液铸膜法, 铸膜盘和铸膜液在一个静态封闭的空间内处于静止状态, 溶质 结晶过程不受外界机械力的作用干扰, 没有特殊的方向取向, 因而成品膜各 向同性。
本发明的静态封闭的溶液铸膜法, 功率密度适当的远红外辐射加热装置 布置在铸膜盘的上方, 冷却侧板环布在铸膜盘的周边, 虽然铸膜盘的中部区 域铸膜液的温度较高, 蒸气压较高, 蒸气分子密度较大, 但其蒸发出来的溶 剂蒸气分子向外扩散时不仅受到铸膜盘边缘区域上方溶剂蒸气分子的阻碍, 而且还要经过相对较长的行程, 才能扩散到铸膜盘周边的冷却侧板表面上进 行冷凝; 虽然铸膜盘边缘区域铸膜液的温度较低, 蒸气压较低, 蒸气分子密 度较小, 但其蒸发出来的溶剂蒸气分子只需要经过相对较短的行程, 就能不 受阻碍地扩散到周边的冷却侧板表面上进行冷凝。 因此, 当铸膜盘与加热装 置的距离 dl、 铸膜盘与冷却侧板的距离 d2、 铸膜盘与冷却底板的距离 d3、 冷却液的高度 h、 厚度 v、 加热装置的面积 a与铸膜盘的面积 S匹配适当时, 特别是当 0.2S1/2 dl 0.4S1/2, 1.2S1/2^a1/2^2S1/2, 0.2S1/2^d2^0.4S1/2, 0.2S172 d3 0.4S1/2, 0.2S1/2 h 0.4S1/2, 0.05S1/2 v 0.15S1/2时, 可使铸膜盘中部 区域和边缘区域的铸膜液的蒸发、 冷凝速度一致, 从而使成品膜的中部区域 和边缘区域厚度一致。 附图概述 图 1是本溶液铸膜法所用装置的结构示意图。
图 2是图 1中所用装置装配后的外形示意图。
图 3是图 2的剖视图。
图 4是图 3的 Y—Y剖视图。
图 5是图 1中加热装置的后视图。
图 6是图 1中支架的放大图。
图 7是图 6的剖视图。 本发明的实施例 实施例一
本实施例为 40cmx40cmx0.0005cm的全氟质子交换膜制作,请参照图 1、 图 2、 图 3、 图 4、 图 5、 图 6、 图 7, 该方法包括以下具体步骤:
(A)将 3g当量重量 EW=900g/eq的全氟磺酸质子交换树脂和 297g (约 313mL) 二甲基甲酰胺加入 0.5L封闭反应釜加热搅拌溶解, 溶解温度为 200 °C, 溶解时间为 4小时, 使全氟磺酸质子交换树脂溶解于二甲基甲酰胺制得 约 310mL浓度为 lwt%的铸膜液。
(B)将面积 S=40cmx40cm的铸膜盘 1放置在支架 2上,将水平仪放置在 铸膜盘 1中, 调节支架 2支点的高度, 使水平仪的水准泡在铸膜盘 1平面内 两个相互垂直的方向上都处于零位, 从而使铸膜盘 1处于水平。 支架 2有三 个, 其结构相同。 请参照图 6、 图 7, 每个支架 2由螺杆 201、 螺母 202、 螺 套 203组成, 螺母 202螺接在螺杆 201的下部, 螺套 203螺接在螺杆 201的 上部, 螺套 203的顶部有支点 204, 支点 204用于支承铸膜盘 1 , 旋转螺套 203, 即可调节支点 204的高度, 螺母 202用于将螺套 203锁住定位。
(C)将 160g (约 168mL)浓度为 lwt%铸膜液倒入铸膜盘 1内, 由于表 面张力的作用, 让铸膜液自然流延不容易均匀铺展布满铸膜盘 1, 尤其是铸 膜盘 1的边角区域, 可通过向各方向轻微倾斜铸膜盘 1的方法使铸膜液均匀 铺展布满铸膜盘 1, 铸膜液的深度约为 0.105cm。
(D)在铸膜盘 1上方距离 dl=8cm处布置面积为 a=50cmx50cm的加热装 置 3, 加热装置 3的功率密度为 0.1W/cm2, 加热功率为 0.25kW, 它由 10根 功率 25W、 长 50cm的远红外石英加热管 301等间隔 5.3cm平行排列构成。
