WO2008018640A1 - Plasmide, transformé, et procédé de production de la 3-carboxymuconolactone - Google Patents

Plasmide, transformé, et procédé de production de la 3-carboxymuconolactone Download PDF

Info

Publication number
WO2008018640A1
WO2008018640A1 PCT/JP2007/065989 JP2007065989W WO2008018640A1 WO 2008018640 A1 WO2008018640 A1 WO 2008018640A1 JP 2007065989 W JP2007065989 W JP 2007065989W WO 2008018640 A1 WO2008018640 A1 WO 2008018640A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
acid
cis
recombinant plasmid
transformant
Prior art date
Application number
PCT/JP2007/065989
Other languages
English (en)
French (fr)
Inventor
Kohei Mase
Toshihisa Shimo
Naoki Ohara
Yoshihiro Katayama
Kiyotaka Shigehara
Eiji Masai
Masao Fukuda
Seiji Ohara
Masaya Nakamura
Yuichiro Otsuka
Original Assignee
Kabushiki Kaisha Toyota Jidoshokki
National University Corporation, Tokyo University Of Agriculture And Technology
Nagaoka University Of Technology
Forestry And Forest Products Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toyota Jidoshokki, National University Corporation, Tokyo University Of Agriculture And Technology, Nagaoka University Of Technology, Forestry And Forest Products Research Institute filed Critical Kabushiki Kaisha Toyota Jidoshokki
Priority to US12/310,095 priority Critical patent/US8211683B2/en
Priority to EP07792616.0A priority patent/EP2048231B1/en
Priority to JP2008528917A priority patent/JP5268064B2/ja
Publication of WO2008018640A1 publication Critical patent/WO2008018640A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1003Transferases (2.) transferring one-carbon groups (2.1)
    • C12N9/1007Methyltransferases (general) (2.1.1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0069Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/02Oxygen as only ring hetero atoms
    • C12P17/04Oxygen as only ring hetero atoms containing a five-membered hetero ring, e.g. griseofulvin, vitamin C

Definitions

  • the present invention relates to vanilloid contained in a low molecular weight treatment mixture of plant aromatic components.
  • Lignin which is a major plant component, is a biomass resource that is universally contained in plant cell walls as an aromatic polymer compound.
  • Aromatic components derived from plants that have lignin as the main component have various chemical structures.
  • Effective utilization technology has not been developed because it is composed of components and has a complex polymer structure.
  • As a utilization technique known so far there is a technique for separating and producing vanillin as a perfume raw material from a low molecular weight aromatic decomposition product generated by chemical decomposition such as al-hydrolysis.
  • chemical decomposition such as al-hydrolysis
  • lignin produced in large quantities in the papermaking process is not effectively used and is burned as a substitute for heavy oil.
  • the inventors of the present invention have used plant aromatic components such as lignin by chemical decomposition methods such as hydrolysis, oxidative decomposition, and solvent decomposition, and physicochemical decomposition methods using supercritical water and supercritical organic solvents.
  • Vanillin, syringaldehyde, vanillic acid, syringic acid, protocatechuic acid, etc. and these five kinds of compounds can be used as raw materials for functional plastics and chemical products. It has been found to be converted to a single intermediate 2-pyrone-4,6-dicarboxylic acid.
  • the present inventors have also developed four types of enzymes (benzaldehyde dehydrogenase, dimethylase, protocatechuic acid 4) that constitute a multistage reaction process for producing 2-pyrone-4,6-dicarboxylic acid by fermentation. , 5-Dioxygenase, 4-Strongoxy-2-Hydroximeconic acid-6-Semidedehydedrogenase) Using transformed cells containing vanillin, syringa aldehyde, vanillic acid.
  • a method for producing 2-pyrone-4,6-dicarboxylic acid from syringic acid or protocatechuic acid has been reported (for example, see JP-A-2005-278549).
  • the present invention provides a 3-component l-poxy-cis, which is one of the plant component-derived components, from a plant component-derived low-molecular mixture containing vanillin, vanillic acid, protocatechuic acid, etc., through a multi-stage enzymatic reaction.
  • ci s-muconic acid and / or 3 -power lupoxime conolactone is intended to provide a method for fermentative production on an industrial scale.
  • the present invention provides the following.
  • a recombinant plasmid containing a vanillic acid dimethylase gene vanAB gene
  • a benzaldehyde dehydrogenase gene ligV gene
  • pcaHG gene protocatechuate 3,4-dioxygenase gene
  • the pcaH gene is a DNA molecule represented by SEQ ID NO: 1
  • the pcaG gene is a DNA molecule represented by SEQ ID NO: 3.
  • FIG. 1 is a diagram showing a method for producing a recombinant plasmid pULVHG.
  • FIG. 2 is a view showing a method for producing the recombinant plasmid pKTVDHG of the present invention.
  • Fig. 3 shows the 0D growth curve (increase in cell mass) during the production of 3-force lupoxy-cis, cis-muconic acid by Pseudomonas putida PpYllOO (pKTVDHG) culture.
  • Figure 4 is a TLC showing the progress of the conversion reaction from panillin, vanillic acid or protocatechuic acid to 3-carboxy-cis, cis-muconic acid.
  • Fig. 4 (a): vanillin, (b): vanillic acid, (c): protocatechuic acid, (d): 3-carboxymuconolactone, (e): conversion from vanillin (12 hours) ), ( ⁇ ): Conversion from vanillic acid (12 hours), (g): Conversion from protocatechuic acid (12 hours).
  • the recombinant plasmid pKTVDHG of the present invention contains a known enzyme gene (vanA, vanB, ligA, ligB and ligC) that catalyzes a multi-step process for producing 2-pyrone-4,6-dicarboxylic acid from vanillin or the like.
  • a known enzyme gene vanA, vanB, ligA, ligB and ligC
  • a benzaldehyde dehydrogenase gene ligV gene
  • a gene coding for protocatechuate 3,4-dioxygenase pcaHG gene
  • the recombinant plasmid pKTVDHG of the present invention has a wide host range such as Pseudomonas bacteria, and ligV gene, vanAB gene and pcaHG gene are synchronized in the transformant introduced with the recombinant plasmid.
  • Expressed from plant or petroleum components or chemically synthesized vanillin, vanillic acid, protocatechuic acid or mixtures thereof 3-carboxy-cis, cis-muconic acid and / or 3-carboxyme Can produce konolactone.
  • protocatechuic acid is not converted to 2-piguan-4,6-dicarponic acid, the protocatechuic acid ring opens, and it is a precursor of 3-carboxymuconolactone. Gives 3_ force loxy-cis, cis-muconic acid.
  • a method for producing the recombinant plasmid pKTVLABC is described in detail in JP-A-2005-278549.
  • the vanAB gene to be incorporated into plasmid pKTVLABC is described in i) Pseudomonas putida PpY 101 strain vanillate demethylase gene (SEQ ID NO: 1), or ii) vanillate demethylase enzyme Is a DNA molecule encoding SEQ ID NO: 2 and / or 3 in the same document.
  • a vanillic acid demethylase gene derived from Pseudomonas putida PpYlOl strain is preferable, and is represented by SEQ ID NO: 7 in the present specification.
  • Sphingomonas paucimobi 1 is SYK-6 strain-derived benzaldehyde dedehydrogenase gene (SEQ ID NO: 21), ii) benz PT / JP2007 / 065989 DNA molecule encoding aldehyde dehydrogenase enzyme (SEQ ID NO: 22 of the same document), iii) DNA molecule described in SEQ ID NO: 21 of the same document or a DNA molecule comprising its complementary sequence under stringent conditions
  • a DNA molecule that encodes a polypeptide having a benzaldehyde dehydrogenase activity, or iv) one or several amino acids of the amino acid sequence described in SEQ ID NO: 22 of the same document are deleted, It may be a DNA molecule selected from the following: a DNA molecule consisting of a substituted and / or added amino acid sequence and encoding a protein having ben
  • the benzaldehyde dehydrogenase gene derived from the Sphingomonas p aucimobilis SYK-6 strain is preferable, and is referred to as SEQ ID NO: 8 in the present specification.
  • the method for separating and fragmenting the ligV gene from the microorganism is not particularly limited, and can be performed according to the method described in the document.
  • the pcaHG gene used in the present invention can be obtained by referring to J Bacteriol. 1989 Nov; 171 (11): 5915-21, Pesudomonas putida KT2440 strain, and the like (N CBI accession number: NC_002947). wear.
  • genomic MA is extracted from the KT2440 strain, cleaved with a restriction enzyme, etc. to obtain a DNA fragment.
  • a restriction enzyme or the like is used to obtain a phage, a plasmid. Make restriction enzyme ends into which genomic MA fragments can be inserted.
  • a recombinant vector is prepared from this genomic MA fragment and vector DNA using a known DNA ligase. This recombinant vector can be obtained by introducing the recombinant vector into a suitable host cell, selecting a transformant that retains the target recombinant vector, and isolating the target recombinant vector from the transformant.
  • Genome extraction can be performed by a conventional method. For example, microbial Collecting cultured cells and lysing the cells with, for example, Protease K, followed by deproteinization by phenol extraction, protease treatment, liponuclease treatment, genomic DNA precipitation with alcohol, centrifugation, etc. It is preferable to carry out by appropriately combining the above.
  • plasmid for example, pUC18, PUC19, pUC118, pUC119, pKT230MC, Bluescript etc., which use Escherichia coli as a host, can be preferably used. After cleavage with a restriction enzyme, the cleavage end may be dephosphorylated as appropriate.
  • a known MA ligase is, for example, T4 DNA ligase.