加热装置 3的加热温度由温控仪自动控制, 温控仪的测温探头放置在铸 膜盘的边沿上, 以检测加热温度。
(E)在铸膜盘 1周边距离 d2=8cm处环布冷却侧板 4、 5、 6、 7, 在铸膜 盘 1下方距离 d3=8cm处布置冷却底板 8, 冷却侧板 4、 5、 6、 7与冷却底板 8的连通夹层中装有室温水作为冷却液 10, 冷却侧板 4、 5、 6、 7夹层中冷却 液的高度 h=8cm, 厚度 v=2cm, 冷却底板 8夹层中冷却液的厚度为 2cm。
冷却侧板 4、 5、 6、 7的作用是使从铸膜盘 1中蒸发出的溶剂蒸气冷凝。 冷却底板 8的作用是使冷凝后的溶剂保持液态, 不再蒸发。
在冷却侧板 4上部安装加液口 9, 通过加液口 9加入冷却液 10。
在冷却侧板 4下部安装出液口 11, 以便于调节冷却液的液面髙度。
在冷却侧板 6下部安装排液口 12, 以便于排出受冷却侧板冷却凝结成的 液态溶剂。 (F)将铸膜盘 1、 支架 2、 加热装置 3、 冷却侧板 4、 5、 6、 7、 冷却底板 8封闭在由保温材料 13、 14、 15、 16、 17、 18构成保温壳体内,保温材料 13、 14、 15、 16、 17、 18为玻璃棉或石棉。
(G)启动加热装置 3对铸膜盘 1中的铸膜液加热, 控制加热温度在 143 V, 低于溶剂沸点 10°C, 加热时间为 1小时, 使铸膜液中的溶剂全部蒸发。
在加热过程中, 蒸发出的溶剂蒸气向周边扩散, 受冷却侧板 4、 5、 6、 7 的冷却凝结成液态溶剂。 随着铸膜液中溶剂的缓慢蒸发减少, 铸膜液中溶质 的浓度不断缓慢增大, 进而结晶成膜。
(H) 当铸膜液中溶剂蒸发完毕后,继续加热 10分钟时间,使更多的溶质 分子运动排列到晶格中, 进一步提高成品膜的结晶度。
(J)停止加热, 通过排液口 12将冷却底板 8上的冷凝溶剂排走, 待铸膜 盘 1冷却后, 从铸膜盘 1上揭下得到 40cmx40cmx0.0005cm成品膜。
实施例二
本实施例为 60cmx60cmx0.015cm的全氟质子交换膜制作, 请参照图 1、 图 2、 图 3、 图 4、 图 5、 图 6、 图 7, 该方法包括以下具体步骤:
(A)将 0.3kg当量重量 EW= 1000g/eq的全氟磺酸质子交换树脂和 9.7kg (约 10.2L) 二甲基甲酰胺加入 15L封闭反应釜加热搅拌溶解, 溶解温度为
210°C ,溶解时间为 5小时,使全氟磺酸质子交换树脂溶解于二甲基甲酰胺制 得约 10L浓度为 3wt%的铸膜液。
(B)将面积 S=60cmx60cm的铸膜盘 1放置在支架 2上,将水平仪放置在 铸膜盘 1中, 调节支架 2支点的高度, 使水平仪的水准泡在铸膜盘 1平面内 两个相互垂直的方向上都处于零位, 从而使铸膜盘 1处于水平。 支架 2有三 个, 其结构相同。 请参照图 6、 图 7, 每个支架 2由螺杆 201、 螺母 202、 螺 套 203组成, 螺母 202螺接在螺杆 201的下部, 螺套 203螺接在螺杆 201的 上部, 螺套 203的顶部有支点 204, 支点 204用于支承铸膜盘 1, 旋转螺套 203, 即可调节支点 204的高度, 螺母 202用于将螺套 203锁住定位。
(C)将 3.6kg (约 3.79L)浓度为 3wt%铸膜液倒入铸膜盘 1内, 铸膜液 自然流延均勾铺展布满铸膜盘, 铸膜液的深度为 1.05cm。