  • nucleotide sequence of the open reading frame of the PcaH gene obtained from Pesudomonas putida KT2440 is SEQ ID NO: 1, its amino acid sequence is SEQ ID NO: 2, the nucleotide sequence of the reading frame of the PcaG gene is SEQ ID NO: 3, and the amino acid sequence is sequenced. Number 4 is shown respectively.
  • the recombinant plasmid pKTVDHG of the present invention can be prepared, for example, as follows.
  • the lig V gene represented by SEQ ID NO: 21 described in JP-A-2005-278549 is present downstream of a suitable plasmid, for example, LaeZ promo of Bluescript using a known ligase.
  • a suitable plasmid for example, LaeZ promo of Bluescript using a known ligase.
  • Recombinant plasmid pBluescript II Sr / 1 igV is prepared by ligating to the site cleaved by the restriction enzyme Xbal in the cloning site existing in the gene encoding the ⁇ fragment of LacZ.
  • the recombinant plasmid pBluescript II Sr / pcaHG is prepared by ligating the pcaHG gene to the cleavage site by the restriction enzyme Xbal present in a suitable plasmid multicloning site.
  • Recombinant plasmid pBluescript ⁇ SK- / pcaHG was cleaved with restriction enzymes ⁇ and BamHI and then digested with the plasmid DNA fragment containing the LacZ promoter region.
  • Recombinant plasmid pBluescriptH SK_ / 1 igV is digested with restriction enzyme Fba I and then digested with DNA fragments obtained by ligation with a known ligase, so that recombinant plasmid pBluescript c HTH SK— / pcaHG -Create LigV.
  • the recombinant plasmid pKTVDHG can be prepared by binding with a known ligase.
  • a microorganism that can be used as a host for the high production of 3-carboxy-cis, cis-muconic acid and / or 3-carboximuconolactone replicates the recombinant plasmid of the present invention, and produces 3-carboxy-cis, cis- It is not particularly limited as long as it can express an enzyme gene involved in the production of muconic acid and / or 3_carpoxime conolactone, but it is derived from plant component, chemical synthesis or petroleum component vanillin, vanillic acid, protocatechuic acid Degradation to 2-pyrone-4,6-dicarboxylic acid from any one of them, and the function of metabolizing enzyme, and 3_carpoxy-cis, cis-muconic acid and / or 3-force lupoxime conolactone It is necessary to use a transformant using a microorganism that has lost its enzyme function as a host. Examples of such microorganisms include bacteria belonging to the gen
  • a known method such as a protoplast method, a competent cell method, or an electrophoretic method may be used.
  • Selection of the transformant can be performed using the selection marker of the plasmid used, for example, the drug resistance obtained by MA recombination of the transformant as an index.
  • the desired recombinant plasmid Selection of the transformant to be contained is preferably carried out, for example, by the colony hybridization process using a partial DNA fragment of the gene as a probe.
  • a label for this probe for example, a radioisotope, digoxigenin, an enzyme or the like can be used.
  • the obtained transformant may be cultured under appropriate conditions using a medium containing a carbon source, a nitrogen source, a metal salt, a mineral, biamine, and the like.
  • the pH of the medium may be in a range where the transformant can grow, and is preferably adjusted to about pH 6.0 to 8.0.
  • Culture conditions are 15 to 40 ° C, preferably 28 to 37 ° C, and culture for 2 to 7 days with shaking or aeration and agitation.
  • the culture solution containing 3-strength l-poxy-ci s, ci-s-3-muconic acid obtained by the above culture can be converted to 3-strength l-poxime conoractone with high yield by acid treatment.
  • acid hydrochloric acid of about ⁇ 1-2 is preferred.
  • 3-force loxy-cis, cis-muconic acid and / or 3_carpoxime conolactolone obtained by the production method of the present invention is used as a plastic material, a chemical product material, etc. as 2-pyrone-4,6-dicarboxylic acid. Different functions or higher functions can be developed, and the production of useful plastic materials can be expected.
  • Recombinant plasmid PKTVLABC was prepared according to the method described in JP-A-2005-278549.
  • universal primer 5'-GGTGTCAGGCAAAGGT GTTAAGAC-3 '(SEQ ID NO: 5) and reverse primer 5'-AGTGGGGTKTG CTGGTTCGGC-3' (SEQ ID NO: 6) are used to amplify pcaHG from the KT2440 strain genome.
  • Recombinant plasmid pBluescript SK SK_ / pcaHG was cleaved with restriction enzymes Pvu ⁇ and BamH I and then digested to terminate the DNA fragment of the plasmid containing the LacZ promoter motor region and the recombinant plasmid pULV into the restriction enzyme BaniH.
  • Recombinant plasmid pULVHG was prepared by ligating a DNA fragment obtained by digestion with I followed by end treatment with a known ligase.
  • Example 2 Production of 3-force lupoxime conolactone from vanillin (1) Conversion of vanillin to 3-force lupoxy-cis, cis-muconic acid (1-1) Prepared in Example 1 Recombinant plasmid pKTVDHG is transformed into E. coli HB
  • any of plant component-derived, chemically synthesized or petroleum-derived vanillin, syringaaldehyde, vanillic acid, syringaic acid, protocatechuic acid, P-hydroxybenzaldehyde, P-hydroxybenzoic acid Pseudomonas is a microorganism that has lost its function of degrading and metabolizing enzymes from 2-pyrone-4,6-dicarboxylic acid and degrading enzyme functions of 3-streptoxymiconolactone and 3-carpoxy-cis, cis-muconic acid.
  • putida PpYll 00 was cultured in 500 ml of LB liquid medium for 23 hours at 28 hours and cooled in ice for 30 minutes.
  • the cells were collected by centrifugation at 10000 rpm for 10 minutes at 4, and then gently collected with 500 ml of 0 with distilled water and centrifuged again. Subsequently, the cells were gently washed with 250 ml of 0 ° C distilled water and then collected by centrifugation. Further, the cells were gently washed with 125 ml of 0 ° C distilled water and collected by centrifugation.
  • the collected microbial cells were suspended in distilled water containing 10% glycerol and kept at 0 ° C.
  • Pseudomonas putida PpYllOO (pKTVDHG) strain is inoculated into 200 ml of LB liquid medium (containing 25 mg / L kanamycin), cultured at 28 ° C for 16 hours, and pre-cultured cell suspension It was.
  • Pseudomonas putida PpYllOO (KTV) 3 ml of 5 L LB liquid medium and antifoaming agent (Antiform A) was prepared using 10 L capacity of Jarfamen Yuichi (fermentor).
  • DHG 200 ml of the precultured cell suspension of the strain was mixed and cultured at 28T at 500 rpm / min with aeration and agitation until OD660 13-14 (10-12 hours).
  • the fermenter medium was transferred to a plastic container.
  • the bacterial cell components are precipitated and removed from the culture solution by centrifugation (at 6000 rpm, 20), and the resulting supernatant is lowered to pH 1.0 or less by adding hydrochloric acid, and stored at low temperature.
  • cis, cis-muconic acid was converted to 3-carboxymuconolactone.
  • 3-Carpoxime Conora Complete conversion to kuton was confirmed by TLC, HPLC and GC-MS. After confirming complete conversion to 3-force lupoxime conolactone, 3-force lupoxime conolactone was extracted using an organic solvent.
  • the amount of 3-carboxymuconolactone extracted and dried from 200 ml of the culture broth reached about 1.9 g, and when converted to a total culture volume of 5.7 L, the added substrate ratio was recovered at a yield of about 88.5%.
  • the purity of the obtained 3-force lupoxime conolactone was further increased by treatment with activated carbon and the structure was confirmed by NMR spectrum.
  • Example 3 Production of 3-force lupoxime conolactone from vanillic acid In the same manner as in Example 2 except that vanillic acid was used as a substrate, It was recovered with a yield of about 88.5%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