(D)在铸膜盘 1上方距离 dl=18cm处布置面积为 a=100cmxl00cm的加 热装置 3, 加热装置 3的功率密度为 0.3W/cm2, 加热功率为 3kW, 它由 30 根功率 100W、 长 100cm的远红外石英加热管 301等间隔约 3.4cm平行排列 构成, 如图 5所示。
加热装置 3的加热温度由温控仪自动控制, 温控仪的测温探头放置在铸 膜盘的边沿上, 以检测加热温度。
(E)在铸膜盘 1周边距离 d2=18cm处环布冷却侧板 4、 5、 6、 7, 在铸膜 盘 1下方距离 d3=18cm处布置冷却底板 8, 冷却侧板 4、 5、 6、 7与冷却底 板 8的连通夹层中装有室温水作为冷却液 10, 冷却侧板 4、 5、 6、 7夹层中 冷却液的高度 h=18cm,厚度 v-6cm,冷却底板 8夹层中冷却液的厚度为 6cm。
冷却侧板 4、 5、 6、 7的作用是使从铸膜盘 1中蒸发出的溶剂蒸气冷凝。 冷却底板 8的作用是使冷凝后的溶剂保持液态, 不再蒸发。
在冷却侧板 4上部安装加液口 9, 通过加液口 9加入冷却液 10。
在冷却侧板 4下部安装出液口 11, 以便于调节冷却液的液面高度。
在冷却侧板 6下部安装排液口 12, 以便于排出受冷却侧板冷却凝结成的 液态溶剂。
(F)将铸膜盘 1、 支架 2、 加热装置 3、 冷却侧板 4、 5、 6、 7、 冷却底板 8封闭在由保温材料 13、 14、 15、 16、 17、 18构成保温壳体内,保温材料 13、 14、 15、 16、 17、 18为玻璃棉或石棉。
(G)启动加热装置 3对铸膜盘 1中的铸膜液加热, 控制加热温度在 133 °C,低于溶剂沸点 20°C, 加热时间为 5.5小时,使铸膜液中的溶剂全部蒸发。
在加热过程中, 蒸发出的溶剂蒸气向周边扩散, 受冷却侧板 4、 5、 6、 7 的冷却凝结成液态溶剂。 随着铸膜液中溶剂的缓慢蒸发减少, 铸膜液中溶质 的浓度不断缓慢增大, 进而结晶成膜。
(H) 当铸膜液中溶剂蒸发完毕后, 继续加热 105分钟时间, 使更多的溶 质分子运动排列到晶格中, 进一步提高成品膜的结晶度。
(J)停止加热, 通过排液口 12将冷却底板 8上的冷凝溶剂排走, 待铸膜 盘 1冷却后, 从铸膜盘 1上揭下得到 60cmx60cmx0.015cm成品膜。
实施例三
本实施例为 100cmxl00cmx0.0475cm的全氟质子交换膜制作, 请参照图 1、 图 2、 图 3、 图 4、 图 5、 图 6、 图 7, 该方法包括以下具体步骤:
(A)将 5kg当量重量 EW= 1100g/eq的全氟磺酸质子交换树脂和 100L (约 95kg) 二甲基甲酰胺加入 150L封闭反应釜加热搅拌溶解, 溶解温度为 220 V, 溶解时间为 6小时, 使全氟磺酸质子交换树脂溶解于二甲基甲酰胺制得 约 100L浓度为 5wt%的铸膜液。
(B)将面积 S=100cmxl00cm的铸膜盘 1放置在支架 2上,将水平仪放置 在铸膜盘 1中, 调节支架 2支点的高度, 使水平仪的水准泡在铸膜盘 1平面 内两个相互垂直的方向上都处于零位, 从而使铸膜盘 1处于水平。 支架 2有 三个, 其结构相同。 请参照图 6、 图 7, 每个支架 2由螺杆 201、 螺母 202、 螺套 203组成, 螺母 202螺接在螺杆 201的下部, 螺套 203螺接在螺杆 201 的上部, 螺套 203的顶部有支点 204,支点 204用于支承铸膜盘 1, 旋转螺套 203, 即可调节支点 204的高度, 螺母 202用于将螺套 203锁住定位。 (C)将 19kg (约 20L) 浓度为 5wt%铸膜液倒入铸膜盘 1内, 铸膜液自 然流延均匀铺展布满铸膜盘, 铸膜液的深度约为 2cm。