プラスミ ド、 形質転換体、 及び 3-カルポキシムコノラク トンの製造 方法
技術分野
本発明は、 植物芳香族成分の低分子化処理混合物に含まれるバニ 明
リン、 バニリン酸、 プロ トカテク酸又はそれらの混合物から、 3 -力 田
ルポキシ- c i s, c i s-ムコン酸及び/又は 3-力ルポキシムコノラク ト 書
ンを発酵生産するための多段反応プロセスを構成する酵素をコード した遺伝子を含む組換えプラスミ ド、 前記組換えプラスミ ドを導入 した形質転換体、 及びそれを用いる 3 -カルボキシ- c i s, c i s-ムコン 酸及び/又は 3-カルポキシムコノラク トンの工業的製造法に関する
背景技術
植物主要成分であるリグニンは、 芳香族高分子化合物として植物 細胞壁に普遍的に含まれているバイオマス資源であるが、 リグニン を主成分とする植物由来の芳香族成分は、 多様な化学構造を有する 成分で構成されていることや複雑な高分子構造を持っために、 有効 な利用技術が開発されていない。 これまで知られている利用技術と しては、 当該芳香族成分をアル力リ分解などの化学分解で生成する 低分子芳香族分解物から、 香料原料であるバニリンを分離製造する 技術がある。 しかし、 現在のところ、 化学分解で生成するバニリ ン 以外の多量の低分子芳香族物質の有効な利用方法は知られていない 。 そのため製紙工程で大量に生成するリグニンは有効利用されるこ となく、 重油の代替え品として燃焼されている。 一方、 本発明者らは、 リグニン等の植物芳香族成分が、 加水分解 や酸化分解、 可溶媒分解などの化学的分解法、 超臨界水や超臨界有 機溶媒による物理化学的分解法などにより、 バニリ ン、 シリ ンガァ ルデヒ ド、 バニリン酸、 シリンガ酸、 プロ トカテク酸等を含む低分 子混合物に変換され、 更に、 これら 5種類の化合物が、 機能性ブラ スチック原料や化学製品の原料となり得る単一の中間物質 2-ピロ ン- 4, 6 -ジカルボン酸に変換されることを見出している。
また、 本発明者らは、 2-ピロン- 4, 6-ジカルボン酸を発酵生産す るための多段反応プロセスを構成する 4種類の酵素 (ベンズアルデ ヒ ドデヒ ドロゲナ一ゼ、 ディメチラーゼ、 プロ トカテク酸 4, 5 -ジ ォキシゲナ一ゼ、 4-力ルポキシ- 2-ヒ ドロキシムコン酸- 6-セミアル デヒ ドデヒ ドロゲナ一ゼ) をコードする遺伝子を保有する形質転換 細胞を用いて、 バニリン、 シリンガアルデヒ ド、 バニリン酸、 シリ ンガ酸又はプロ トカテク酸から 2-ピロン- 4, 6-ジカルボン酸を製造 する方法を報告している (例えば、 特開 2005- 278549号公報参照) しかしながら、 バニリン、 シリンガアルデヒ ド、 バニリン酸、 シ リンガ酸、 プロ トカテク酸等からの発酵生産によって得られる、 2 - ピロン- 4, 6-ジカルボン酸以外の中間体は多数知られているものの 、 それらの発酵生産法は報告されていない。 発明の開示
従って、 本発明は、 バニリ ン、 バニリン酸、 プロ トカテク酸等を 含む植物成分由来低分子混合物から、 多段階の酵素反応を介して、 植物成分由来成分の 1つである 3-力ルポキシ- c i s, c i s-ムコン酸及 び/又は 3 -力ルポキシムコノラク トンを工業的スケールで発酵生産 する方法を提供することを目的とする。 . 本発明者らは、 斯かる現状に鑑み鋭意検討した結果、 ディメチラ ーゼ遺伝子 (vanAB遺伝子) 及びべンズアルデヒ ドデヒ ドロゲナー セ遺伝子 (ligV遺伝子) に加えてプロ トカテク酸環を開裂するプロ トカテク酸 3, 4-ジォキシゲナーゼをコードする遺伝子 (pcaHG遺伝 子) を含む組換えプラスミ ドを導入した形質転換体を、 バニリン等 の存在下で培養することにより、 対応する 3-カルポキシ -C is, cis - ムコン酸が生成することを見出し、 更に、 この 3 -力ルポキシ -cis, cis-ムコン酸を酸で処理することにより、 3-カルポキシムコノラク 卜ンが高収率かつ安価に製造できることを見出し、 本発明を完成し た。
すなわち、 本発明は、 以下のものを提供する。
( 1 ) バニリン酸ディメチラ一ゼ遺伝子 (vanAB遺伝子) 、 ベン ズアルデヒ ドデヒ ドロゲナーセ遺伝子 (ligV遺伝子) 及びプロ トカ テク酸 3, 4-ジォキシゲナ一ゼ遺伝子 (pcaHG遺伝子) を含む、 組換 えプラスミ ド。
( 2 ) 前記 vanAB遺伝子が、 配列番号 7で示される DNA分子である 、 ( 1 ) 記載の組換えプラスミ ド。
( 3 ) 前記 ligV遺伝子が、 配列番号 8で示される DNA分子である 、 ( 1 ) 又は ( 2 ) 記載の組換えプラスミ ド。
( 4 ) 前記 pcaH遺伝子が、 配列番号 1で示される DNA分子であり 、 かつ前記 pcaG遺伝子が、 配列番号 3で示される DNA分子である、
( 1 ) 〜 ( 3 ) のいずれか 1記載の組換えプラスミ ド。
( 5 ) ( 1 ) 〜 ( 4 ) のいずれか 1記載の組換えプラスミ ドが導 入されてなる形質転換体。
( 6 ) ( 1 ) 〜 ( 4) のいずれか 1記載の組換えプラスミ ドが、 シユードモナス · プチダ (Pseudomonas putida) PpYllOO株に導入 されてなる、 ( 5 ) 記載の形質転換体。 ( 7 ) バニリ ン、 バニリン酸、 プロ トカテク酸又はこれらの 2以 上の混合物の存在下に、 ( 5 ) 又 ( 6 ) 記載の形質転換体を培養す ることを特徴とする、 3-カルボキシ- cis, cis -ムコン酸及び/又は 3 -力ルポキシムコノラク トンの製造方法。 図面の簡単な説明
図 1は、 組換えプラスミ ド pULVHGの作製方法を示す図である。 図 2は、 本発明の組換えプラスミ ド pKTVDHGの作製方法を示す図 である。
図 3は、 Pseudomonas putida PpYllOO (pKTVDHG) の培養による 3 -力ルポキシ -cis, cis-ムコン酸の生成過程の 0D増殖曲線 (菌体量 の増加) を示す。
図 4は、 パニリン、 バニリン酸又はプロ トカテク酸から、 3-カル ポキシ - cis, cis-ムコン酸への変換反応の進行過程を示す TLCであ る。 図 4において、 (a) : バニリ ン、 (b) : バニリ ン酸、 (c) : プロ トカテク酸、 (d) : 3-カルボキシムコノラク トン、 (e) : バニリンか らの変換 (12時間) 、 (ί) : バニリ ン酸からの変換 (12時間) 、 (g) : プロ トカテク酸からの変換 (12時間) を示す。 発明を実施するための最良の形態
本発明によれば、 バニリ ン、 バニリ ン酸又はプロ トカテク酸から 、 単一の 3_カルポキシ -cis, cis-ムコン酸及び/又は 3 -カルボキシ ムコノラク トンを髙収率かつ安価に発酵生産することができる。 本発明の組換えプラスミ ド pKTVDHGは、 バニリ ン等から 2-ピロン- 4, 6-ジカルボン酸を生産する多段階プロセスを触媒する酵素遺伝子 (vanA, vanB, ligA、 ligB及び ligC) を含む公知の組換えプラスミ ド PKTVLABC (特開 2005- 278549号公報の図 15) の ligABC遺伝子部位 に、 ベンズアルデヒ ドデヒ ドロゲナ一ゼ遺伝子 (ligV遺伝子) を、 更にその下流にプロ トカテク酸の環を開裂するプロ トカテク酸 3, 4- ジォキシゲナ一ゼをコードする遺伝子 (pcaHG遺伝子) を組み込ん だプラスミ ドである。
本発明の組換えプラスミ ド pKTVDHGは、 シユードモナス属細菌を はじめとした広い宿主域を有し、 当該組換えプラスミ ドが導入され た形質転換体において、 ligV遺伝子、 vanAB遺伝子及 pcaHG遺伝子を 同調的に発現して、 植物成分もしくは石油成分由来又は化学的に合 成されたバニリン、 バニリン酸、 プロ トカテク酸又はこれらの混合 物から 3-カルボキシ -c is, cis-ムコン酸及び/又は 3 -カルボキシム コノラク トンを生産することができる。
すなわち、 pcaHG遺伝子の存在により、 プロ トカテク酸は、 2 -ピ 口ン- 4, 6-ジカルポン酸に変換されることなく、 プロ トカテク酸の 環が開き、 3 -カルボキシムコノラク トンの前駆体である、 3_力ルポ キシ- cis, cis-ムコン酸を与える。
組換えプラスミ ド pKTVLABCの作製方法については特開 2005-27854 9号公報に詳細に記載されている。 プラスミ ド pKTVLABCに組み込ま れる vanAB遺伝子は、 同文献に記載の、 i) Pseudomonas putida PpY 101株由来のバニリン酸ディメチラーゼ遺伝子 (同文献の配列番号 1 ) 、 又は ii) バニリ ン酸ディ メチラ一ゼ酵素をコードする DNA分 子 (同文献の配列番号 2及び/又は 3 ) である。 これらの vanAB遺伝 子の内で、 好ましくは、 Pseudomonas putida PpYlOl株由来のバニ リン酸ディメチラーゼ遺伝子であり、 本明細書において配列番号 7 とする。
本発明で使用する ligV遺伝子は、 特開 2005- 278549号公報に記載 の、 i) Sphingomonas paucimobi 1 is SYK- 6株由来の、 ベンズァルデ ヒ ドデヒ ドロゲナーゼ遺伝子 (同文献の配列番号 21) 、 ii) ベンズ P T/JP2007/065989 アルデヒ ドデヒドロゲナ一ゼ酵素をコードする DNA分子 (同文献の 配列番号 22) 、 iii) 同文献の配列審号 21に記載の DNA分子又はその 相補配列からなる DNA分子と緊縮条件下でハイプリダイズし、 かつ ベンズアルデヒドデヒ ドロゲナ一ゼ活性を有するポリペプチドをコ ードする DNA分子、 又は iv) 同文献の配列番号 22に記載のアミノ酸 配列の 1もしくは数個のアミノ酸が欠失、 置換及び/又は付加された アミノ酸配列からなり、 かつべンズアルデヒ ドデヒ ドロゲナ一ゼ活 性を有するタンパク質をコードする DNA分子、 から選ばれる DNA分子 でよい。 これらの 1 igV遺伝子の内で、 好ましくは、 Sphingomonas p aucimobilis SYK- 6株由来の、 ベンズアルデヒ ドデヒ ドロゲナーゼ 遺伝子であり、 本明細書において配列番号 8とする。 ligV遺伝子の 微生物からの分離、 断片化手段は特に制限されず、 同文献に記載の 方法に従って行うことができる。
本発明で使用する pcaHG遺伝子は、 J Bacteriol. 1989 Nov; 171 ( 11): 5915- 21や Pesudomonas putida KT2440株の全ゲノムデ一夕 (N CBI accession number: NC_002947) 等を参照し取得することがで きる。
pcaHG遺伝子の具体的な取得手段は特に制限されないが、 例えば K T2440株からゲノム MAを抽出し、 制限酵素等により切断し、 DNA断 片とし、 一方、 制限酵素等を用いて、 ファージ、 プラスミ ド等のベ クタ一 DNAから、 ゲノム MA断片が挿入可能な制限酵素末端を作製す る。 このゲノム MA断片とベクタ一 DNAとを公知の DNAリガーゼを用 いて組換えべクタ一を作製する。 この組換えベクターを好適な宿主 細胞に導入し、 目的の組換えベクターを保持する形質転換体を選択 し、 当該形質転換体より 目的の組換えベクターを分離することによ り取得できる。
ゲノムの抽出は常法により行うことができる。 例えば、 微生物の 培養菌体を集菌し、 例えばプロテア一ゼ Kにて菌体を溶菌した後、 フエノール抽出による除タンパク質処理、 プロテア一ゼ処理、 リポ ヌクレアーゼ処理、 アルコールによるゲノム DNAの沈殿、 遠心分離 などの方法を適宜組み合わせて行う ことが好ましい。
プラスミ ドとしては、 例えば、 大腸菌を宿主とする pUC18、 PUC19 、 pUC118、 pUC119, pKT230MC、 B luescr ip t等を好ましく使用できる 。 制限酵素による切断後に、 適宜、 切断末端を脱リン酸化してもよ い。 公知の MAリガーゼとしては、 例えば T4DNAリガ一ゼが挙げられ る。
Pesudomonas putida KT2440株から取得した PcaH遺伝子の読み取 り枠のヌクレオチド配列を配列番号 1 に、 そのアミノ酸配列を配列 番号 2に、 PcaG遺伝子の読み取り枠のヌクレオチド配列を配列番号 3に、 そのアミノ酸配列を配列番号 4に各々示す。
本発明の組換えプラスミ ド pKTVDHGは、 例えば以下のようにして 作製することができる。
( 1 ) 先ず、 特開 2005- 278549号に記載の配列番号 21で示される lig V遺伝子を、 公知のリガーゼを用いて、 好適なプラスミ ド、 例えば B luescriptの LacZプロモ一夕一の下流に存在する LacZの αフラグメ ン卜をコードする遺伝子内に存在するマルチクロ一ニングサイ トの 内、 制限酵素 Xbalによって切断される部位に連結することにより、 組換えプラスミ ド pBluescript II Sr /1 igVを作製する。
( 2 ) 次に、 pcaHG遺伝子を、 好適なプラスミ ドのマルチクロー二 ングサイ トに存在する制限酵素 Xbalによる切断部位に連結すること により、 組換えプラスミ ド pBluescript II Sr /pcaHGを作製する。
( 3 ) 次いで、 組み換えプラスミ ド pBluescript Π SK- /pcaHGを制 限酵素 ΡνιιΠ及び BamH I によって切断した後に末端処理によって得 られる、 LacZプロモーター領域を含むプラスミ ドの DNA断片と、 組 み換えプラスミ ド pBluescriptH SK_ /1 igVを制限酵素 Fba I によつ て切断した後に末端処理によって得られる DNA断片とを、 公知のリ ガーゼにより結合させることにより、 組み換えプラスミ ド pBluescr iptH SK— /pcaHG - LigVを作製する。 さらに、 pBluescr ipt Π SK— /pc aHG-LigVを Xba Iで切断することによって得られる MA断片と、 公知 の組み換えプラスミ ド pKTVLABCを制限酵素 Xba I によって切断した 後に末端処理によって得られる DNA断片とを、 公知のリガ一ゼによ り結合させることにより、 組み換えプラスミ ド pKTVDHGを作製する ことができる。
3 -カルボキシ -cis, cis-ムコン酸及び/又は 3-カルポキシムコノ ラク トンの高生産のための宿主として使用できる微生物は、 本発明 の組換えプラスミ ドを複製し、 3 -カルボキシ -cis, cis-ムコン酸及 び/又は 3_カルポキシムコノラク トン生産に関与する酵素遺伝子を 発現できるものであれば特に制限されないが、 植物成分由来、 化学 合成又は石油成分由来のバニリン、 バニリン酸、 プロ トカテク酸を 透過し、 そのいずれかから 2-ピロン- 4, 6-ジカルボン酸への分解代 謝酵素機能、 及び 3_カルポキシ - cis, cis-ムコン酸及び/又は 3 -力 ルポキシムコノラク トンに対する分解酵素機能を消失せしめた微生 物を宿主とした形質転換体を用いる必要がある。 このような微生物 としては、 例えばシユードモナス属細菌が挙げられ、 特にシユード モナス · プチダ (Pseudomonas putida) PpYl 100株が好ましい。
このような組換えプラスミ ドを用いて宿主生物を形質転換するに は、 プロ トプラス ト法、 コンビテントセル法、 エレク トロボレ一シ ョン法等の公知の方法を用いればよい。
形質転換体の選択は、 用いたプラスミ ドの選択マ一カー、 例えば 形質転換体の MA組換えにより獏得する薬剤耐性を指標にすること ができる。 これらの形質転換体の中から目的の組換えプラスミ ドを 含有する形質転換体の選択は、 例えば遺伝子の部分的な DNA断片を プローブとして用いたコロニーハイプリダイゼ一シヨ ン法により行 うのが好ましい。 このプローブの標識としては、 例えば放射性同位 元素、 ジゴキシゲニン、 酵素等を用いることができる。
得られた形質転換体は、 炭素源、 窒素源、 金属塩、 ミネラル、 ビ 夕ミン等を含む培地を用いて適当な条件下で培養すればよい。 培地 の pHは、 形質転換体が生育し得る範囲の pHであればよく、 pH6. 0〜8 . 0程度に調整するのが好適である。 培養条件は、 15〜40°C、 好まし くは 28〜37°Cで 2〜 7 日間振盪又は通気攪拌培養すればよい。
上記培養により得られた 3-力ルポキシ- c i s, c i s- 3-ムコン酸を含 む培養液を酸処理することより、 3 -力ルポキシムコノラク トンに収 率良く変換することができる。 酸としては ρΗ 1〜 2程度の塩酸が好ま しい。
本発明の製造法によって得られる 3-力ルポキシ- c i s, c i s -ムコン 酸及び/又は 3_カルポキシムコノラク トンは、 プラスチック材料、 化学製品材料等として、 2-ピロン- 4, 6 -ジカルボン酸とは異なった 機能又は更なる高機能を発現することができ、 有用なプラスチック 材料の製造が期待できる。 実施例
次に実施例を挙げて本発明を詳細に説明するが、 本発明はこれら 実施例に何ら限定されるものではない。