(D)在铸膜盘 1上方距离 dl=40cm处布置面积为 a=200cmx200cm的加 热装置 3, 加热装置 3的功率密度为 0.5W/cm2, 加热功率为 20kW, 它由 100 根功率 200W、长 200cm的远红外石英加热管 301等间隔 2cm平行排列构成。
加热装置 3的加热温度由温控仪自动控制, 温控仪的测温探头放置在铸 膜盘的边沿上, 以检测加热温度。
(E)在铸膜盘 1周边距离 d2=40cm处环布冷却侧板 4、 5、 6、 7, 在铸膜 盘 1下方距离 d3=40cm处布置冷却底板 8, 冷却侧板 4、 5、 6、 7与冷却底 板 8的连通夹层中装有室温水作为冷却液 10, 冷却侧板 4、 5、 6、 7夹层中 冷却液的高度 h=40cm, 厚度 v=15cm, 冷却底板 8夹层中冷却液的厚度为 15cm。
冷却侧板 4、 5、 6、 7的作用是使从铸膜盘 1中蒸发出的溶剂蒸气冷凝。 冷却底板 8的作用是使冷凝后的溶剂保持液态, 不再蒸发。
在冷却侧板 4上部安装加液口 9, 通过加液口 9加入冷却液 10。
在冷却侧板 4下部安装出液口 11, 以便于调节冷却液的液面高度。
在冷却侧板 6下部安装排液口 12, 以便于排出受冷却侧板冷却凝结成的 液态溶剂。
(F)将铸膜盘 1、 支架 2、 加热装置 3、 冷却侧板 4、 5、 6、 7、 冷却底板 8封闭在由保温材料 13、 14、 15、 16、 17、 18构成保温壳体内,保温材料 13、 14、 15、 16、 17、 18为玻璃棉或石棉。
(G)启动加热装置 3对铸膜盘 1中的铸膜液加热, 控制加热温度在 123 V, 低于溶剂沸点 30°C, 加热时间 10.5小时, 使铸膜液中的溶剂全部蒸发。
在加热过程中, 蒸发出的溶剂蒸气向周边扩散, 受冷却侧板 4、 5、 6、 7 的冷却凝结成液态溶剂。 随着铸膜液中溶剂的缓慢蒸发减少, 铸膜液中溶质 的浓度不断缓慢增大, 进而结晶成膜。
(H) 当铸膜液中溶剂蒸发完毕后, 继续加热 200分钟, 使更多的溶质分 子运动排列到晶格中, 进一步提高成品膜的结晶度。
(J)停止加热, 通过排液口 12将冷却底板 8上的冷凝溶剂排走, 待铸膜 盘 1冷却后, 从铸膜盘 1上揭下得到 100cmxl00cmx0.0475cm成品膜。
本发明的静态封闭的溶液铸膜法, 功率密度适当的远红外辐射加热装置 布置在铸膜盘的上方, 冷却侧板环布在铸膜盘的周边, 虽然铸膜盘的中部区 域铸膜液的温度较高, 蒸气压较高, 蒸气分子密度较大, 但其蒸发出来的溶 剂蒸气分子向外扩散时不仅受到铸膜盘边缘区域上方溶剂蒸气分子的阻碍, 而且还要经过相对较长的行程, 才能扩散到铸膜盘周边的冷却侧板表面上进 N2006/002033 行冷凝; 虽然铸膜盘边缘区域铸膜液的温度较低, 蒸气压较低, 蒸气分子密 度较小, 但其蒸发出来的溶剂蒸气分子只需要经过相对较短的行程, 就能不 受阻碍地扩散到周边的冷却侧板表面上进行冷凝。 因此, 当铸膜盘与加热装 置的距离 dl、 铸膜盘与冷却侧板的距离 d2、 铸膜盘与冷却底板的距离 d3、 冷却液的高度 h、 厚度 v、 加热装置的面积 a与铸膜盘的面积 S匹配适当时, 特别是当 0.2S1/2 dl 0.4S1/2, 1.2S1/2 a12 2S1/2, 0.2S1/2 d2 0.4S1/2, 0.2S12 d3 0.4S1/2, 0.2S1/2 h 0.4S1/2, 0.05S1/2 v 0.15S1/2时, 可使铸膜盘中部 区域和边缘区域的铸膜液的蒸发、 冷凝速度一致, 从而使成品膜的中部区域 和边缘区域厚度一致。

Claims

权 利 要 求 书
1、一种溶液铸膜法, 其特征在于: 该方法为静态封闭的溶液铸膜法, 包 括以下具体步骤-
(A)将溶质溶解于溶剂制备铸膜液;
(B)将面积为 S的铸膜盘放置在支架上, 调节支架使铸膜盘处于水平;
(C)将铸膜液倒入铸膜盘内, 让铸膜液均匀铺展布满铸膜盘, 铸膜液的 深度为 0.1~2cm;
(D)在铸膜盘上方距离 dl处布置面积为 a的加热装置,加热装置的功率 密度为 0.1〜0.5W/cm2, 且 0.2S1/2 dl 0.4S1/2, 1.2S1/2^a1/2^2S1/2 ;
(E)在铸膜盘周边距离 d2处环布冷却侧板, 在铸膜盘下方距离 d3处布 置冷却底板, 且 0.2S1/2 d2 0.4S1 2, 0.2S1/2^d3^0.4S1/2, 冷却侧板与冷却 底板的连通夹层中装有冷却液, 冷却液的起始温度为 1〜50°C, 冷却侧板夹层 中冷却液的高度为 h,厚度为 v,且 0.2S1/2 h 0.4S1/2, 0.05S1/2^v^0.15S1/2 ;
(F)将铸膜盘、 支架、 加热装置、 冷却侧板、 冷却底板封闭在由保温材 料构成的保温壳体内;
(G) 启动加热装置对铸膜盘中的铸膜液加热, 控制加热温度低于溶剂沸 点 10〜30°C, 加热时间为 1~10.5小时, 使铸膜液中的溶剂全部蒸发;
(H) 当铸膜液中溶剂蒸发完毕后,继续加热 10〜200分钟,使更多的溶质 分子运动排列到晶格中, 进一步提高成品膜的结晶度;
(I)停止加热, 将冷却底板上的冷凝溶剂排走, 从铸膜盘上揭下成品膜。
2、如权利要求 1所述的溶液铸膜法,其特征在于:所述铸膜液的溶质为 全氟磺酸质子交换树脂, 其当量重量 EW=900〜1100g/eq, 溶剂为二甲基甲 酰胺, 铸膜液的浓度为 l~5wt%, 铸膜液的制备使用封闭的反应釜, 溶解温 度为 200〜220 °C, 溶解时间为 4~6小时。
3、如权利要求 1所述的溶液铸膜法,其特征在于:所述铸膜盘由浮法玻 璃制成。
4、如权利要求 1所述的溶液铸膜法,其特征在于:在所述铸膜盘中放置 水平仪, 通过调节支架支点的高度, 使水平仪的水准泡在铸膜盘平面内两个 相互垂直的方向上都处于零位, 从而使铸膜盘处于水平。
5、如权利要求 1所述的溶液铸膜法,其特征在于:所述加热装置由多根 远红外石英加热管平行排列构成。
6、如权利要求 1所述的溶液铸膜法,其特征在于: 所述加热装置的加热 温度由温控仪自动控制, 温控仪的测温探头放置在铸膜盘的边沿上, 以检测 加热温度。
PCT/CN2006/002033 2006-08-11 2006-08-11 Procédé de coulage en solution WO2008019532A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP06775351A EP2050779B1 (en) 2006-08-11 2006-08-11 Membrane solution casting process
ES06775351T ES2391572T3 (es) 2006-08-11 2006-08-11 Proceso de colada de soluciones de membrana
CN2006800442072A CN101316880B (zh) 2006-08-11 2006-08-11 溶液铸膜法
US12/376,554 US8070999B2 (en) 2006-08-11 2006-08-11 Solution casting process
PCT/CN2006/002033 WO2008019532A1 (fr) 2006-08-11 2006-08-11 Procédé de coulage en solution
JP2009523131A JP4906922B2 (ja) 2006-08-11 2006-08-11 溶液流延法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2006/002033 WO2008019532A1 (fr) 2006-08-11 2006-08-11 Procédé de coulage en solution