[実施例 1 ] 組み換えプラスミ ド pKTVDHGの作製
( 1 ) 組換えプラスミ ド pKTVLABCの作製
特開 2005- 278549号公報に記載の方法に従って、 組換えプラスミ ド PKTVLABCを作製した。
( 2 ) 組換えプラスミ ド pULVの作製 特開 2005- 278549号公報に記載の方法に従って、 組換えプラスミ ド pULVを作製した。
( 3 ) 組換えプラスミ ド pBluescript H SK— /pcaHGの作製
PCRプライマ一として、 universal primer: 5' -GGTGTCAGGCAAAGGT GTTAAGAC-3' (配列番号 5 ) 及び reverse primer ·· 5' -AGTGGGGTKTG CTGGTTCGGC-3' (配列番号 6 ) を用い、 KT2440株ゲノムから pcaHG増 幅し、 pBluescriptH SK—の Xba l によって切断した DNA断片に、 Lac とインフレームになるよう連結し作製した。
( 4 ) 組換えプラスミ ド plILVHGの作製
組み換えプラスミ ド pBluescript Π SK_ /pcaHGを制限酵素 Pvu Π及 び BamH I によって切断した後に末端処理によって得られる、 LacZプ 口モータ—領域を含むプラスミ ドの DNA断片と、 組み換えプラスミ ド pULVを制限酵素 BaniH I によって切断した後に末端処理によって得 られる DNA断片とを、 公知のリガーゼにより結合させることにより 、 組み換えプラスミ ド pULVHGを作製した。
( 5 ) 組換えプラスミ ド pKTVDHGの作製
pULVHGを Xba I及び Sac Iで切断し末端処理をすることによって得 られる DNA断片と、 公知の組み換えプラスミ ド pKTVLABCを制限酵素 X ba I によって切断した後に末端処理によって得られる DNA断片とを 、 公知のリガ一ゼにより結合させることにより、 組み換えプラスミ ド PKTVDHGを作製した。
[実施例 2 ] バニリンからの 3 -力ルポキシムコノラク トンの製造 ( 1 ) バニリ ンから 3-力ルポキシ- cis, c is-ムコン酸への変換 (1-1) 実施例 1で作製した組み換えプラスミ ド pKTVDHGを大腸菌 HB
101株に形質転換し、 25 mg/Lのアンピシリンを含む LB培地 (100 ml
) で、 で 18時間振とう培養し、 増殖した培養細胞から組み換え プラスミ ド pKTVDHGを抽出した。 (1-2) 植物成分由来、 化学合成もしくは石油由来のバニリン、 シ リンガアルデヒ ド、 バニリン酸、 シリ ンガ酸、 プロ トカテク酸、 P- ヒ ドロキシベンズアルデヒ ド、 P-ヒ ドロキシ安息香酸のいずれかか ら 2-ピロン- 4, 6-ジカルボン酸への分解代謝酵素機能及び 3—力ルポ キシムコノラク トン、 3-カルポキシ -cis, c is-ムコン酸に対する分 解酵素機能を消失せしめた微生物である Pseudomonas putida PpYll 00を、 LB液体培地 500 mlで、 28で23時間培養し、 氷中で 30分間冷却 した。 4 で 10000 rpmで 10分間遠心集菌し、 500 mlの 0で蒸留水で 温和に洗浄後再び遠心集菌した。 続いて 250 mlの 0°C蒸留水で温和 に洗浄後、 遠心集菌した。 更に 125 mlの 0°C蒸留水で温和に洗浄後 、 遠心集菌した。 集菌した微生物細胞を、 10%グリセロールを含む 蒸留水に懸濁、 0°Cにて保持した。
(1-3) プラスミ ド pKTVDHG MA約 0.05 を含む蒸留水 4 1を 0.2 cmのキュべッ トに入れ、 (1-2)の 10%グリセロールを含む蒸留水に 懸濁した細胞液 40 ^ 1を加え、 25 ^F、 2500 V、 12 msecの条件下 でエレク 卜口ポレーシヨンにかけた。
(1-4) 上記 (1-3) で得られた細胞全量を 10 mlの LB液体培地に接 種し、 28°Cで 6時間培養した。 培養後遠心によって菌体を集め 25 mg /Lのカナマイシンを含む LB平板に展開し 28°Cで 48時間培養し、 ブラ スミ ド pKTVDHGを保持するカナマイシン耐性を示す形質転換株を得 た。 本菌を Pseudomonas putida PpYllOO (pKTVDHG) 株と名付けた
(1-5) Pseudomonas putida PpYllOO (pKTVDHG) 株を、 200 mlの LB 液体培地 (25 mg/Lのカナマイシンを含む) に接種し、 28°Cで 16時 間培養し前培養菌体懸濁液とした。 5 Lの LB液体培地及び消泡剤 (A ntiform A) 3 mlを 10 L容量のジャーファ一メン夕一 (発酵槽) を 用いて調製し、 そこに培養した Pseudomonas putida PpYllOO ( KTV DHG) 株の前培養菌体懸濁液 200 mlを混合し、 28T 、 500 rpm/分の 通気攪拌下、 OD660 13〜14まで培養した (10時間〜 12時間) 。
(1-6) 10 L容量のジャーフアーメンター (発酵槽) を用いた培養 で、 OD660が 13〜 14に達した時点で、 発酵槽から 500 mlの培養液を 三角フラスコに抜き取り、 氷上で保存した。
(1-7) 0D660が 13〜 14に達した発酵槽の培養液に、 基質であるバニ リン 50 gを含む 0.1 Nの NaOH溶液 (pH 8.5に調整) 500 mlを、 ペリ スタポンプを用いて 5〜 7時間かけて添加した。 反応の進行に伴う 3 - 力ルポキシ- cis, cis-ムコン酸の生成により、 培養液の pHが低下す るのを防ぐため、 pHセンサ一に連結したベリス夕ポンプで 0.1 Nの N aOH溶液を添加して、 培養液の pHを維持した。 図 3に、 3-カルポキ シ- cis, cis-ムコン酸の生成過程の 0D増殖曲線 (菌体量の増加) ( 一黒三角—) を示す。 図 3中、 一黒四角一は、 酸素濃度 (81ppm/分 で送気) を、 一黒菱形一は、 塩酸と水酸化ナトリウム水溶液で PH 6 .5に調整したことを示す。
添加したバニリ ンが TLC分析で殆ど消失が確認される 16時間後、
(1-6) で調製した氷冷菌体懸濁 500 mlを発酵槽の培養液に加えて 1 2時間培養を続けた。 反応の進行は薄層クロマトグラフィー (TLC) によって確認した。 図 4の(e)には、 塩酸で処理後、 酢酸ェチルで 抽出した溶液をスポッ 卜した TLCを示す。
( 2 ) 3 -力ルポキシ- cis, cis-ムコン酸から 3 -力ルポキシムコノラ ク 卜ンへの変換
反応終了後、 発酵槽の培地をプラスチック容器 ひ ケッ) に移し た。 培養液から遠心分離 ( 6000 rpm、 20で) により菌体成分を沈殿 除去し、 得られた上清に塩酸を加えることにより pH 1.0以下に低下 させ、 低温で保存することにより 3 -力ルポキシ -cis, cis-ムコン酸 を 3 -カルボキシムコノラク トンに変換した。 3-カルポキシムコノラ ク トンへの完全変換は、 TLC、 HPLC及び GC- MSにより確認した。 3-力 ルポキシムコノ ラク トンへの完全変換を確認後、 有機溶媒を用いて 3 -力ルポキシムコノラク トンを抽出した。 培養液 200 mlから抽出乾 固した 3 -カルボキシムコノラク トンは約 1.9 gに達し、 培養液全量 5 .7 Lで換算すると、 添加した基質比 88.5%程度の収率で回収された 。 得られた 3 -力ルポキシムコノラク トンを活性炭処理等により更に 純度を上げ、 その構造を NMRスぺク トルによって確認した。
Ή-NMR (400MHz, DMS0d6) δ (ppm) : 2.67, 3.10, 5.55, 6.81, 1 2.5-13.0
13C-NMR (100MHz, DMS0d6) δ (ppm) : 36.5, 78.5, 125.9, 157.9 , 162.1, 170.4, 170.8
MS m/z :402 (MM ( 3-カルポキシムコノ ラク トンの TMS (ト リメチ ルシリル) 体として)
[実施例 3 ] バニリ ン酸からの 3 -力ルポキシムコノラク トンの製造 基質としてバニリ ン酸を使用する以外は実施例 2 と同様にして、 3 -力ルポキシムコノ ラク トンを、 添加した基質比 88.5%程度の収率 で回収した。
[実施例 4] プロ トカテク酸からの 3 -力ルポキシムコノラク トンの 製造
基質としてプロ トカテク酸を使用する以外は実施例 2 と同様にし て、 3-カルポキシムコノ ラク トンを、 添加した基質比 88.5%程度の 収率で回収した。

Claims

1. バニリ ン酸ディメチラーゼ遺伝子 (vanAB遺伝子) 、 ベンズ アルデヒ ドデヒ ドロゲナーセ遺伝子 UigV遺伝子) 及びプロ トカテ ク酸 3, 4-ジォキシゲナ一ゼ遺伝子 (pcaHG遺伝子) を含む、 組換え プラスミ ド。 請
2. 前記 vanAB遺伝子が、 配列番号 7で示される DNA分子である、 請求項 1記載の組換えプラスミ ド。
3. 前記 ligV遺伝子が、 配列番号 8で示される MA分子である、 請求項 1又は 2記載の組換えプラスミ ド。
4. 前記 pcaH遺伝子が、 配列番号 1で示される MA分子であり、 かつ前記 pcaG遺伝子が、 配列番号 3で示される DNA分子である、 請 求項 1〜 3のいずれか 1項記載の組換えプラスミ ド。
5. 請求項 1〜 4のいずれか 1項記載の組換えプラスミ ドが導入 されてなる形質転換体。
6. 請求項 1〜 4のいずれか 1項記載の組換えプラスミ ドが、 シ ユードモナス · プチダ (Pseudomonas putida) PpYllOO株に導入さ れてなる、 請求項 5記載の形質転換体。
7. バニリン、 バニリン酸、 プロ トカテク酸又はこれらの 2以上 の混合物の存在下に、 請求項 5又 6記載の形質転換体を培養するこ とを特徴とする、 3-カルポキシ -cis, cis-ムコン酸及び/又は 3 -力 ルポキシムコノラク 卜ンの製造方法。
PCT/JP2007/065989 2006-08-10 2007-08-10 Plasmide, transformé, et procédé de production de la 3-carboxymuconolactone WO2008018640A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/310,095 US8211683B2 (en) 2006-08-10 2007-08-10 Plasmid, transformants and process for production of 3- carboxymuconolactone
EP07792616.0A EP2048231B1 (en) 2006-08-10 2007-08-10 Plasmid, transformant, and method for production of 3-carboxymuconolactone
JP2008528917A JP5268064B2 (ja) 2006-08-10 2007-08-10 プラスミド、形質転換体、及び3−カルボキシムコノラクトンの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006218524 2006-08-10
JP2006-218524 2006-08-10

Publications (1)

Publication Number Publication Date
WO2008018640A1 true WO2008018640A1 (fr) 2008-02-14

Family

ID=39033151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/065989 WO2008018640A1 (fr) 2006-08-10 2007-08-10 Plasmide, transformé, et procédé de production de la 3-carboxymuconolactone

Country Status (4)