Publications (1)

Publication Number Publication Date
WO2008019532A1 true WO2008019532A1 (fr) 2008-02-21

Family

ID=39081904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/002033 WO2008019532A1 (fr) 2006-08-11 2006-08-11 Procédé de coulage en solution

Country Status (6)

Country Link
US (1) US8070999B2 (zh)
EP (1) EP2050779B1 (zh)
JP (1) JP4906922B2 (zh)
CN (1) CN101316880B (zh)
ES (1) ES2391572T3 (zh)
WO (1) WO2008019532A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010500185A (ja) * 2006-08-11 2010-01-07 北京金能燃料電池有限公司 溶液流延法
CN102888010A (zh) * 2011-07-19 2013-01-23 北京金能世纪科技有限公司 溶液铸膜法
CN104174296A (zh) * 2013-05-27 2014-12-03 珠海格力电器股份有限公司 一种平板式刮膜机

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103240829A (zh) * 2012-02-10 2013-08-14 宝应县润华静电涂装工程有限公司 一种离子膜的成型装置
CN102764513B (zh) * 2012-06-29 2015-01-28 常州环生科创石墨设备有限公司 一种高效搪瓷蒸发器
CN104227896B (zh) * 2014-09-05 2016-08-24 淮安科润膜材料有限公司 全氟离子膜成型自动烘箱
US11065583B2 (en) 2016-04-21 2021-07-20 Imperial College Innovations Limited Separation membranes
CN106832362B (zh) * 2016-12-30 2023-03-21 中国工程物理研究院激光聚变研究中心 聚合物薄膜浇铸法制备装置
CN107857889A (zh) * 2017-12-08 2018-03-30 北京金能世纪科技有限公司 一种溶液铸大膜装置及方法
CN114288855B (zh) * 2021-11-25 2023-03-10 国家电投集团氢能科技发展有限公司 一种水电解膜及其制备方法
CN115824761B (zh) * 2023-02-16 2023-04-18 广州华士康环保粘胶科技有限公司 一种胶黏剂制样装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4248913A (en) * 1979-05-24 1981-02-03 Abcor, Inc. Process for preparing a membrane
US5417832A (en) 1992-08-25 1995-05-23 The University Of Colorado Foundation, Inc. Enhancing performance of perfluorinated ionomer membranes via dopant incorporation, method of making thereof and the membrane
CN1330425A (zh) * 2001-06-29 2002-01-09 清华大学 一种聚偏氟乙烯枝接聚苯乙烯磺酸质子交换膜的制备方法
CN2602917Y (zh) * 2003-02-28 2004-02-11 郑重德 溶液成膜箱