Country Link
US (1) US8211683B2 (ja)
EP (1) EP2048231B1 (ja)
JP (1) JP5268064B2 (ja)
WO (1) WO2008018640A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008278823A (ja) * 2007-05-11 2008-11-20 Toyota Industries Corp 遺伝子破壊株、組換えプラスミド、形質転換体、及び3−カルボキシムコノラクトンの製造方法
US20120196339A1 (en) * 2011-01-31 2012-08-02 Los Alamos National Security Llc Production of industrially relevant compounds in prokaryotic organisms
US10266852B2 (en) 2013-12-06 2019-04-23 Alliance For Sustainable Energy, Llc Lignin conversion to fuels, chemicals and materials
US10017792B2 (en) * 2014-07-18 2018-07-10 Alliance For Sustainable Energy, Llc Biomass conversion to fuels and chemicals
US11136601B2 (en) 2018-08-02 2021-10-05 Alliance For Sustainable Energy, Llc Conversion of S-lignin compounds to useful intermediates
CN112430616A (zh) * 2020-11-03 2021-03-02 厦门大学 以木质素衍生物生产粘康酸的工程菌构建方法及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001007629A2 (de) * 1999-07-27 2001-02-01 The Institute For Genomic Research (Tigr) Dna-sequenzen, die oxygenasen kodieren
JP2005278549A (ja) 2004-03-30 2005-10-13 Yoshihiro Katayama 2−ピロン−4,6−ジカルボン酸を発酵生産するための遺伝子、前記遺伝子を含むプラスミド、前記プラスミドを含む形質転換体及び2−ピロン−4,6−ジカルボン酸の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5487987A (en) * 1993-09-16 1996-01-30 Purdue Research Foundation Synthesis of adipic acid from biomass-derived carbon sources

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001007629A2 (de) * 1999-07-27 2001-02-01 The Institute For Genomic Research (Tigr) Dna-sequenzen, die oxygenasen kodieren
JP2005278549A (ja) 2004-03-30 2005-10-13 Yoshihiro Katayama 2−ピロン−4,6−ジカルボン酸を発酵生産するための遺伝子、前記遺伝子を含むプラスミド、前記プラスミドを含む形質転換体及び2−ピロン−4,6−ジカルボン酸の製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FRAZEE R.W. ET AL.: "Cloning, sequencing, and expression of the Pseudomonas putida protocatechuate 3,4-dioxygenase genes", J. BACTERIOL., vol. 175, no. 19, 1993, pages 6194 - 6202, XP003020749
PARKE D.: "Positive selection for mutations affecting bioconversion of aromatic compounds in Agrobacterium tumefaciens: analysis of spontaneous mutations in the protocatechuate 3,4-dioxygenase gene", J. BACTERIOL., vol. 182, no. 21, 2000, pages 6145 - 6153, XP003020750 *
PRIEFERT H. ET AL.: "Molecular characterization of genes of Pseudomonas sp. strain HR199 involved in bioconversion of vanillin to protocatechuate", J. BACTERIOL., vol. 179, no. 8, 1997, pages 2595 - 2607, XP003020748
See also references of EP2048231A4 *

Also Published As

Publication number Publication date
US20100075388A1 (en) 2010-03-25
JP5268064B2 (ja) 2013-08-21
EP2048231A1 (en) 2009-04-15
US8211683B2 (en) 2012-07-03
JPWO2008018640A1 (ja) 2010-01-07
EP2048231B1 (en) 2013-11-06
EP2048231A4 (en) 2010-02-03

Similar Documents

Publication Publication Date Title
Barton et al. Enabling the valorization of guaiacol-based lignin: Integrated chemical and biochemical production of cis, cis-muconic acid using metabolically engineered Amycolatopsis sp ATCC 39116
RU2710714C9 (ru) Композиции и способы для биологического получения лактата из с1-соединений с применением трансформантов лактат дегидрогеназы
US20110086395A1 (en) Novel microorganism and its use in lignocellulose detoxification
JP2010207094A (ja) プロトカテク酸の製造法
CN106164260B (zh) 一种假丝酵母羰基还原酶及用于制备(r)-6-羟基-8-氯辛酸酯的方法
WO2008018640A1 (fr) Plasmide, transformé, et procédé de production de la 3-carboxymuconolactone
JP2008278823A (ja) 遺伝子破壊株、組換えプラスミド、形質転換体、及び3−カルボキシムコノラクトンの製造方法
JP2012000059A (ja) ムコノラクトン、β−ケトアジピン酸及び/又はレブリン酸の発酵生産
JP4658244B2 (ja) 2−ピロン−4,6−ジカルボン酸を発酵生産するための遺伝子、前記遺伝子を含むプラスミド、前記プラスミドを含む形質転換体及び2−ピロン−4,6−ジカルボン酸の製造方法
JP2007525942A (ja) 二相反応媒体におけるパラ−ヒドロキシケイ皮酸の生体触媒的脱炭酸によってパラ−ヒドロキシスチレンを製造するための方法
KR101796983B1 (ko) 미생물에 의한 n-부티르알데하이드의 생성
CN114008211B (zh) 由聚对苯二甲酸乙二醇酯产生高附加值化合物的方法
EP1285070A1 (en) Recombinant microorganism expressing polyhydroxyalkanoate biosynthesis enzyme and intracellular pha depolymerase
CN115927152A (zh) 香兰素在基因工程菌大肠杆菌中的合成与积累
JP4914041B2 (ja) ガリック酸からの2−ピロン−4,6−ジカルボン酸の製造方法とこれに使用するガリック酸から2−ピロン−4,6−ジカルボン酸を生産する組み換えプラスミドならびにガリック酸からの2−ピロン−4,6−ジカルボン酸の生産能を具備した形質転換細胞
EP2316926B1 (en) Enantioselective production of alpha-hydroxy carbonyl compounds
JP5807867B2 (ja) フェルロイルCoAシンテターゼ遺伝子およびフェルロイルCoAヒドラターゼ/リアーゼ遺伝子を用いたPDCの生産
US9340809B2 (en) Microbial conversion of sugar acids and means therein
KR100447532B1 (ko) (알)-하이드록시카르복실산 생산 재조합 미생물 및 그를이용한 (알)-하이드록시카르복실산의 제조방법
AU2014297758B2 (en) Method for producing methacrylyl-CoA
CN113234611A (zh) 酿酒酵母工程菌及其在制备原儿茶酸中的应用
US8344119B2 (en) System for the production of aromatic molecules in Streptomyces
CN117946225B (zh) 提高聚羟基脂肪酸酯产量的重组工程菌及其应用
JP5812235B2 (ja) 3−メチルガリク酸3,4−ジオキシゲナーゼ遺伝子導入によるpdcの生産
JP2024109093A (ja) アセトバニロン変換酵素遺伝子及びそれを用いた有用物質生産

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792616

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007792616

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 12310095

Country of ref document: US