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102635A (en) * 1978-12-06 1980-08-06 Abcor Inc Membrane and its manufacture
DE4328226A1 (de) * 1993-08-23 1995-03-02 Patrick Altmeier Stark basische Anionenaustauschermembran und Verfahren zu deren Herstellung
CA2422261A1 (en) * 2000-09-24 2002-03-28 3M Innovative Properties Company Extrusion method and apparatus for manufacturing microporous film
CA2498327C (en) * 2002-09-16 2012-03-20 Wmc Resources Ltd. Improved recovery of valuable metals
JP4906922B2 (ja) * 2006-08-11 2012-03-28 北京金能燃料電池有限公司 溶液流延法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4248913A (en) * 1979-05-24 1981-02-03 Abcor, Inc. Process for preparing a membrane
US5417832A (en) 1992-08-25 1995-05-23 The University Of Colorado Foundation, Inc. Enhancing performance of perfluorinated ionomer membranes via dopant incorporation, method of making thereof and the membrane
CN1330425A (zh) * 2001-06-29 2002-01-09 清华大学 一种聚偏氟乙烯枝接聚苯乙烯磺酸质子交换膜的制备方法
CN2602917Y (zh) * 2003-02-28 2004-02-11 郑重德 溶液成膜箱

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2050779A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010500185A (ja) * 2006-08-11 2010-01-07 北京金能燃料電池有限公司 溶液流延法
JP4906922B2 (ja) * 2006-08-11 2012-03-28 北京金能燃料電池有限公司 溶液流延法
CN102888010A (zh) * 2011-07-19 2013-01-23 北京金能世纪科技有限公司 溶液铸膜法
CN104174296A (zh) * 2013-05-27 2014-12-03 珠海格力电器股份有限公司 一种平板式刮膜机

Also Published As

Publication number Publication date
US20100176537A1 (en) 2010-07-15
EP2050779B1 (en) 2012-09-19
CN101316880A (zh) 2008-12-03
EP2050779A1 (en) 2009-04-22
JP4906922B2 (ja) 2012-03-28
JP2010500185A (ja) 2010-01-07
EP2050779A4 (en) 2010-04-28
ES2391572T3 (es) 2012-11-27
CN101316880B (zh) 2011-09-28
US8070999B2 (en) 2011-12-06

Similar Documents

Publication Publication Date Title
WO2008019532A1 (fr) Procédé de coulage en solution
US20210387199A1 (en) Water bath device for tomographically plastinated specimens and water bath hardening method thereof
CN102627780A (zh) 一种旋涂法制备亚微米聚酰亚胺自支撑薄膜的方法
WO2016011687A1 (zh) 用于oled材料蒸镀的加热装置
CN101041721A (zh) 一种真空流延成膜机及制备复合质子交换膜的方法
WO2014134887A1 (zh) 取向膜制备方法及系统
CN102888010B (zh) 溶液铸膜法
CN101139648A (zh) 淬火油槽水冷却装置
CN101906215A (zh) 一种高强度的复合质子交换膜的制造方法
CN111793229B (zh) 溶液成膜装置及方法
CN109490196A (zh) 一种用于测定石料与沥青粘附性的装置及方法
CN203530489U (zh) 多晶硅铸锭炉热场结构
CN212072369U (zh) 一种新型多功能一体式混凝土试块养护箱
CN116021694B (zh) 溶液铸大膜装置和方法
CN203530486U (zh) 多晶硅铸锭炉热场结构
CN208075362U (zh) 一种新型整体式太阳能热水器
CN219191573U (zh) 一种煮料罐隔热保温套
CN107857889A (zh) 一种溶液铸大膜装置及方法
CN108413794B (zh) 溶液结晶储能结构及应用该结构的发生储能器
CN221094104U (zh) 一种冷却装置及蒸馏冷却装置
CN213113596U (zh) 高氧半导体单晶硅用石英坩埚
CN217828933U (zh) 丙烯酸精制塔
CN203530490U (zh) 多晶硅铸锭炉热场结构
CN221099320U (zh) 一种钙钛矿薄膜热处理装置
CN218763610U (zh) 地暖热水装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680044207.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06775351

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12376554

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006775351

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009523131

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU